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1 Survey

This are supplementary lecture notes, intended to give details where we do
not follow in our argumentation the textbook NZM or the LÅL-notes.

We assume the reader to have some basic knowledge of commutative rings,
as for example presented in sections 3 - 7: They do not enter into the course,
whose main subjects are discussed in the chapters 8, 10 - 12, 14 - 19.

The first part of the course is devoted to the solution of a polynomial
equation

f(x) = 0,

in a residue class ring Zn, where f ∈ Z[X] is a polynomial in one variable.
By the chinese remainder theorem one can reduce that problem to prime

power moduli n = pk and there we may apply in certain favourable cases a
lifting procedure which creates a solution ak ∈ Zpk for every pk from a given
solution in Zp. But such a chain of solutions in general does not correspond to
a solution in Z; nevertheless it turns out to be helpful to consider such chains
as a new sort of numbers, called p-adic integers, see the optional section 9.

On the other hand, the polynomial

f = X` − a

as the simplest polynomial of degree ` should be understood, i.e. one wants
to understand whether or not an element a ∈ Zn is an `-th power: We are
led to the notion of a primitive root for a modulus n, see section 10.

If ` = 2 there is a very convenient way to decide, whether some a ∈ Zp is
a square or not: This is the famous law of quadratic reciprocity, see section
11.

There is a short section (12) dealing with arithmetic functions. For those
familiar with complex analysis, we mention the connection with Dirichlet
series (not part of the course) and discuss basic features of Riemann’s ζ-
function in the optional section 13.

The second part of the course deals with diophantine equations

f(x1, ..., xm) = 0, f ∈ Z[X1, ..., Xm], m > 1

and one is interested in solutions (x1, ..., xm) ∈ Zm. We discuss in detail

1. linear ones: a1x1 + ....+amxm−b = 0; we give a criterion for solvability
and a recipe, how to obtain all solutions,
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2. x2 + y2 = n ∈ N; we give a criterion for solvability and count the
solutions,

3. x2 + y2 = z2, which one may regard as a special case of the previous
equation when fixing n := z2. All its solutions (x, y, z) ∈ N3, called
pythagorean triples, are given explicitly,

4. x4 + y4 = z4 is shown to be unsolvable following Fermat,

5. x2 + y2 + z2 + t2 = n is shown to be solvable for any n ∈ N,

6. Pell’s equation x2 − dy2 = ±1 with d ∈ N>1 not a square. We see
that all its (infinitely many) solutions can be generated from one basic
solution. In order to assure the existence of solutions (x, y) 6= (±1, 0)
we need continued fractions, section 19.

2 Distribution of primes: A short fairy tale

See also LÅL, section 2, Th.2.5 - Th.2.10. By a result of Euclid we know
that there are infinitely many prime numbers:

|P | =∞

holds for the set P ⊂ N of all prime numbers. Indeed, given p1, ..., pn ∈ P
we find further prime numbers, namely the prime divisors of p1 · ... · pn + 1.

Question: How dense are the prime numbers in N?

They are not too sparse, indeed:∑
p∈P

1

p
=∞,

while ∑
n∈N

1

n2
<∞,

i.e. prime numbers are more dense in N than squares! We shall prove the
following estimate:
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Proposition 2.1. For x ≥ 3 we have∑
p≤x

1

p
≥ ln(ln(x))− 1,

Proof. Let P≤x := P ∩ R≤x = {p1 = 2, p2 = 3, ......, pn} and

F (n) := pN1 · ... · pNn

be the set of all natural numbers, which are a product of the pi, i = 1, ..., n.
Then we find ∑

k∈F (n)

1

k
=
∞∑
ν=0

(
1

p1

)ν
· ... ·

∞∑
ν=0

(
1

pn

)ν

=
1

1− 1
p1

· ... · 1

1− 1
pn

.

Now we have [1, x] ∩ N ⊂ F (n), whence

∑
k∈F (n)

1

k
≥
∑
k≤x

1

k
≥
∫ [x]+1

1

dt

t
= ln([x] + 1) ≥ ln(x).

So ∏
p≤x

1

1− 1
p

≥ ln(x)

and thus, applying the logarithm, we obtain

∑
p≤x

− ln

(
1− 1

p

)
> ln(ln(x)).

Now with a Taylor-MacLaurin expansion we arrive at

− ln(1− t) |t|<1
= t+

t2

2
+
t3

3
+ ....

0≤t<1

≤ t+
t2

2

(
1 + t+ t2 + ....

)
= t+

t2

2
· 1

1− t
.

For 0 ≤ t ≤ 1
2

this leads to

− ln(1− t) ≤ t+ t2.
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Hence, with t = 1
p
, p ≤ x, we find

∑
p≤x

1

p
+
∑
p≤x

1

p2
> ln(ln(x)).

Finally

∑
p≤x

1

p2
≤

∞∑
k=2

1

k2
≤

∞∑
k=2

1

k(k − 1)
=
∞∑
k=2

(
1

k − 1
− 1

k

)
= 1.

In order to get some more explicit information one introduces the prime
number function

π : R>0 −→ N, π(x) := |P≤x|,

counting the number of primes below the argument x ∈ R>0 and investigates
the prime number density function

π(x)

x

giving for x ∈ N the percentage of prime numbers in [1, x] ∩N. One expects
that prime numbers become more and more sparse.

Definition 2.2. For functions f, g : R>2 −→ R>0 we write

f(x) ∼ g(x) :⇐⇒ lim
x→∞

f(x)

g(x)
= 1.

Theorem 2.3 (Prime Number Theorem). We have

π(x)

x
∼ 1

ln(x)
.

With other words: Given any q < 1 for all sufficiently big x ∈ R>2 we have

q

ln(x)
≤ π(x)

x
≤ 1

q ln(x)
.
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It has been proven first by de la Vallée-Poussin and Hadamard with
complex-analytic methods (1896), see also the (optional) section about Rie-
mann’s ζ-function, and 50 years later with elementary tools by Erdös and
Selberg. A more detailed investigation of the prime number function π in-
volves Riemann’s ζ-function - a factorization of it leads to a (quite sophisti-
cated) formula for π(x), where the factorization depends on the zeros of ζ.
Indeed, the above theorem is equivalent to a statement about the zeros of ζ.

Here we can show only a partial result, a lower bound for the occurrence
of prime numbers:

Proposition 2.4. Given any q < 1 there are arbitrarily big x ∈ R>0, such
that

q

ln(x)
≤ π(x)

x
.

First we need a formula which relates the prime density function with the
sum we have just estimated:

Lemma 2.5. ∑
p≤x

1

p
=
π(x)

x
+

∫ x

2

π(t)

t2
dt.

Proof. ∫ x

2

π(t)

t2
dt =

n−1∑
k=1

∫ pk+1

pk

π(t)

t2
dt+

∫ x

pn

π(t)

t2
dt

=
n−1∑
k=1

∫ pk+1

pk

k

t2
dt+

∫ x

pn

n

t2
dt

=
n−1∑
k=1

k

(
1

pk
− 1

pk+1

)
+ n

(
1

pk
− 1

x

)

=
n−1∑
k=1

k

pk
−

n∑
k=2

k − 1

pk
+
n

pn
− n

x

=
n∑
k=1

1

pk
− π(x)

x
.
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Proof of Prop.2.4. Let q < 1. Assume the contrary, i.e. there is some M > 0,
s.th.

π(x)

x
≤ q

ln(x)

holds for all x ≥M . We derive an estimate∑
p≤x

1

p
≤ q ln(ln(x)) +D

for x ≥M , which contradicts the estimate

ln(ln(x))− 1 ≤
∑
p≤x

1

p
,

since limx→∞ ln(ln(x)) =∞. Indeed, the assumption implies∑
p≤x

1

p
=

∫ x

2

π(t)

t2
dt+

π(x)

x
≤
∫ x

2

π(t)

t2
dt+ 1 ≤

∫ M

2

π(t)

t2
dt+

∫ x

M

q

t ln(t)
dt+ 1

= C + 1 + q(ln(ln(x))− ln(ln(M))).

Here is a further question related to the prime number theorem:

Question: How does the gaps gn := pn− pn−1 between two successive prime
numbers behave for n → ∞? The prime number theorem tells us that the
sequence of their arithmetic means satisfies

sn :=
1

n− 1

n∑
i=2

gi ∼ ln(pn);

indeed:

sn =
1

n− 1
(pn − 2) ∼ pn

n
=

pn
π(pn)

∼ ln(pn).

In particular the sequence (gn)n≥2 is unbounded, but that can be seen as
well with an elementary argument: In the interval [m! + 2, .....,m! +m] ∩ N
there are obviously no prime numbers, so if pn−1 ≤ m! + 2 ≤ pn, we have
gn ≥ m. But from that we can not conclude that limn→∞ gn = ∞. The
following result is from 2013:
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Theorem 2.6 (Zhang Yitang). There are arbitrarily big n ∈ N with

pn − pn−1 ≤ 7 · 107.

Last year the above estimate has been improved: The estimate

pn − pn−1 ≤ 246

holds for infinitely many n ∈ N. Finally one would like to show that even

pn − pn−1 = 2

holds for infinitely many n ∈ N, i.e. that there are infinitely many prime
twins (p, p+ 2).

3 Rings

Number theory is concerned with the set Z of integers. It admits two binary
operations

Z× Z −→ Z,

addition and multiplication. But often it is quite useful also to admit other
auxiliary sets, where these operations are defined, either enlarging Z, e.g.
replacing it with the rationals Q ⊃ Z, or ”shrinking” it, e.g. replacing Z
with the set Z/ ∼ of equivalence classes, where ∼ is an equivalence relation
on Z compatible with the addition and multiplication of integers.

Hence, it turns out to be useful to introduce a general notion, that of a
ring:

Definition 3.1. A commutative ring is a triple (R,α, µ), consisting of a set
R and two binary operations, i.e. maps,

α : R×R −→ R, (x, y) 7→ x+ y := α(x, y) ,

the “addition”, and

µ : R×R −→ R, (x, y) 7→ xy := µ(x, y) ,

the “multiplication”, such that

9



1. For all x, y ∈ R we have

x+ y = y + x, xy = yx.

2. For all x, y, z ∈ R we have

(x+ y) + z = x+ (y + z), (xy)z = x(yz).

3. For all x, y, z ∈ R we have

x(y + z) = xy + xz.

4. There are elements 0, 1 ∈ R, such that

x+ 0 = x, 1 · x = x

holds for all x ∈ R.

5. For all x ∈ R there is an element y ∈ R with

x+ y = 0.

Example 3.2. 1. The set Z of all integers, Q of rational, R of real and
C of complex numbers are rings with the standard addition and multi-
plication of complex numbers.

2. There are further examples of the above type, i.e. subsets R ⊂ C,
which are additively and multiplicatively closed, contain 0, 1 ∈ C and
satisfy R = −R. We mention R = Z + Zi, the set of gaußian integers,
i.e. complex numbers with integer real and imaginary part. They form
a lattice in the complex plane. Another example is R := Z + Zε with
the third root of unity ε := 1

2
(−1 + i

√
3). For example when dealing

with Fermat’s equation for n = 3 it can be useful to replace Z with R
since then

x3 = z3 − y3 = (z − y)(z − εy)(z − ε2y).

On the other hand the ring R is sufficiently close to Z in order to obtain
interesting information even for Z.

Here are some features all rings share:
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Remark 3.3. 1. The elements 0, 1 ∈ R are uniquely determined.

2. Assume x+ y = 0 = x+ ỹ. Then

ỹ = ỹ + 0 = ỹ + (x+ y) = (ỹ + x) + y = 0 + y = y.

Thus we may define
−x := y.

As an immediate consequence one obtains

−(−x) = x.

3. We define subtraction as follows:

x− y := x+ (−y).

4. Next:
0 · x = 0 = x · 0

holds, since x = 1 · x = (1 + 0)x = x+ 0 · x. Furthermore

(−1)x = x(−1) = −x

follows from 0 = (1 + (−1))x = x+ (−1)x.

5. In general there is no cancellation rule for the multiplication, since
there may be nontrivial “zero divisors”, i.e. elements a ∈ R \ {0}, such
that

ab = 0

for some b 6= 0, and it can happen that

1 + ...+ 1 = 0 .

4 Divisibility revisited

Definition 4.1. A subset a ⊂ Z is called an ideal if

1. 0 ∈ a,

2. x, y ∈ a =⇒ x+ y ∈ a, i.e. an ideal is closed w.r.t. addition,
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3. x ∈ a =⇒ −x ∈ a, i.e. an ideal lies symmetric to the origin.

Remark 4.2. For an ideal a ⊂ Z we have

a ∈ a =⇒ ka ∈ a, ∀ k ∈ Z.

Example 4.3. 1. a = Z is an ideal, the ”unit ideal”.

2. a = {0} is an ideal, the ”trivial” or ”zero ideal”.

3. Let n ∈ Z. Then
Zn := {kn; k ∈ Z}

is an ideal.

4. Let a, b ∈ Z. Then

(a, b) := Za+ Zb = {ka+ `b; k, ` ∈ Z}

is an ideal, it is called the ideal generated by a and b. Note that

(n, 0) = Zn.

Theorem 4.4. Any ideal a ⊂ Z is a principal ideal:

a = Zn

with a uniquely determined natural number n ∈ N.

Proof. If a = {0}, take n = 0. Otherwise we have

a>0 := {a ∈ a; a > 0} 6= ∅

because of a = −a and choose

n := min a>0.

Since n ∈ a and a is closed under multiplication with arbitrary integers, we
get Zn ⊂ a. Take now any a ∈ a and write

a = qn+ r, 0 ≤ r < n.

Then there are two possibilities
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1. r = 0 and thus a ∈ Zn, or

2. r = a− qn ∈ a>0. But then we find r ≥ min a>0 = n, a contradiction.

Finally we want to find explicitly the generator

n := min (a, b)>0.

Obviously there is a problem, since one does not know all k, ` ∈ Z with
ka + `b > 0. Instead we can use a reduction procedure for the generators a
och b. It is based on the following remark:

Remark 4.5. If a = qn+ r or a = qn− r, then

(a, b) = (b, r).

The Euclidean algorithm is now an iteration of that reduction step:

1. We may asume a ≥ b ≥ 0.

2. If a = b or b = 0, then (a, b) = Za.

3. If a > b > 0, we write a = qb + r or a = qn− r and the above remark
gives

(a, b) = (b, r).

4. Now we can repeat that step with (b, r) instead of (a, b). If we choose
r ∈ Z according to the division algorithm, we have a > b > r ≥ 0, and
arrive after finitely many steps at the situation, where (a, b) = (n, 0) =
Zn. But when admitting negative remainders, we may even require
b
2
≥ r ≥ 0, thus making the algorithm a little bit faster.

Finally let us justify the title of this section:

Proposition 4.6. If
(a, b) = Zn,

where ab 6= 0 and n ∈ N, we have

n = gcd(a, b).
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Proof. We have q := gcd(a, b) ≥ n, since n divides both a and b. On the
other hand q divides a and b, hence also n = ra+ sb. But

q|n ∧ q ≥ n =⇒ q = n.

5 Residue class rings

We fix a natural number n ∈ N>1, the ”modulus”.

Definition 5.1. Two integers a, b ∈ Z are said to be congruent modulo n,
written as:

a ≡ b mod (n)

or
a

n≡ b,

iff n divides the difference b− a.

Remark 5.2. 1. ..
n≡ .. is an equivalence relation.

2. The equivalence class

Rn(a) := {b ∈ Z; b
n≡ a}

of an integer a ∈ Z is

Rn(a) = a+ Zn := {a+ kn; k ∈ Z}.

3. Remember
Rn(a) = Rn(b)⇐⇒ a

n≡ b.

4. For 0 ≤ r < n the equivalence class Rn(r) consists of all integers giving
remainder r after division with n, i.e. a = qn + r, this explains why
one often speaks of residue classes mod n. We thus obtain a partition

Z =
n−1⋃
i=0

Rn(i).
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5. The set of all residue classes mod n is denoted:

Zn := {Rn(i); i = 0, ..., n− 1} .

Making Zn a ring: We want to define addition and multiplication

Zn × Zn −→ Zn

for residue classes mod n. We start with the set theoretic sum of subsets
A,B ⊂ Z, namely

A+B := {a+ b; a ∈ A, b ∈ B}

and

AB := {ab; a ∈ A, b ∈ B}.

Proposition 5.3. 1. Rn(a) +Rn(b) = Rn(a+ b),

2. Rn(a) ·Rn(b) ⊂ Rn(ab),

3. Rn(ab) = Rn(a) ·Rn(b) + Zn.

Proof. We consider the sum and the product of arbitrary integers a + kn ∈
Rn(a) and b+ `n ∈ Rn(b) and see that

(a+ kn) + (b+ `n) = (a+ b) + (k + `)n ∈ Rn(a+ b)

and

(a+ kn)(b+ `n) = ab+ (kb+ `a+ k`n)n ∈ Rn(ab).

Since all the products lie in the residue class Rn(ab), we can simply add Zn
and obtain the entire residue class Rn(ab).

Remark 5.4. The set theoretic product of residue classes is not necessarily
again a residue class, e.g.

Rn(0) ·Rn(0) = Zn · Zn = Zn2 $ Zn = Rn(0).
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So the addition is set theoretic

α : Zn × Zn −→ Zn, (Rn(a), Rn(b)) 7→ Rn(a+ b) = Rn(a) +Rn(b),

while the set theoretic product has to be completed to a residue class

µ : Zn × Zn −→ Zn, (Rn(a), Rn(b)) 7→ Rn(ab) = Rn(a) ·Rn(b) + Zn.

A more convenient notation: If the modulus n is understood, we simply
write

a := Rn(a) = a+ Zn.

We then have

Zn = {0, 1, ...., n− 1}

and addition and multiplication is as easy as possible:

a+ b = a+ b

and

a · b = ab.

Note: From now on we use the standard notation for the product of residue
classes

a · b = Rn(a) ·Rn(b) + Zn = ab,

so it is not any longer the set theoretic product!

6 Further properties of rings

Definition 6.1. 1. An element a ∈ R in a commutative ring R is called
a non-zero divisor iff ab = 0 =⇒ b = 0.

2. A non-trivial ring (i.e. s.th. 1 6= 0), where all elements a 6= 0 are
non-zero-divisors is called an integral domain.

Example 6.2. 1. The rings Z,Q,R,C are integral domains.
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2. Non-zero-divisors a ∈ R can be cancelled in an equation:

ax = ay =⇒ x = y.

3. A residue class a ∈ Zn is a non-zero-divisor iff gcd(a, n) = 1. We have

a · b = ab = 0⇐⇒ ∃k ∈ Z : ab = kn.

If gcd(a, n) = 1 that implies n|b, i.e. b = 0. On the other hand, if
gcd(a, n) = d > 1, we have n = n0d and n|an0, i.e.

a · n0 = 0,

though n0 6= 0.

4. The residue class ring Zn is an integral domain iff n = p is a prime
number, since a natural number is prime iff any number k, 1 ≤ k < n
and n are relatively prime.

Definition 6.3. 1. An element a ∈ R in a nontrivial commutative ring R
is called invertible or a unit iff there is an element b ∈ R with ab = 1.

2. The set
R∗ := {a ∈ R; ∃b ∈ R : ab = 1}

of all invertible elements is called the group of units of the ring R.

Remark 6.4. 1. The number b with ab = 1 is uniquely determined if it
exists, we write a−1 := b.

2. The group of units is closed w.r.t. multiplication and inversion. Indeed

(ab)−1 = b−1a−1, (a−1)−1 = a.

3. Units are non-zero-divisors: If a ∈ R∗ and ab = 0, we find 0 =
a−1(ab) = (a−1a)b = 1b = b.

4. In a finite (commutative) ring non-zero-divisors are already units, since
for a non-zero-divisor a ∈ R the map µa : R −→ R, x 7→ ax, is injective,
and an injective map from a finite set to itself is even bijective. In
particular there is some b ∈ R with µa(b) = 1.
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5. Z∗ = {±1}.

6. Z∗n = {a ∈ Zn; gcd(a, n) = 1}.
Example 6.5. In order to invert a unit a ∈ Z∗n we have to find integers
r, s ∈ Z, such that ra+ sn = 1. Then we obtain

a−1 = r.

Let us compute 70
−1 ∈ Z101. The Euclidean algoritm gives

101 = 1 · 70 + 31, 70 = 2 · 31 + 8, 31 = 4 · 8− 1

and thus

1 = 4 · 8− 31 = 4 · (70− 2 · 31)− 31 = 4 · 70− 9 · 31

= 4 · 70− 9 · (101− 70) = 13 · 70− 9 · 101.

Hence 70
−1

= 13 ∈ Z101.

Definition 6.6. An integral domain R is called a field (kropp p̊a svenska),
if all nonzero elements are units, i.e.

R∗ = R \ {0}.
Example 6.7. The rings Q,R,C and Zp with a prime number p are fields.

There are further interesting elements in a commutative ring:

Definition 6.8. Let R be a commutative ring.

1. An element a ∈ R is called nilpotent if we have an = 0 for some n ∈ N>0.

2. An element e ∈ R is called idempotent if we have e2 = e.

Remark 6.9. 1. The elements 0, 1 ∈ R are idempotent. If R is an inte-
gral domain, there are no further idempotents: The equation e2 = e
may also be rewritten as 0 = e2 − e = e(e− 1).

2. An element a ∈ Zn is nilpotent iff a and n have the same prime divisors.

3. In Zpn an element is either a unit or nilpotent.

4. In Zpn there are no idempotents except 0, 1. An idempotent element
e 6= 0, 1 would be a zero divisor, hence nilpotent, and thus necessarily
0. Contradiction!

5. If n is not a prime power, then there are always idempotent elements,
as we shall see later on in the chinese remainder theorem.
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7 Groups of units

Definition 7.1. The function ϕ : N>0 −→ N defined by

ϕ(n) :=

{
1 , if n = 1
|Z∗n| , if n ≥ 2

is called Eulers ϕ-function.

Lemma 7.2. For a prime power n = pk, k ≥ 1, we have:

ϕ(pk) = pk−1(p− 1) .

Proof. The complement of Z∗
pk

consists of the zero divisors

0, p, 2p, ...., (pk−1 − 1)p.

Thus

|Z∗pk | = |Zpk | − number of zero divisors = pk − pk−1 = pk−1(p− 1).

In order to compute ϕ(n) for arbitrary n ∈ N we regard the prime fac-
torization

n = pk11 · .... · pkrr
and compare the residue class ring Zn with the residue class rings Z

p
ki
i
, i =

1, ..., r. The set Zn has as many elements as the cartesian product Z
p
k1
1
×

...× Zpkrr , in particular there is a bijection

ψ : Zn −→ Z
p
k1
1
× ...× Zpkrr .

We ask, if we can choose ψ = (ψ1, ...., ψr) in such a way, that we may deter-
mine ψ(Z∗n). First of all the target can be made a ring:

Definition 7.3. Let R1, ..., Rs be rings. The direct product R1× ....×Rs is
the cartesian product of the sets R1, ..., Rs endowed with the componentwise
addition and multplication..

19



Remark 7.4.

(R1 × ....×Rs)
∗ = R∗1 × ....×R∗s.

Now if we could choose ψ as a ring homomorphism, i.e. compatible with
the ring operations on both sides:

ψ(x+ y) = ψ(x) + ψ(y), ψ(xy) = ψ(x)ψ(y), ψ(1) = 1,

we would find that ψ induces a bijection

Z∗n
ψ−→ Z∗

p
k1
1

× ...× Z∗
pkrr
.

Definition 7.5. Let R, S be rings. We write R ∼= S and say ”R is isomorphic
to S”, if there is a bijective ring homomorphism (= a ring isomorphism)

ψ : R −→ S.

So what could we take as the component maps

ψi : Zn −→ Z
p
ki
i
, i = 1, ..., r?

Remark 7.6. Let m be a divisor of n. Then

Zn −→ Zm, a+ Zn 7→ (a+ Zn) + Zm = a+ Zm

defines a ring homomorphism.

Finally we arrive at

Theorem 7.7 (Chinese Remainder Theorem). Let

n = pk11 · .... · pkrr .

Then

ψ : Zn −→ Z
p
k1
1
× ...× Zpkrr , a 7→ (a+ Zpk11 , ..., a+ Zpkrr )

is a ring isomorphism.
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Proof. Since the domain of definition and the target of ψ have the same
number of elements, it suffices to show that ψ is injective. Now a ring ho-
momorphism is injective iff ψ(z) = 0 implies z = 0, since

ψ(x) = ψ(y)⇐⇒ ψ(x− y) = 0.

Take z = a ∈ Zn. Now ψ(a) = 0 means (pi)
ki |a for i = 1, ..., r resp. n|a resp.

a = 0.

Corollary 7.8. Let n = pk11 · .... · pkrr . Then

ϕ(n) = ϕ(pk11 ) · ... · ϕ(pkrr ).

Let us come back to commutative rings! Given a unit z ∈ R∗ we want to
study the sequence

1, z, z2, z3, ......

of its powers. Then either

1. zk 6= z` for k 6= `, or

2. there are `, k with ` > k, such that z` = zk resp. zm = 1 for m =
`− k > 0.

Obviously the second case applies for a finite group of units. Indeed
m = |R∗| does the job for any z ∈ R∗:

Theorem 7.9 (Lagrange). Let R be a commutative ring, |R∗| = q < ∞.
Then we have

zq = 1

for all z ∈ R∗.

Proof. The map µz : R∗ −→ R∗, x 7→ zx, is bijective, hence∏
x∈R∗

x =
∏
x∈R∗

µz(x) =
∏
x∈R∗

(zx) = zq
∏
x∈R∗

x.

Since units are non-zero divisors, we conclude zq = 1.

Corollary 7.10. 1. Euler: If gcd(a, n) = 1, we have

aϕ(n) ≡ 1 mod (n).
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2. Little Fermat: If p is prime and does not divide a, then

ap−1 ≡ 1 mod (p).

Proof. Little Fermat is a special case of Euler, take n = p, while Euler follows
from Lagrange with R = Zn.

Public Key Cryptography: We shall explain here how one can encode
messages using a public key, such that only receivers with an additional
private key can decode them.

1. Take a number n = pq ∈ N, which is the product of two different prime
numbers p, q.

2. Messages, both plain text and encoded, are represented as elements
x ∈ Zn.

3. If k = 1 + r(p− 1)(q − 1), we have

xk = x

for all x ∈ Zn: Since Zn ∼= Zp × Zq, it is sufficient to prove xk = x for
x ∈ Zp and x ∈ Zq. For x = 0, it is clear, and if, say x ∈ Zp \{0} = Z∗p,
we find

xk = x · (xp−1)r(q−1) = x · 1r(q−1) = x.

4. Encoding is described by the map

Zn −→ Zn, x 7→ y = xe,

with an exponent e relatively prime to ϕ(n) = (p− 1)(q − 1).

5. The pair (n, e) is public knowledge, but not the factors p, q. The point
here is, that for great n an effective factorization - at least nowadays -
is impossible.

6. In order to decode one needs an additonal private key, a number d ∈ N,
such that ed ≡ 1 mod (p − 1)(q − 1). An encoded message y ∈ Zn is
decoded applying the map

y 7→ yd.
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7. In order to obtain d from the public key (n, e) one needs the factoriza-
tion n = pq.

Example 7.11. We take n = 77, e = 23, and want to decode y = 4 ∈ Z77.
Luckily we know 77 = 7 · 11 and ϕ(77) = 60 and compute

Z60 3 d = 23
−1

= 47.

Thus we obtain the decoded message

x = 4
47 ∈ Z77

∼= Z7 × Z11.

In order to avoid tedious computations, we use the chinese remainder theorem
(of course, in a realistic situation, that is not possible, since the factorization
n = pq is. presumably, unknown to the receiver)

Z77 Z7 × Z11

22 (1, 0)
56 (0, 1)
4 (4, 4)

4
47

(4
5
, 4

7
)

16 (2, 5)

,

so we get finally 16.

8 Polynomial equations over Zn
Any polynomial f =

∑
aνX

ν ∈ Z[X] induces a function

R −→ R, ξ 7→ f(ξ) :=
∑

aνξ
ν

for any (commutative) ring R. We want to investigate what can be said
about the zeros of that function in the case, where

R = Zn = {0, 1, ...−, n− 1}

is the residue class ring Zn := Z/Zn. Then we have for ξ := x ∈ Zn the
following equivalence

f(ξ) = 0⇐⇒ n|f(x) :⇐⇒ f(x) ≡ 0 mod (n).
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Furthermore remember that

Z∗n = {a; gcd(a, n) = 1}

is the group of units of Zn.

1.) Linear polynomials: The first case we study is that of a linear poly-
nomial

f = aX + b.

The solutions ξ ∈ Zn are the residue classes ξ = x, such that there is some
y ∈ Z with

ax+ b = yn.

Such a pair (x, y) exists, iff d := gcd(a, n) divides the constant term b. The
condition is obviously necessary, but also sufficient: Writing a0 = a/d, b0 =
b/d, n0 = n/d we have

ax+ b ≡ 0 mod (n)⇐⇒ a0x+ b0 ≡ 0 mod (n0).

Furthermore a0 ∈ Z∗n0
and for ζ ∈ Zn0 and f0 := a0X + b0 we obtain :

f0(ζ) = 0⇐⇒ ζ = −(a0)−1 · b0.

It follows that

f(ξ) = 0⇐⇒ ξ 7→ ζ = z,

where 7→ denotes the natural map Zn −→ Zn0 , x+ Zn 7→ x+ Zn0. Hence

ξ = z + νn0 ∈ Zn, ν = 0, ..., d− 1

are the zeros of f = aX + b in Zn. In order to find ζ = z we may either
invert a0 ∈ Z∗n0

or solve directly the congruence

a0z ≡ −b mod (n0).

For an explicit calculation we refer to LÅL, Ex.5.1.

2.) Reduction to prime power moduli: Assume

n = pk11 · .... · pkrr ,

24



and denote
ψ : Zn −→ Z

p
k1
1
× ...× Zpkrr ,

ξ = x 7→ (ξ1, ..., ξr), ξi := x+ Zpkii ,

the chinese remainder isomorphism. Then we have

f(ξ) = 0⇐⇒ f(ξi) = 0, i = 1, ..., r.

Hence we have to look for ξi ∈ Z
p
ki
i

with f(ξi) = 0 and may take

ξ = ψ−1(ξ1, ..., ξr).

Remark 8.1. Here we discuss how to evaluate

ψ−1 : Z
p
k1
1
× ...× Zpkrr −→ Zn

or, equivalently, how to find a simultaneous representative x for ξ1 = x1, ..., ξr =
xr. Denote

ei := (0, ..., 0, 1, 0, ..., 0) ∈ Z
p
k1
1
× ...× Zpkrr

the ”i-th unit vector” ei := (δi,1, ......, δi,r). Since

(ξ1, ..., ξr) =
r∑
i=1

xiei,

we have

ψ−1(ξ1, ..., ξr) =
r∑
i=1

xiψ
−1(ei)

and it suffices to find bi = ψ−1(ei) ∈ Zn for i = 1, ..., r as follows: Writing

n = ni(pi)
ki

we have
bi = cini,

where t = ci is a solution of the congruence

nit ≡ 1 mod ((pi)
ki).

Or simply guess the correct value by checking all integer multiples cni, c ∈ Z.
For an explicit calculation we refer to LÅL, Ex.6.1.
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3.) Raising the exponent of a prime power modulus: We consider
the cmmutative diagram

ξ ∈ Zpk+1
f−→ Zpk+1

↓ ↓
%(ξ) ∈ Zpk

f−→ Zpk
,

where the vertical arrows are the natural map % : Zpk+1 −→ Zpk . Obviously,
if ξ ∈ Zpk+1 is a zero of f , then %(ξ) ∈ Zpk is a zero of f as well. On the
other hand, if %(ξ) is a zero of f , then

%−1(%(ξ)) = {ξt = ξ + t · pk, t = 0, ..., p− 1}

holds for the set %−1(%(ξ)) of residue classes above %(ξ). We want to know,
for which t, 0 ≤ t < p, the element ξt ∈ %−1(%(ξ)) is a zero of f .

We remark that for ξ = a the assumption f(%(ξ)) = 0 means that pk|f(a).
Indeed a straight forward argument shows:

Proposition 8.2. Let ξ = a ∈ Zpk+1. If f(%(ξ)) = 0, then we have

f(ξt) = 0⇐⇒ f ′(a)t ≡ −f(a)

pk
mod (p).

In particular,

1. if p 6 |f ′(a), there is exactly one t with f(ξt) = 0,

2. if p|f ′(a) and pk+1|f(a), we have f(ξt) = 0 for all t,

3. and finally, if p|f ′(a) and pk+1 6 |f(a), we have f(ξt) 6= 0 for all t.

Proof. We have

f(a+ Y ) = f(a) + f ′(a)Y + Y 2g(Y )

with a polynomial g ∈ Z[Y ]. Hence, substituting tpk for Y and passing from
Z to Zpk+1 yields

Zpk+1 3 0 = f(ξ + tpk) = f(ξ) + tf ′(ξ)pk ⇐⇒ pk+1|f(a) + tf ′(a)pk,

the latter being equivalent to p|f(a) + tf ′(a).
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Theorem 8.3 (Hensel’s lemma). Let f ∈ Z[X], p a prime and ξ ∈ Zp with
f(ξ) = 0 and f ′(ξ) 6= 0. Then for any k ∈ N>0 there is a unique zero ξk ∈ Zpk
of f lying above ξ ∈ Zp.

Remark 8.4. Hensel’s lemma provides a sequence ξk ∈ Zpk , s.th. f(ξk) = 0
and %(ξk) = ξk−1, but that does not imply that there is some simultaneous
representative x ∈ Z, i.e. such that ξk = x holds for all k ∈ N. If so, we
would have f(x) = 0 as well. In order to understand what is happening here,
we write ξk = xk with 0 ≤ xk < pk and look at its p-adic expansion: We have

xk =
k−1∑
ν=0

tνp
ν , 0 ≤ tν < p

with the digits tν being independent of k ∈ N. In particular a global repre-
sentative exists iff the increasing sequence (xk)k≥1 is bounded or equivalently
tν = 0 for ν � 0. But that need not be the case in general: Take f = X2 + 1
and p = 5. Then we have f(2) = 0 and f ′(2) = 4 6= 0, so Hensel’s lemma
applies. But f has obviously no zero in Z.

Indeed, there are uncountably many sequences ξk reap. xk, so the over-
whelming majority has no global representative.

In the optional section 10 we describe, how one can, analogous to the
creation of real numbers from rational ones, produce p-adic integers, which
admit infinite expansions

x =
∞∑
ν=0

tνp
ν , 0 ≤ tν < p.

Proof of Th.8.3. We use induction on k ∈ N>0. For k = 1 the claim is true
by assumption. Assume ak ∈ Zpk has been found. Since ak ≡ a mod (p),
we have as well f ′(ak) ≡ f ′(a) mod (p) resp. p 6 |f ′(ak). So we may apply
Prop. 8.2.

Example 8.5. We take p = 3 and look for zeros of f = 7X6 + 4X + 12 in
Z27.

1. For ξ ∈ Z3 we have f(ξ) = ξ6 + ξ = ξ2 + ξ = ξ(ξ+ 1) and find the zeros
ξ = 0, ξ = −1. We have f ′ = 42X5 + 4, hence f ′(ξ) = 1 for all ξ ∈ Z3.
Hence we may apply Hensel’s lemma and find that there are two zeros
of f in Z27.
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2. Now let us look for the zeros of f in Z9. One is of the form t3 with

t
(3)
≡ −f(0)

3
= −12

3
= −4,

hence t = −1 is possible and −3 ∈ Z9 is the zero of f above 0 ∈ Z3.

The other one is of the form −1 + t3, where

t
(3)
≡ −f(−1)

3
= −15

3
= −5,

hence t = 1 is possible and −1 + 3 = 2 ∈ Z9 is the zero of f above
−1 ∈ Z3.

3. Finally we have to lift the zeros −3, 2 ∈ Z9. The first zero is −3 + t9 ∈
Z27 with

t
(3)
≡ −f(−3)

9
= −7 · 36

9
= −7 · 34,

hence t = 0 is possible and −3 ∈ Z27 is the zero of f above −3 ∈ Z9.

The other one is of the form 2 + t9, where

t
(3)
≡ −f(2)

9
= −90

9
= −10,

hence t = −1 is possible and 2 − 9 = −7 ∈ Z27 is the zero of f above
2 ∈ Z9.

4.) Prime moduli: There is no general recipe how to solve f(ξ) = 0 over
a field Zp. In any case we may assume that deg f < p: The polynomial

h := Xp −X

satisfies h(ξ) = 0 for all ξ ∈ Zp according to Th.7.9, so if we write

f = gh+ r

with deg r < p, the remainder polynomial r and f have the same zeros in Zp.
The polynomial h ∈ Zp[X] induced by h ∈ Z[X] satisfies

h =
∏
a∈Zp

(X − a).
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After division with X we obtain

Xp−1 − 1 =
∏
a∈Z∗

p

(X − a),

in particular

−1 = (−1)p−1
∏
a∈Z∗

p

a.

Thus we have found

Theorem 8.6 (Wilson’s theorem). For a prime number p we have

(p− 1)! ≡ −1 mod (p).

Proof. Indeed ∏
a∈Z∗

p

a = (p− 1)!.

9 The ring of p-adic integers (optional)

Hensel’s lemma provides solutions of polynomial congruences with arbitrarily
high prime powers as moduli. In order to express this fact in a more concise
and satisfactory way, one introduces new numbers, the p-adic integers, which
play relative to usual integers a rôle analogous to that one of real numbers
in relation to rational numbers. But there are also a lot of strange features.

Definition 9.1. Let p be a prime number. A p-adic integer is a sequence
(or family)

a = (aν)ν∈N ∈
∞∏
ν=0

Zpν+1 ,

such that the immediate successor aν+1 ∈ Zpν+2 of aν ∈ Zpν+1 lies above (or
is a lift of) aν , i.e.

Zpν+2 ∈ aν+1 7→ aν ∈ Zpν+1
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holds for all ν ∈ N>0. We denote

Z(p) ⊂
∞∏
ν=0

Zpν+1

the set of all p-adic integers. We add and multiply p-adic integers compo-
nentwise.

Remark 9.2. 1. There is a natural injection

Z ↪→ Z(p), n 7→ n := (n+ Zpν+1)ν∈N,

i.e. usual integers are also p-adic integers. From now on we treat the
above injection as an inclusion and write n for n.

2. The set Z(p) forms a commutative ring.

3. We want to define an absolute value

| | : Z(p) −→ R≥0.

To do so we start with a valuation

v : Z(p) −→ N ∪ {∞}.

Namely, for a := (aν)ν∈N let

v(a) := min{ν; aν 6= 0}.

Then the following holds

(a) v(a + b) ≥ min(v(a), v(b))

(b) v(ab) = v(a) + v(b)

(c) v(a) =∞⇐⇒ a = 0.

Now the absolute value of a p-adic integer is

|a| := p−v(a)

(with p−∞ := 0). It satisfies

(a) |a + b| ≤ max(|a|, |b|)
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(b) |ab| = |a| · |b|
(c) |a| = 0⇐⇒ a = 0.

In particular the rule (b) shows that Z(p) is an integral domain.

4. We note that always
|a| ≤ 1

and that for m = apn ∈ Z ⊂ Z(p) with a not divisible with p we have

|m| = p−n.

5. Using the absolute we may define the convergence of a sequence of
p-adic integers:

an → a :⇐⇒ |an − a| → 0.

We see that
pn → 0

and that any series
∞∑
n=0

anp
n

converges. Indeed any p-adic integer has such an expansion with coef-
ficients

an = tn ∈ [0, p− 1] ∩ N.
Namely if a = (`ν)ν∈N with 0 ≤ `ν < pν+1, then

a = lim
ν→∞

`ν .

Now we expand `ν w.r.t. the basis p and obtain

`ν =
ν∑

n=0

tnp
n,

where the digits tn satisfy 0 ≤ tn < p and do not depend on ν due to
`ν+1 ≡ `ν mod (pν+1). Finally we arrive at an infinite p-adic expansion

a =
∞∑
n=0

tnp
n

with unique digits tn, 0 ≤ tn < p.
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6. In order to expand a real number we can also work with the prime p
as basis (instead of 10), but get series in the opposite direction

R 3 x =
∞∑
n=`

tnp
−n.

7. Let us return to p-adic integers: We have 1− p ∈ Z∗(p) and

(1− p)−1 =
∞∑
n=0

pn,

so a negative rational number is the infinite sum of positive numbers:
This shows that p-adic integers do not admit an order relation compat-
ible with ring operations.

8. p-adic numbers vs. real and complex numbers: If p ≡ 1 mod (4), the
polynomial X2 + 1 has a zero in Zp, e.g. for p = 5 we could take
2 ∈ Z5. Now Hensel’s lemma tells us that there is a p-adic integer
a ∈ Z(p) with a2 = −1. Hence it is not possible to find an embedding
Z(p) ↪→ R such that the addition and multiplication of real numbers
coincides with the p-adic operations. One can show that there exists
such an embedding Z(p) ↪→ C, but can’t describe it explicitly, so that
result is not particularly helpful.

Theorem 9.3 (Hensel’s lemma). Let f ∈ Z[X]. Then any simple zero a ∈ Zp
of f (i.e. f ′(a) 6= 0 ∈ Zp) can be lifted to a unique zero a := (aν)ν∈N ∈ Z(p),
i.e. a0 = a.

We conclude this section with some ”geometric” considerations:

Proposition 9.4. 1. The group of units of the ring of p-adic integers is
the p-adic unit sphere:

Z∗(p) = {a = (aν)ν≥0; a0 6= 0} = {a ∈ Z(p); |a| = 1}.
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2. Any a = (aν) ∈ Z(p) \ {0} can uniquely be written as a product

a = pv(a)e, e ∈ Z∗p.

In particular Z(p) resembles an onion: The set

Z(p) = {0} ∪
∞⋃
n=0

pnZ∗(p),

is the countable union of the spheres (or shells?) pnZ∗(p) of radius p−n

and their common center 0 ∈ Z(p).

Remark 9.5. Let p > 2. Though Z∗pm is cyclic for every m ∈ N, the group
of units Z∗(p) is not. Indeed it is uncountable!

Proof. The first part is obvious. Let n := v(a), so aν = 0 for ν < n and
an 6= 0, then, writing aν = kν + Zpν+1, we have kn+ν = pn`ν for ν ≥ 0, and
may take e = (`n+ν + Zpν+1)ν∈N.

p-adic number fields: Finally one wants to enlarge Z(p) to a field by adding
new shells to the onion Z(p): One takes

Qp :=

{
a

pn
; a ∈ Z(p), n ∈ N

}
,

where fractions with a p-adic integer as numerator and a p-power as denom-
inator are added and multiplied in the usual way. We thus get a field, whose
elements are called p-adic numbers; it is an onion

Qp = {0} ∪
∞⋃

n=−∞

pnZ∗(p)

of infinite radius. (The absolute value for p-adic integers extends in a unique
way to Qp.)

10 Primitive roots

In this section we discuss for a prime power modulus n = pr the zeros of the
two term polynomial

f = X` − a,
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i.e. we have to decide, whether a ∈ Zpr is an `-th power or not. First of all
we may reduce everything to the case where a ∈ Z∗n is a unit. In order to see
that we observe that Zpr is a sort of onion: It is the disjoint union

Zpr =
r−1⋃
k=0

Z∗pr · pk ∪ {0},

of the shells Z∗pr · pk and the center {0} (the group of units being the outer
shell). The k-th shell of the onion admits a bijection:

Z∗pr · pk −→ Z∗pr−k , epk 7→ %(e),

where % : Zpr −→ Zpr−k denotes as usual the natural map. In particular the
shells are shrinking with increasing k. We find:

1. If a = 0, the elements ξ = eps, `s ≥ r, are the solutions of the equation
f(ξ) = 0.

2. On the other hand, if a = cpk, k < r, there is a zero in Zpr , iff k =
`s, s ∈ N, and %(c) = e` with some e ∈ Z∗

pr−k . The solutions are then
of the form

ξ = ẽps, Z∗pr 3 ẽ 7→ e ∈ Z∗pr−k .

Thus we are left with the problem to determine how many `-th roots a given
unit admits. A possible strategy could be to apply Hensels lemma. Indeed:

Proposition 10.1. Let f = X` − a with gcd(p, a) = 1..

1. If p does not divide ` the zeros of f in Zpr correspond one-to-one to the
zeros of f in the field Zp.

2. If gcd(`, p−1) = 1 the map Z∗p −→ Z∗p, ξ 7→ ξ` is bijective. In particular
there is a unique zero of f in Zp.

Proof. We have f ′ = `X`−1, hence f ′(ξ) = 0 for all zeros of f in Zp. For the
second part, choose r, s ∈ Z with r`+ s(p− 1) = 1. Then ξ 7→ ξr is the map
Z∗p −→ Z∗p inverse to ξ 7→ ξ` because of ξp−1 = 1 for ξ ∈ Z∗p.

For a more detailed study we need a sort of logarithm for units: A primi-
tive element is an element a ∈ Z∗n, such that any unit b is a power b = aν with
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some ν ∈ Z, the ”logarithm of b with basis a”. Indeed the exponent ν ∈ Z
is unique only up to a multiple of ϕ(n) = |Z∗n|. Hence, a power equation

x` = b

is, writing x = at, b = aν , transformed into the linear congruence:

`t ≡ ν mod (ϕ(n)).

In the following we consider a commutative ring R with finite group of units
R∗, denote

q := |R∗|

its order. We are hunting for an element a ∈ R∗ with

R∗ = aZ := {aν ; ν ∈ Z};

and we are obviously done, if we find some a ∈ R∗ with

|aZ| = q.

Let a ∈ R∗ be any element. Since there are only finitely many units, we
have aµ = aν for suitable exponents µ > ν ≥ 0, in particular k = µ− ν > 0
satisfies ak = 1. The least such exponent deserves a name:

Definition 10.2. The order ord(a) ∈ N>0 of an element a ∈ R∗ is defined
as

ord(a) := min{k ∈ N>0; ak = 1}.

Example 10.3. 1. The elements 3, 5, 7 ∈ Z∗8 have order 2.

2. The element 2 ∈ Z∗11 has order 10, its sucessive powers being

2, 4, 8, 5, 10 = −1,−2 = 9,−4 = 7,−8 = 3,−5 = 6, 1.

Furthermore ord(4) = 5 and ord(10) = 2.

Lemma 10.4. For an element a ∈ R∗ of order d := ord(a) we have:

1. aZ = {1, a, ....., ad−1}, where the powers 1, a, ..., ad−1 are pairwise dif-
ferent, and
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2. ak = 1⇐⇒ d|k. In particular d|q.

Proof. We have ak = ar, if k = sd + r with 0 ≤ r < d. This gives the
nontrivial inclusion in the first part of the statement as well as the second
part: If ak = 1, we have as well ar = 1 and that is possible only for r = 0,
since d = ord(a). Furthermore k = q is possible, since aq = 1 holds according
to Th. 7.9. Finally aµ = aν with 0 ≤ µ < ν < d would give aν−µ = 1 with
0 < ν − µ < d, a contradiction.

We are looking for exponents `, that ”kill” all elements in R∗ simultane-
ously:

a` = 1, ∀a ∈ R∗.

We know that ` = q is such an exponent. Indeed, the least possible choice of
such an exponent is ` = n with

n := lcm {ord(a); a ∈ R∗} .

Proposition 10.5. For an integral domain R with q = |R∗| <∞ we have

q = lcm {ord(a); a ∈ R∗} .

Proof. The polynomial f = Xn − 1 ∈ R[X] with n := lcm {ord(a); a ∈ R∗}
vanishes on R∗ and has at most n zeros, hence q ≤ n. Since by Th. 7.9 we
have n|q it follows q = n.

Example 10.6. For a non-integral domain the statement does not hold:

1. For R = Z8 we have
R∗ =

{
1, 3, 5, 7

}
,

hence q = 4 and n = 2.

2. Let p, r be two different odd primes. The group of units

Z∗pr ∼= Z∗p × Z∗r

has q = (p− 1)(r − 1) elements, but

a` = 1

holds already for ` = (p − 1)(r − 1)/2, since ` is divisible both with
p− 1 and r − 1. Thus n| q

2
.
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Proposition 10.7. 1. Let ord(a) = m. Then

ord(ak) =
m

gcd(k,m)
.

2. If m = ord(a) and n = ord(b) are relatively prime, we have

ord(ab) = mn.

Proof. We have

1 = (ak)` = ak` ⇐⇒ m|k`⇐⇒ m

gcd(k,m)
|`.

Let

1 = (ab)` =⇒ a` = b−` =⇒ ord(a`) = ord(b−`)

=⇒ m

gcd(`,m)
=

n

gcd(`, n)
,

i.e. 1 = 1 and

gcd(`,m) = m, gcd(`, n) = n =⇒ ` ∈ Z ·mn.

Theorem 10.8. Assume that the group of units R∗ of the integral domain
R is finite: q := |R∗|. Then there is a primitive root, i.e. an element a ∈ R∗
with

ord(a) = q.

resp.

R∗ = aZ = {1, a, ...., aq−1}.

Proof. We have to find an element a ∈ R∗ with ord(a) = q. Let

q = pk11 · ... · pkss

be the prime factorization of q. For each i = 1, ..., s we construct an element
ai ∈ R∗ of order ord(ai) = pkii and set

a = a1 · ... · as.
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Now for any c ∈ R∗ write

ord(c) = p
k1(c)
1 · ... · pks(c)s with 0 ≤ ki(c) ≤ ki.

As a consequence of Prop. 10.5 we see, that

ki = max {ki(c); c ∈ R∗} , i = 1, ....., s.

In particular there is an element ci, whose order is divisible with pkii , say
ord(ci) = `ip

ki
i . We now take ai := c`ii .

Corollary 10.9. Let p be a prime number. Then the group of units Z∗p of
Zp admits a primitive root.

Let us now consider prime power moduli pr, r ≥ 2. We have to investigate
certain subgroups G ⊂ Z∗pr of the group of units Z∗pn .

Definition 10.10. A non-empty subset G ⊂ R∗ is called a subgroup, if it is
closed w.r.t. multiplication, i.e.

x, y ∈ G =⇒ xy ∈ G.

It is called cyclic if it admits a primitive element a ∈ G, i.e. such that

G = aZ.

Remark 10.11. Since R∗ consists only of elements of finite order, a subgroup
G ⊂ R∗ is even closed w.r.t. inversion:

a−1 = aord(a)−1

and contains the neutral element 1 = aa−1.

Example 10.12. For R = Zpr and n ≥ 1 we find the subgroups

Gn := 1 + pnZpr ⊂ Z∗pr .

We have
G1 ⊃ G2 ⊃ ... ⊃ Gr = {1}

and
|Gn| = pr−n for n ≤ r.

For p = 2 we find G1 = Z∗2r .
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In the next proposition we study the action of the Frobenius map

Zpr −→ Zpr , x 7→ xp,

on those subgroups:

Proposition 10.13. We have

a ∈ Gn =⇒ ap ∈ Gn+1.

More precisely:
(Gn \Gn+1)p ⊂ Gn+1 \Gn+2

holds for

1. n = 1, ..., r − 2 and p > 2,

2. n = 2, ..., r − 2 and p = 2.

Hence, for p > 2 and a ∈ G1 we have

ord(a) = pr−1 = |G1| ⇐⇒ a 6∈ G2,

while for p = 2 and a ∈ G2 we get

ord(a) = pr−2 = |G2| ⇐⇒ a 6∈ G3.

Proof. We have

(1 + pnt)p = 1 + pn+1t+

p∑
ν=2

(
p

ν

)
(pt)νn ≡ 1 mod (pn+1).

If p > 2 or p = 2 and n ≥ 2, the sum is even divisible with pn+2, hence for
p 6 |t the RHS is not congruent 1 mod (pn+2).

Corollary 10.14. 1. For p > 2 the subgroup G1 is cyclic, indeed the set
G1 \G2 consists of the possible primitive roots.

2. For p = 2 the subgroup G2 is cyclic, and the set G2 \G3 consists of the
possible primitive roots for the subgroup G2. In particular 5 satisfies

G2 = 5
Z
.
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Finally we obtain:

Theorem 10.15. 1. For a prime p > 2 and r ≥ 1 the group of units Z∗pr
of Zpn is cyclic. Indeed, if r ≥ 2 and σ : Zpr −→ Zp2 denotes the
natural map, we have

Z∗pr = aZ ⇐⇒ Z∗p2 = σ(a)Z.

2. For r ≥ 1 we have
Z∗2r = ±5

Z
.

Proof. Let p > 2. We consider the diagram

Zpn
%−→ Zp

∪ ∪
%−1(Z∗p) = Z∗pn

%−→ Z∗p
∪ ∪ ∪

%−1(1) = G1 −→ {1}

,

where the map % is the natural map. Now, given a primitive root b ∈ Z∗p,
there is a unique element c ∈ Z∗pn lying above b with ord(c) = p−1 = ord(b).
Uniqueness follows from the fact that any other element above b is of the
form c(1 + pt) and thus has order p− 1 iff the second factor (whose order is
a prime power ps) equals 1.

In order to see that there is such an element, take any d ∈ Zpn above
b ∈ Zp. Its order is a multiple of p− 1 (since ord(b) = p− 1) and divides the
order pn−1(p− 1) of the group of units Zpn , hence of the form ps(p− 1). Now
we choose c := d p

s
. Indeed c lies above b p

s
= b.

Now it follows from Prop.10.13 that a = c(1+pt) ∈ Z∗pn is a primitive root

iff p does not divide t - and the same criterion applies to σ(a) = σ(c)(1 +pt).
Finally the second part follows also immediately from Prop.10.13 since

Z∗2n = 1 + 2Z2n = (1 + 4Z2n) ∪ (−1 + 4Z2n)

and
−1 + 4Z2n = −(1 + 4Z2n).

Example 10.16. We determine a primitive root for Z∗343 = Z∗73 .
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1. First we look for a primitive root in Z∗7. The possible orders of a unit

6= 1 are 2, 3, 6. The residue class 2 is not because of 2
3

= 1, but 3 is,
since both 3

2
= 9 6= 1 and 3

3
= −1 6= 1.

2. Let us now take 3 as a candidate for a primitive root in Z49. We have
to check that 3

6 6= 1 - indeed

Z49 3 3
6

= 81 · 9 = −17 · 9 = −153 = −6 6= 1.

Now 3 ∈ Z∗343 is a primitive root as well.

Finally we come back to our original problem, the computation of `-th
roots:

Theorem 10.17. Let R be a ring with finite cyclic group of units, |R∗| = q,
and a ∈ R∗, ` ∈ N>0. The following conditions are equivalent:

1. There is an element b ∈ R∗ with a = b`.

2.
ak = 1 holds for k :=

q

gcd(`, q)
.

Proof. ”=⇒”: We have

`k =
`q

gcd(`, q)
= q · `

gcd(`, q)
,

hence a = b` gives
ak = b`k = (bq).... = 1,

since bq = 1 according to Th.7.9.
”⇐=”: Assume R∗ = cZ and write a = cn. The condition ak = 1 is equivalent
to

q| nq

gcd(`, q)
⇐⇒ gcd(`, q)|n,

the condition equivalent to the solvability of the congruence

`t ≡ n mod (q).

Take now a = ct with a solution of that congruence.

Corollary 10.18. The residue class −1 ∈ Z∗p is a square iff p ≡ 1 mod (4).

Proof. Take q = p − 1, ` = 2. Then −1 ∈ Z∗p is a square iff 2|p−1
2

iff p ≡ 1
mod (4).
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11 Quadratic reciprocity

For a quadratic polynomial f ∈ Z[X] there is a straight forward procedure to
check whether it has zeros in Zp or not. The case p = 2 is easy: If we denote
f ∈ Z2[X] the induced polynomial, we have no solution for f = X2 +X + 1,
while in the remaining cases they are obvious. If p is odd, we may write

f = X2 + 2bX + c = (X + b)2 − (b
2 − c)

and thus are left with the question, whether or not b
2 − c is a square.

Remark 11.1. A residue class a ∈ Zp is a square iff a(p−1)/2 = −1. This is
an immediate consequence of Th.10.17.

But to compute the (p − 1)/2-th power of a residue class might require
a lot of time. Indeed, there is a considerably simpler algorithm. In order to
formulate it we need the following notation:

Definition 11.2. Denote P>2 the set of all odd primes. The Legendre symbol
is the map ( )

: Z× P>2 −→ {0,±1}, (a, p) 7→
(
a

p

)
,

where (
a

p

)
:=


1 , if a ∈ Z∗p is a square
−1 , if a ∈ Z∗p is not a square
0 , if p|a in Zp

.

Remark 11.3. 1. We define (
k

p

)
:=

(
k

p

)
for k ∈ Zp.

2. If c ∈ Z∗p is a generator of the (cyclic) multiplicative group Z∗p, i.e.,
Z∗p = cZ, we have (

cν

p

)
= (−1)ν .
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3. If K is a field s.th. 1 + 1 6= 0, we may regard the Legendre symbol as a
function taking values in K, since then the elements 0, 1,−1 ∈ K are
pairwise different.

4. With that convention we may write(
a

p

)
= a

p−1
2 ∈ Zp

for all a ∈ Zp.

5. The Legendre symbol is multiplicative in the ”numerator”:(
ab

p

)
=

(
a

p

)(
b

p

)
for a, b ∈ Z as well as a, b ∈ Zp. In particular it is sufficient to compute
the Legendre symbol for a being a prime as well.

Theorem 11.4. Let p ∈ P>2 be an odd prime.

1. We have (
2

p

)
=

{
1 , if p ≡ ±1 mod (8)
−1 , if p ≡ ±3 mod (8)

,

or, more briefly (
2

p

)
= (−1)

p2−1
8 .

2. Furthermore(
−1

p

)
= (−1)

p−1
2 =

{
1 , if p ≡ 1 mod (4)
−1 , if p ≡ 3 mod (4)

.

3. The law of quadratic reciprocity: For a prime q ∈ P>2 different from p
we have (

q

p

)
= (−1)

p−1
2

q−1
2

(
p

q

)
.

With other words (
q

p

)
= −

(
p

q

)
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if p ≡ q ≡ 3 mod (4), and (
q

p

)
=

(
p

q

)
otherwise.

Example 11.5. We compute(
42

61

)
=

(
2

61

)(
3

61

)(
7

61

)
= (−1) ·

(
61

3

)(
61

7

)

= (−1) ·
(

1

3

)(
−2

7

)
= −

(
−1

7

)(
2

7

)
= −(−1) · 1 = 1.

In the proof of Th.11.4 we take for granted the existence of a field K ⊃ Zp,
such that there is an element ζ ∈ K∗ of order 8 resp. an element η ∈ K∗

of order q. In problem 2.4 we have constructed a field K ⊃ Zp of order p2.
Hence ζ := a(p2−1)/8, where a ∈ K∗ is a primitive root, is a possible choice.
For the second case see the explanations at the end of this section. For the
proof itself we need only to know that the Frobenius map

K −→ K, x 7→ xp,

is compatible with addition and multiplication:

(x+ y)p = xp + yp, (xy)p = xpyp,

and that Zp ⊂ K is its fixed point set:

Zp = {x ∈ K;xp = x}.

The inclusion ”⊂” follows from the little Fermat theorem, while the right
hand side is the zero set in K of the polynomial Xp −X ∈ K[X], hence has
at most p elements.
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Proof of Th.11.4. 1.) For β := ζ + ζ−1 we have

β2 = ζ2 + 2 + ζ−2 = ζ2 + 2− ζ2 = 2,

since ζ4 = −1. As a consequence 2 is a square in Zp iff β ∈ Zp iff β = βp.
Now

βp = ζp + ζ−p = ζr + ζ−r,

where p = 8d + r. Thus for r = ±1 we find βp = β, while r = ±3 yields
βp = −β.
2.): Follows from Rem.11.3.4.
3.): In order to simplify notation we write

χ(a) :=

(
a

q

)
.

We need the following auxiliary lemma:

Lemma 11.6. Let K be a field containing an element η ∈ K \ {1} with
ηq = 1. Then the square of the Gauß’ sum

γ :=

q−1∑
i=0

χ(i)ηi ∈ K

satisfies

γ2 = χ(−1)q ∈ K.

Remark 11.7. We add without (the demanding) proof: If K = C, η = e2πi/q,
we have

γ =

{ √
q , if q ≡ 1 mod (4)

i
√
q , if q ≡ 3 mod (4)

.

Let us first finish the proof of the Th.11.4: We take a field K ⊃ Zp
containing an element η 6= 1 with ηq = 1 and apply the Frobenius map
K −→ K, x 7→ xp, to our Gauß’ sum:

γp =

q−1∑
i=0

χ(i)pηip =

q−1∑
i=0

χ(i)ηip
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=

q−1∑
i=0

χ(p2i)ηip = χ(p)

q−1∑
i=0

χ(ip)ηip = χ(p)γ,

using χ(i)p = χ(i) = χ(p2i) and the fact that Zq −→ Zq, i 7→ ip, is a bijection.
Since γ 6= 0, we may conclude(

p

q

)
= γp−1 = (γ2)

p−1
2 = (χ(−1)q)

p−1
2

= ((−1)
q−1
2 )

p−1
2 q

p−1
2 = (−1)

q−1
2

p−1
2

(
q

p

)
,

where we have used Remark 11.3.1 with respect to a = −1 and the prime q
as well as a = q and the prime p.

Proof of the lemma. First of all we may understand the exponents of η as
well as the argument of χ as elements in Zq. Using that convention we
remark the following identities:∑

i∈Zq

χ(i) = 0,
∑
i∈Zq

ηi = 0.

The first one follows from the fact that χ(0) = 0 and there are q−1
2

quadratic

residues as well as q−1
2

quadratic non-residues in Zq, for the second one notes
that the sum not changing when multiplied by η has to be = 0.

Now

γ2 =
∑

(i,j)∈(Zq)2
χ(i)χ(j)ηi+j

=
∑
`∈Zq

( ∑
i+j=`

χ(i)χ(j)

)
η`.

Let us now compute the inner sums. The case ` = 0 yields∑
i+j=0

χ(i)χ(j) =
∑
i∈Zq

χ(i)χ(−i) =
∑
i∈Zq

χ(−i2) = χ(−1)(q − 1),

since χ(−i2) = χ(i2)χ(−1) = χ(−1) for i 6= 0, while χ(−02) = 0.
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Finally we treat the case ` 6= 0 and get∑
i+j=`

χ(i)χ(j) =
∑
i∈Z∗

q

χ(i)χ(`− i)

=
∑
i∈Z∗

q

χ(i−1)χ(`− i)

=
∑
i∈Z∗

q

χ(`i−1 − 1)

=
∑

i∈Zq\{−1}

χ(i) = −χ(−1),

since χ(0) = 0, χ(i−1) = χ(i) and {`i−1 − 1; i ∈ Z∗q} = Zq \ {−1}. Hence

γ2 = χ(−1)(q − 1)− χ(−1)
∑
`∈Z∗

q

η`

= χ(−1)(q − 1)− χ(−1) · (−1) = χ(−1)q.

Construction of extension fields K ⊃ Zp admitting a primitive q-th
root of unity η ∈ K: If q|(p − 1) we may take K = Zp and η = c(p−1)/q,
where c ∈ Zp is a primitive root. Otherwise there is no q-th root of unity in
Zp except 1, the situation we have to deal with.

We consider a finite dimensional Zp-vector space V and realize

K ⊂ End(V )

as a subring of the endomorphism ring of V . Namely we take some linear
operator (or endomorphism) A : V −→ V and consider the set

K := Zp[A] :=

{
f(A) ∈ End(V ); f ∈ Zp[X]

}
of all polynomials

f(A) := λmA
m + ....+ λ1A+ λ0E, f =

m∑
µ=0

aµX
µ ∈ Zp[X]
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in A. Here E denotes the identity operator

E := idV .

Since ArAs = Ar+s = As+r = AsAr, the ring Zp[A] is even commutative.
Furthermore we want that it is a field and that A plays the rôle of η, i.e.
that

Aq = E,A 6= E.

Since our first choice does not match our expectations we write W instead
of V and B instead of A. We choose

W := (Zp)q

with the cyclic shift operator B : W −→ W satisfying

B(ei) = ei+1, i = 1, ..., q − 1, B(eq) = e1.

Here e1, ..., eq ∈ (Zp)q denotes the standard basis. Unfortunately Zp[B] is
not yet a field: We have to replace W with a minimal B-invariant subspace
V ⊂ W , s.th.

A := B|V 6= idV

and may apply the below proposition 11.8. In particular, we obtain a surjec-
tive, but in general not injective ring homomorphism

Zp[B] −→ Zp[A], C 7→ C|V .

It remains to show that the condition B|V 6= idV can be realized: First of all
we note that

Zp(1, ..., 1)

is the eigenspace of B for the eigenvalue 1. It admits the complementary
B-invariant subspace

W0 := {(x1, ..., xn);x1 + ...+ xn = 0},

where we need q 6= p in order to exclude the possibility (1, ..., 1) ∈ W0. Now
we choose V ⊂ W0 as a minimal nontrivial B-invariant subspace. Since Bu 6=
u for all u ∈ W0\{0}, we are done. We remark that we have dimV > 1, since
otherwise it would consist of eigenvectors of B belonging to an eigenvalue
λ ∈ Zp \ {1} satisfying λq 6= 1.
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Proposition 11.8. Let F be a field and V a finite dimensional F -vector
space. If the linear operator A : V −→ V does not admit nontrivial proper
invariant subspaces, the ring

K := F [A] ⊂ End(V )

is a field.

Example 11.9. If V = R2 and A : R2 −→ R2 is the counterclockwise
rotation with an angle of 90 degrees, then we obtain R[A] ∼= C.

Proof of Prop. 11.8. We have to show that any operator f(A) 6= 0 is in-
vertible and f(A)−1 ∈ F [A]. Indeed, its kernel ker(f(A)) $ V is a proper
A-invariant subspace, since

f(A)u = 0 =⇒ f(A)Au = Af(A)u = A(0) = 0,

hence trivial. So f(A) is invertible. In particular

F [A] −→ F [A], C 7→ f(A)C,

is an injective endomorphism of the finite dimensional vector space F [A],
hence an isomorphism and E ∈ f(A)F [A].

12 Arithmetic functions

Definition 12.1. An arithmetic function is a complex-valued function

f : N>0 −→ C.

It is called multiplicative iff f(1) = 1 and

f(ab) = f(a)f(b),

whenever a, b ∈ N>0 are relatively prime.

Remark 12.2. A multiplicative arithmetic function f is uniquely deter-
mined by its values f(pn) at prime power arguments, and those values can
be prescribed arbitrarily.

Example 12.3. We list here some multiplicative arithmetic functions:
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1. the power functions pk(n) = nk,

2. the Dirac function

δ(n) =

{
1 , if n = 1
0 , if n > 1

,

3. Eulers ϕ-function,

4. the sum
σk(n) :=

∑
d|n

d k

of the k-th powers of all positive divisors of n ∈ N, in particular

(a) τ(n) := σ0(n) is the number of positive divisors of n and

(b) σ(n) := σ1(n) their sum,

5. the Möbius function

µ(n) :=

{
(−1)ω(n) , if n is square free
0 , otherwise

,

where ω(n) denotes the number of different prime divisors of n (i.e.
without multiplicities!).

The following remark is optional, it is intended for readers familiar with
complex analysis:

Remark 12.4. Given an arithmetic function f : N>0 −→ C. one considers
the Dirichlet series

Φf (z) :=
∞∑
n=1

f(n)

nz

with the entire functions
nz := eln(n)z.

Since
|n−z| = e− ln(n)<(z)

is a decreasing function of <(z), we easily deduce: If

∞∑
n=1

|f(n)|
na

<∞
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holds for some a ∈ R, then Φf (z) converges uniformly in the right half
plane R≥a := {z ∈ C;<(z) ≥ a}, hence defines there a continuous function,
holomorphic in R>a. But we can do even better: If for some z0 ∈ R≥0

the series Φf (z0) converges (not necessarily absolutely), then Φf converges
uniformly in any angular segment

z0 + R≥0 exp
(
i
[π

2
− ε,−π

2
+ ε
])
, ε > 0,

with vertex z0. In particular it defines a holomorphic function in R><(z0).
So there is a unique minimal number a ∈ R∪{±∞}, such that Φf defines

a holomorphic function in R>a, called the abscissa of convergence of Φf . Let
us note that this does not imply absolute convergence in R>a. Instead one
can assure absolute convergence a priori only in R>a+1, e.g. for f(n) = (−1)n

one has a = 0 (take z0 = q ∈ R>0 and note that n−q is a strictly decreasing
sequence tending to 0), while absolute convergence requires R>1. The most
famous example is the series

Φ1 : R>1 −→ C

belonging to f ≡ 1. It provides a partial definition of Riemann’s ζ-function,
see the next (optional) section. It has abscissa of convergence a = 1 and it
converges even absolutely in R>1. The latter is also true for Φµ, indeed its
abscissa a of convergence satisfies

1

2
≤ a ≤ 1,

but its exact value is not known.
For a multiplicative arithmetic function f we may factorize Φf (z) as an

infinite product

Φf (z) =
∏
p∈P

Fp(z)

with

Fp(z) :=
∞∑
ν=0

f(pν)

pνz
,

valid in the right half plane, where Φf converges absolutely. E.g. for f = µ
we have

Fp(z) = 1− p−z
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and for f ≡ 1 we obtain

Fp(z) =
∞∑
ν=0

1

pνz
=

1

1− p−z
.

We obtain thus factorizations

Φµ(z) =
∏
p∈P

(
1− p−z

)
, z ∈ R>1,

and

13.1 Φ1(z) =
∏
p∈P

(
1

1− p−z

)
, z ∈ R>1.

Obviously we have
Φf + Φg = Φf+g.

The convolution f ∗ g of two arithmetic functions f, g is defined in order to
make the equality

Φf · Φg = Φf∗g

hold in the open half plane, where both Φf and Φg converge absolutely.

Definition 12.5. The convolution f ∗ g of two arithmetic functions f, g is
defined by

(f ∗ g)(n) :=
∑
d|n

f(d)g
(n
d

)
=
∑
k`=n

f(k)g(`).

Remark 12.6. 1. f ∗ g = g ∗ f

2. f ∗ (g ∗ h) = (f ∗ g) ∗ h

3. δ ∗ f = f

4. If f, g : N>0 −→ C are multiplicative, so is f ∗ g.

Proof. For gcd(a, b) = 1 we find

(f ∗ g)(ab) =
∑
d|ab

f(d)g

(
ab

d

)
=
∑
k|a,`|b

f(k`)g

(
a

k
· b
`

)
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=
∑
k|a,`|b

f(k)f(`)g
(a
k

)
g

(
b

`

)

=
∑
k|a

f(k)g
(a
k

)
·
∑
`|b

f(`)g

(
b

`

)
= (f ∗ g)(a) · (f ∗ g)(b).

5. The following identities for multiplicative arithmetic functions hold,
since they hold for prime power arguments.

(a) 1 ∗ µ = δ.

(b) pk ∗ 1 = σk.

(c) ϕ ∗ 1 = p1. (Remember that p1(n) = n.)

Definition 12.7.
f̂ := f ∗ 1, f̃ := f ∗ µ.

Proposition 12.8. 1. If f is multiplicative, so are f̂ and f̃ .

2. The transformations f 7→ f̂ and f 7→ f̃ are inverse one to the other.

Proof.
(f ∗ 1) ∗ µ = f ∗ (1 ∗ µ) = f ∗ δ = f

and
(f ∗ µ) ∗ 1 = f ∗ (µ ∗ 1) = f ∗ δ = f.

Example 12.9. 1. p̂k = σk.

2. ϕ̂ = p1 = idN>0 .

3. µ̂ = δ.

Remark 12.10. Obviously the set of all arithmetic functions together with
argumentwise addition and the convolution as multiplication becomes a com-
mutative ring. We have interpreted it using formal Dirichlet series, but we
can instead also look at formal power series in countably many indetermi-
nates Xp, indexed for convenience by prime numbers p ∈ P . The elements
in the ring

C[[Xp, p ∈ P ]]
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are formal sums with complex coefficients of finite monomials

Xα :=
∏
p∈P

(Xp)
α(p),

where the exponent is a function α : P −→ N with finite support α−1(N>0).
An arithmetic function f : N>0 −→ C corresponds to the series∑

α

f(pα)Xα,

where
pα :=

∏
p∈P

pα(p) ∈ N>0.

13 Riemann’s zeta function (optional)

Riemann’s ζ-function
ζ : C \ {1} −→ C

is a holomorphic extension of the Dirichlet series Φ1 : R>1 −→ C, i.e.

ζ|R>1 = Φ1.

Before we discuss how to find an expression for ζ outside the right half plane
R>1, we note that ζ is unique if it exists and that ζ(z) 6= 0 for all z ∈ R>1.
This is obvious for z ∈ R>1 and follows in general from the factorization
(13.1) and the fact that the locally uniform limit f : G −→ C of a sequence
of nowhere vanishing holomorphic functions fn : G −→ C on a domain G is
either f ≡ 0 or has itself no zeros.

The expressions for ζ involve parameter dependent integrals, either an
improper ”real” integral or a path integral in the complex plane:
1.) For every n ∈ N there is an expression of the first type on the right half
plane R>−n. We discuss only the case n = 0. Indeed, on R>1 we may write

14.1 Φ1(z) =
z

z − 1
− z

∫ ∞
1

t− [t]

tz+1
dt

with the Gauß bracket [t] = maxZ≤t and

tz := ez ln t.
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Now the integral defines a holomorphic function even in R>0 and thus the
RHS of 14.1 a meromorphic extension of Φ1 to R>0. The proof is an easy
exercise: Write ∫ N

1

[t]dt

tz+1
=

N∑
n=1

∫ N

n

dt

tz+1
.

2.) The second approach requires complex integration. We start with the
entire function

I(z) :=
1

2πi

∫
C

(−η)z

eη − 1

dη

η
, z ∈ C,

where for fixed z ∈ C the integrand is regarded as a holomorphic function in
η on C \ (R≥0 ∪ 2πiZ) in the following way: Take

(−η)z := elog(−η)z

with the principal branch log : C \ R≤0 −→ C of the logarithm, such that
there are upper and lower limits along R≥0. The path of integration is

C = (∞, ε] ∪ ∂Dε(0) ∪ [ε,∞)

with ε < 2π. Along the first part (∞, ε] we take the upper limit

(−η)z := e(ln(|η|)−πi)z,

while along the third part [ε,∞) we take the lower limit

(−η)z := e(ln(|η|)+πi)z.

Since the integrand is holomorphic in D2π(0) \ [0, 2π), we see that I(z) does
not depend on the choice of ε.

Note that I is an entire function and that for z ∈ R>1 the circle integral
tends to 0 for ε→ 0, hence

I(z) =
1

2πi
· lim
ε→0

∫ ∞
ε

exp(z(ln(η) + πi))− exp(z(ln(η)− πi))
(eη − 1)η

dη

=
sin(πz)

π
lim
ε→0

∫ ∞
ε

ηz−1

eη − 1
dη

=
sin(πz)

π
lim
ε→0

∫ ∞
ε

(
∞∑
n=1

ηz−1e−nη

)
dη
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=
sin(πz)

π
lim
ε→0

∞∑
n=1

∫ ∞
ε

ηz−1e−nηdη

=
sin(πz)

π
lim
ε→0

∞∑
n=1

1

nz
·
∫ ∞
ε/n

tz−1e−tdt

14.2 =
sin(πz)

π
· Γ(z) · Φ1(z)

with

Γ(z) :=

∫ ∞
0

tz−1e−tdt, z ∈ R>0,

an expression defining a holomorphic function Γ : R>0 −→ C. One easily
checks Γ(1) = 1, and partial integration leads to the functional equation

Γ(z + 1) = zΓ(z).

It gives a successive meromorphic extension

Γ(z) =
Γ(z + n)

z(z + 1) · ... · (z + (n− 1))

to any right half plane R>−n. So eventually Γ is a meromorphic function
on the entire plane with simple poles in −N. Now it would be good to
have a formula for Γ valid simultaneously for all z ∈ C. Unfortunately the
products in the denominator do not form a convergent sequence. Instead we
normalize the constant terms and add to each factor an exponential in order
to guarantee convergence of the infinite product

∆(z) := z
∞∏
n=1

(
1 +

z

n

)
e−z/n.

The remaining numerator is an exponential as well: We finally get

Γ(z) =
e−γz

∆(z)

with the Euler-Mascheroni constant

γ := lim
m→∞

(
m∑
n=1

1

n
− ln(m+ 1)

)
= 0, 57721....
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needed in order to compensate the exponential factors in the infinite product.
The auxiliary function ∆(z) has the points in −N as simple zeros, while

∆(1− z) has its zeros in N>0; so ∆(z)∆(1− z) has the integers as its set of
(simple) zeros. The same is true for the function

sin(πz) = πz

∞∏
n=1

(
1− z2

n2

)
,

and indeed
∆(z)∆(1− z) = π−1e−γ sin(πz),

or equivalently

14.3 Γ(z)Γ(1− z) =
π

sin(πz)
.

Solving 14.3 for Γ(z) and substituting the RHS into the expression 14.2 for
I(z), z ∈ R>1, leads us to the following definition of Riemann’s ζ-function

14.4 ζ(z) := Γ(1− z)I(z).

Note that at integer arguments z = ` ∈ Z the integrals in the expression
for I(z) over the straight parts of C cancel and thus

14.5 I(`) = (−1)` · Res0

(
η`−1

eη − 1

)
.

In particular I(`) = 0 for ` ≥ 2 (as it should be, since ζ is holomorphic in
R>1 and Γ(1− z) has poles at the points in N>1) and for ` = −2k, k ∈ N>0,
as well. The latter fact follows, since

η−2k−1

eη − 1
= η−2k−2

(
−η

2
+ g(η)

)
with an even function g(η). Furthermore ζ(0) = −1

2
because of Γ(1) = 1.

Finally we try to evaluate I(z) for <(z) < 0. In that case we have

lim
n→∞

1

2πi

∫
∂D(2n+1)π(0)

(−η)z

eη − 1

dη

η
= 0,

and we may regard the integral over C as the limit of the integrals over the
loops

Cn := [(2n+ 1)π, ε] ∪ ∂Dε(0) ∪ [ε, (2n+ 1)π] ∪ ∂D(2n+1)π(0)−1,
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to be understood as the negatively oriented boundary ∂G−1 of the domain
G := {η; ε < |η| < (2n+1)π}\(ε, (2n+1)π). With other words, for <(z) < 0
we have

I(z) = lim
n→∞

1

2πi

∫
Cn

(−η)z

eη − 1

dη

η
,

and, according to the residue theorem

1

2πi

∫
Cn

(−η)z

eη − 1

dη

η
= −

∑
0<|ν|<n+ 1

2

Res2πiν

(
(−η)z

η(eη − 1)

)

= −
∑

0<|ν|<n+ 1
2

(−2πiν)z

2πiν
= 2zπz−1 sin

(πz
2

) n∑
ν=1

1

ν1−z .

So we obtain

I(z) = 2zπz−1 sin
(πz

2

)
Φ1(1− z), z ∈ L<0.

If we multiply with Γ(1− z), we get the following functional equation for the
ζ-function:

ζ(z) = 2Γ(1− z)(2π)z−1 sin
(πz

2

)
ζ(1− z).

It follows that there are no further zeros of ζ in L<0 ∪ R>1 than the points
in −2N>0, also called the trivial zeros of ζ.

On the other hand we obtain new interesting information about special
values of Φ1. Taking z = 1− 2k, k ∈ N, and using the above residue formula
14.3, we obtain explicit formulae for the infinite series

Φ1(2k) =
∞∑
n=1

1

n2k
.

In the previous section we have established a factorization

ζ(z) =
∏
p∈P

(
1

1− p−z

)
, z ∈ R>1.

One could now try to look for a global factorization of ζ, hoping that it might
contain some information about prime numbers as well. For this one has to
know all zeros of ζ, i.e. also those ones in the gap

[0, 1] + iR = C \ (L<0 ∪R>1)
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between the two half planes L<0 and R>1, usually called the critical strip
Though one has up to now not really succeeded with that, there are

estimates for the number of zeros in the rectangles [0, 1] + i[−T, T ], which
allow to assure the convergence of a product with factors corresponding to
pairs of nontrivial zeros of ζ and to prove that it is the missing part needed
for a factorization.

In order to describe how this works we denote

Z ⊂ [0, 1] + iR

the set of zeros of ζ in the critical strip [0, 1]+iR. We use the auxiliary entire
function

ξ(z) := Γ
(z

2
+ 1
)
· (z − 1)π−z/2ζ(z)

with zero set Z and functional equation

ξ(z) = ξ(1− z).

Since furthermore ξ(z) = ξ(z), it follows that its zero set Z is symmetric
w.r.t. both the real line and the line <(z) = 1

2
.

Now taking Z+ = Z ∩ ([0, 1] + iR>0) - there are no zeros of ζ on [0, 1) -
and pairing the linear factors belonging to % ∈ Z+ and 1 − % together, we
find

ξ(z) =
1

2

∏
%∈Z+

(
1− z2 − z

%2 − %

)
=

1

2

∏
%∈Z+

[(
1− z

%

)(
1− z

1− %

)]
,

with an absolutely convergent infinite product. Here points in Z+ have to
be counted with multiplicities - just to be on the safe side: It is conjectured
that all zeros are simple ones.

Finally the formula

ζ(z) =
πz/2

(z − 1)
· eC(z/2+1) ·∆

(z
2

+ 1
)
· 1

2

∏
%∈Z+

(
1− z2 − z

%2 − %

)
gives a factorization of ζ.

Here are some comments on the set Z = Z+ ∪ (1− Z+):

1. There are infinitely many zeros %n = 1
2
± iτn on the line <(z) = 1

2
. The

first 20 approximative values are given in the following table:
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n τn
1 14,1347251417346937...
2 21,022039638771554993...
3 25,010857580145688763...
4 30,424876125859513210...
5 32,935061587739189690...
6 37,586178158825671257...
7 40,918719012147495187...
8 43,327073280914999519...
9 48,005150881167159727...
10 49,773832477672302181
11 52,970321477714460644...
12 56,446247697063394804...
13 59,347044002602353079...
14 60,831778524609809844...
15 65,112544048081606660...
16 67,079810529494173714...
17 69,546401711173979252...
18 72,067157674481907582...
19 75,704690699083933168...
20 77,144840068874805372...

2. There are no zeros on the boundary lines <(z) = 0, 1. This statement
is equivalent to the prime number theorem Th.2.3.

3. For a number a ∈
[

1
2
, 1
)

the following statements are equivalent:

(a) Z ⊂ [1− a, a],

(b) The Dirichlet series Φµ(z) belonging to the Möbius µ-function
converges in R>a,

(c) For all ε > 0 we have π(x)− li(x) = O(x1/2+ε)

The implication ”(b) =⇒ (a)” is easy: We have

ζ(z)Φµ(z) = Φ1(z)Φµ(z) = Φ1∗µ(z) = Φδ(z) = 1

for z ∈ R>1, hence by analytic continuation

ζ(z)Φµ(z) = 1
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for z ∈ R>a \ {1}, in particular ζ(z) 6= 0. But, unfortunately, it is not clear
at all whether there is some a ∈

[
1
2
, 1
)

satisfying the above three equivalent
conditions.

The famous Riemann hypothesis now states that a = 1
2

is possible or
equivalently

Z ⊂ 1

2
+ iR.

Finally, for those interested in more details we state the formula for the
(at the jumps modified) prime number function

F (x) :=
1

2
· (|P≤x|+ |P<x|) ,

which Riemann derives from the factorization of ζ. Actually we give a formula
for the step function

J(x) =
∞∑
n=1

1

n
· F ( n
√
x),

which has a jump of height 1/n at every prime power pn, and can then apply
the inversion formula

F (x) =
∞∑
n=1

µ(n)

n
J( n
√
x).

Here it is:

J(x) =

∫ x

0

dt

ln(t)
−
∑
%∈Z+

Ei((% ln(x)) + Ei((1− %) ln(x))

− ln(2) +

∫ ∞
x

dt

t(t2 − 1) ln(t)
, x > 1.

The sum is not absolutely convergent: It has to be evaluated with increasing
=(%). Furthermore

Ei : C \ R≥0 −→ C

is the exponential integral function, characterized by

Ei′(z) =
ez

z
, lim
x→−∞

Ei(x) = 0.
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Remark 13.1. The following ”universality result” by Voronin shows that it
definitely is not easy to control the behaviour of the ζ-function in the critical
strip. Namely, given

1. a compact set K ⊂ (1
2
, 1) + iR with connected complement C \K,

2. a continuous function g : K −→ C holomorphic in the interior of K,

3. and some ε > 0,

there is some t ∈ R, such that

|g(z)− ζ(z + it)| < ε

holds for all z ∈ K.

14 Linear Diophantine Equations

Theorem 14.1. The diophantine equation

a1x1 + ...+ anxn = b

is solvable in Zn iff gcd(a1, ..., an)|b.

Proof. Indeed, solvability means nothing but

b ∈ Za1 + ...+ Zan = Z gcd(a1, ..., an).

Remark 14.2. Here is a recipe how to find all solutions: Consider the
(n+ 1)× n-matrix

A :=

(
a1, ..., an

In

)
∈ Zn+1,n,

transform it with column operations over Z (addition of a multiple of a col-
umn to some other column, multiplication of a column with ±1 and exchange
of two columns) to a matrix

C =

(
d, 0, ..., 0
C0

)
∈ Zn+1,n,
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where d := gcd(a1, ..., an). Then the solutions of our equation are of the form
x1

x2
...
xn

 = C0


b/d
s2
...
sn


where s2, ..., sn ∈ Z.

Proof. We note first that

CZn = AZn,

since column operations correspond to multiplication from the right hand
side with elementary matrices and on Zn such matrices act as isomorphisms.
Let

S :=


 x1

...
xn

 ∈ Zn; a1x1 + ...+ anxn = b

 .

Then we have

{b}×S = AZn∩ ({b}×Zn) = CZn∩ ({b}×Zn) = {b}×C0 · ({b/d}×Zn−1).

If n = 2, we may use the euclidean algorithm in order to find integers
s1, s2 ∈ Z with s1a1 + s2a2 = d, write ai = dci and obtain with(

x1

x2

)
=
b

d

(
s1

s2

)
+ k

(
c2

−c1

)
, k ∈ Z

all solutions.

15 Sums of two squares and pythagorean triples

In this section we discuss our first non-linear diophantine equation: We con-
sider the equation

x2 + y2 = n ∈ N
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and ask for which n ∈ N there is a solution (x, y) ∈ Z2. Our strategy is the
following: We rewrite our equation in the form

(x+ iy)(x− iy) = n,

write the RHS n ∈ Z ⊂ Z[i] as a product of prime factors in the ring of
gaussian integers

Z[i] := Z + Zi ⊂ C

and then check how the factors can be arranged in order to form a pair z, z
of conjugate complex numbers. So let us first investigate ”gaussian prime
factorization”.

First of all, the group of units consists of the shortest gaussian integers
6= 0, indeed

Z[i]∗ = {z ∈ Z[i]; |z| = 1} = {±1,±i}.

Definition 15.1. A non-zero gaussian integer z ∈ Z[i] is called (a) ”g-
prime”, if it satisfies

1. |z| > 1, i.e. z is not a unit,

2. and z = uv =⇒ |u| = 1 ∨ |v| = 1, i.e. one of the factors is a unit.

Remark 15.2. 1. If |z|2 = p is prime, z is a g-prime.

2. A prime p ∈ N need not be a g-prime, e.g.

2 = (1 + i)(1− i), 5 = (2 + i)(2− i).

3. 1 + i, 1− i, 2 + i, 2− i are gaussian primes.

4. A prime p = 4k+3 is even a gaussian prime. Assume p = zw, |z|, |w| >
1. That implies p = |z|2 = |w|2. Let z = x+iy and consider the residue
classes

a := x, b := y ∈ Z∗p.

They satisfy a2 + b2 = 0 resp. c2 = −1 holds for c := ab−1, i.e. c ∈ Z∗p
has order 4 and thus 4 divides p− 1 or, equivalently, p ≡ 1 mod (4).

Definition 15.3. Two gaussian integers z, w 6= 0 are called associated iff
they differ only by a unit, or equivalently if |z| = |w| > 0 and angle(z, w)
equals 0, π/2 or π.
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Example 15.4. (1− i) = (−i)(1 + i), while 2 + i, 2− i are not associated.

Question: Does the FTA (Fundamental Theorem of Arithmetics) hold for
gaussian integers?

Answer: Obviously any gaussian integer is a finite product of gaussian
primes, since in any nontrivial factorization the lengths decrease. For unique-
ness up to order and association we need that for a gaussian prime z the
implication

z|uv =⇒ z|u ∨ z|v

holds.

Idea: Create a gcd in R = Z[i], more technically, given u, v ∈ R, find d ∈ R
with

Ru+Rv = Rd.

Then we define the greatest common divisor of u and v as

gcd(u, v) := d.

Here d, if it exists, is determined up to association. Sets of the form Ru+Rv
are ideals:

Definition 15.5. A non-empty subset a ⊂ R of a ring R is called an ideal if

1. a + a ⊂ a, i.e. b, a ∈ a =⇒ b+ a ∈ a.

2. R · a ⊂ a, i.e. b ∈ R, a ∈ a −→ ba ∈ a.

Example 15.6. Let u, v ∈ R.

a = Ru, a principal ideal, in particular a = {0}, the trivial or zero ideal, and
a = R, the unit ideal.

a = Ru+Rv.

Proposition 15.7. Any ideal a ⊂ Z[i] is a principal ideal:

a = Z[i]d

with a gaussian integer d unique up to multiplication with a unit.
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Proof. If a = {0}, take d = 0. Otherwise take d ∈ a \ {0} of minimal length.
Now

d ∈ a =⇒ Z[i]d ⊂ a.

On the other hand given some element u ∈ a, approximate the complex
number ud−1 ∈ C by a gaussian integer b ∈ Z[i], such that

|ud−1 − b| < 1.

That is possible, since any complex number lies in a unit square spanned by
lattice points. Then the distance of any point in that square to the (or rather
a) nearest lattice point is ≤ 1/

√
2 < 1. In particular

|u− bd| < |d|.

Since u− bd ∈ a, that means u− bd = 0 resp. u = bd.

Theorem 15.8. For a gaussian prime z we have

z|uv =⇒ z|u ∨ z|v.

Proof. If z 6 |u, we remember Prop.15.7 and write

a := Z[i]z + Z[i]u = Z[i]d.

Since z is prime and d|z, we have either z = ed with a unit e ∈ Z[i]∗ or d
itself is a unit, then w.l.o.g. d = 1. The first case implies z|u, contrary to
our assumption. So the second case applies and we may write

1 = az + bu

resp.
v = vaz + b(uv),

where both summands are divisible with z. Hence so is their sum v.

Theorem 15.9. Let p ≡ 1 mod (4) with a prime p.

1. There is a unique g-prime zp = a + ib ∈ Z[i] with |zp|2 = p, 0 < b < a.
Up to association zp and zp are the only g-primes z with |z|2 = p.

2. The equation x2+y2 = p, (x, y) ∈ N2, has exactly two solutions (a, b), (b, a).
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Proof. First we look for a solution (x, y) ∈ N2. We know that there is a
residue class j ∈ Zp with j2 = −1 and consider the map

ψ : Z[i] −→ Zp, x+ yi 7→ x+ yj.

It is a ring homomorphism, i.e. respects both addition and multiplication.
We consider its kernel

ker(ψ) := {u ∈ Z[i];ψ(u) = 0} % Z[i]p,

the inclusion being proper, since otherwise the p2 elements

Zp 3 ψ(x+ yi), 0 ≤ x, y < p

would be pairwise different: Two elements with the same ψ-image differ by
an element in the kernel. Now ker(ψ) ⊂ Z[i] is an ideal, hence according to
Prop. 15.7

ker(ψ) = Z[i]z.

In particular
p = zw.

and p2 = |z|2 · |w|2. Since Z[i]p $ Z[i]z $ Z[i], we have z, w 6∈ Z[i]∗, hence

|z|2 = p = |w|2.

In particular x2 + y2 = p for z = x+ yi and w = z, furthermore x 6= y, since
p is odd. Uniqueness follows with Th.15.8.

Theorem 15.10. The gaussian primes are, up to multiplication with ±1,±i,
as follows:

1. 1 + i,

2. for each prime number p = 4k + 1 there are two gaussian primes z =
a+ bi with 0 < b < a, a2 + b2 = p, and z,

3. ordinary prime numbers p = 4k + 3.

The given gaussian primes are pairwise non-associated, i.e. two different do
not only differ by a factor ±1,±i; the first ones are

1+ i, 3, 2+ i, 2− i, 7, 11, 3+2i, 3−2i, 4+ i, 4− i, 19, 23, 5+4i, 5−4i, 31, .........
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Denoting the above sequence (zν)ν∈N any gaussian integer can uniquely be
factorized

z = ezk11 · ... · zkrr
with e ∈ {±1,±i} and exponents k1, ..., kr ≥ 0, kr > 0.

Proof. The given gaussian integers zν are prime, since either |zν | = p is
prime or |zν | = p2 and there is no gaussian integer z with |z|2 = p. That
any gaussian integer z ∈ Z actually is a product of the given ones, follows by
first factorizing zz ∈ N and then identifying z with a partial product, using
Th.15.8.

Remark 15.11. Here are some hints how to find the prime factorization of
gaussian integers: Let z = x+ iy ∈ Z[i]. We start writing

z = gcd(x, y)z0,

factorize gcd(x, y) ∈ N in the usual way and then the prime divisors p ≡ 1
mod (4) as p = ππ och 2 = −i(1 + i)2. —

From now on we assume gcd(x, y) = 1, in particular no prime number
p ≡ 3 mod (4) divides z. Then we know

zz = |z|2 = 2`
r∏

ν=1

pkνν

with prime numbers pν ≡ 1 mod (4). The factorization of z in gaussian
primes now takes the form

z = e(1 + i)`
r∏

ν=1

ρkνν ,

where e ∈ {±1,±i} and, depending on ν, we have ρν = πν or ρν = πν - since
gcd(x, y) = 1, the g-primes πν and πν can not both divide z.

Example 15.12. We factorize z = 201 + 43i. We have gcd(201, 43) = 1 and

zz = |a|2 = 42250 = 2 · 53 · 132.

Hence
a = e · (1 + i)(ρ1)3(ρ2)2,
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where ρ1 ∈ {2± i} and ρ2 ∈ {3± 2i}. We start the factorization with

a = (1 + i)(122− 79i).

We check that 122− 79i is divisible with 3 + 2i and factorize

a = −(1 + i)(2 + 11i)(3 + 2i)2.

We check that 2 + 11i is divisible with (2 + i); and obtain the factorization

a = −(1 + i)(2 + i)3(3 + 2i)2.

Finally:

Theorem 15.13. Let n ∈ N>1 be a natural number.

1. The equation
|z|2 = n

can be solved with a gaussian integer z ∈ Z[i] iff all prime divisors
p ≡ 3 mod (4) of n have even multiplicity.

2. If n = a2m, where all prime divisors of a are of the form p = 4k+3 and
all prime divisors of m are of the form p = 2 or p = 4k + 1, then any
solution of the equation |z|2 = n is of the form z = aw with |w|2 = m.

3. If all prime divisors of n are of the form p = 2 or p = 4k + 1, any
solution of the equation

|z|2 = n = p1 · ... · pr

can be written as a product

z = z1 · ... · zr

of solutions zi ∈ Z[i] of the equation |zi|2 = pi, i = 1, ..., r. Here the
primes p1, ..., pr are not assumed to be pairwise different.

Proof of Th.15.13. Take z ∈ Z[i] with |z|2 = n and compare the prime fac-
torizations of z and n.

Eventually we want to determine pythagorean triples:
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Definition 15.14. A triple (a, b, c) ∈ (N>0)3 is called a pythagorean triple
if a2 + b2 = c2. It is called primitive if gcd(a, b, c) = 1.

So pythagorean triples correspond to right angled triangles with integer
side lengths.

Remark 15.15. 1. Obviously any pythagorean triple can be written

(a, b, c) = λ(a0, b0, c0)

with a primitive pythagorean triple (a0, b0, c0).

2. For a primitive pythagorean triple the first two components a and b
have different parity, and in particular c is odd. Clearly, they can not
be both even, while odd a and b are impossible as well: This is easily
seen by passing from Z to Z4: The only squares in Z4 are the residue
classes 0, 1. Hence

c2 = a2 + b
2

= 1 + 1 = 2,

a contradiction!

Here is a recipe how to create all primitive pythagorean triples:

Theorem 15.16. Let p, q ∈ N>0 be natural numbers such that

1. gcd(p, q) = 1,

2. p > q,

3. p and q have different parity.

Then the triple (a, b, c) ∈ N3 with

a = p2 − q2, b = 2pq, c = p2 + q2,

or, equivalently

a+ bi = (p+ iq)2, c = |p+ iq|2,

is a primitive pythagorean triple with even b, and every such triple can be
written in that way with uniquely determined numbers p, q.
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Proof. Obviously, given p, q as above, the triple (a, b, c) is primitive and
pythagorean.
Uniqueness: The equation a+bi = w2 has w = ±(p+iq) as its only solutions.
Existence: We show that z = a+ bi admits a square root in Z[i], i.e.

a+ bi = (p+ iq)2,

where we may assume p > 0. The remaining properties for p, q now follow
easily from a, b > 0 and gcd(a, b) = 1.

Since gcd(a, b) = 1, we see that gcd(z, z) = 1 holds in Z[i]. Indeed

1. If (1 + i)|z, then 2|zz = c2, a contradiction.

2. If u is a gaussian prime, s.th. u is not associated to u and it divides
both z and z, then u|z and thus uu|z, i.e. uu ∈ N divides both a and
b, a contradiction.

So
zz = c2

implies that all prime divisors of z have even multiplicity. As a consequence,
z or iz is a square in Z[i] - but the latter is not possible, since =(w2) is even
for w ∈ Z[i], while =(iz) = a is odd.

16 Fermat’s Equation for n > 2

Theorem 15.16 describes all the solutions of the pythagorean equation

x2 + y2 = z2.

Now given an arbitrary exponent n ∈ N, we wonder what can be said about
the solutions (x, y, z) ∈ (N>0)3 of Fermat’s equation

xn + yn = zn.

Unfortunately for n > 2 we do not find any solutions by inspection. The
following theorem, conjectured by Fermat in 1637, has finally been proved in
1993:

Theorem 16.1 (Wiles). For n ∈ N>2 there are no triples (x, y, z) ∈ (N>0)3

satisfying
xn + yn = zn.
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Of course it suffices to consider the exponent n = 4 or n = p, an odd
prime number. The case n = 3 has already been settled by Euler, and for
”regular prime numbers” the above theorem has been shown by Kummer in
1846 (Here are some of them: p = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 41, 43,
47, 53, 61, 71, 73, 79, 83, 89, 97, 107, 109, 113, 127, 137, 139, 151, 163, 167,
173, 179, 181, 191, 193, 197, 199, ... — it is not known, whether there are
infinitely many regular prime numbers or not.)

Following Fermat, we treat the case n = 4. It follows from

Theorem 16.2 (Fermat). There are no triples (x, y, z) ∈ (N>0)3 satisfying

x4 + y4 = z2.

Proof. The reasoning is as follows:

1. Assuming that there is a solution, we can even find a solution (x, y, z) ∈
(N>0)3 with minimal third component z.

2. Starting with a solution (x, y, z) ∈ (N>0)3 we construct (or ”descend
to”) an other solution (x̃, ỹ, z̃) ∈ (N>0)3 with z̃ < z.

The two points are contradictory, hence the assumption in the first point
is wrong.

Now let us explain the descent procedure: We apply twice the parametriza-
tion of primitive pythagorean triples.

1. If d = gcd(x, y, z) > 1 we have d2|z and may take x̃ = x/d, ỹ = y/d, z̃ =
z/d2.

2. If gcd(x, y, z) = 1, we obtain with (x2, y2, z) a primitive pythagorean
triple. Assuming that x is even, we may write it

x2 = 2pq, y2 = p2 − q2, z = p2 + q2.

3. Then (q, y, p) is an other primitive pythagorean triple, in particular p
is an odd number and q even, y being odd. Thus we may write

q = 2`k, y = `2 − k2, p = `2 + k2.

4. Since 2pq = x2 and p is odd and gcd(p, q) = 1, we find that p = ξ2, q =
2η2 with suitable ξ, η ∈ N>0.
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5. We obtain a further primitive pythagorean triple (`, k, ξ).

6. The equality 2η2 = q = 2`k together with gcd(`, k) = 1, yields that
` = L2, k = K2 with L,K ∈ N>0.

7. Finally x̃ := L, ỹ := K, z̃ := ξ is the solution we are looking for. Indeed

z = p2 + q2 = ξ4 + q2 > ξ4 ≥ ξ = z̃.

17 The Four Squares Theorem

Theorem 17.1. A natural number n ∈ N is the sum of three squares

x2 + y2 + z2 = n

if and only if it is not of the form n = 4k(8m+ 7).

We show that the given condition is necessary:

1. The case k = 0 follows from the fact, that the only squares in Z8 are
0, 1, and that 7 obviously is not the sum of three residue classes which
either equal 0 or 1.

2. If n = 4` is a sum of three squares, so is ` itself. It suffices to show
that x = 2a, y = 2b, z = 2c are even, so a2 + b2 + c2 = `. But that is
obvious: In Z4 a sum of three squares, not all = 0, never equals 0.

3. So n = 4k(8m+7) is never a sum of three square, since otherwise 8m+7
would be as well.

If we even allow four squares there is no restriction anymore:

Theorem 17.2. Any natural number is the sum of 4 squares of integers.

Proof. As a consequence of the below four squares lemma we see that it
suffices to write every prime number as a sum of four squares. Since

2 = 12 + 12 + 02 + 02,

we may concentrate on primes p > 2.
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Lemma 17.3 (Four squares lemma). Let (x1, ..., x4), (y1, ..., y4) ∈ R4. Then
we have

(x2
1 + ...+ x2

4)(y2
1 + ...+ y2

4) = (Q2
1 + ...+Q2

4)

with
Q1 =

∑4
ν=1 xνyν ,

Q2 = −x1y2 + x2y1 − x3y4 + x4y3,
Q3 = −x1y3 + x3y1 − x4y2 + x2y4,
Q4 = −x1y4 + x4y1 − x2y3 + x3y2.

Proof. Check yourself or use the interpretation of four vectors as quaternions,
see the below remark. Then we have

(x1 + x2i + x3j + x4k)(y1 − y2i− y3j− y4k) = Q1 +Q2i +Q3j +Q4k

and use that the square of the euclidean norm

||x1 + x2i + x3j + x4k||2 =
4∑

ν=1

x2
ν

is multiplicative.

Remark 17.4. For those not familiar with quaternions we give here a short
introduction. We realize them as complex matrices: The set

H :=

{(
z w
−w z

)
; z, w ∈ C

}
⊂ C2,2

forms a real vector subspace of the complex vector space C2,2, it is multi-
plicatively closed and all nonzero matrices in H are invertible:

H \ {0} ⊂ GL2(C).

Furthermore the euclidean norm

||
(

z w
−w z

)
|| :=

√
zz + ww

satisfies

||
(

z w
−w z

)
|| =

√
det

(
z w
−w z

)
,
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thus is obviously multiplicative:

||AB|| = ||A|| · ||B||.

This is what we have used in the proof of Lemma 17.3. Let us explain that:
A basis of the real vector space H is given by the matrices

E, I, J, K,

with the unit matrix E ∈ C2,2 and

I :=

(
i 0
0 −i

)
, J :=

(
0 1
−1 0

)
, K :=

(
0 i
i 0

)
.

The products of the matrices K, I, J are as follows

I2 = J2 = K2 = −E, IJ = K = −JI, JK = I = −KJ,KI = J = −IK.

In classical notation one writes

x1 + x2i + x3j + x4k = x1E + x2I + x3J + x4K,

and calls the expression on the LHS a quaternion, since it is determined by
four real parameters. The products are computed using the distributive law
and the analogues of the above relations:

i2 = j2 = k2 = −1, i · j = k = −j · i, j · k = i = −k · j,k · i = j = −i · k.

This is the way how the ”creator” of the quaternions, the irish mathematician
William Rowan Hamilton, presented them. He was looking for some way how
to define a product with nice properties on R3, say, making it a field, but did
not succeed. Finally it worked for R4 - one gets almost a field, abandoning
only the commutative law for the multiplication. Indeed, this is only possible
on R2 - then one obtains C - and R4.

Though we do not really need it, we give some comments on the multi-
plicative structure of H. There is a conjugation of quaternions:

A 7→ A∗ := A
T
,

satisfying
AA∗ = det(A)E.
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Since conjugation is involutive, H is the direct sum

H = H1 ⊕H−1

of the eigenspaces to the eigenvalues ±1. Indeed

H1 = RE

and
H−1 = RI + RJ + RK.

For A ∈ H−1 of length ||A|| = 1 we have A2 = −E, hence there are infinitely
many different possibilities to realize C in H, namely as RE ⊕ RA. Finally
there is also a relation to three dimensional geometry on H−1

∼= R3: If we
denote

P : H = H1 ⊕H−1 −→ H−1

the projection onto H−1, the map

H−1 ×H−1 −→ H−1, (A,B) −→ P (AB)

describes the vector product.

Theorem 17.2 now follows from two lemmata, the first one being the start
point for a descent procedure leading after finitely many steps to the desired
decomposition of the prime p as a sum of 4 squares.

Lemma 17.5. Let p > 2 be a prime. Then there is a natural number h, 1 ≤
h < p, such that hp is a sum of 4 squares.

Lemma 17.6. Let p > 2 be a prime. Given h ∈ N, 1 < h < p, such that hp
is a sum of four squares, there is sone q ∈ N, 1 ≤ q < h, such that qp is a
sum of four squares as well.

Proof of Lemma 17.5. We consider the set

X :=

{
i
2 ∈ Zp; 0 ≤ i ≤ p− 1

2

}
⊂ Zp.

It contains p−1
2

+ 1 elements, since if j
2

= i
2

with 0 ≤ i < j ≤ p−1
2

, we obtain

p|(j2 − i2) = (j + i)(j − i)
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with

1 ≤ j − i < j + i ≤ p− 1,

a contradiction. Now |X|+ | − 1−X| = 2|X| = p+ 1 > |Zp| implies that X
and −1 −X have at least one common element, so there are 1 ≤ i, j ≤ p−1

2

with

i
2

= −1− j2

resp.

p|1 + i2 + j2.

But

0 < 1 + i2 + j2 ≤ 1 + 2 · (p− 1)2

4
< 1 +

p2

2
< p2,

whence

02 + 12 + i2 + j2 = hp, 1 ≤ h < p.

Proof of Lemma 17.6. Let

hp =
4∑
i=1

n2
i .

We distinguish two cases:

1. If the number h is even, we may replace h with q = h
2

as follows: Then
either none, two or all of the numbers n1, ..., n4 are odd: In any case we
may assume that n1, n2 as well as n3, n4 have the same parity. Hence
the numbers

m1 :=
n1 + n2

2
, m2 :=

n1 − n2

2

and

m3 :=
n3 + n4

2
,m4 :=

n3 − n4

2

are integers and satisfy for q := h
2

the desired equality

qp =
4∑
i=1

m2
i .
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2. The number h is odd. In that case there are unique integers `1, ..., `4,
satisfying

`i ≡ ni mod (h) , −h− 1

2
≤ `i ≤

h− 1

2
.

Since not all ni are divisible with h - otherwise hp would be divisible
with h2 - , we have `i 6= 0 for some i. Hence

0 <
4∑
i=1

`2
i ≤ 4

(h− 1)2

4
< h2,

and thus
4∑
i=1

`2
i ≡

4∑
i=1

n2
i ≡ 0 mod (h)

gives
4∑
i=1

`2
i = qh, 1 ≤ q < h.

On the other hand, by Lemma 17.3 we have

4∑
i=1

Q2
i =

(
4∑
i=1

n2
i

)
·

(
4∑
i=1

`2
i

)
= hp · qh,

where all the Qi are divisible with h: For Q2, .., Q4 that follows with
the formulae of 17.2 and the fact that `i ≡ ni mod (h), then use that
the entire sum is divisible with h2, hence Q1 is as well. Finally for mi

with Qi = hmi we find
4∑
i=1

m2
i = qp.
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18 Pell’s Equation

The second quadratic diophantine equation in two variables (x, y) ∈ Z2 we
shall study is Pell’s equation:

x2 − d y2 = n ∈ N,

where d ∈ N>0. If d = c2 we can factorize its left hand side and get for any
factorization n = ab two linear equations

x+ cy = a, x− cy = b

easy to be solved or noticed to be unsolvable. From now on we shall assume
that d > 0 is not a square in N. The main emphasis is on the case n = ±1,
i.e.

x2 − d y2 = ±1.

We try the same strategy as in the previous section: We look at the ring

Z
[√

d
]

:= Z + Z
√
d ⊂ R

of ”d-quadratic integers” (no standard terminology!) - indeed it lies dense on
the real line - and replace complex conjugation with the ring automorphism

σ : Z
[√

d
]
−→ Z

[√
d
]
, x+ y

√
d 7→ x− y

√
d.

Though looking quite harmless, it is not from the topological point of view:
It is nowhere continuous! E.g. if un := xn + yn

√
d → 0 and un 6= 0 for all

n ∈ N, we have |xn|, |yn| → ∞, and xn, yn have different sign for n � 0. It
follows |σ(un)| → ∞.

The function

N : Z
[√

d
]
−→ Z, u 7→ N(u) := uσ(u),

associates to u ∈ Z
[√

d
]

its ”norm” N(u) ∈ Z. It is multiplicative, i.e.

satisfies
N(uv) = N(u)N(v),

but in contrast to the ring of gaussian integers it may take both positive and
negative values. In general there is no unique prime factorization available;
indeed, we have to content ourselves with the computation of the group of
units of Z[

√
d]. Here is a first observation:
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Proposition 18.1. The group of units Z
[√

d
]∗

of the ring of d-quadratic

integers is

Z
[√

d
]∗

= {u ∈ Z
[√

d
]

;N(u) = ±1}.

Proof. For a d-quadratic integer u ∈ Z
[√

d
]∗

its norm N(u) ∈ Z is a unit

as well because of N(1) = 1, hence N(u) = ±1. On the other hand, if

N(u) = ±1, then u−1 = N(a)σ(u) ∈ Z
[√

d
]
.

So solving Pell’s equation with n = ±1 turns out to be equivalent to
determining the group of units

Z
[√

d
]∗
⊂ Z

[√
d
]
.

We want to appeal to geometric intuition and identify the lattice

Λd := {(x, y
√
d) ∈ R2;x, y ∈ Z}

with the ring of d-quadratic integers: Consider the map

π : R2 −→ R, (ξ, η) 7→ ξ + η,

the projection onto the x-axis along the lines parallel to R(1,−1). It induces
a bijection

π|Λd : Λd −→ Z
[√

d
]
,

since on any line parallel to R(1,−1) there is at most one lattice point.

Remark 18.2. We have

Z
[√

d
]∗

= π(Λd ∩H)

with the set
H := {(ξ, η); ξ2 − η2 = ±1},

the union of two hyperbolas composed of a left and right branch H`, Hr

resp. an upper and a lower branch H+, H−. The map π : R2 −→ R induces
homeomorphisms

H+

∼=−→ R>0, Hr

∼=−→ R>0
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and
H−

∼=−→ R<0, H`

∼=−→ R<0,

and the kernel π−1(0) = R(1,−1) is one of the two asymptotic lines of the
hyperbolas. Thus, Λd ⊂ R2 being discrete, it follows that

Z
[√

d
]∗
⊂ R∗

is a discrete subset of the punctured line - the only possible point of accu-
mulation is the origin. In any case we have

(±1, 0) ∈ Λd ∩H,

corresponding to ±1 ∈ Z
[√

d
]∗

, but do not know yet whether there are more

lattice points on H than these two.

From the above geometric considerations we derive that the group of units

Z
[√

d
]∗

admits up to sign a primitive root, also called the basic unit, as it

is the case with Z∗2n = ±5
Z
, only here it has infinite order:

Lemma 18.3. If Z
[√

d
]∗

% {±1}, we have

Z
[√

d
]∗

= ±aZ

with the ”basic unit”

a := min
(
Z
[√

d
]∗
∩ R>1

)
.

Indeed a = α + β
√
d with positive integers α, β ∈ N>0.

Corollary 18.4. If a = α + β
√
d is the basic unit of Z

[√
d
]
, any solution

(x, y) ∈ N2 of Pell’s equation

x2 − d y2 = ±1

is of the form
x+ y

√
d = (α + β

√
d)n

with some n ∈ N.
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Proof. Given b ∈ Z
[√

d
]∗
, b 6= ±1, one of the numbers ±b±1 lies in R>1.

(Note that in terms of the lattice that means taking reflections w.r.t. the

coordinate axes!) So the assumption implies that (Z
[√

d
]∗

)>1 is non-empty

and thus the basic unit is well defined. It remains to show that every unit

b ∈ Z
[√

d
]∗

is of the form b = ±an with some integer n ∈ Z. Again we

may assume b > 1: Then choose n ∈ N with an ≤ b < an+1. We have

a−nb ∈ Z
[√

d
]∗
, 1 ≤ a−nb < a, hence a−nb = 1 resp. b = an.

Remark 18.5. For the basic unit a = α + β
√
d we have α, β ≥ 1. As a

consequence the sequences αn, βn with

an = αn + βn
√
d

are strictly increasing:

αn+1 = ααn + dββn > ααn ≥ αn, βn+1 = αβn + βαn > αβn ≥ βn.

So in order to show that some d-quadratic unit a = α + β
√
d really is the

basic unit, it is sufficient to show that there is no solution (x, y) of Pell’s
equation with 1 ≤ x < α, 1 ≤ y < β.

Example 18.6. 1. ”d = 2”: We find a = 1 +
√

2, N(a) = −1.

2. ”d = 3”: We find a = 2 +
√

3, N(a) = 1.

3. ”d = 5”: We find a = 2 +
√

5, N(a) = −1.

Remark 18.7. Note that N(a) = −1 iff H+ ∩ Λd 6= ∅.

19 Continued fractions

Here we describe a natural way to approximate an irrational number

x0 ∈ R \Q

by a sequence

(cn)n∈N ⊂ Q
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of rational numbers as follows: We construct a bijection

R \Q −→ Z× (N>0)N>0 , x0 7→ (an)n∈N,

between the set of all irrational numbers and the set of all sequences (an)n∈N
of integers, s.th. an > 0 for n > 0, and obtain

cn = Kn(a0, ...., an)

with a function Kn defined on the set of initial segments of length n + 1 of
our sequences (aν). Furthermore we investigate for which x0 ∈ R \ Q the
corresponding sequence is ”preperiodic”, i.e. is periodic for n� 0.

Finally we find an answer to the question of the previous section: If we
take x0 =

√
d and write

cn =
hn
kn

as a reduced fraction, the pair (x, y) = (hn, kn) is a solution of Pell’s equation
x2 − dy2 = ±1 for infinitely many indices n ∈ N.

So let us now start with our construction: Assume the irrational number
x0 ∈ R \Q is given. We take

c0 := a0 := [x0]

with the integer part function

[x] := maxZ≤x.

In order to improve the approximation we consider the error

x0 − c0 ∈ (0, 1),

take the part integer part

a1 :=

[
1

x1

]
of its inverse

x1 :=
1

x0 − c0

∈ R>1

and replacing x1 in the formula

x0 = a0 +
1

x1
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with a1 we obtain the second approximation

c1 = a0 +
1

a1

.

Now we improve the approximation a1 ∈ Z of x1 ∈ R\Q by a better rational
one

a1 +
1

a2

as we did with x0 and substitute it:

c2 = a0 +
1

a1 + 1
a2

.

Now we continue with that procedure and hopefully get better and better
approximations of x0. But before we discuss that question we present a more
digestible description of the above algorithm:

Approximation of irrational numbers by finite continued fractions:
Let x0 ∈ R \Q be an irrational number.

1. We take x0 as the first member in a sequence

(xn)n∈N ⊂ R \Q

of irrational numbers xn ∈ R, defined by the recursion formula

xn+1 :=
1

xn − [xn]
.

Obviously we have xn > 1 for all n ∈ N.

2. We associate to it two further sequences,

(a) the sequence of integers (an)n∈N defined by an := [xn],

(b) and the sequence (cn)n∈N of rational numbers satisfying

cn := Kn(a0, ...., an),

where the functions

Kn : R× (R≥1)n −→ R

are defined by K0(t) := t and

Kn(t, t1, ..., tn) = Kn−1

(
t, t1, .., tn−1 +

1

tn

)
.
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Remark 19.1. 1. In order to simplify notation we usually write

K(t, t1, ..., tn) = Kn(t, t1, ..., tn).

2. We have

K(t, t1) = t+
1

t1
, K(t, t1, t2) = t+

1

t1 + 1
t2

, ....

3. The function K(t, t1, .., tn) is strictly increasing w.r.t. t and t2i and
strictly decreasing w.r.t. t2i+1.

4. By induction one proves

x0 = K(a0, a1, ..., an−1, xn),

in particular we have

c2n = K(a0, a1, ..., a2n−1, a2n) < x0 < c2n+1 = K(a0, a1, ..., a2n, a2n+1).

We shall prove

Theorem 19.2. Denote Z × (N>0)N>0 the set of all sequences (aν)ν∈N of
integers with aν ≥ 1 for ν ≥ 1. Then the limit

K(a0, a1, ....) := lim
n→∞

K(a0, ..., an)

exists for any sequence (aν)ν∈N ∈ Z× (N>0)N>0 and is an irrational number.
Indeed the map

K : Z× (N>0)N>0 −→ R \Q, (an)n∈N 7→ K(a0, a1, ....)

is a bijection.

Theorem 19.3. Denote Z× (N>0)∞ with

(N>0)∞ =
∞⋃
n=1

(N>0)n

the set of all finite sequences a0, ..., an ∈ Z of integers with aν ≥ 1 for ν ≥ 1.
The map

K : Z× (N>0)∞ −→ Q, (a0, ..., an) 7→ K(a0, a1, ...., an)

is two to one, i.e. it is onto and all its fibres have order 2. Indeed:

K(a0, ...., an) =

{
K(a0, ...., an−1 + 1) , if an = 1, n > 0
K(a0, ...., an − 1, 1) , if an > 1

.
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Proof of Th.19.3. Assume

K(a0, ..., an) = K(b0, ..., bm),m ≥ n.

Choose ` ≤ n maximal with a` = b`. If ` = n, we have m = n, since m > n
would imply

K(a0, ..., an, bn+1, ..., bm) = K(a0, ..., an +
1

K(bn+1, .., bm)
) 6= K(a0, ..., an).

If ` < n, we have

[a`+1, a`+1 + 1] 3 K(a`+1, .., an) = K(b`+1, ..., bm) ∈ [b`+1, b`+1 + 1],

with the intervals having exactly one boundary point in common. Since by
assumption n ≤ m, we find with the below remark n = `+ 1,m = n+ 1 and
bm = an + 1, as desired.
Surjectivity: Take x0 = u0

u1
∈ Q and define the sequence xν . Then we have

x0 = K(a0, ..., an)

with aν = [xν ].

Here are some preparatory results for the proof of Th.19.2:

Remark 19.4. For (x0, x1, ..., xn) ∈ R× (R≥1)n we have

1. K(x0, ..., xn) = x0 + 1
K(x1,...,xn)

,

2. K(x0, ..., xn) ≥ 1 for x0 ≥ 1,

3. x0 ≤ K(x0, x1, ..., xn) ≤ x0 + 1,

4. x0 = K(x0, x1, ..., xn)⇐⇒ n = 0,

5. K(x0, x1, ..., xn) = x0 + 1⇐⇒ n = 1, x1 = 1.

For a ∈ R let

M(a) :=

(
a 1
1 0

)
.
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Given (aν)ν∈N we define recursively a sequence of matrices (Qn)n∈N by

Q0 :=

(
1 0
0 1

)
and

Qn+1 = QnM(an).

We derive from it two sequences (hν)ν≥−2 and (kν)ν≥−2 as follows:

Qn =

(
hn−1 hn−2

kn−1 kn−2

)
.

More explicitly

hn = anhn−1 + hn−2, kn = ankn−1 + kn−2

with
h0 = a0, k0 = 1.

Proposition 19.5. For n ≥ 1 and x ∈ R≥1 we have

K(a0, ..., an−1, x) =
xhn−1 + hn−2

xkn−1 + kn−2

,

in particular

cn = K(a0, ..., an−1, an) =
hn
kn
.

Proof. A straight forward verification.

Remark 19.6. Here is a rough estimate for the denominators: We have

kn ≥ n, n ≥ 0.

Indeed k0 = 1, k1 = a1k0 + k−1 = a1 ≥ 1, while an ≥ 1 for n ≥ 1 yields

kn = ankn−1 + kn−2 ≥ (n− 1) + 1 = n

for n ≥ 2.

Lemma 19.7. 1. hnkn−1 − hn−1kn = detQn+1 = (−1)n+1,

2. hnkn−2 − hn−2kn = (−1)nan,
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3. hence

cn − cn−1 = (−1)n−1 1

knkn−1

4. and

cn − cn−2 = (−1)n
an

knkn−2

.

Corollary 19.8. The sequence (cn)n∈N converges, the subsequence (c2n)n∈N
is strictly increasing, while (c2n+1)n∈N is strictly decreasing.

Proof. By Rem. 19.6 and Lemma 19.7.3 we have

|cn − cn−1| ≤
1

n(n− 1)
,

hence the series
∑

n=1 cn − cn−1 converges even absolutely. This implies the
first part of the statement, while the second is nothing but 19.7.4.

Proof of Lemma 19.7. 1. Follows from detM(aν) = −1 for ν = 0, ...., n.

2. We have (
hn hn−2

kn kn−2

)
= Qn ·

(
an 0
1 1

)
,

now take determinants.

3. We compute

cn − cn−1 =
hn
kn
− hn−1

kn−1

=
hnkn−1 − hn−1kn

knkn−1

=
(−1)n−1

knkn−1

4. and

cn − cn−2 =
hn
kn
− hn−2

kn−2

=
hnkn−2 − hn−2kn

knkn−2

=
(−1)nan
knkn−2

.

Proof of Th.19.2. The map K is well defined: Cor.19.8 assures convergence,
and the limit is an irrational number: Assume that

x0 = lim
n→∞

cn =
h

k
∈ Q.
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Then we have

0 <

∣∣∣∣hk − cn
∣∣∣∣ < |cn+1 − cn| ≤

1

kn+1kn

because x0 lies between cn and cn+1. Now we multiply

0 <

∣∣∣∣hk − hn
kn

∣∣∣∣ < 1

kn+1kn

with kkn and obtain

0 < |hkn − hnk| <
k

kn+1

< 1

for n ≥ k and hkn − hnk ∈ Z, a contradiction!
Surjectivity: Follows from Rem.19.1.4.
Injectivity: We assume K(a0, ....) = K(b0, ....) and show a0 = b0. Since

K(a0, ...) = a0 +
1

K(a1, ...)
, K(b0, ...) = b0 +

1

K(b1, ...)
,

that implies K(a1, ...) = K(b1, ....) and thus we can obtain by induction
an = bn for all n ∈ N. An interval [`, `+ 1] with ` ∈ Z is determined by any
of its interior points, thus

a0 < K(a0, ...., a2n) ≤ K(a0, ....) ≤ K(a0, ....., a2n+1) < a0 + 1

as well as
b0 < K(b0, ....) < b0 + 1

implies a0 = b0.

Unfortunately we have no easy results relating the continued fraction
expansion of a sum resp. a product to those of the summands resp. factors,
but we can characterize the irrationals having an expansion, which becomes
after some initial segment periodic:

Theorem 19.9. An irrational number x0 ∈ R\Q has a preperiodic expansion

x0 = K(a0, ...., ar−1, ar, ...., ar−1+p),

if and only if x0 ∈ Q
[√

D
]

:= Q + Q
√
D for some non-square D ∈ N≥1.
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Proof. ”=⇒”: For r = 0, i.e.

x := K(a0, ...., ap−1)

we have

x = K(a0, ..., ap−1, x) =
xhp−1 + hp−2

xkp−1 + kp−2

,

i.e. x satisfies a quadratic equation with rational coefficients, hence belongs

to some field Q
[√

D
]
. In the general case we obtain that

y := K(ar, ...., ar−1+p) ∈ Q
[√

D
]

and then

x0 = K(a0, ...., ar−1, y) =
yhr−1 + hr−2

ykr−1 + kr−2

∈ Q
[√

D
]

as well.
”⇐=”: We show that the set

{xn;n ∈ N}

is finite: Then we have xk+p = xk for some k, p ∈ N and thus xn+p = xn

for all n ≥ k. Now, if x0 ∈ Q
[√

D
]
, we have as well xn ∈ Q

[√
D
]

for

all n ∈ N. We use that fact in order to write xn = f(mn, qn) with integers
mn, qn. Furthermore, once again we need the conjugation

σ : Q
[√

D
]
−→ Q

[√
D
]
, α + β

√
D 7→ α− β

√
D.

Indeed, we verify the following three statements:

1. For a suitable d = `2D, every xn ∈ Q
[√

d
]

= Q
[√

D
]

can be written

in the form

xn =
mn +

√
d

qn

with integers mn, qn ∈ Z satisfying d−m2
n ∈ Zqn. Indeed they can be

computed using the sequence (an)n∈N as follows:

(a) mn+1 = anqn −mn,
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(b) qn+1qn = d−m2
n+1.

2. For some k ∈ N≥1 we have

σ(xk) < 0

and for n > k even
−1 < σ(xn) < 0.

3. If 2.) holds for the index k, we have

(mn, qn) ∈
[
0,
√
d
]
×
[
0, 2
√
d
]

for n > k+1. Hence there are only finitely many possible lattice points
(mn, qn) resp. values xn, n ∈ N.

The statement 1.): The case n = 0: We extend the fraction

x0 =
a+ b

√
D

c
; a, c ∈ Z, b ∈ N>0,

with |c| and obtain

x0 =
a · |c|+

√
b2c2D

c · |c|
,

i.e. we may take

d = b2c2D, m0 = a · |c|, q0 = c · |c|.

Indeed
d−m2

0 = b2c2D − a2c2 =
c

|c|
(
b2D − a2

)
q0 ∈ Zq0.

Now let us consider the step from n to n+ 1, applying the recursion formula:

xn+1 =
1

xn − [xn]
=

qn

mn +
√
d− qnan

=
qn√

d−mn+1

= qn
mn+1 +

√
d

d−m2
n+1

=
mn+1 +

√
d

qn+1

,

with qn+1 ∈ Z, since the assumption qn|(d−m2
n) implies qn|(d−m2

n+1).
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The statement 2.): With Prop.19.5 we may write

x0 = K(a0, ......, an−1, xn) =
xnhn−1 + hn−2

xnkn−1 + kn−2

and

σ(x0) =
σ(xn)hn−1 + hn−2

σ(xn)kn−1 + kn−2

.

Solving for σ(xn) we arrive at

σ(xn) = −kn−2

kn−1

· σ(x0)− cn−2

σ(x0)− cn−1

,

and since kn−1, kn−2 > 0 and the second fraction converges to 1 (note that
σ(x0)− cn → σ(x0)− x0 6= 0), it follows that σ(xn) < 0 for n� 0.

Finally, for n ≥ 1 we have σ(xn) < 0 =⇒ σ(xn+1) ∈ (−1, 0), since xn > 1
for n ≥ 1 implies

σ(xn)− [xn] > −1

and

0 > σ(xn+1) =
1

σ(xn)− [xn]
> −1.

The statement 3.): We substitute xn = ... in 2.) and obtain

−1 <
mn −

√
d

qn
< 0,

while in any case

1 < xn =
mn +

√
d

qn
.

If we add, we get

0 <
2mn

qn
,

i.e. mn, qn have the same sign. On the other hand −σ(xn) > 0 yields

1 < xn − σ(xn) = 2

√
d

qn
,

so mn and qn are positive and

0 < qn < 2
√
d.
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Now by 1.(b) with n instead of n+ 1 we have

d−m2
n = qnqn−1 > 0,

hence
mn <

√
d.

We note without proof:

Theorem 19.10. The quadratic irrational x0 ∈ Q
[√

d
]
\ Q has a periodic

continued fraction expansion

x0 = K(a0, ...., ap−1)

if and only if x0 > 1 and −1 < σ(x0) < 0.

Example 19.11. We have[√
d
]

+
√
d = K

(
2
[√

d
]
, a1, ..., ap−1

)
,

where we usually assume the period p to be minimal. In particular

√
d = K

([√
d
]
, a1, ..., ap

)
.

We come now back to Pell’s equation:

Proposition 19.12. For x0 =
√
d we have

(hn)2 − d(kn)2 = (−1)n−1qn+1.

Proof of Prop.19.12. We have

√
d = x0 =

xn+1hn + hn−1

xn+1kn + kn−1

=
(mn+1 +

√
d)hn + qn+1hn−1

(mn+1 +
√
d)kn + qn+1kn−1

,

multiply with the denominator and compare coefficients:

α + β
√
d = α̃ + β̃

√
d⇐⇒ α = α̃, β = β̃.
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Corollary 19.13. We have

(h`p−1)2 − d(k`p−1)2 = (−1)`p.

Proof. The equality x0 =
√
d gives q0 = 1, while for ` > 0 we have

x`p = K(a`p, .....) = K(ap, .....) =
[√

d
]

+
√
d,

whence q`p = 1.

Remark 19.14. Indeed, any solution of Pell’s equation x2 − dy2 = ±1 is
obtained as in Cor.19.13. In particular x2 − dy2 = −1 is solvable if and only
if the minimal period of the continuous fraction expansion of

√
d is odd.
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