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1 Introduction

The groups one investigates in algebra usually are finite or finitely generated,
but for example R endowed with the addition of real numbers is far from
being finitely generated. Or take

GLn(R) := {A ∈ Rn,n; det(A) 6= 0},

the group of invertible n× n-matrices with real entries, the group law being
the multiplication of matrices.

In order to understand even such groups one considers groups with addi-
tional structure compatible with the group action.

Definition 1.1. A topological group is a group G endowed with a Hausdorff
topology such that both the group multiplication (group law)

µ : G×G −→ G, (a, b) 7→ ab,

and the ”inversion”
ι : G −→ G, a 7→ a−1

are continuous maps.

Example 1.2. 1. The additive group G := R endowed with its standard
topology.

2. The group
G := GLn(R) ⊂ Rn,n ∼= Rn2

,

endowed with the topology as a(n open) subset of Rn2
.

Let us comment on the second example: First of all,

GLn(R) = det−1(R∗) ⊂ Rn,n

is an open set of Rn,n as the inverse image of the open set R∗ := R \ {0} (the
punctured real line) with respect to a continuous map, the determinant

det : Rn,n −→ R, A = (αij) 7→ det(A) =
∑
π∈Sn

sign(π)
n∏
i=1

αi,π(i),

3



a polynomial in the entries αij of A. That matrix multiplication is continuous
is immediate, while the continuity of the inversion A 7→ A−1 follows from the
following formula

A−1 = (γij) with γij = (−1)i+j
det(Aji)

det(A)
,

where Ak` ∈ Rn−1,n−1 denotes the matrix obtained from A ∈ Rn,n by deleting
the k-th row and the `-th column. With other words, the entries γij of A−1

are rational functions in the entries of A (with a non-vanishing denominator).

Indeed continuous functions can be quite pathological, while differentiable
functions are more easily understood, since locally they can be approximated
by linear functions. So it seems natural to look for a notion of ”differentiable
groups”. We give here a very restricted provisional definition:

Definition 1.3. Assume that G ⊂ Rm is both an open subset of Rm and
a group (with a suitable group law). It is called a differentiable group if
the group multiplication as well as the inversion are differentiable (i.e. C∞-
)maps.

Example 1.4. 1. The vector space Rm endowed with the addition of vec-
tors as group law.

2. GLn(R) with m = n2.

3. The direct product G := Rn ×GLn(R) with m = n+ n2.

4. There is an other way to endow Rn × GLn(R) with the structure of a
Lie group: Identify a pair (a,B) ∈ Rn×GLn(R) with the ”affine linear
map” Rn 3 x 7→ a + Bx ∈ Rn. The composition of two affine linear
maps being again affine linear, we obtain the following new group law

(a,B)(c,D) := (a+Bc,BD).

on Rn ×GLn(R).

Now the basic idea in the study of differentiable groups is to replace the
commutator map

K : G×G −→ G, (x, y) 7→ xyx−1y−1
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with the ”bilinear part” of its Taylor expansion at (e, e) - here e ∈ G denotes
the neutral element of the group G. Let us explain that: Denote DK(e, e) ∈
Rm,2m the Jacobian matrix of K at (e, e) - the linear part of the Taylor
expansion. Then we have for small ξ, η ∈ Rm the expansion

K(e+ ξ, e+ η) = K((e, e) + (ξ, η))

e+DK(e, e)
( ξ
η

)
+

∑
1≤i,j≤m

∂K

∂xi∂yj
(e, e)ξiηj + ....

Now the ”bilinear term”

[ξ, η] :=
∑

1≤i,j≤m

∂K

∂xi∂yj
(e, e)ξiηj

defines a bilinear map

[.., ..] : Rm × Rm −→ Rm.

It turns out that that map determines the group law near (e, e) ∈ G × G
completely, so one can replace the local study of differentiable groups with
the study of certain bilinear maps [.., ..] : Rm × Rm −→ Rm.

Let us discuss the example G = GLn(R) ⊂ Rn,n and compute the map
[.., ..] : Rn,n × Rn,n −→ Rn,n. For a matrix A = (αij) we define its norm by

||A|| := nmax{|αij|; 1 ≤ i, j ≤ n}

and note that it is even well behaved with respect to products: ||AB|| ≤
||A|| · ||B||. Now denote E ∈ GLn(R) the unit matrix (replacing e ∈ G)
and take X, Y ∈ Rn,n of norm < 1 (replacing ξ and η). Then we have
E +X ∈ GLn(R) with

(E +X)−1 = E −X +X2 −X3 + ...,

a convergent series. Consequently

K(E +X,E + Y ) = (E +X)(E + Y )(E −X +X2 − ....)(E − Y + Y 2 − ...)

= E+(X+Y −X−Y )+(X2 +Y 2 +XY −X2−XY −Y X−Y 2 +XY )+ ...

with the dots representing terms of total degree > 2 in X and Y . Thus the
linear term vanishes and

[X, Y ] = XY − Y X

is the commutator of the matrices X, Y ∈ Rn,n.
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2 Differentiable Manifolds

In Definition 1.3 we require G ⊂ Rm (as an open subset) for a differentiable
group. That is a very restrictive condition. E.g. it holds for G := C∗ ⊂ C ∼=
R2, the multiplicative group of non-zero complex numbers, but it does not
hold any longer for its closed subgroup

S1 := {z ∈ C; |z| = 1},

the unit circle. (An open subset of Rm is never compact.) Nevertheless it
locally looks like the real line: There are homeomorphisms

ψ1 : V1 :=]− π, π[−→ U1 := S1 \ {−1}, x 7→ eix

and
ψ2 : V2 :=]0, 2π[−→ U2 := S1 \ {1}, x 7→ eix.

Thus we are led to the notion of a topological manifold:

Definition 2.1. An m-dimensional topological manifold M is a Hausdorff
topological space admitting an open cover

M =
⋃
i∈I

Ui

with open subset Ui ⊂M homeomorphic to open subsets Vi ⊂ Rm.

Example 2.2. 1. Any open subset of Rm is an m-dimensional topological
manifold.

2. M := S1 = U1 ∪ U2 is a one dimensional topological manifold.

3. Denote ||x|| =
√
x2

1 + ...+ x2
n+1 the euclidean norm of a vector x ∈

Rn+1. Then the sphere

Sn := {x ∈ Rn+1; ||x|| = 1}

is an n-dimensional topological manifold: We have

Sn = U1 ∪ U2
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with U1 := Sn \ {−en+1}, U2 := Sn \ {en+1}, where Ui ∼= Rn. For
example the maps

σi : Ui −→ Rn, x = (x′, xn+1) 7→ x′

1− (−1)ixn+1

, i = 1, 2

are homeomorphisms: For x ∈ Ui the point (σi(x), 0) is the intersection
of the line spanned by x and −en+1 (for i = 1) resp. en+1 (for i = 2)
with the hyperplane Rn × 0.

Now one could try to study a function f : M −→ R on a topological
manifold M by considering what one gets by composing f with inverse home-

omorphisms Rm ⊃ V
ψ−→ U ⊂ M and then apply analysis to the composite

f ◦ψ : V −→ R. But then it will depend on the choice of the homeomorphism
ψ, whether f ◦ ψ is differentiable or not. One can avoid that difficulty by
restricting to a system, ”atlas”, of ”mutually compatible” homeomorphisms,
also called ”charts”:

Definition 2.3. Let M be an m-dimensional topological manifold.

1. A chart on M is a pair (U,ϕ), where U ⊂M is open and ϕ : U −→ V
is a homeomorphism between U and an open subset V ⊂ Rm. The
component functions ϕ1, ..., ϕm then are also called (local) coordinates
for M on U ⊂M .

2. Two charts (Ui, ϕi), i = 1, 2, on a topological manifold M are called
(C∞-)compatible if either U12 := U1 ∩ U2 is empty or the transition
map (”coordinate change”)

ϕ2 ◦ ϕ−1
1 : ϕ1(U12) −→ ϕ2(U12)

is a diffeomorphism between the open sets ϕ1(U12) ⊂ V1 ⊂ Rm and
ϕ2(U12) ⊂ V2 ⊂ Rm.

3. A differentiable atlas A on a topological manifold M is a system

A = {(Ui, ϕi); i ∈ I}

of mutually (C∞-)compatible charts, such that M =
⋃
i∈I Ui.
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Example 2.4. 1. On the unit circle S1 the charts (Ui, ϕi := ψ−1
i ), i = 1, 2

constitute a differentiable atlas: Indeed S1 = U1∪U2, and the transition
map ϕ2 ◦ ϕ−1

1 :]− π, 0[∪]0, π[−→]0, π[∪]π, 2π[ looks as follows

ϕ2 ◦ ϕ−1
1 (x) =

{
x , if x ∈]0, π[
x+ 2π , if x ∈]− π, 0[

.

2. The charts (Ui, σi), i = 1, 2 on Sn, cf. 2.2.3, constitute a differentiable
atlas: Again we have Sn = U1 ∪ U2 and the transition map

σ2 ◦ σ−1
1 : Rn \ {0} −→ Rn \ {0}, x 7→ x

||x||2
.

3. Let W ⊂ Rn be an open subset and

F : W −→ Rn−m

a differentiable map, such that for all a ∈ M := F−1(0) ⊂ W the
Jacobian map

DF (a) : Rn −→ Rn−m

is surjective. For every point a ∈ M we shall construct a local chart
(Ua, ϕa). We may assume that ∂F

∂(xm+1,...,xn)
(a) 6= 0. Then the map

Φ : (x1, ..., xm, F1, ..., Fn−m) : Rn −→ Rn induces, according to the
inverse function theorem, a diffeomorphism Ũ −→ Ṽ between an open
neighborhood Ũ ⊂ W of a ∈ Rn and an open neighborhood Ṽ of
(a1, ..., am, 0) ∈ Rn. As a consequence the map

ϕa : Ua := Ũ ∩M −→ Va := {y ∈ Rm; (y, 0) ∈ Ṽ ⊂ Rm × Rn−m},

x 7→ (x1, ..., xm)

is a homeomorphism. Then the collection A := {(Ua, ϕa); a ∈ M}
constitutes a differentiable atlas on M . Note that all local coordinates
are obtained by choosing m suitable restrictions xi1|M , ..., xim |M of the
coordinate functions x1, ..., xn, i.e., with the choice of the set {i1, ..., im}
depending on the point a ∈M .

The last example shows that a differentiable atlas may depend on a lot
of choices and can be unnecessarily big as well. So we need to say when two
atlases are ”equivalent”:
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Definition 2.5. 1. Two atlases A and Ã on an m-dimensional topological
manifold M are called equivalent if any chart in A is compatible with
any chart in Ã.

2. A differentiable structure on a topological manifold is an equivalence
class of differentiable atlases.

3. A differentiable manifold M is a topological manifold together with a
differentiable structure. We say that a differentiable atlas A is an at-
las for the differentiable manifold M , if A defines (or belongs to) the
differentiable structure of M .

If M is a differentiable manifold, then a ”chart (U,ϕ) on M” means always
a chart compatible with all the charts of a (resp. all) atlases defining the
differentiable structure of M .

We leave the details of the following remark to the reader:

Remark 2.6. 1. Any open subset U ⊂ M of a differentiable manifold
inherits a natural differentiable structure.

2. The cartesian product M ×N of differentiable manifolds M,N carries
a natural differentiable structure.

Definition 2.7. Let M,N be differentiable manifolds of dimension m,n re-
spectively.

1. A function f : M −→ R is differentiable if the functions f ◦ ϕ−1 :
V −→ R are differentiable for all charts (U,ϕ : U −→ V ) ∈ A in
a differentiable atlas for M . The same definition applies for maps
F : M −→ Rn. We denote

C∞(M) := {f : M −→ R differentiable}

the set of all differentiable functions, indeed a real vector space which
is even closed with respect to the multiplication of functions.

2. A continuous map F : M −→ N is called differentiable if all the maps
ψ ◦ (F |F−1(W )) : F−1(W ) −→ Rn are differentiable, where (W,ψ) ∈ B
is any chart in an atlas B defining the differentiable structure of N .

3. A diffeomorphism F : M −→ N between two differentiable manifolds
M and N is a bijective differentiable map, such that its inverse F−1 :
N −→M is differentiable as well.

9



4. We say that M is diffeomorphic to N and write M ∼= N if there is a
diffeomorphism F : M −→ N .

Note that differentiable functions are continuous, and that the definition
of differentiability is independent from the choice of the differentiable atlases
for M and N .

Remark 2.8. Given a topological manifold M there are a lot of distinct
differentiable structures, but the corresponding differentiable manifolds may
be diffeomorphic nevertheless: By a smooth type on M we mean the diffeo-
morphism class of the differentiable manifold defined by some differentiable
structure on M .

1. For dimM ≤ 3 there is exactly one smooth type.

2. For dimM ≥ 4 it may happen that there is no differentiable structure
on M at all.

3. A compact topological manifold of dimension at least 5 admits only
finitely many smooth types. E.g., the sphere Sn has the standard
smooth type as described above, but there may be other ones: For n =
5, ..., 20 we obtain 1, 1, 28, 2, 8, 6, 992, 1, 3, 2, 16256, 2, 16, 16, 523264, 24
smooth types respectively. For n = 4 it is not known whether there
are exotic smooth types, i.e. smooth types different from the standard
smooth type.

4. For n 6= 4 there is only the standard smooth type on Rn, while on R4

there are uncountably many different smooth types; some of them are
obtained as follows: One considers an open subset U ⊂ R4 with the
standard smooth type; if there is a homeomorphism U ∼= R4 one gets
an induced differentiable structure on R4.

Definition 2.9. Let M be an m-dimensional differentiable manifold. A
subset L ⊂ M is called a submanifold of codimension k iff for every point
a ∈ L there is a chart (U,ϕ), such that ϕ(U ∩L) = {x = (x1, ...., xm) ∈ V :=
ϕ(U);xm−k+1 = .... = xm = 0}.

Note that a submanifold L ⊂M inherits from M a unique differentiable
structure, such that the inclusion L ↪→M is differentiable.
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Remark 2.10. Complex Manifolds: We can literally apply the same
strategy as above with C replacing R. That leads to the notion of a complex
structure and complex manifolds. But there are also dramatic changes, since
the condition for a map f : W −→ C on an open subset W ⊂ Cn to have
everywhere a (complex) linear approximation, is an extremely strong one.
Such functions are called holomorphic, we denote

O(M) := {f : M −→ C holomorphic}

the complex vector space of holomorphic functions. A holomorphic function
f ∈ O(M) has derivatives of any order, in fact it is even analytic, i.e. is
locally described by its Taylor series.

Let us, without proof, mention the following difference: Given a compact
set K ⊂ U contained in an open set U ⊂ M of a differentiable manifold M ,
there is a function f ∈ C∞(M) with f |K ≡ 1 and f |M\U ≡ 0. On the other
hand, for a connected complex manifold M the following identity theorem
holds: The restriction map

O(M) −→ O(W ), f 7→ f |W
is injective for any nonempty open subset W ⊂ M . Indeed if in addition
M itself is compact, we have O(M) = C, i.e. there are only constant holo-
morphic functions - this is an immediate consequence of the maximum prin-
ciple for holomorphic functions. On the other hand Cm ∼= R2m and any

holomorphic map Cn ⊃ W
f−→ Cm is in particular differentiable as a map

R2n ⊃ W
f−→ R2m. So a complex manifold of dimension m can also be

regarded as a differentiable manifold of dimension 2m, the ”underlying dif-
ferentiable manifold”.

3 Lie Groups

Definition 3.1. A (real) Lie group is a topological group G, which also car-
ries the structure of a differentiable manifold, such that the group multiplica-
tion G×G −→ G, (a, b) 7→ ab, as well as the inversion G −→ G, a 7→ a−1 are
differentiable maps. If G even carries the structure of a complex manifold
and the group operations are holomorphic, we call G a complex Lie group.

Since real and complex Lie groups often can be treated simultaneously
we shall from now on use the letter K in order to denote either R or C and
use the term K-Lie group in order to refer to real resp. complex Lie groups.
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Example 3.2. The general linear group

GLn(K) := {A ∈ Kn,n; det(A) 6= 0}

is a K-Lie group. Note that GL1(K) is nothing but the multiplicative group
K∗ := K \ {0} of K.

In the following we shall present a series of closed subgroupsG ⊂ GLn(K).
In order to see that they are even Lie groups we use

Remark 3.3. Let G ⊂ GLn(K) be a closed subgroup, such that G = F−1(0)
with a map F : GLn(K) −→ Km satisfying F (AX) = F (X) for all A ∈ G.
If then DF (E) : Kn,n −→ Km is onto, the subgroup G ⊂ GLn(K) carries
a natural differentiable resp. complex structure, and with respect to that
structure G is a K-Lie group. According to Example 2.4.3, it suffices to
check that

DF (A) : Kn,n −→ Km

is onto for all A ∈ G. Denote λA : GLn(K) −→ GLn(K), X 7→ AX the left
multiplication with A, a diffeomorphism. Since F = F ◦ λA, we obtain

DF (E) = DF (A) ◦D(λA)(E) = DF (A) ◦ λA,

where we have used the fact that λA as a linear map coincides with its own
Jacobian - here we denote also λA the map Kn,n −→ Kn,n, X 7→ AX. But A
being invertible, λA : Kn,n −→ Kn,n is an isomorphism of vector spaces, so
with DF (E) the map DF (A) is surjective as well. The affine subspace

E + kerDF (E) ⊂ Kn,n

is the best approximation of F−1(0) = G at E by an affine subspace, it can
naturally be identified with the ”tangent space” TEG of G = F−1(0) at E,
to be defined in the next chapter.

Now let us continue with our examples:

Example 3.4. 1. The special linear group

SLn(K) := {A ∈ Kn,n; det(A) = 1}

is a closed normal subgroup (as the kernel of the continuous homomor-
phism det : GLn(K) −→ K∗). Take F (X) = det(X)− 1. Since

DF (E) = D(det)(E) = Tr

with the (surjective) trace map Tr : Kn,n −→ K,A = (αij) 7→
∑n

i=1 αii,
we can apply Remark 3.3. So SLn(K) is a K-Lie group.
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2. We consider a non degenerate bilinear form σ : Kn ×Kn −→ K, write
σ(x, y) = xTSy with a matrix S ∈ Kn,n. Then a matrix A ∈ GLn(K)
preserves σ, i.e. σ(Ax,Ay) = σ(x, y) for all x, y ∈ Kn iff ATSA = S.
Obviously the set of all such ”σ-isometries” forms a closed subgroup of
GLn(K). We look at the map

F : GLn(K) −→ Kn,n, X 7→ XTSX − S.

Then the Jacobian of F at E is

DF (E) : Kn,n −→ Kn,n, X 7→ XTS + SX.

Assume now S is either symmetric: ST = S or antisymmetric: ST =
−S. Then F (GLn(K)) ⊂ Sn(K) resp. F (GLn(K)) ⊂ An(K), where
Sn(K) denotes the vector space of all symmetric matrices and An(K)
the vector space of all anti-symmetric matrices. Thus we may replace
the target of both F and DF (E) with Sn(K) resp. An(K). Since
a given matrix A ∈ Sn(K) resp. A ∈ An(K) is of the form A =
DF (E)(X) with X := 1

2
(S−1A), the Jacobian map of F at E is onto

and hence our isometry group even a Lie group. If we take S = E we
obtain the K-orthogonal group

On(K) := {A ∈ GLn(K);ATA = E},

while for even n = 2m and S =

(
0 E
−E 0

)
the analogous group

Spn(K) := {A ∈ GLn(K);ATSA = S}

is called the K-symplectic group. We have

dimOn(K) = n2 − dimSn(K) =
1

2
n(n− 1)

and

dimSpn(K) = n2 − dimAn(K) =
1

2
n(n+ 1).

We remark that the real orthogonal group On(R) is compact, and that
det(A) = ±1 for A ∈ On(K) as well as for A ∈ Spn(K).
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3. Now let us consider the hermitian form σ : Cn × Cn −→ C, σ(z, w) =
zTw. The corresponding isometry group is the unitary group

U(n) := {A ∈ GLn(C);A
T
A = E},

while
F : GLn(C) −→ Hn, X 7→ X

T
X − E.

describes U(n) = F−1(0) as before. Here Hn ⊂ Cn,n denotes the real
subspace of all Hermitian matrices. The Jacobian map

DF (E) : Cn,n −→ Hn, X 7→ X
T

+X

is again onto. Note that U(n) is not a complex Lie group, since F is
not holomorphic!

4. For G ⊂ GLn(K) let SG := G ∩ SLn(K). Since matrices A ∈ On(K)
have determinant ±1, SOn(K) is an open subgroup of On(K) of index
2, while Sp(n), as we hopefully shall see later on, is connected, hence
not only det(A) = ±1, but even det(A) = 1 for all A ∈ Spn(K).
The group SU(n) ⊂ GLn(C) can be realized as follows: First note
that det(A) ∈ S1 for A ∈ U(n). Let W := GLn(C) \ det−1(R<0) and
consider the map

F : W −→ Hn × R, X 7→ (X
T
X − E, arg(det(X)))

where, say, −π < arg(.) < π, with SU(n) = F−1(0) and Jacobian

DF (E) : Cn,n −→ Hn × R, X 7→ (X
T

+X, Im(Tr(X))),

which is onto, since (A, λ) ∈ Hn × R has X = 1
2
(A + in−1λE) as an

inverse image.

5. Let V0 := {0} ⊂ V1 ⊂ ... ⊂ Vn = Kn be an increasing sequence of
subspaces (a ”flag”). If Vi = Ke1 + ...+Kei the subgroup

UTn(K) := {A ∈ GLn(K);A(Vi) ⊂ Vi}

is a K-Lie group, consisting of the invertible upper triangular matrices,
indeed the underlying differentiable or complex manifold is nothing but
(K∗)n ×Kn(n−1)/2 and we may argue as in the case of GLn(K).
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There is a canonical homomorphism

UTn(K) −→ GL(Vn/Vn−1)× ...×GL(V2/V1)×GL(V1) ∼= (K∗)n,

its kernel UUn(K) ⊂ UTn is K-Lie group, it consists of all upper trian-
gular matrices with diagonal entries equal to 1 (”unipotent” matrices).

All our above Lie groups are closed subgroups of GLn(K). The below
theorem tells us that any such group is indeed a Lie group:

Theorem 3.5. Let H ⊂ G be a closed subgroup of the real Lie group G.
Then H ⊂ G is a closed submanifold of G and in particular again a Lie
group.

But since we are far from being able to prove it, we have preferred to give
in any particular case a complete argument. – For any topological group
G the connected component G0 ⊂ G of G containing the neutral element
e ∈ G is a normal subgroup, the group operations being continuous. Since a
Lie group G as a topological manifold is locally connected, G0 is even open,
indeed the minimal open subgroup of G, a connected Lie group G being
generated by any open neighborhood of e ∈ G.

Remark 3.6. A connected Lie group G is countable at infinity: Take a
compact neighborhood K ⊂ G of the neutral element, w.l.o.g. K = K−1 :=
{a−1; a ∈ K}. ThenG is the ascending unionG =

⋃∞
n=1 K

n with the compact
subsets Kn := {a1 · ... · an; a1, ..., an ∈ K}: The right hand side is obviously
an open subgroup of G, hence equals G, the group G being connected.

4 Vector Fields

On a differentiable manifold M there is no natural notion of a derivative of a
function f ∈ C∞(M), since in order to differentiate we need local coordinates.
We are now going to define objects with respect to which functions can be
differentiated in a point a ∈M or globally.

Definition 4.1. A tangent vector Xa at a point a ∈ M of a differentiable
manifold M is a linear map Xa : C∞(M) −→ R satisfying the following
Leibniz rule:

Xa(fg) = f(a)Xa(g) +Xa(f)g(a).

15



The set of all tangent vectors of M at a ∈ M forms a vector space TaM ,
called the tangent space of M at a ∈M .

Remark 4.2. (1) We have Xa(R) = 0 for every tangent vector Xa ∈ TaM ,
since Xa(1) = Xa(1

2) = Xa(1) +Xa(1).

(2) Take a chart ϕ : U → V ⊂ Rn with a ∈ U and ϕ(a) = 0. Then the
maps

∂ai := ∂ϕ,ai : f 7→ ∂f ◦ ϕ−1

∂xi
(0), i = 1, ..., n,

are tangent vectors at a.

(3) Another, may be more geometric, construction that avoids the choice of
charts is the following: To any curve, i.e. differentiable map, γ : I →M
defined on an open interval I ⊂ R with γ(t0) = a for some t0 ∈ I we
can associate the tangent vector γ̇(t0) ∈ TaM defined by

γ̇(t0) : f 7→ (f ◦ γ)′(t0) .

The vector γ̇(t0) is called the tangent vector of the curve γ : I → M
at t0 ∈ I. In particular the tangent space TaRn is naturally isomorphic
to Rn itself: associate to x ∈ Rn the tangent vector γ̇x(0) with the
curve γx(t) := a+ tx. The adjective ”natural” means here that it only
depends on Rn as vector space, not on the choice of a particular base
(e.g. the standard base) of Rn.

Theorem 4.3. Using the notation of Remark 4.2.2 we have

TaM =
n⊕
i=1

R · ∂ai ,

i.e. the tangent vectors ∂ai := ∂ϕ,ai form a basis of the tangent space TaM .

For the proof we need

Lemma 4.4. 1. If f ∈ C∞(M) vanishes in a neighborhood of a ∈ M ,
then Xa(f) = 0 for all tangent vectors Xa ∈ TaM .
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2. Let U ⊂ M be open. Denote % : C∞(M) −→ C∞(U), f 7→ f |U the
restriction from M to U . Then the map

TaU −→ TaM,Xa 7→ Xa ◦ %,

is an isomorphism.

Proof. 1.) If f vanishes near a, take a function g ∈ C∞(M) with g = 1 near
a and fg = 0. Then 0 = Xa(fg) = g(a)Xa(f) + f(a)Xa(g) = Xa(f).
2.) Injectivity: Assume Xa ◦ % = 0. Take any function f ∈ C∞(U). Choose
f̃ ∈ C∞(M) with f̃ = f near a. Then, according to the first part, we have
Xa(f) = Xa(f̃ |U) = 0. Now the function f ∈ C∞(U) being arbitrary, we
obtain Xa = 0.
Surjectivity: For Ya ∈ TaM define Xa ∈ TaU by its value on f ∈ C∞(U) as
follows

Xa(f) := Ya(f̃),

where again f̃ ∈ C∞(M) with f̃ = f near a. Then Xa(f) is well defined as
a consequence of the first part and obviously Xa ◦ % = Ya.

Proof of 4.3. As a consequence of 4.4 we may assume, with the notation of
Rem.4.2.2, M = U = V ⊂ Rn and show that the tangent vectors ∂ 0

i ∈ T0V
with ∂ 0

i (f) := ∂f
∂xi

(0) form a basis of T0V . Since ∂ 0
i (xj) = δij they are linearly

independent. On the other hand, for any X0 ∈ T0V we have

X0 =
n∑
i=1

X0(xi)∂
0
i .

Take f ∈ C∞(V ). After, may be, a shrinking of V we may assume f = f(a)+∑n
i=1 xifi with fi ∈ C∞(V ) and then obtain Xa(f) =

∑n
i=1 Xa(xi)fi(a) =∑n

i=1Xa(xi)∂
a
i (f).

Tangent vectors on a complex manifold (Only for readers feeling at
home in complex analysis!): For a complex manifold M we have to modify
the definition of a tangent vector, since O(M) may be too small. Instead of
working with O(M) we have to introduce the concept of a germ of a function
near a ∈ M . Let us do that simultaneously for differentiable and complex
manifolds: We consider pairs (U, f), where f : U −→ K is any K-valued
function defined on an open neighborhood U of a ∈M . A germ of a function
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is an equivalence class of such pairs, where two pairs (U, f) and (V, g) are
equivalent if there is an open neighborhood W ⊂ U ∩V of a with f |W = g|W .
Given f : U −→ K the corresponding germ is denoted fa. We leave it to the
reader to define the sum and product of germs. Then we obtain the vector
spaces C∞a and Oa of germs of differentiable resp. holomorphic functions
near a ∈M . It follows from the above remark 4.2.2, that any tangent vector
Xa : C∞(M) −→ R factorizes uniquely through a linear map C∞a −→ R
satisfying the Leibniz rule, and on the other hand, every such map yields a
tangent vector by composition with the natural (surjective!) map

C∞(M) −→ C∞a , f 7→ fa,

associating to a function f ∈ C∞(M) its germ at a ∈M . Since for a complex
manifold the corresponding map

O(M) −→ Oa, f 7→ fa,

is never surjective for dimM > 0, we have to define a complex tangent
vector at a ∈M as a C-linear map Za : Oa −→ C satisfying the Leibniz rule.
Again we obtain a basis ∂a1 , ..., ∂

a
n of TaM given by complex differentiation

with respect to local complex coordinates. Furthermore, given a holomorphic
”curve”, i.e. a holomorphic map γ : G −→ M defined on an open subset
G ⊂ C we may define its tangent vector γ̇(z0) for any z0 ∈ G literally as in
the real case.

Given a complex manifold M , denote MR the underlying differentiable
manifold. Then there is a natural identification of real tangent vectors at a,
i.e. tangent vectors of the differentiable manifold MR, and complex tangent
vectors: More precisely, for a ∈ M , there is a natural isomorphism of real
vector spaces (Only the target is even a complex vector space!)

Ta(MR) −→ TaM,Xa 7→ Za := XC
a |Oa ,

where
XC
a := Xa + iXa : C∞,Ca = C∞a ⊕ iC∞a −→ C = R⊕ iR

with the vector space C∞,Ca = C∞a ⊕ iC∞a of germs of complex valued dif-
ferentiable functions near a ∈ M . To be less mysterious and more explicit:
Given complex local coordinates z1 = x1 + iy1, ..., zn = xn + iyn near a, the
above map acts as follows

∂ a

∂xk
7→ ∂ a

∂zk
,
∂ a

∂yk
7→ i

∂ a

∂zk
,
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since the above derivations coincide on Oa ⊂ C∞,Ca .

Differentiable maps induce linear maps between tangent spaces:

Definition 4.5. Given a differentiable map F : M → N between the differ-
entiable manifolds M and N , there is an induced homomorphism of tangent
spaces:

F∗ := TaF : TaM → TF (a)N

defined by
F∗(Xa) : C∞(N)→ R, f 7→ Xa(f ◦ F ) .

It is called the tangent map of F at a ∈M .

Obviously we have for a curve γ : (−ε, ε)→M with γ(0) = a that

F∗(γ̇(0)) = δ̇(0), where δ := F ◦ γ .

For explicit computations we note that, if F = (F1, ..., Fm) : U → W is a
differentiable map between the open sets U ⊂ Rn and W ⊂ Rm, and b = F (a)
for a ∈ U , then with respect to the bases ∂a1 , ..., ∂

a
n of TaU and ∂b1, ..., ∂

b
m of

TbW the linear map TaF has the matrix:

DF (a) =

(
∂Fi
∂xj

(a)

)
1≤i≤m,1≤j≤n

∈ Rm,n ,

the Jacobi matrix of F at a ∈ U .
Furthermore it is immediate from the definition, that the tangent map

behaves functorially, i.e. if F : M1 →M2 and G : M2 →M3 are differentiable
maps, then G ◦ F : M1 →M3 is again differentiable and the chain rule

Ta(G ◦ F ) = TF (a)G ◦ TaF

holds.
All the tangent vectors at points in a differentiable n-manifold M form a

differentiable n2-manifold:

Definition 4.6. Let M be a differentiable n-manifold. The tangent bundle
TM is, as a set, the disjoint union

TM :=
⋃
a∈M

TaM
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of all tangent spaces at points a ∈M . Denote π : TM →M the map, which
associates to a tangent vector Xa ∈ TaM its “base point” a ∈M . Now given

a chart ϕ : U
∼=→ V ⊂ Rn on M , we consider the bijective map (trivialization)

Tϕ := (ϕ ◦ π, ϕ∗) : π−1(U)→ V × Rn,

where we use the natural isomorphism TaRn ∼= Rn as explained above and
ϕ∗|TaM = Taϕ. We endow TM with a topology: a set W ⊂ TM is open if
Tϕ(W ∩ U) ⊂ Rn × Rn is open for all charts (U,ϕ) in an atlas A for M .
Finally, the charts (π−1(U), Tϕ) with (U,ϕ) ∈ A define an atlas on TM .

In order to see that this idea works we need to understand the coordinate
changes for two charts (π−1(U), Tϕ) and (π−1(Ũ), T ϕ̃) of TM : We may
assume Ũ = U and then obtain with F := ϕ̃ ◦ ϕ−1 : V −→ Ṽ the following
coordinate change on the tangent level:

T ϕ̃ ◦ (Tϕ)−1 : V × Rn −→ Ṽ × Rn, (x, y) 7→ (F (x), DF (x)y).

Now we can generalize Definition 4.5: given a differentiable map F :
M → N the pointwise tangent maps TaF : TaM → TF (a)N combine to a
differentiable map TF : TM → TN , i.e.

TF |TaM := TaF : TaM → TF (a)N.

Indeed, the map TF fits into a commutative diagram

TM
TF−→ TN

↓ ↓
M

F−→ N

,

i.e. πN ◦ TF = F ◦ πM holds with the projections πM : TM −→ M and
πN : TN → N of the respective tangent bundles.

Remark 4.7. For a complex manifold M the above construction works as
well, leading to a complex manifold TM , its holomorphic tangent bundle. On
the other hand, we already have seen that for a complex manifold M , there
is a natural isomorphism

Ta(MR) ∼= TaM
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for every point a ∈ M . Since that isomorphism depends ”differentiably” on
the base point a ∈M , there is a natural identification

T (MR) = TM

of differentiable manifolds.

Definition 4.8. A (holomorphic) vector field X on an open subset U ⊂ M
of a differentiable (complex) manifold M is a differentiable (holomorphic)
section of the projection π : TM → M , i.e., a differentiable (holomorphic)
map

X : U → TM

satisfying π ◦X = idU , with other words, X(a) ∈ TaM for all a ∈ U . In that
case we also write Xa := X(a). We denote Θ(U) the set of all (holomorphic)
vector fields on U ⊂M .

Remark 4.9. (1) The set Θ(U) carries, with the argument-wise algebraic
operations, in a natural way the structure of a real vector space. In
fact the scalar multiplication

R×Θ(U)→ Θ(U)

can be extended to a multiplication by functions:

C∞(U)×Θ(U)→ Θ(U), (f,X) 7→ fX,

where

(fX)a := f(a)Xa .

That follows immediately from the fact that the maps Taϕ : TaM −→
Rn are linear isomorphisms.

(2) Let (U,ϕ) be a chart. Then

∂i := ∂ϕi : U −→ TM, a 7→ ∂ai for i = 1, ..., n,

with

∂ai (f) :=
∂f ◦ ϕ−1

∂xi
(ϕ(a))
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are vector fields on U , the ”coordinate vector fields” associated to the
local chart (or local coordinates) xi = ϕi(a), i = 1, ..., n. Since TaM =⊕n

i=1 R∂ai , any section X : U −→ TM of π : TM −→M can be written

X =
n∑
i=1

gi∂i,

with functions gi : U −→ R, and we have

X ∈ Θ(U)⇐⇒ g1, ..., gn ∈ C∞(U).

(3) Note that on an arbitrary differentiable manifold M it is in general not
possible to find vector fieldsX1, ..., Xn ∈ Θ(M), such that (X1)a, ..., (Xn)a
is a frame at a, i.e., a basis of TaM , for all a ∈M . If such vector fields
exist, the manifold M is called parallelizable. So the open subsets U ,
where a local chart ϕ : U −→ V is defined, are always parallelizable.
As we shall see in the next section the underlying manifold of a Lie
group is always parallelizable.

(4) The vector fields onM can be identified with derivationsD : C∞(M)→
C∞(M), i.e. linear maps satisfying the Leibniz rule D(fg) = D(f)g +
fD(g) for all f, g ∈ C∞(M). Given a vector field X ∈ Θ(M) the
corresponding derivation X : C∞(M)→ C∞(M), f 7→ X(f) is defined
by (X(f))(a) := Xa(f). In fact, every derivation D : C∞(M) →
C∞(M) is obtained from a vector field: Take X ∈ Θ(M) with

Xa : C∞(M)→ R, f 7→ D(f)(a) .

(5) For an open subset U ⊂ M the tangent bundle TU is identified, in a
natural way, with the open subset π−1(U) ⊂ TM .

(6) Let F : M → N be a differentiable map. Given a vector field X ∈
Θ(M), we can consider TF ◦ X : M → TN , but that map does not
in general factor through N , e.g. if F is not injective. But it does if
F : M → N is a diffeomorphism: then we may define a map

F∗ : Θ(M)→ Θ(N), X 7→ F∗(X) := TF ◦X ◦ F−1 ∈ Θ(N),

the push forward of vector fields with respect to a diffeomorphism.
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The vector space Θ(M) carries a further algebraic structure: though the
compositions XY and Y X of two derivations X, Y : C∞(M)→ C∞(M) are
no longer derivations, their commutator is:

(XY − Y X)fg = XY (fg)− Y X(fg)

= X(fY g + gY f)− Y (fXg + gXf)

= fXY g + (Xf)Y g + gXY f + (Xg)Y f

− fY Xg − (Y f)(Xg)− gY Xf − (Y g)(Xf)

= fXY g − fY Xg + gXY f − gY Xf
= f(XY − Y X)g + g(XY − Y X)f.

Definition 4.10. The Lie bracket [X, Y ] ∈ Θ(M) of two vector fields X, Y ∈
Θ(M) is the commutator of the derivations X, Y : C∞(M)→ C∞(M), i.e.

[X, Y ] := XY − Y X,

or, in other words, the vector field [X, Y ] satisfying

[X, Y ]a(f) := Xa(Y (f))− Ya(X(f))

for all differentiable functions f ∈ C∞(M) at every point a ∈M .

Note that the tangent vector [X, Y ]a is not a function of the values
Xa, Ya ∈ TaM only, since the local behavior of the vector fields X, Y near
a ∈M also enters in the computation rule. If x1, ..., xn are local coordinates
on U ⊂M , and X, Y ∈ Θ(U) have representations

X =
n∑
i=1

fi ∂i, Y =
n∑
i=1

gi ∂i,

then

[X, Y ] =
n∑
i=1

(X(gi)− Y (fi)) ∂i .

So, in particular, [∂i, ∂j] = 0 for coordinate vector fields. On the other hand
we mention:

Theorem 4.11. (Frobenius Theorem) Let X1, ..., Xn ∈ Θ(M) be pair-
wise commuting vector fields, i.e. [Xi, Xj] = 0 for 1 ≤ i, j ≤ n. Then every
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point a ∈ M , such that (X1)a, ..., (Xn)a is a frame at a (i.e. a basis of the
tangent space TaM) admits a neighborhood U ⊂ M with local coordinates
x1, ..., xn ∈ C∞(U) such that

Xi|U = ∂i.

The proof relies on the fact that given the flows (µt) and (µ̃t) of commut-
ing vector fields X, X̃ ∈ Θ(M), one has µs ◦ µ̃t = µ̃t ◦ µs for all sufficiently
small s, t ∈ R.

The Lie bracket defines on the vector space Θ(M) the structure of a Lie
algebra, a notion which plays a key rôle in the investigation of Lie groups:

Definition 4.12. A Lie algebra g over K is a K-vector space endowed with
an antisymmetric (or alternating) bilinear map [.., ..] : g× g→ g, i.e.

[X, Y ] = −[Y,X], ∀ X, Y ∈ g, in particular [X,X] = 0,

such that the Jacobi identity holds:

[X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.

We shall need later on

Proposition 4.13. Let F : M −→ N be a diffeomorphism resp. a biholo-
morphic map. Then the push forward of vector fields F∗ : Θ(M) −→ Θ(N)
is an isomorphism of Lie algebras.

Proof. Regarding X ∈ Θ(M) as a derivation X : C∞(M) −→ C∞(M) the
derivation F∗(X) : C∞(N) −→ C∞(N) satisfies

F∗(X)g = X(g ◦ F ) ◦ F−1.

Hence
F∗([X, Y ])g = XY (g ◦ F ) ◦ F−1 − Y X(g ◦ F ) ◦ F−1,

while

F∗(X)F∗(Y )g = F∗(X)(Y (g ◦ F ) ◦ F−1) = XY (g ◦ F ) ◦ F−1

and in the same way

F∗(Y )F∗(X)g = Y X(g ◦ F ) ◦ F−1.

This implies our claim.
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Definition 4.14. Let X ∈ Θ(M) be a vector field. A smooth curve γ : I →
M resp. a holomorphic curve γ : G→M defined on an open interval I ⊂ R
resp. on an open domain G ⊂ C is called an integral curve of the vector field
X, if γ̇(t) = Xγ(t) for all t ∈ I resp. t ∈ G.

Remark 4.15. The basic theorem in the theory of ordinary differential equa-
tions says that, given a vector field X ∈ Θ(M) on a differentiable manifold M
and a point a ∈M , there is an integral curve γ : I →M defined on an open
interval I 3 0 such that γ(0) = a, and if γ̃ : Ĩ → M is a second such curve,
then γ and γ̃ coincide on the intersection I ∩ Ĩ. If M is compact, we can
always assume I = R. Moreover, there is a differentiable map µ : U → M
defined on an open neighborhood U ⊂ M × R of M × {0} ↪→ M × R, such
that U ∩ ({x} × R) is an interval for all x ∈ M and t → µ(x, t) an integral
curve of X satisfying µ(x, 0) = x. If, moreover, M is compact, this map is
defined on all of M × R. The flow of the vector field X then is the family
(µt)t∈R of the differentiable maps

µt : M →M,x 7→ µ(x, t).

In fact, we have
µ0 = idM , µs+t = µs ◦ µt,

since integral curves are uniquely determined by their initial values and t 7→
γ(s+ t) is an integral curve with the value γ(s) at t = 0. Since µ0 = idM , it
follows that each map µt : M →M is a diffeomorphism with inverse µ−t.

5 The Lie Algebra of a Lie Group

For a Lie group G there are distinguished vector fields: Given an element
a ∈ G we denote λa : G −→ G, x 7→ ax, resp. %a : G −→ G, x 7→ xa, the left
resp. right multiplication (”left resp. right translation”) with a ∈ G. They
define diffeomorphisms (resp. biholomorphic maps) G −→ G and induce Lie
algebra isomorphisms

(λa)∗, (%a)∗ : Θ(G) −→ Θ(G).

Definition 5.1. A vector field X ∈ Θ(G) on a Lie group G is called left
resp. right invariant if (λa)∗(X) = X resp. (%a)∗(X) = X for all g ∈ G.
We denote Lie(G) ⊂ Θ(G) or simply g := Lie(G) the subspace of all left
invariant vector fields.
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In the following we usually consider only left invariant vector fields, but
everything holds - mutatis mutandis - for right invariant vector fields as well.

Remark 5.2. 1. The subspace g ⊂ Θ(G) is a Lie subalgebra, i.e. closed
with respect to the Lie bracket:

[g, g] ⊂ g.

This follows immediately from the fact that the (λa)∗ : Θ(G) −→ Θ(G)
are Lie group homomorphisms.

2. A vector field X ∈ Θ(G) is left invariant iff Xa = Te(λa)(Xe) for all
a ∈ G. As a consequence the evaluation map

g −→ TeG,X 7→ Xe

is an isomorphism of vector spaces. Hence g is a finite dimensional vec-
tor space with dim g = dimG (where dimG denotes the dimension of
G as differentiable or complex manifold). Indeed, usually one identifies
g with TeG via the above isomorphism.

Example 5.3. Let us consider G = GLn(K) and denote Ξ := (ξij) a variable
matrix in GLn(K). Furthermore we need the following matrix

∆ := (∂ij),

the entries of which are the coordinate vector fields with respect to the co-
ordinates ξij. To simplify notation we introduce a scalar product

A ·B :=
∑
i,j

AijBij

for matrices A = (Aij), B = (Bij). Since TEλC = λC , the left invariant vector
field X with XE = A ·∆E =

∑
i,j Aij∂

E
ij looks as follows

X = (ΞA) ·∆ =
∑
i,j

(ΞA)ij∂ij.

Let us now compute the Lie bracket of vector fields X = (ΞA) · ∆, Y =
(ΞB) ·∆. We already know that

[X, Y ] = (X(ΞB)− Y (ΞA)) ·∆,
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where X and Y apply to each entry of the matrices ΞB and ΞA separately.
Now

X(ΞB) = X(Ξ)B

and

∂ijΞ = E(i, j)

with the matrix E(i, j) such that E(i, j)k` = δkiδ`j. Thus, using

X(Ξ) = ((ΞA) ·∆) (Ξ) =
∑
i,j

(ΞA)ij∂ij(Ξ) =
∑
i,j

(ΞA)ijE(i, j) = ΞA,

we obtain

X(ΞB) = ΞAB.

Since by symmetry

Y (ΞA) = ΞBA,

we finally arrive at

[X, Y ] = (Ξ [A,B]) ·∆

with the commutator

[A,B] = AB −BA

of the matrices A,B ∈ Kn,n.

Definition 5.4. A homomorphism ϕ : G −→ H between Lie groups G,H
is a differentiable resp. holomorphic group homomorphism. We denote
Hom(G,H) the set of all such homomorphisms.

Remark 5.5. The kernel and image of a homomorphism ϕ : G −→ H of Lie
groups:

1. The kernel ker(ϕ) ⊂ G is clearly a closed subgroup. Indeed it is easily
seen to be also a submanifold: The tangent map Taϕ : TaG −→ Tϕ(a)H
has for all a ∈ G the same rank, and as a consequence of that, there
is for every a ∈ G an open neighborhood U ⊂ G of a and W ⊂ H
of ϕ(a), such that with respect to suitable local coordinates x1, ..., xn
on U and y1, ..., ym on W the map ϕ takes the form (x1, ..., xn) 7→
(x1, ..., xk, 0, ...0) with some k ≤ n.
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2. The image ϕ(G) ⊂ H need neither be a closed subgroup of H nor a
topological manifold with respect to the relative topology as a subspace
of H. As an example consider the injective homomorphism ϕ : R −→
S1 × S1, t 7→ (eit, ei

√
2t) – the real line wound up around a life belt.

But if we refine the relative topology then it is: Define a base for the
topology of ϕ(G) to consist of the sets ϕ(U) with U ⊂ G as above. The
differentiable structure now is inherited from H, the sets ϕ(U) being
submanifolds of H. So there is a unique Lie group structure on ϕ(G)!
On the other hand, if ϕ(G) ⊂ H is closed and G connected, then both
Lie group structures coincide, that one as a closed subgroup of H and
that as an image of a homomorphism of Lie groups. In order to see
that one uses the fact that G is countable at infinity and that an open
subset of Rm never is the countable union of closed submanifolds of
dimension < m (use e.g. measure theory - a compact part of such a
submanifold is a Lebesgue zero set in Rm.).

Proposition 5.6. Any homomorphism of Lie groups ϕ : G −→ H induces a
homomorphism of the corresponding Lie algebras dϕ : g −→ h.

Proof. The homomorphism dϕ is defined as g ∼= TeG
Teϕ−→ TeH ∼= h, and we

have to show that dϕ preserves the Lie bracket. We may assume that both
G and H are connected and then consider separately G −→ ϕ(G) (resp. the
case of a surjective homomorphism) and the inclusion ϕ(G) −→ H resp. an
injective homomorphism.

The first case is easy: Since ϕ : G −→ H is onto, the pull back ϕ∗ :
C∞(H) −→ C∞(G) is injective. Now g can be regarded as the set of all
derivations D : C∞(G) −→ C∞(G) commuting with left translation, i.e.
D(f ◦ λa) = (Df) ◦ λa and dϕ is nothing but the restriction D 7→ D|C∞(H).
The claim follows, since the Lie bracket is nothing but the commutator of two
derivations. But note that a general derivation does not satisfy D(C∞(H)) ⊂
C∞(H).

The case of an injective homomorphism (resp. an inclusion) ϕ : G −→ H:
Given X ∈ g the vector field X̂ := dϕ(X) ∈ h is the unique left invariant
extension of X, i.e. X̂|G = X. Now the claim follows from the equality

[X̂, Ŷ ]|G = [X, Y ],

the left hand side being a left invariant vector field. It is easily checked using
local coordinates x1, ...., xn with G ⊂ H being defined by xk+1 = ... = xn = 0.
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If we write

X̂ =
n∑
i=1

fi∂i, Ŷ =
n∑
i=1

gi∂i,

then gi|G = 0 = fi|G for i ≥ k + 1. Hence

[X̂, Ŷ ] =
n∑
i=1

(
n∑
j=1

fj∂jgi − gj∂jfi

)
∂i

and

[X̂, Ŷ ]|G =
k∑
i=1

(
k∑
j=1

fj∂jgi − gj∂jfi

)
∂i = [X, Y ],

since we have gj|G = 0 = fj|G for j ≥ k + 1 and ∂jgi = 0 = ∂jfi for
j ≤ k, i ≥ k + 1.

Example 5.7. Let us discuss the Lie algebras g = Lie(G) for the Lie groups
of Example 3.3. There G ⊂ GLn(K) is a closed subgroup of GLn(K).
Then g ⊂ gln(K) = Kn,n is a subalgebra, the kernel of the map DF (E) :
gln(K) −→ Km. We obtain:

1. sln(K) = {A ∈ Kn,n; Tr(A) = 0}.

2. If G ⊂ GLn(K) is the isometry group of a the bilinear form σ(x, y) =
xTSy, then g = {A ∈ Kn,n;ATS + SA = 0}, in particular

son(K) = {A ∈ Kn,n;AT + A = 0}

consists of the skew symmetric matrices.

3. un = {A ∈ Cn,n;A
T

= −A}.

4. sun = {A ∈ Cn,n;A
T

= −A,Tr(A) = 0}.

5. utn(K) := Lie(UTn(K)) consists of all upper triangular matrices and

6. uun(K) := Lie(UUn(K)) of all upper triangular matrices with only
zeros on the diagonal.
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6 Homogeneous Spaces

Let H ⊂ G be a closed subgroup of the Lie group G. We want to explain how
to make the left coset space B := G/H a differentiable manifold. Denote π :
G −→ B, g 7→ gH, the quotient projection. We endow B with the π-quotient
topology. Then π becomes an open map, since π−1(π(V )) =

⋃
h∈H V h.

Now let us show that B is Hausdorff: Consider two different points x =
aH, y = bH. Equivalently (a, b) ∈ G×G\L with the closed set L = ψ−1(H),
where ψ : G × G −→ G, (ξ, η) 7→ ξ−1η, is continuous. Hence L ⊂ G × G
is closed, and there is a neighbourhood U × V ⊂ G × G \ L of (a, b) with
open U, V ⊂ G. Then π(U) and π(V ) are disjoint open neighbourhoods of
the points x, y ∈ G.

Indeed L ⊂ G × G is even a submanifold as the inverse image of a sub-
manifold with respect to a submersion: A differentiable map f : M −→ N is
called a submersion, if all its tangent maps Taf : TaM −→ Tf(a)N are onto
(:=surjective). Since

gψ(ξ, η)g̃ = ψ(ξg−1, ηg̃),

and (ξ, η) 7→ (ξg−1, ηg̃) is a diffeomorphism G × G −→ G × G as well as
ζ 7→ gζg̃ a diffeomorphism G −→ G, it suffices to check that

T(e,e)ψ : T(e,e)(G×G) ∼= TeG⊕ TeG −→ TeG

is onto; indeed T(e,e)ψ(Xe, Ye) = Ye − Xe. This follows from the fact that
the group law µ : G×G −→ G, (ξ, η) 7→ ξη has differential T(e,e)µ(Xe, Ye) =
Xe + Ye as a consequence of µ(., e) = idG = µ(e, .). It follows immediately
that the inversion ι : G −→ G, ξ 7→ ξ−1 has differential Teι(Xe) = −Xe.

Our next aim is to construct on a suitable neighbourhood U of x0 := eH
a continuous section σ : U −→ G of the quotient projection π, i.e., such
that π ◦ σ := idU . As candidate for σ(U) we choose a slice S ⊂ G to the
submanifoldH at e, i.e. S ⊂ G is a submanifold, e ∈ S and TeG = TeS⊕TeH.
If G has dimension n and H codimension ` := dimG− dimH, then we may
take S ∼= B` with an open ball B` ⊂ K`. The main point now is to prove
that after a shrinking of S the image U := π(S) is open in B and the map

τ : S ×H −→ π−1(U), (s, h) 7→ sh

diffeomorphic resp. biholomorphic. First of all, the map σ is diffeomorphic
(biholomorphic) near (e, e). If σ : V1 × V2 −→ W 3 e has that property,
replace S with V1; then we have π−1(U) =

⋃
h∈HWh, so U := π(S) is open
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and our map τ : S × H −→ π−1(U) a surjective locally diffeomorphic resp.
biholomorphic map (since π(s, h) = π(s, e)h). It remains to show that it is
injective. That is true if π|S is injective resp.

(S × S) ∩ L = ∆ := {(s, s); s ∈ S}.

If we can prove that (S × S) ∩ L is an `-dimensional submanifold, we are
done, since ∆ ⊂ (S × S) ∩ L is as well, hence not only closed, but also open
in (S × S) ∩ L, i.e. it is the connected component of (S × S) ∩ L containing
(e, e). Thus a shrinking of S leads to the desired equality (S × S) ∩ L = ∆.

In order to see that (S×S)∩L is, after some shrinking, an `-dimensional
manifold, we note that

T(e,e)(G×G) = T(e,e)(S × S) + T(e,e)L,

with the RHS being nothing but

TeS × TeS + (TeH × {0}+ ∆TeG×TeG)

= TeG× TeS + ∆TeG×TeG = TeG× TeG,

and apply

Proposition 6.1. Let M be a differentiable manifold and a ∈ L∩N a point
in the intersection of two submanifolds L,N ⊂M . If TaM = TaL+TaN the
intersection L ∩ N is near a a submanifold of dimension dimN + dimL −
dimM .

Proof. Let n = dimN, ` = dimL,m = dimM . We may assume

N = F−1(0)

with a submersion F : U −→ Rm−n defined on a neighbourhood U of a ∈M .
Since TaN = ker(TaF ) our assumption TaM = TaL+ TaN implies that even
Ta(F |(L∩U)) is onto. Hence after a shrinking of U the restriction F |L∩U is a
submersion as well, in particular L∩N ∩U = (F |U∩L)−1(0) is a submanifold
of dimension `− (m− n).

In order to write down explicitly a differentiable atlas for B = G/H we
use that B carries a natural (left) G-action:

G×B −→ B, (g, x = aH) 7→ gx := (ga)H.
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Now, for a ∈ G take Ua := aU ⊂ B, as local coordinates on Ua consider the
map

ϕa : Ua −→ B`, x 7→ F (σ(a−1x)),

where F : S −→ B` is a fixed diffeomorphism (biholomorphic map) with a
ball B` ⊂ K`..

Corollary 6.2. Let H ⊂ G be a closed normal K-Lie subgroup of the K-
Lie group G. Then G/H is again a K-Lie group with the quotient map
G −→ G/H being a homomorphism of K-Lie groups.

The map π : G −→ B has a remarkable geometric structure: It is an
H-principal bundle:

Definition 6.3. Let H be a Lie group. An H-principal bundle consists of

1. a differentiable/holomorphic right action

E ×H −→ E

on a differentiable/complex manifold E, also called the total space of
the bundle

2. and the bundle projection

π : E −→ B,

a surjective differentiable/holomorphic H-invariant map to a differen-
tiable or complex manifold B – the base (space) of the bundle – , such
that every point b ∈ B admits an open neighbourhood U ⊂ B, over
which there is an H-equivariant trivialization of the bundle projection

τ : U ×H −→ π−1(U),

i.e. a diffeomorphism/biholomorphic map satisfying

π ◦ τ = prU : U ×H −→ U

and
τ(x, hh̃) = τ(x, h)h̃

for all x ∈ U, h, h̃ ∈ H, i.e. τ transforms the right action of H on
U ×H by right translation on the second factor into the right action of
H on E.
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Remark 6.4. Given an H-principal bundle π : E −→ B there is an open
cover B =

⋃
i∈I Ui together with equivariant trivializations

τi : Ui ×H −→ π−1(Ui).

The bundle π : E −→ B then can be reconstructed from that cover and the
transition functions

fij : Uij := Ui ∩ Uj −→ H,

defined by the condition that the composition

Uij ×H
τi−→ π−1(Uij)

τ−1
j−→ Uij ×H

satisfies

(x, e) 7→ (x, fij(x)).

Since τ−1
j ◦ τi is H-equivariant, it then takes the form

τ−1
j ◦ τi : (x, h) 7→ (x, fij(x)h).

Note that the bundle E −→ B can (up to a bundle isomorphism) be recon-
structed from the cover (Ui)i∈I and the functions fij.

Indeed, whenever there is an open cover B =
⋃
i∈I Ui together with func-

tions fij : Uij −→ H for all (i, j) ∈ I2 satisfying the cocycle condition:

fik = fjkfij

on Uijk = Ui ∩ Uj ∩ Uk for all (i, j, k) ∈ I3, we may construct an associated
H-principal bundle E −→ B as follows:

E =

(⋃
i∈I

Ui ×H

)/
∼ ,

where the union is regarded as a disjoint union and the equivalence relation
identifies as follows:

Ui ×H ⊃ Uij ×H 3 (x, h) ∼ (x, fij(x)h) ∈ Uij ×H ⊂ Uj ×H.
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Example 6.5. Our left coset map π : E := G −→ B := G/H is an H-
principal bundle: First of all

G/H =
⋃
a∈G

Ua

with Ua := aU . As next define the section σa : Ua −→ E = G of the bundle
projection π : E −→ B by σa(x) := aσ(a−1x), and finally

τa : Ua ×H −→ π−1(Ua), (x, h) 7→ σa(x)h.

The corresponding function fa,b : Ua,b = Ua ∩ Ub −→ H then turns out to be

fa,b(x) = σb(x)−1σa(x).

7 The Exponential Map

In order to study the geometry of a K-Lie group one investigates its ”one
parameter subgroups”, i.e. the homomorphisms γ : K −→ G from the
additive group K to G.

Theorem 7.1. The map

Hom(K,G) −→ TeG, γ 7→ γ̇(0)

from the set Hom(K,G) of all one parameter subgroups of G to the tangent
space TeG of G at e is a bijection. Indeed, any γ ∈ Hom(K,G) is an integral
curve of the vector field X ∈ g with Xe = γ̇(0).

Before we give the proof we discuss the example G = GLn(K).

Example 7.2. For the general linear groupGLn(K) with Lie algebra gln(K) =
Kn,n the left invariant vector field taking the value A ∈ Kn,n at E is, accord-
ing to Example 5.3 given by Ξ 7→ (ΞA) · ∆, hence the differential equation
for the corresponding one parameter subgroup is γ̇ = γA with the solution
γ(t) = etA, where

etA :=
∞∑
ν=0

tnAn

n!
.
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Proof. For γ ∈ Hom(K,G) and s ∈ K we have γ(s+ t) = γ(s)γ(t), hence

γ̇(s) = (λγ(s))∗(γ̇(0)) = (λγ(s))∗(Xe) = Xγ(s),

i.e. γ is an integral curve of X. Furthermore the injectivity is now also
obvious, since an integral curve γ of a vector field X is completely determined
by its initial value γ(0). To get surjectivity, let us first consider the real case.
Given Xe ∈ TeG, we know that there is an integral curve γ : I −→ G of
the vector field X ∈ g, where I ⊂ R is some open interval containing 0.
Let I ⊂ R be a maximal open interval such that γ can be defined on I.
If a ∈ ∂I, we can easily extend γ by defining γ(t) as γ(a

2
)γ(t − a

2
) near a.

So necessarily ∂I = ∅ resp. I = R. Now argue as above in order to see
that a globally defined integral curve of a left invariant vector field is a one
parameter subgroup. In the complex case, we consider Ze ∈ TeG as a real
tangent vector and denote γϑ : R −→ G the one parameter subgroup with
γ̇ϑ = eiϑZe. Then reiϑ 7→ γϑ(r) defines an integral ”curve” γ : C −→ G of
Z ∈ g.

Corollary 7.3. The connected real Lie groups of dimension one are R and
S1, the connected complex Lie groups of dimension one are C,C∗ and the tori
C/Λ with a lattice Λ = Zω1 +Zω2 (where ω1, ω2 ∈ C are linearly independent
over R.)

Proof. Take any nonconstant one parameter subgroup γ : K −→ G. Since
G is connected and γ(K) contains a neighborhood of e ∈ G we obtain G =
γ(K). The kernel ker γ ⊂ K contains 0 as isolated point, hence is a discrete
subgroup and G ∼= K/ ker(γ).

For R such subgroups are either trivial or of the form Zω with some
ω ∈ R \ {0}, hence G ∼= R or G ∼= R/Zω ∼= S1. For C there is a further
possibility for ker γ, namely ker γ = Λ, a lattice. So either G ∼= C or G ∼= C∗
or G ∼= C/Λ.

Note that in the real case R ∼= R>0 via the exponential function, while
C∗ ∼= R>0 × S1 resp. C/Λ ∼= S1 × S1 as real Lie groups. On the other
hand C/Λ ∼= C/Λ̃ as complex Lie groups (or even as complex manifolds) iff
Λ̃ = αΛ with a nonzero complex number α ∈ C∗. In particular the complex
tori constitute a continuous family of pairwise non isomorphic Lie groups or
complex manifolds!
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In the next step we collect all one parameter subgroups in a family: For a
left invariant vector field X ∈ g denote γX ∈ Hom(K,G) the one parameter
subgroup with γ̇X(0) = Xe.

Definition 7.4. The exponential map

exp := expG : TeG −→ G

is defined as

exp(Xe) := γX(1),

with the left invariant vector field X ∈ g taking the value Xe ∈ TeG at e ∈ G.

Example 7.5. Let G = GLn(K). For A ∈ Kn,n ∼= gln(K) we have γA(t) =
etA and thus exp(A) = eA.

Since the solution of the equation for the integral curve of a vector field
does not only depend differentiably on the prescribed initial value, but even
varies differentiably with the vector field itself, we obtain that exp : TeG −→
G is differentiable. We compute its differential at the origin:

Proposition 7.6. The Jacobian of the exponential map

T0(exp) : TeG ∼= T0((TeG)) −→ TeG

at the origin is the identity on TeG. In particular it induces a diffeomorphism
exp |U : U −→ V from an open neighbourhood of 0 ∈ TeG onto an open
neighbourhood V of e ∈ G.

Proof. The curve t 7→ tXe has tangent vectorXe at the origin, thus T0(exp)(Xe)
is the tangent vector of t 7→ exp(tXe) = γtX(1) = γX(t). But γ̇X(0) = Xe by
definition.

In order to avoid cumbersome notation, we will from now on use capital
letters X, Y in order to denote both left invariant vector fields in g ⊂ Θ(G)
as well as tangent vectors at e ∈ G, associated one to the other via the

evaluation isomorphism g
∼=−→ TeG. With that convention we have

exp((s+ t)X) = γX(s+ t) = γX(s)γX(t) = exp(sX) exp(tX)
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and thus exp(X + Y ) = exp(X) exp(Y ) if X and Y are linearly dependent.
Otherwise, as a consequence of the fact that exp is a diffeomorphism near
0 ∈ TeG we may write

exp(X) exp(Y ) = exp(C(X, Y ))

with a differentiable (holomorphic) function C : U × U −→ g and an open
neighbourhood U ⊂ TeG ∼= g of 0. The interesting fact about the function
C : U × U −→ g is that it can be written as a convergent series

C(X, Y ) =
∞∑
n=1

Cn(X, Y ),

where
Cn : g× g −→ g

is a homogeneous Lie bracket polynomial of degree n with rational coefficients
independent of the Lie group G and the Lie algebra g. That is, Cn(X, Y ) is
a rational linear combination of terms

[[...[Z1, Z2]..., Zn−1], Zn], Zi ∈ {X, Y }

with coefficients only depending on the function {1, ..., n} −→ {X, Y }, i 7→ Zi
(and not on the Lie algebra g.)

Thus the Lie algebra determines completely the group law in a neighbour-
hood of e ∈ G: Using the local inverse log := (exp |U)−1 as a local coordinate,
it is given by C : U × U −→ g. In order to obtain that result one derives a
differential equation for the g-valued function

F (t) := C(tX, tY )

defined on a neighbourhood of 0 ∈ K. For Z ∈ g denote ad(Z) : g −→ g the
linear map X 7→ [Z,X] (in fact a derivation as a consequence of the Jacobi
identity). Then

Ḟ (t) = f(ad(F (t)))(X + Y ) +
1

2
[X − Y, F (t)],

where f is a convergent power series in t with rational coefficients, indeed

f(t) =
t

1− e−t
− t

2
.
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Together with the initial condition F (0) = 0 ∈ g we obtain then a recursive
formula for the homogeneous Lie bracket polynomials Cn(X, Y ). We mention
here only

C1(X, Y ) = X + Y, C2(X.Y ) =
1

2
[X, Y ]

and

C3(X, Y ) =
1

12
([[X, Y ], Y ]− [[X, Y ], X])

as well as

C4(X, Y ) = − 1

48
([Y, [X, [X, Y ]]] + [X, [Y, [X, Y ]]]).

8 Subgroups and Subalgebras

In analogy to one parameter subgroups we define connected subgroups of a
Lie group G:

Definition 8.1. A connected (K-Lie) subgroup of a K-Lie group G is a pair
(H, ι) with a connected Lie group H together with an injective (K-Lie group)
homomorphism ι : H −→ G. Two such subgroups (H, ι), (H̃, ι̃) are equivalent
if there is a Lie group isomorphism ψ : H −→ H̃ with ι = ι̃ ◦ ψ.

We remark that two connected subgroups are equivalent iff their image
groups coincide. The image ι(H) is closed in G iff it is a submanifold (and
then H ∼= ι(H) even as Lie groups). The implication ”=⇒” is a nontrivial
statement we can not prove here. On the other hand, a submanifold ι(H)
is locally closed and thus open in its closure ι(H), a connected topological
group. But then ι(H) is an open subgroup of the connected topological group
ι(H) and hence coincides with it.

Since ι∗ : h −→ g is a Lie algebra homomorphism we can associate to
any Lie subgroup a Lie subalgebra of g := Lie(G), namely ι∗(h) ∼= h. We
want to prove that every subalgebra h ⊂ g arises in that way. In order to get
the corresponding Lie subgroup one could look at exp(h). But that set need
not be even a group nor can we take its closure in G. Instead one has to
realize the corresponding subgroup as a ”maximal integral submanifold of an
involutive subbundle E ⊂ TG”. Let us start explaining these new notions:

Definition 8.2. A subbundle E ⊂ TM (of rank k) of the tangent bundle
TM of a differentiable/complex manifold M is a union E :=

⋃
x∈M Ex, where
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Ex ⊂ TxM is a k-dimensional vector subspace of TxM for every x ∈M , such
that every point a ∈ M has an open neighbourhood U ⊂ M together with
vector fields X1, ..., Xk ∈ Θ(U), such that the tangent vectors X1,x, ..., Xk,x ∈
TxM constitute a basis of Ex for all x ∈ U . We denote

ΘE(M) := {X ∈ Θ(M);Xa ∈ Ea ∀ a ∈M}

the vector subspace of all vector fields taking values in E ⊂ TM .

Note that any vector field X ∈ Θ(M) without zeros defines a subbundle
E ⊂ TM , namely Ea := KXa for a ∈ M . Integral curves then generalize to
integral submanifolds:

Definition 8.3. An integral manifold of a subbundle E ⊂ TM is an in-
jective immersion ι : N −→ M from a connected differentiable (complex)
manifold N into M , such that Taι(TaN) = Ea for all a ∈ M . Two integral
submanifolds ι : N −→ M and ι̃ : Ñ −→ M are called equivalent if there is
a diffeomorphism (biholomorphic map) ψ : N −→ Ñ with ι = ι̃ ◦ ψ. We say
that two integral submanifolds agree at a ∈ M if a = ι(c) = ι̃(c̃) and ι|U is
equivalent to ι̃|Ũ for open neighbourhoods U, Ũ of c, c̃.

Note that in the above situation every point c ∈ N admits an open
neighbourhood U 3 c, such that ι(U) ⊂ M is a submanifold of M and
ι|U : U −→ ι(U) a diffeomorphism.

Example 8.4. Let M = Kn and E ⊂ T (Kn) be the subbundle spanned
at each point by the values of the first k coordinate vector fields ∂1, ..., ∂k ∈
Θ(Kn). Then, up to equivalence, the integral submanifolds of E are the
maps

U −→ Kn, (x1, ..., xk) 7→ (x1, ..., xk, ak+1, ..., an)

with a connected open subset U ⊂ Kk.

Definition 8.5. A subbundle E ⊂ TM is called involutive (or an involutive
system) if for all open subsets U ⊂M we have

X, Y ∈ ΘE(U) =⇒ [X, Y ] ∈ ΘE(U).

Example 8.6. 1. Take X = ∂1, Y = cos(x)∂2 + sin(x)∂3 ∈ Θ(K3) and
Ea := KXa +KYa. Then E =

⋃
a∈K3 Ea ⊂ T (K3) is a subbundle, but

not an involutive one, since [X, Y ] = − sin(x)∂2 + cos(x)∂3 6∈ ΘE(K3).
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2. A subbundle admitting at every point a ∈ M an integral submanifold
ιa : Na −→M , i.e. with a ∈ ιa(Na), is involutive.

Theorem 8.7. Let E ⊂ TM be an involutive subbundle. Then every point
a ∈ M admits an open neighbourhood with local coordinates x1, ..., xn, such
that, with the corresponding coordinate vector fields ∂1, ..., ∂n ∈ Θ(U), one
has Eb = K∂1,b + ...+K∂k,b for all b ∈ U .

Corollary 8.8. An involutive subbundle E ⊂ TM admits integral manifolds
at every point a ∈M , and any two such integral submanifolds agree near a.

Proof. We do induction on the rank k of the subbundle E ⊂ TM .

The case k = 1: Take a submanifold S 3 a of M of dimension n − 1 with
Xa 6∈ TaS, where X ∈ ΘE(U). Then the inverse of the flow

µ : S × I −→M

of the vector field X ∈ Θ(U) (here I ⊂ K denotes a small open interval or
disc containing 0 ∈ K) provides local coordinates with X = ∂1. Here the
flow means the map

µ(x, t) := γx(t),

where γx : I −→M denotes the integral curve of X with initial value γx(0) =
x.

The case k > 1: Denote X1, ..., Xk ∈ ΘE(U) spanning vector fields on a
neighbourhood U of a ∈ M . From the case k = 1 we know that there
are local coordinates y1, ...., yn near a ∈ M , such that X1 = ∂y1 . We shall
now replace the remaining spanning vector fields X2, ..., Xk ∈ ΘE(U) with
vector fields Y2, ..., Yk ∈ ΘE(U) tangent to any submanifold {t} ×Kn−1 and
satisfying

[X1, Yi] = 0 , i = 2, ...., k.

Indeed in that case we have

Yi =
n∑
j=2

fij∂
y
j

with coefficient functions

fij = fij(y2, ..., yn)
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not depending on y1. Denote E0 ⊂ TV , where V ⊂ Kn−1 is an open neigh-
bourhood of 0 ∈ Kn−1, the subbundle generated by the vector fields Yi.
Indeed, it is involutive, since E is. Now E0 having rank k − 1 we find coor-
dinates x2, ...., xn on V (may be after a shrinking) such that ∂2, ...., ∂k span
E0. Finally y1, x2, ..., xn are the local coordinates on Kn = K ×Kn−1 we are
looking for.
The construction of the vector fields Y2, ..., Yk ∈ ΘE(U): We may assume
that the vector fields X2, ..., Xk ∈ ΘE(U) are tangent to {t} ×Kn−1 for all
t ∈ K near the origin, i.e. that

Xj =
n∑
`=2

hj`∂
y
`

holds for j ≥ 2: Replace Xj with Xj−hj1X1 = Xj−hj1∂y1 . Now we consider
a vector field

Y =
k∑
j=2

ϕjXj ∈ ΘE(U),

and study how to choose the coefficient functions ϕ2, ..., ϕk in order to have

0 = [X1, Y ] =
k∑
j=2

∂y1 (ϕj)Xj + ϕj[X1, Xj].

Since E is involutive, we have

[X1, Xj] =
n∑
`=2

∂y1 (hj`) · ∂y` ∈ ΘE(U)

and thus

[X1, Xj] =
k∑
`=2

gj` ·X`,

where the vector field X1 does not show up in the expansion of [X1, Xj] ∈
ΘE(U) as a linear combination of X1, ..., Xk. Hence

0 =
k∑
j=2

(
∂y1 (ϕj)Xj + ϕj

k∑
`=2

gj` ·X`

)
.
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or equivalently

∂y1 (ϕj) =
k∑
`=2

g`jϕ`, j = 2, ..., k.

This is an ODE with respect to the variable y1, keeping fixed y2, ....., yn.
Thus we may prescribe the functions ϕj(0, y2, ..., yn), j = 2, ..., k, and obtain
uniquely determined functions y 7→ ϕj(y, y2, ..., yn) satisfying the above sys-
tem of differential equations. Now taking ϕj(0, y2, ..., yn) ≡ δij for i = 2, ..., k,
we obtain the vector fields Yi, i = 2, ..., k.

As a consequence we can easily compare two integral submanifolds ι :
N −→ M and ι̃ : Ñ −→ M of an involutive subbundle E ⊂ TM , namely:
There are open subsets U ⊂ N, Ũ ⊂ Ñ with ι(U) = ι(N) ∩ ι̃(Ñ) = ι̃(Ũ),
such that ι|U and ι̃|Ũ are equivalent. In particular we can apply Zorn’s lemma
and see that through every point a ∈ M there is a unique maximal integral
submanifold (i.e. unique up to equivalence).

Proposition 8.9. Let G be a Lie group. The map

(H, ι) 7→ ι∗(h) ⊂ g

defines a bijection between the set of connected Lie subgroups of G (up to
equivalence) and the Lie subalgebras of g = Lie(G).

Proof. Given a subalgebra h ⊂ g we define an involutive subbundle E ⊂ TG
by Ea := Teλa(he) (with he := {Xe;X ∈ h}). Indeed, if X1, ..., Xk ∈ h
is a basis, then Ea = KX1,a ⊕ ... ⊕ KXk,a. In particular h ⊂ g being a
subalgebra, we see that E ⊂ TM is involutive. Now take ι : H −→ G as
a maximal integral submanifold of E at e ∈ G. To simplify notation we
treat ι as an inclusion. We then have aH = H for all a ∈ H: Since E is
λa-invariant, aH 3 a is a maximal integral submanifold, but H 3 a is as well,
hence aH = H. Since on the other hand e ∈ H, this immediately gives that
H ⊂ G is a subgroup (in the algebraic sense). We leave it to the reader to
check, that H becomes a Lie group with this group law (note once again that
in general the topology and differentiable structure is only locally that one
induced by G). On the other hand every connected K-Lie subgroup (H, ι)
clearly is an integral submanifold of the left invariant (involutive) subbundle
E ⊂ TM with Ee = Teι(TeH). It follows the injectivity of our map.
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Let us now investigate what it means that ι(H) ⊂ G is a normal subgroup
of G. In order to obtain a differential interpretation of that property we
consider the adjoint representation:

Definition 8.10. A representation of a (K-)Lie group G is a Lie group
homomorphism G −→ GL(V ) from G into the general linear group GL(V )
of a finite dimensional K-vector space V . The adjoint representation of a
Lie group G with Lie algebra g := Lie(G) is the homomorphism Ad : G −→
GL(g), a 7→ Te(κa), where κa : G −→ G, g 7→ aga−1 is conjugation with a.

Proposition 8.11. The differential

ad := TeAd : g = Lie(G) −→ gl(g) = Lie(GL(g))

of the adjoint representation

Ad : G −→ GL(g), a 7→ Te(κa)

satisfies
ad(X) = [X, ..]

Proof. We start with the equality

Ad(exp(X)) = ead(X)

of endomorphisms of g. Evaluating it at some Y ∈ g gives

Ad(exp(X))(Y ) = ead(X)Y

and then apply both sides to a function f ∈ C∞(G)

Y (f ◦ κexp(X)) = (Teκexp(X)(Y ))f = (ead(X)Y )f,

i.e.,
Y f(exp(X) · .. · exp(−X)) = (ead(X)Y )f.

Now replace X with sX, s ∈ K, in order to get

Y f(exp(sX) · .. · exp(−sX)) = (es·ad(X)Y )f.

Differentiation at s = 0 yields:

d

ds
(Y f(exp(sX) · .. · exp(−sX)))s=0 = (ad(X)Y )f
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resp.

∂2

∂s∂t
(f(exp(sX) exp(tY ) exp(−sX)))s=0,t=0 = (ad(X)Y )f.

The right hand side can be rewritten with the chain rule as

(
∂2

∂s∂t
f(exp(sX) exp(tY )) +

∂2

∂t∂s
f(exp(tY ) exp(−sX)))s=t=0.

Since for a left invariant vector field Y ∈ g one has

d

dt
f(a exp(tY ))t=0 = Y (f ◦ λa)(e) = ((Y f) ◦ λa)(e) = (Y f)(a)

we obtain (with a = exp(sX) resp. a = exp(tY )) finally

(XY f)(e) + (Y (−X)f)(e) = (XY f)(e)− (Y Xf)(e) = ([X, Y ]f)(e)

resp. [X, Y ] = ad(X)(Y ).

In order to simplify notation we shall from now on identify a connected Lie
subgroup (H, ι) with its image ι(H) and its Lie algebra h with the subalgebra
ι∗(h) ⊂ g.

Corollary 8.12. A connected Lie subgroup H ⊂ G of a connected Lie group
G is a normal subgroup if and only if its Lie algebra h ⊂ g is an ideal, i.e.
X ∈ g, Y ∈ h =⇒ [X, Y ] ∈ h.

Proof. The subgroup H is normal iff κa(H) = H for all a ∈ G. Obviously
that implies Teκa(h) = h for all a ∈ G, in particular for a = exp(X) with
X ∈ g. So h 3 Te(κexp(X))(Y ) = Ad(exp(X))(Y ) = ead(X)Y gives once again,
after replacing X with sX, s ∈ K and differentiation with respect to s at
s = 0 that

h 3 d

ds
(es·ad(X)Y )s=0 = ad(X)(Y ) = [X, Y ],

the subalgebra h ⊂ g being closed in g. (Every finite dimensional K-vector
space carries a natural topology obtained from a linear isomorphism V ∼= Kn

and not depending on the choice of that isomorphism.)
On the other hand let us assume that the subalgebra h ⊂ g is even an

ideal. We show that the normalizer

NG(H) := {a ∈ G;κa(H) = H}
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contains an open neighbourhood U ⊂ G of the neutral element e ∈ G. The
group G being connected, it follows NG(H) = G. Since exp(g) contains
such a neighbourhood, it suffices to consider a = exp(X) with X ∈ g. But
ad(X)(Y ) ∈ h for Y ∈ h implies

Teκexp(X)Y = Ad(exp(X))(Y ) = ead(X)Y ∈ h.

Finally if we can prove that κexp(X) maps an open neighbourhood of e ∈ H
into H, we are done, since H as connected group is generated by any open
neighbourhood of e. But any element in such a neighbourhood can again be
taken in the form exp(Y ) and then

κexp(X)(exp(Y )) = exp(Teκexp(X)Y ) ∈ exp(h) ⊂ H.

9 Lie Algebras of Dimension ≤ 3

For Lie algebras there is as well the notion of a derivation:

Definition 9.1. Let g be a Lie algebra. A linear map D : g −→ g is called
a derivation, if it satisfies the Leibniz rule with respect to the Lie bracket:

D[X, Y ] = [DX, Y ] + [X,DY ], ∀ X, Y ∈ g.

We denote Der(g) ⊂ gl(g) the subalgebra of gl(g) consisting of all derivations
of g.

Remark 9.2. 1. We have idg ∈ Der(g) iff g is abelian. Indeed in that
case Der(g) = gl(g).

2. Given any element Z ∈ g, the map ad(Z) : g −→ g, X 7→ [Z,X] is a
derivation: In fact the Leibniz rule is nothing but the Jacobi identity
for Z,X, Y .

3. The Jacobi identity may even be reformulated in a more sophisticated
way by saying that the map g −→ gl(g), Z 7→ ad(Z), is a homomor-
phism of Lie algebras, the adjoint representation of g. (A representation
of a Lie algebra is any Lie algebra homomorphism g −→ gl(V ), where
V is a K-vector space.)
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4. If λ, µ ∈ K are eigenvalues of a derivation D ∈ Der(g), then either
so is λ + µ or [X, Y ] = 0 for any two eigenvectors X, Y ∈ g of D
corresponding to λ resp. µ.

5. If D ∈ Der(g) and dim g <∞, then eD : g −→ g is a Lie algebra auto-
morphism, i.e., a linear isomorphism with eD([X, Y ]) = [eDX, eDY ] for
all X, Y ∈ g.

6. If D ∈ Der(h), we can form a new Lie algebra hD. As vector space it
is the cartesian product (or direct sum)

hD := h×K,

where Z := (0, 1) ∈ hD satisfies [(0, 1), (X, 0)] = DX. Here, the fact
that D is a derivation gives the Jacobi identity on hD. Note that
hD ∼= hD̃, if D̃ is similar to λD for some λ ∈ K∗. Furthermore

[hD, hD] = ([h, h] +Dh)× {0}.

Remark 9.3. If H is a Lie group with Lie algebra h, then a Lie group with
Lie algebra hD should be a semidirect product, e.g.

H ×σ K,

where σ : K −→ Aut(H) is a homomorphism, i.e. σt+s = σt ◦ σs. Here we
need that

σt : H −→ H

satisfies
Te(σt) = etD : h −→ h, ∀ t ∈ K.

In general it is not true, that the automorphism etD is induced by some
(indeed unique, if it exists) σt : H −→ H. But such a ”lifting” exists always,
if H is simply connected. For example let us consider h = K,D = id. For
K = R we could take H = R>0 ⊂ R∗. Then σt(x) = xt is the lifting we
are looking for. But if H = C∗ and D = idC : C −→ C, there is some
σt : C∗ −→ C∗ only for t ∈ Z.

Om the other hand, if we remember that the Lie algebra of K∗ is K as
well, we may try

H ×σ K∗
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and succeed with (now we need σts = σt ◦ σs)

σt : K −→ K, x 7→ tx.

The group we obtain is isomorphic to

(
K∗ K
0 1

)
, or as well to the group

of affine linear transformations of K.

For two subspaces U, V ⊂ g we denote

[U, V ] := span{[X, Y ];X ∈ U, Y ∈ V }.

Now the commutator [g, g] of a Lie algebra g is not only a subalgebra, but
even an ideal, and any isomorphism between two Lie algebras transforms
the respective commutators one to the other: It is a ”characteristic ideal”.
Indeed if X1, ..., Xn is a basis of the K-vector space g, then [g, g] is spanned
by the Lie brackets [Xi, Xj], i < j.

Let us now come to our classification:

1. dim g = 1: A one dimensional Lie algebra is obviously abelian.

2. dim g = 2: Any two dimensional non-abelian Lie algebra g is of the form
g = hid with a one dimensional (abelian) Lie algebra h: Necessarily
dim[g, g] = 1, say [g, g] = KZ. If we take any X 6∈ [g, g], then [X,Z] =
λZ with λ ∈ K∗, and after a rescaling of X we may assume [X,Z] = Z.
We need later on the following

Lemma 9.4. For the two dimensional non-abelian Lie algebra g one
has

Der(g) = {D ∈ gl(g);Dg ⊂ [g, g]}.

Proof. It is easily checked, that a linear map D : g −→ g satisfying
DX = λZ,DZ = µZ is a derivation.

Now let D : g −→ g be a derivation. Since D[g, g] ⊂ [g, g], we have
DZ = λZ. For λ = 0 we get

0 = D[X,Z] = [DX,Z] + [X,DZ] = [DX,Z]

and thus DX ∈ KZ = [g, g] as desired. Now assume λ 6= 0. If D is
diagonalizable we may assume that DX = µX with a µ ∈ K. Since
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[X,Z] = Z, we conclude µ + λ = λ, i.e. µ = 0 and thus Dg ⊂ KZ =
[g, g]. If D is not diagonalizable, we have DX − λX ∈ K∗Z. But then
Z = [X,Z] satisfies

D[X,Z] = [DX,Z] + [X,DZ] = [λX + βZ,Z] + [X,λZ] = 2λ[X,Z].

So λ = 2λ, i.e. λ = 0, a contradiction.

3. dim g = 3:

(a) dim[g, g] = 0: Then g is abelian.

(b) dim[g, g] = 1, say [g, g] = KZ:

i. If [Z, g] = {0} (or equivalently [[g, g], g] = {0}), we have

g ∼= (K2)D,

where K2 is the two dimensional abelian Lie algebra and D :
K2 −→ K2 a nontrivial nilpotent derivation (linear map).
Indeed, we find a basis X, Y, Z with [X, Y ] = Z. Then a :=
KX + KZ is an abelian ideal and we find g = aD with the
nilpotent derivation D : a −→ a, X 7→ −Z 7→ 0.

ii. Otherwise [Z, g] = KZ (or equivalently [[g, g], g] = [g, g]).
Then we have

g ∼= h⊕K (∼= h0),

with the two dimensional non-abelian Lie algebra h. We
choose X ∈ g with [X,Z] = Z. Choose then Y 6∈ KX + KZ
with [Y, Z] = 0. That is possible, since [X, g] = KZ in any
case. Furthermore we can assume [X, Y ] = 0; if that was not
the case right from the beginning, we may replace Y with
Y −λZ, where [X, Y ] = λZ with λ ∈ K∗. Hence g = h⊕KY
is the direct sum of the two dimensional non-abelian Lie alge-
bra h and a one dimensional Lie algebra. We could also write
g ∼= h0, where 0 ∈ Der(h) denotes the trivial derivation.

(c) dim[g, g] = 2: Then we have

g = (K2)D,

where K2 denotes the two dimensional abelian Lie algebra and
D ∈ GL2(K) is any automorphism of the vector space K2. To see
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that, take any X 6∈ a := [g, g] and D := ad(X)|a. By Lemma 9.4,
if a was not abelian, we had Da ⊂ [a, a] and hence

a = [g, g] = [a, a] +Da = [a, a],

a contradiction to our assumption dim a = 2. So a is abelian andD
an isomorphism because of a = [g, g] = Da. So g = aD with a two
dimensional abelian Lie algebra a and any linear automorphism
D ∈ gl(a) = Der(a).

4. dim[g, g] = 3: Given a basis X1, X2, X3 of g, the Lie brackets [X1, X2],
[X1, X3], [X2, X3] form a basis as well because of [g, g] = g.

First we hunt for some element X ∈ g \ {0}, such that the linear map

ad(X) = [X, ..] : g −→ g

is easily understood. Since [g, g] = g, its image [X, g] is a two di-
mensional subspace and ker(ad(X)) = KX. We now are looking for
an ad(X)-invariant subspace, complementary to KX. Let us try with
[X, g] = ad(X)(g): Indeed if X 6∈ [X, g], we have

g = KX ⊕ [X, g]

as vector spaces. So we first show that the assumption

∀ X ∈ g : X ∈ [X, g]

leads to a contradiction: Given any X ∈ g \ {0}, choose Y ∈ g with
X = [X, Y ] and then Z ∈ g with Y = [Y, Z]. We claim that the
elements X, Y, Z are linearly independent. Apply D := ad(Y ) to a
relation

αX + βY + γZ = 0

and obtain
−αX + γY = 0.

Since X, Y are linearly independent, that implies α = 0 = γ, whence
β = 0 as well. Hence we can write

[X,Z] = αX + βY + γZ
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and thus
D[X,Z] = α[Y,X] + γ[Y, Z],

while on the other hand

D[X,Z] = [DX,Z] + [X,DZ] = −[X,Z] + [X, Y ].

Since the elements [X, Y ], [Y, Z], [X,Z] are linearly independent, that
is not possible.

Now let us return to the map D := ad(X), where X 6∈ [X, g]. It induces
a linear automorphism of [X, g]. If it is diagonalizable there are two
linearly independent eigenvectors Y, Z ∈ [X, g], say DY = λY,DZ =
µZ. Since [Y, Z] 6= 0, we find λ + µ ∈ {λ, µ, 0} – the eigenvalues of
ad(X) – resp. λ + µ = 0 because of λ, µ ∈ K∗. After a rescaling of X
we can assume λ = 2, µ = −2. Finally 0 6= [Y, Z] ∈ ker(ad(X)) = KX,
such that we after a rescaling of Y , say, obtain [Y, Z] = X. Indeed, the
linear map

g
∼=−→ sl2(K)

with

X 7→
(

1 0
0 −1

)
, Y 7→

(
0 1
0 0

)
, Z 7→

(
0 0
1 0

)
turns out to be an isomorphism of Lie algebras.

Now let us exclude the possibility that D is not diagonalizable with
one eigenvalue λ 6= 0. Then we find an eigenvector Z ∈ [X, g], i.e.
DZ = λZ, and a vector Y ∈ [X, g] with DY − λY = Z, and thus

D[Y, Z] = [DY,Z] + [Y,DZ] = [λY + Z,Z] + [Y, λZ] = 2λ[Y, Z].

Since [Y, Z] 6= 0 that implies 2λ ∈ {0, λ}, but that is impossible.

This finishes our discussion for K = C. For K = R we have to deal
with the case that D = ad(X)|[X,g] has no real eigenvalus. We pass to
the complexification gC = g⊕ ig. The complexification DC := D + iD
has two eigenvalues λ,−λ. Since they are zeros of a real polynomial,
we have −λ = λ, i.e. λ is purely imaginary. After a (real) rescaling
of X we may thus assume λ = i and thus D2 = −id[X,g]. Now for
any Y ∈ [X, g] the elements Y, Z := DY form a basis of [X, g], and
obviously DZ = −Y . Hence D[Y, Z] = [DY,Z] + [Y,DZ] = 0 and thus
ker(D) = KX tells us that [Y, Z] = λX with a λ ∈ R∗. By dividing
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Y, Z with
√
|λ| we finally get [Y, Z] = ±X. If [Y, Z] = X we obtain the

vector product multiplication table of the vectors in an orthonormal
basis of R3. More explicitly there is an isomorphism

g
∼=−→ so3(R)

with

X 7→

 0 0 0
0 0 1
0 −1 0

 , Y 7→

 0 0 1
0 0 0
−1 0 0

 , Z 7→

 0 1 0
−1 0 0
0 0 0

 .

Using complex matrices we have even an isomorphism

g
∼=−→ su2 ⊂ sl2(C)

with

X 7→
(
i 0
0 −i

)
, Y 7→

(
0 1
−1 0

)
, Z 7→

(
0 i
i 0

)
.

Note that su2
∼= so3(R) is not isomorphic to sl2(R) since in the former

algebra no derivation ad(X), X ∈ g \ {0} is diagonalizable.

If on the other hand [Y, Z] = −X the derivation ad(Y ) is diagonalizable
with the eigenvalues 1,−1 and corresponding eigenvectors X−Z,X+Z.
So g ∼= sl2(R) in that case.

10 The Universal Covering Group

A Lie group homomorphism ϕ : G −→ H induces a Lie algebra homomor-
phism ϕ∗ : g −→ h. In this section we ask when for given Lie groups G,H
and a Lie algebra homomorphism ψ : g −→ h we can find a Lie group homo-
morphism ϕ : G −→ H inducing ψ, i.e. such that ψ = ϕ∗. The strategy is
as follows: If ϕ : G −→ H is a Lie group homomorphism, then its graph

Γϕ := {(g, ϕ(g)); g ∈ G} ⊂ G×H

is a Lie subgroup of G×H with Lie algebra

Lie(Γϕ) = {(X,ϕ∗(X));X ∈ g}.
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So given ψ : g −→ h we look at the connected Lie subgroup Γ ⊂ G×H with

Lie(Γ) = {(X,ψ(X));X ∈ g}.

The inclusion followed by the projection onto the first factor

π : Γ ↪→ G×H prG−→ G

has obviously bijective differential

π∗ : Lie(Γ) −→ g.

Since both groups, G and Γ are connected, it is a surjective homomorphism
with discrete kernel. And if it is even an isomorphism, we can take ϕ :=
prH ◦ π−1. Indeed, there are groups, where π necessarily is an isomorphism.

In order to understand that phenomenon we need an excursion to topol-
ogy. The basic notion is that of of a covering :

Definition 10.1. A continuous map π : X −→ Y between topological spaces
X and Y is called a covering iff every point b ∈ Y admits an open neigh-
bourhood V ⊂ Y , such that its inverse image is the disjoint union

π−1(V ) =
⋃
i∈I

Ui

of open subsets Ui ⊂ X with π|Ui
: Ui −→ V being a homeomorphism for

every i ∈ I.

Example 10.2. A surjective Lie group homomorphism ϕ : G −→ H with a
connected Lie group G and discrete kernel D ⊂ G (e.g. if ϕ∗ : g −→ h is an
isomorphism) is a covering: Choose an open neighbourhood U ⊂ G of e ∈ G
with U · U−1 ⊂ G \D∗, where D∗ := D \ {e}. Then for V := π(U) we have

π−1(V ) =
⋃
a∈D

aU,

a disjoint union.

Now, given a covering π : X −→ Y we want to study spaces Z, such that
any continuous map ϕ : Z −→ Y admits a lift ϕ̂ : Z −→ X, i.e. such that
ϕ = π ◦ ϕ̂. For Z = [0, 1], the unit interval in R, we have:
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Proposition 10.3. Let π : X −→ Y be a covering of the locally path con-
nected space Y . Then, given a path γ : [0, 1] −→ Y and a point x0 ∈
X, π(x0) = γ(0), there is a unique path γ̂ : [0, 1] −→ X with γ̂(0) = x0.

Proof. Write [0, 1] = I1 ∪ ... ∪ In with Ik = [k−1
n
, k
n
]. For sufficiently big

n ∈ N every piece γ(Ik) ⊂ γ(I) is contained in an open path connected set
V = Vk ⊂ Y , such that π−1(V ) is a disjoint union as in Def. 10.1. Now
assume we have found a lift

γ̂k :
[
0, k/n

]
−→ X,

of γk := γ|[0, k
n

]. Choose U ⊂ π−1(Vk+1) with π|U : U −→ Vk+1 being homeo-

morphic and γ̂k(
k
n
) ∈ U . Now define γ̂k+1 by

γ̂k+1|[0,k/n] := γ̂k , γ̂k+1|Ik+1
:= (π|U)−1|Ik+1

.

The idea now is to fix a base point z0 in a (path connected) topological
space Z and to define for a given continuous map ϕ : Z −→ Y a lift as
follows: Choose a point x0 ∈ X above y0 := ϕ(z0) (i.e. π(x0) = y0). Now,
given a point z ∈ Z, take a path βz : [0, 1] −→ Z with βz(0) = z0, βz(1) = z.
Denote γ̂z : [0, 1] −→ X the lift of γz := ϕ ◦ βz with γ̂z(0) = x0 and take
ϕ̂(z) := γ̂z(1). It remains to show that under suitable assumptions on Z
different choices of βz : [0.1] −→ Z give the same value ϕ̂(z).

For that we need the notion of homotopic paths :

Definition 10.4. Two paths α, β : [0, 1] −→ Y with same start and end
point are called homotopic: ”α ∼ β”, if there is a homotopy from α to β,
i.e., a continuous map F : [0, 1]× [0, 1] −→ Y with the following properties:

F (0, t) = α(0) = β(0), F (1, t) = α(1) = β(1)

and Ft(s) := F (s, t) satisfies

F0 = α, F1 = β.

Remark 10.5. 1. To be homotopic is an equivalence relation on the set
of paths from a given point x ∈ Y to another given point y ∈ Y . We
denote [γ] the equivalence class (homotopy class) of the path γ. If
τ : [0, 1] −→ [0, 1] is a continuous map with τ(0) = 0, τ(1) = 1 (a
”reparametrization“), then γ ◦ τ ∼ γ.
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2. Given paths α, β : [0, 1] −→ Y , such that β(0) = α(1), we define the
concatenation αβ : [0, 1] −→ Y by

(αβ)(s) =

{
α(2s) , if 0 ≤ s ≤ 1

2

β(2s− 1) , if 1
2
≤ s ≤ 1

3. If α ∼ α̃, β ∼ β̃ and the end point of α is the starting point of β, then
αβ ∼ α̃β̃, in particular we can concatenate homotopy classes. Note
that in general α(βγ) 6= (αβ)γ, but that α(βγ) ∼ (αβ)γ, i.e. on the
level of homotopy classes concatenation becomes associative.

4. We can not only compose paths, but there is also the notion of an
inverse path: Given α : [0, 1] −→ Y , we denote α−1 : [0, 1] −→ Y the
path α−1(s) := α(1− s). Note that α−1α ∼ α(0) ∼ αα−1.

Proposition 10.6. Let π : X −→ Y be a covering and α, β : [0, 1] −→ Y
homotopic paths. Then a homotopy F : [0, 1]2 −→ Y between α and β can be
lifted to a homotopy F̂ : [0, 1]2 −→ X between any two lifts α̂, β̂ : [0, 1] −→ X
of α, β with the same starting point. In particular they have the same end
point as well: α̂(1) = β̂(1).

Proof. Fix n ∈ N. We consider the subdivision of the unit square

[0, 1]2 =
⋃

1≤i,j≤n

Qij

with

Qij :=

[
i− 1

n
,
i

n

]
×
[
j − 1

n
,
j

n

]
, 1 ≤ i, j ≤ n.

For sufficiently big n ∈ N every F (Qij) ⊂ Y is contained in an open connected
set V = Vij ⊂ Y , such that π−1(V ) is a disjoint union as in Def. 10.1. Now
assume we have found a lift

F̂ij : Bij :=
⋃

(k,`)≺(i,j)

Qk` −→ X,

of F |Bij
, where ≺ is the lexicographic order on {1, ..., n}2. Since Bij ∩Qij is

connected, we have Fij(Bij∩Qij) ⊂ U for one of the subset U ⊂ π−1(V ) with

π|U : U −→ V being homeomorphic. Hence we may extend F̂ij to Bij ∪ Qij

defining it on Qij as (π|U)−1.

54



Definition 10.7. A path connected topological space Z is called simply con-
nected if it is connected and any closed path γ : [0, 1] −→ Z is nullhomotopic,
i.e. homotopic to the constant path ≡ γ(0) = γ(1).

Remark 10.8. 1. It suffices to check the above condition for one base
point as prescribed starting and end point for the closed path γ.

2. In a simply connected topological space Z any two paths with the same
start and the same end points are homotopic.

Example 10.9. 1. Obviously Kn is simply connected.

2. A path connected space X = U ∪ V , which is the union of two open
simply connected subsets U, V ⊂ X with a path connected intersection
U ∩ V , is simply connected. In particular the spheres Sn, n ≥ 2, are
simply connected. – To see this take a base point x0 ∈ U ∩ V and
consider a closed path γ : [0, 1] −→ X. Then for sufficiently big n ∈ N
every interval Ik := [k−1

n
, k
n
] satisfies γ(Ik) ⊂ U or γ(Ik) ⊂ V . Choose

a path αk from x0 to γ( k
n
) within U resp. V if γ( k

n
) ∈ U resp. γ( k

n
) ∈

V . That is possible, since U ∩ V is connected. Then γ ∼ β1...βn :=
(..(β1β2)....βn) with β1 := γ1α

−1
1 , βk := αk−1γkα

−1
k , 2 ≤ k < n and βn :=

αn−1γn. Since both U and V are simply connected and βk([0, 1]) ⊂ U
or βk([0, 1]) ⊂ V , we get βk ∼ x0, 1 ≤ k ≤ n, and thus γ ∼ x0.

As a consequence of Proposition 10.6 we obtain:

Proposition 10.10. Let π : X −→ Y be a covering and ϕ : Z −→ Y be a
continuous map from the simply connected topological space Z to Y . Then
given points z0 ∈ Z, x0 ∈ X with ϕ(z0) = π(x0), there is a unique lifting
ϕ̂ : Z −→ X of ϕ with ϕ̂(z0) = x0.

Corollary 10.11. A covering π : X −→ Y from a connected space X to a
simply connected space Y is a homeomorphism. In particular for a simply
connected Lie group G the mapping

Hom(G,H) −→ Hom(g, h), ϕ 7→ ϕ∗

is bijective for any Lie group H.

Proof. The identity id := idY : Y −→ Y admits a lifting îd. Its image in X
is non-empty and both open and closed, hence equals X.
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Definition 10.12. A covering π : X̂ −→ X is called the universal covering
of X, if X̂ is simply connected.

We call a topological space locally simply connected if every point has an
open simply connected neighbourhood.

Theorem 10.13. Every connected and locally simply connected topological
space X admits a covering π : X̂ −→ X with a simply connected X̂, called
the universal covering of X.

Proof. The construction is motivated by the following observation: Assume
there is a universal covering π : X̂ −→ X and choose base points x0 ∈ X
as well as x̂0 ∈ X̂ above x0 ∈ X, i.e. π(x̂0) = x0. Then the points in the
fiber π−1(x) of a point x ∈ X are in one-to-one correspondence with the
homotopy classes of paths in X from the base point x0 ∈ X to x: Given a
point x̂ ∈ π−1(x), choose a path γ̂ from x̂0 to x̂. Then associate to x̂ the
homotopy class [π ◦ γ̂]; indeed that provides a well defined map, X̂ being
simply connected. On the other hand, given a homotopy class [γ] of a path
γ : [0, 1] −→ X from x0 to x, denote γ̂ : [0, 1] −→ X̂ the unique lift of γ
with γ̂(0) = x̂0. The point x̂ ∈ π−1(x), we associate to [γ] then is x̂ := γ̂(1),
”welldefinedness” being guaranteed by Proposition 10.6.

So in order to obtain the universal covering we may apply the following
strategy: We choose a base point x0 ∈ X and define X̂ to be the set of all
homotopy classes of paths with the base point x0 as start point. The map
π : X̂ −→ X then is defined as π([γ]) := γ(1). The topology on X̂ is defined
as follows: Given a point x̂ := [γ] with x := π(x̂) and a simply connected
neighbourhood U of x, we set

U(x̂) := {[γδ]; δ : [0, 1] −→ U, δ(0) = x} , x̂ = [γ].

Then the sets U(x̂) with an open neighbourhood U ⊂ X of x ∈ X constitute
a basis for the topology of X̂. We claim, that for simply connected U we
have U(a) ∩ U(b) = ∅ for a, b ∈ π−1(x), a 6= b. Let a = [α], b = [β]. Assume
that [αδ] = [βδ′] with paths δ, δ′ : [0, 1] −→ U . Take a path γ : [0.1] −→ U
from δ(1) = δ′(1) to α(1) = β(1). Now, U being simply connected, we have
δγ ∼ 0 ∼ δ′γ and thus

αδ ∼ βδ′ =⇒ αδγ ∼ βδ′γ =⇒ α ∼ β,

a contradiction. It follows easily that X̂ is Hausdorff and π : X̂ −→ X a
covering.
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Finally we show that X̂ is simply connected: Let α̂ : [0, 1] −→ X̂ be
a closed path with start end point x̂0 := [x0] (where x0 is regarded as the
constant path). Consider the path α := π ◦ α̂. We have α̂(1) = [α], since α̂
is a lift of α with starting point x̂0 as well as the path t 7→ [αt] with the path
αt : [0, 1] −→ X̂, s 7→ α(ts). So because of the unique lifting property we
obtain α̂(1) = [α1] = [α]. But α̂ was a closed path, i.e. [α] = α̂(1) = α̂(0) =
x0, i.e. α ∼ x0. By Proposition 10.6 we obtain α̂ ∼ x̂0.

Now let us consider the situation where X = G is the topological space
underlying a connected Lie group.

Proposition 10.14. The universal covering Ĝ of a connected Lie group G
carries, after the choice of a neutral element ê ∈ π−1(e), a unique group
structure, such that π : Ĝ −→ G becomes a group homomorphism.

Proof. For every point â ∈ Ĝ we define the map λâ : Ĝ −→ Ĝ as the unique
lift of the map λa ◦ π : Ĝ −→ G, a := π(â), satisfying λâ(ê) = â. We leave it
to the reader to check that the resulting map

Ĝ× Ĝ −→ Ĝ, (â, x) 7→ λâ(x)

defines a group law on Ĝ, such that π : Ĝ −→ G becomes a group homomor-
phism.

Remark 10.15. Fundamental Group: The construction of the universal
covering π : X̂ −→ X can be used to associate to any connected and locally
simply connected space a group, namely the set

Deck(X) := {f : X̂ −→ X̂ homeomorphism;π ◦ f = π}

of all π-fiber preserving homeomorphisms of X̂ (”deck transformations”)
with the composition of maps as group law. From our above reasoning
it follows that, given a base point x0 ∈ X, the restriction Deck(X) −→
S(π−1(x0)), f 7→ f |π−1(x0) is injective. On the other hand, given points
a, b ∈ π−1(x0) there is exactly one f ∈ Deck(X) with f(a) = b. If one wants
to avoid the universal covering π : X̂ −→ X in the definition of Deck(X),
one can construct an isomorphic group as follows: Take again a base point
x0 ∈ X and define the fundamental group of X as the set

π1(X, x0) := {[γ]; γ path in X, γ(0) = x0 = γ(1)}
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of homotopy classes of closed paths in X with start and end point x0, the
group law being the concatenation of paths representing homotopy classes:

[α][β] := [αβ].

Then there is a natural isomorphism

π1(X, x0) ∼= Deck(X)

as follows: Given [γ] take any lifting γ̂ of γ, then the unique f ∈ Deck(X)
with f(γ̂(1)) = γ̂(0) is the image of [γ].

Furthermore note that a path α from x0 ∈ X to x1 ∈ X induces an
isomorphism

π1(X.x0)
∼=−→ π1(X, x1), [γ] 7→ [α−1γα].

If G is a connected Lie group, we have

π1(G, e) ∼= Deck(G) ∼= K := ker(π : Ĝ −→ G),

where we associate to a ∈ K the left translation λa : Ĝ −→ Ĝ. Now a
discrete normal subgroup of a Lie group G is central, i.e. contained in its
center Z(G), and hence abelian. So we have seen:

Corollary 10.16. The fundamental group π1(G, e) of a connected Lie group
is abelian.

In order to compute the fundamental group of a connected Lie group G,
one often considers a connected closed Lie subgroup H ⊂ G, usually realized
as the stabilizer H = Gx of a point x ∈ M , when given a differentiable
G-action G × M −→ M on some manifold M . Then E := G −→ B :=
G/H ∼= Gx is an H-principal bundle, and in that situation we can apply the
following theorem:

Theorem 10.17. Let H be a connected Lie group and p : E −→ B be an H-
principal bundle over the path connected base B. Choose base points b0 ∈ B
and x0 ∈ π−1(b0) ⊂ E. Then there is an exact sequence

π1(H, e)
ι∗−→ π1(E, x0)

p∗−→ π1(B, b0) −→ 1,

where ι : H −→ E, h 7→ x0h identifies (H, e) with (p−1(b0), x0), and ι∗, p∗
denote the induced homomorphisms on the level of the fundamental groups.
Recall that exactness means:

ker(p∗) = im(ι∗), im(p∗) = π1(B, b0).
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Proof. Since the map p : E −→ B is locally trivial (i.e. B can be covered

with open subsets U , such that U×H ∼= p−1(U)
p−→ U ⊂ B is the projection

onto U), every path γ : I −→ B admits a lifting to a path γ̂ : I −→ E. This
implies the surjectivity of p∗. Furthermore obviously p∗◦ι∗ ≡ [b0] ∈ π1(B, b0).

It remains to show the inclusion ker(p∗) ⊂ im(ι∗): So let γ : I −→ E be
a closed path with start and end point x0, such that p ◦ γ is nullhomotopic
in B. We have to find a homotopy between γ and a suitable closed path in
p−1(b0). Consider a homotopy F : I2 −→ B with F0 = p ◦ γ, F1 ≡ b0. As
in the proof of Proposition 10.6 we are looking for a lifting F̂ : I2 −→ E of
F with F̂0 = γ, F̂t(0) = x0 = F̂t(1) for all t ∈ I. Then F̂1 : I −→ E is the
desired path in the fiber over b0 homotopic to γ.

Subdivide again I2 into small squares Qij, such that Qij ⊂ Uij for some
open set Uij with p−1(Uij) ∼= Uij ×H. Define

Bij := B ∪
⋃

(k,`)≺(i,j)

Qk`

with B := I × {0} ∪ ∂I × I. On B00 = B the lift is given by F̂0 = γ, F̂t(0) =
x0 = F̂t(1). Now assume we have found a lift F̂ij : Bij −→ E of F |Bij

. Take
an open subset U ⊃ Qij with p−1(U) ∼= U ×H. Denote

q : p−1(U) ∼= U ×H −→ H

the projection onto H. Now the intersection Bij ∩Qij is connected and never
the entire boundary ∂Qij of the tiny square Qij, but consists of two or three
of its sides. So we can first run through the sides contained in Bij ∩Qij and

then through the remainig ones, defining there an extension of q ◦ F̂ij, such

that one simply returns to the starting point of q ◦ F̂ij|Bij∩Qij
by inverting

the parametrization. The resulting closed path ∂I2 −→ H is nullhomotopic
in H, hence it can be extended to a continuous map f : Qij −→ H. Now

extend F̂ij to Bij by defining it on the square Qij as

Qij −→ U ×H ∼= p−1(U), (s, t) 7→ (F (s, t), f(s, t)).

11 Structure Theory for Lie Algebras

The last section gives a brief survey without proofs over some important
results on the structure of real and complex Lie algebras. We start with the
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following ”embedding theorem”:

Theorem 11.1 (Theorem of Ado). Any finite dimensional K-Lie algebra g
is isomorphic to a subalgebra h ⊂ gln(K) for some n ∈ N.

As a consequence we see that

1. any Lie algebra g is isomorphic to the Lie algebra Lie(G) of a Lie group
G, and

2. any connected Lie group G is ”locally isomorphic” to a linear group H
(:= a connected subgroup H ⊂ GLn(K) for some n ∈ N), i.e., their
simply connected covering groups are isomorphic: Ĝ ∼= Ĥ. Indeed, that
is the best we can say, since a factor group G/K with a discrete normal
(indeed central) subgroup K ⊂ G or the universal covering group Ĝ of
a linear group G need not be linear again!

In Remark 9.2.6 we have discussed a procedure how to construct a new Lie
algebra gD starting from a Lie algebra g and a derivation D ∈ Der(g). The
class of all solvable Lie algebras, see Def.11.3, turns out to consist exactly of
those Lie algebras which can be obtained from the abelian Lie algebra g = K
by an iterated application of that step.

Remark 11.2. Let g = Lie(G) with a simply connected Lie group G and
D ∈ Der(g). For t ∈ K denote σt : G −→ G the automorphism with (σt)∗ =
etD : g −→ g. Then σ : K −→ Aut(G), t 7→ σt, is a group homomorphism,
and the semidirect product G×σ K is the simply connected Lie group with
Lie algebra isomorphic to gD. Remember that the underlying manifold is
just the cartesian product G×K, while the group law looks as follows:

(g, t)(g′, t′) = (gσt(g
′), t+ t′).

In particular we see that the manifold underlying a simply connected solvable
Lie group is isomorphic to Kn for some n ∈ N.

Back to Lie algebras! Note first that, given an ideal a ⊂ g of a Lie algebra
g we can endow the factor vector space with a natural Lie bracket

[X + a, Y + a] := [X, Y ] + a,

the resulting Lie algebra being called the factor algebra g/a of g mod(ulo)
the ideal a. Furthermore that g = aD if dim g = dim a + 1 and D = ad(X)
for some X ∈ g \ a.
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Definition 11.3. The Lie algebra g is called solvable if there is a finite
sequence of subalgebras

g0 = 0 ⊂ g1 ⊂ ... ⊂ gr = g,

such that gi ⊂ gi+1 is an ideal of gi+1 for i < r with abelian factor algebra
gi+1/gi (or equivalently [gi+1, gi+1] ⊂ gi).

Example 11.4. 1. The Lie algebra utn(K) := Lie(UTn(K)) is solvable.
Indeed take

gi := {A ∈ utn(K);A(Vk) ⊂ Vk−(n−i) k = 0, ..., n},

where we set Vk = Kk × {0} ⊂ Kn and Vk = 0 for k ≤ 0. For
A,B ∈ gn we have [A,B] ∈ gn−1, since gl(Vk/Vk−1) is abelian, while for
A,B ∈ gi, i < n, we already have AB,BA ∈ gi−1.

2. If g is solvable, then any subspace h ⊂ g with gi ⊂ h ⊂ gi+1 is a
subalgebra and even an ideal in gi+1. Hence we may refine a given
strictly increasing sequence as in Def. 11.3 in such a way that finally
r = dim g and dim gi+1 = dim gi + 1. In particular we see, that a
solvable algebra can be constructed by a repeated application of the gD-
construction for a Lie algebra g together with a derivation D ∈ Der(g).

3. Denote C(g) := [g, g] the commutator subalgebra of g. A Lie alge-
bra is solvable iff the decreasing sequence of successive commutator
subalgebras Ci(g), i.e.

C0(g) := g, Ci+1(g) := C(Ci(g))

terminates at the trivial subalgebra.

4. Let a ⊂ g be an ideal. If a is solvable as well as g/a, so is g. In
particular, if a, b ⊂ g are solvable ideals, so is a + b. Hence there is a
unique maximal solvable ideal in a Lie algebra g:

Definition 11.5. The maximal solvable ideal r ⊂ g is called the radical of
the Lie algebra g.

Example 11.6. For g = gln(K) we find r = KE.
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Obviously the factor algebra g/r has trivial radical. The next theorem
tells us that there is a subalgebra h ⊂ g projecting isomorphically onto the
factor algebra g/r. It is clear that there is a subspace U ⊂ g, such that
g = r ⊕ U and thus U −→ g −→ g/r is an isomorphism of vector spaces.
The point is, that we can even find a complementary subspace, which is
closed with respect to the Lie bracket, with other words a complementary
Lie subalgebra.

Theorem 11.7. For any Lie algebra g there is a subalgebra h (a ”Levi sub-
algebra”) complementary to the radical r ⊂ g, i.e. such that g = r ⊕ h as
vector spaces (but in general not as Lie algebras!).

Example 11.8. For g = gln(K) the subalgebra h := sln(K) is a Levi subal-
gebra. Note that in this case

gln(K) = r⊕ sln(K)

even as Lie algebras.

Remark 11.9. Given a Levi-Malcev-decomposition g = r ⊕ h of the Lie
algebra g = Lie(G) of the simply connected Lie group G, the group G is
the semidirect product of the simply connected Lie groups R,H of r and h.
Indeed

G ∼= R×σ H
with the group homomorphism σ : H −→ Aut(r) ∼= Aut(R), h 7→ Ad(h).

But note that GLn(K) in general is not isomorphic to K∗E × SLn(K),
instead one has to factor out the finite subgroup

K∗E ∩ SLn(K) ∼= Cn(K)

with the group of n-th roots of unity Cn(K) := {a ∈ K; an = 1}. So

GLn(K) ∼= (K∗E × SLn(K))/Cn(K)E.

For the further study of Lie algebras it turns out to be useful to investigate
in general homomorphisms g −→ gl(V ) for a K-vector space V (also called
representations of g in V ). Slightly changing the point of view (but not the
objects under consideration!) we arrive at the notion of a g-module:

Definition 11.10. Let g be a Lie algebra.
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1. A (finite dimensional) g-module V is a (finite dimensional) K-vector
space V together with a bilinear map

g× V −→ V, (X, v) 7→ Xv,

such that [X, Y ]v = X(Y v)− Y (Xv).

2. A g-module is called

(a) irreducible or simple if V and {0} are the only g-submodules.

(b) semisimple if any g-submodule U ⊂ V admits a complementary
g-submodule W ⊂ V , i.e. such that V = U ⊕W .

3. A Lie algebra g is called semisimple, if all its finite dimensional g-
modules are semisimple.

So g-modules are in one-to-one correspondence with K-vector spaces V
together with a Lie algebra homomorphism g −→ gl(V ). In particular, re-
garding K as abelian Lie algebra, a K-module is not just a K-vector space,
but rather a pair (V, f) with a K-vector space V and an endomorphism
f ∈ gl(V ): The Lie algebra homomorphisms K −→ gl(V ) are uniquely
determined by their value f ∈ GL(V ) at 1 ∈ K, and that value can be
prescribed arbitrarily.

For solvable Lie algebras we have:

Theorem 11.11 (Theorem of Lie). Any (finite dimensional) module V over
a solvable complex Lie algebra g admits a one dimensional submodule L ⊂ V .
In particular an irreducible g-module over a solvable complex Lie algebra g
has dimension dimV = 1.

Corollary 11.12. 1. Any (finite dimensional) module V over a solvable
complex Lie algebra g admits an invariant flag

0 = V0 ⊂ V1 ⊂ ... ⊂ Vn = V

of submodules Vi ⊂ V of dimension i.

2. A solvable complex Lie algebra is isomorphic to a subalgebra of utn(C)
for some n ∈ N.

Before we discuss semisimple algebras and modules let us study an im-
portant subclass of all solvable algebras:
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Definition 11.13. A Lie algebra g is called nilpotent if the following de-
creasing sequence of subalgebras N i(g) terminates at {0}:

N0(g) := g, N i+1(g) = [g, N i(g)].

Remark 11.14. We have N(g) = C(g) and Ci(g) ⊂ N i(g) for i > 1, hence
a nilpotent algebra is solvable.

Example 11.15. 1. The Lie algebra uun(K) consisting of all upper tri-
angular matrices with zeros on the diagonal is nilpotent.

2. The Lie algebra g = KX + KZ with [X,Z] = Z is solvable, but not
nilpotent: We have N i(g) = KZ for all i ∈ N>0.

3. Abelian Lie algebras are nilpotent.

4. Subalgebras and factor algebras of nilpotent Lie algebras are nilpotent.

In a nilpotent Lie algebra g the Baker-Campbell-Hausdorff series

C(X, Y ) =
∞∑
i=1

Ci(X, Y ) = (X + Y ) +
1

2
[X, Y ] + C3(X, Y ) + ...

is finite and hence defines a polynomial map

C : g× g −→ g.

Indeed, it provides g with a group law: Consider the exponential map exp :
g −→ G for the simply connected Lie group with Lie(G) ∼= g. Then, exp
being diffeomorphic near 0 ∈ g, the conditions for a group law are satisfied
near the origin and hence everywhere by the identity theorem for polynomial
maps (A map V ×V −→ K for a K-vector space V is called polynomial if it is
a K-linear combination of products of linear forms in one of both variables. A
map V ×V −→ V is polynomial, if the composition with any linear functional
V −→ K is polynomial.). Indeed the exponential map exp : g −→ G turns
out to be an isomorphism of Lie groups. So we can replace G with (g, C(., .)),
the expression for C in terms of Lie monomials being independent from the
nilpotent Lie algebra g. Note that the n-th power of X ∈ g for n ∈ Z with
respect to C(., .) is nX.
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Example 11.16. The exponential map exp : uun(K) −→ UUn(K) is poly-
nomial:

exp(X) =
n−1∑
i=0

X i

i!

and has the inverse

log : UUn(K) −→ uun(K), log(Y ) =
n−1∑
i=1

(−1)i+1 (Y − E)i

i
.

In order to understand all Lie groups with nilpotent Lie algebra we have
to consider factor groups of (g, C(., .)) mod central discrete subgroups D ⊂
(g, C(., .)). We claim that the center of the Lie group (g, C(., .)) is the center
ker(ad) of the Lie algebra g: Since C(X, 0) = 0 = C(0, Y ), any of the
Lie bracket monomials in C(X, Y ) contains both X and Y as factor, hence
C(Z,X) = Z + X = X + Z = C(X,Z) for Z ∈ ker(ad) and any X ∈ g.
On the other hand, for a central element Z of the Lie group (g, C(., .)) all its
integral powers nZ are central as well; hence C(nZ,mX) = C(mX.nZ) for
all n,m ∈ Z. Both expressions being polynomials in n,m ∈ Z, comparison
of the bilinear term yields [Z,X] = [X,Z] resp. [Z,X] = 0. So central
discrete subgroups are exactly the lattices in the subspace ker(ad) ⊂ g. Note
furthermore that the connected Lie subgroups of (g, C(., .)) are exactly the
subalgebras h ⊂ g (the exponential map being the identity on g and subspaces
being maximal connected submanifolds).

Theorem 11.17. 1. A Lie algebra g is solvable iff its commutator algebra
C(g) is nilpotent.

2. A Lie algebra is nilpotent iff ad(X) ∈ gl(g) is nilpotent for every X ∈ g.

3. Any nilpotent Lie algebra is isomorphic to a subalgebra of uun(K) for
some n ∈ N.

Example 11.18. A non-linear Lie group: Consider G = (g, C(., .))/D with

D = Z · [X, Y ] with a central element [X, Y ]. Assume ϕ : G/D
∼=−→ H ⊂

GLn(K) is an isomorphism of Lie groups. Then, g being solvable we may
assume h ⊂ utn(K), see Theorem 11.11 resp. H ⊂ UTn(K), see Cor. 11.12.
Consider the element Z := 2−1[X, Y ]. Since C(utn(K)) ⊂ uun(K) we find
ϕ∗(Z) ∈ uun(K), hence ϕ(Z) = exp(ϕ∗(Z)) ∈ UUn(K) (note that G is here
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identified with its Lie algebra), but UUn(K) contains no non-trivial elements
of finite order!

Now let us consider semisimple algebras and modules:

Corollary 11.19. A semisimple g-module V is the direct sum of irreducible
g-modules

V =
s⊕
i=1

Vi,

the factors V1, ..., Vs being unique up to isomorphy and order.

But note that for v ∈ V the subspace gv := {Xv;X ∈ g} in general is not
a (g-)submodule, so the irreducible factors are not necessarily factor algebras
of g (e.g. X(Y v) need not belong to gv). On the other hand V := g is a
g-module with the Lie bracket as ”scalar multiplication” (corresponding to
the adjoint representation g −→ gl(g), X 7→ ad(X)). Then the irreducible
factors are ideals of g. Calling a Lie algebra g simple if it is semisimple and
admits no nontrivial ideals we obtain:

Theorem 11.20. A semisimple Lie algebra g is the direct sum of simple Lie
algebras

g =
s⊕
i=1

gi,

the factors g1, ..., gs being unique up to isomorphy and order.

Ideals of semisimple algebras are direct factors and thus semisimple as
well. As a consequence, no nontrivial solvable algebra is semisimple, since
otherwise we would find that the one-dimensional Lie algebra K is semisim-
ple. Furthermore, a semisimple algebra has trivial radical. Indeed the reverse
implication holds as well:

Theorem 11.21 (Theorem of Weyl). A Lie algebra g with trivial radical is
semisimple.

Example 11.22. 1. A real Lie algebra g, such that the simply connected
Lie group G with Lie(G) ∼= g is compact, is semisimple: The Lie algebra
homomorphism g −→ gl(V ) defining a g-module is induced from a
Lie group homomorphism ϕ : G −→ GL(V ). According to the next
point there is an inner product σ : V × V −→ K, such that all maps
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ϕ(g) : V −→ V, v 7→ gv := ϕ(g)v are σ-isometries. Now, given a g-
submodule U ⊂ V , the σ-orthogonal complement W := U⊥ is both
G-invariant and a complementary g-module. So son(R) and sun are
semisimple for n > 1.

We remark, that any real semisimple algebra is of the type described
above.

2. Invariant inner products: On any Lie group G there is a left-invariant
σ-finite measure µ on the Borel subsets of G, the ”Haar measure”,
unique up to a scalar factor. For compact G, the Haar measure is even
right invariant and µ(G) < ∞. Then we may take any inner product
τ : V × V −→ K in order to get by means of averaging over G the
desired G-invariant inner product:

σ(v, w) :=

∫
G

τ(gv, gw)dµ(g).

3. Complex semisimple Lie algebras: The first point applies only to real
Lie algebras, since there are no compact simply connected Lie groups
except the trivial group. (The only connected compact complex Lie
groups are the tori G = Cm/Λ with a lattice Λ ∼= Z2m of maximal rank.)
But we can weaken our assumption: It is sufficient that g = k⊕ ik with
a real Lie subalgebra k ⊂ g belonging to a simply connected compact
real Lie group K (not to be confused with the base field). Given now a
g-submodule U ⊂ V , its orthogonal complement with respect to a K-
invariant inner product on V is a K-invariant complex vector subspace,
hence also k and g = k + ik-invariant. As example take

g = sln(C) = sun ⊕ isun.

or
g = son(C) = son(R)⊕ ison(R).

Again, any complex semisimple Lie algebra is obtained in that way.

4. Haar measure (Only for those knowing differential forms): Let G be
a real Lie group of dimension n. As with vector fields, any n-form
ωe ∈

∧n T ∗eG extends uniquely to a left invariant n-form ω ∈ Ωn(G).
Then µ(A) :=

∫
A
ω (using the orientation of G defined by ω itself)

provides a Haar measure on the Borel subsets A ⊂ G.
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In the remaining part of this section we explain the classification of com-
plex simple Lie algebras.

Definition 11.23. A subalgebra h ⊂ g of a Lie algebra g is called a Cartan
subalgebra (CSA), if it is nilpotent and satisfies

[X, h] ⊂ h =⇒ X ∈ h, ∀ X ∈ g.

Example 11.24. For g = sln(C) the subalgebra h := sdn(C) consisting of
all diagonal matrices in sln(C) is a CSA.

Proposition 11.25. In a complex Lie algebra g any two CSA h, h′ ⊂ g are
conjugate under an automorphism f = ead(X) for some X ∈ g, i.e. h′ = f(h).

For a semisimple algebra we have

Proposition 11.26. Let g be a complex semisimple algebra. Then a subal-
gebra h ⊂ g is a CSA if and only if the following conditions are satisfied:

1. The subalgebra h ⊂ g is a maximal abelian subalgebra.

2. All homomorphisms ad(H) : g −→ g are diagonalizable.

Since h is abelian, the endomorphisms ad(H) for H ∈ h commute one with
the other, hence can be diagonalized simultaneously, and satisfy ad(H)|h = 0.
So defining gα ⊂ g for a linear form α : h −→ C by

gα := {X ∈ g; ad(H)(X) = α(H)X, ∀ H ∈ h}

we can write

g = h⊕
⊕
α∈∆

gα

with the following finite subset ∆ ⊂ h∗:

∆ := {α ∈ h∗ \ {0}; gα 6= {0}}.

The case α = 0 does not occur, h being a maximal abelian subalgebra.
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Example 11.27. For g = sln(C), h = sdn(C)(:= the diagonal matrices with
trace 0) we have

∆ = {αij := βi − βj; 1 ≤ i, j ≤ n, i 6= j}

where
βi : sdn(C) −→ C, D = (zkδk`) 7→ zi

with
gij := gαij

= CEij
with the matrix Eij := (εk` := δkiδ`j).

Since ad(H) ∈ Der(g) we find

[gα, gβ] ⊂ gα+β,

indeed
[gα, gβ] = gα+β.

Furthermore one can show

dim gα = 1, ∀ α ∈ ∆

and that
∆ ∩ Cα = {±α}, ∀ α ∈ ∆.

The set ∆ spans a real subspace

h∗R :=
∑
α∈∆

Rα ⊂ h∗

with h∗ = h∗R ⊕ ih∗R. For a more detailed description of ∆ we need a natural
inner product on h∗R.

First of all on a Lie algebra g one defines:

Definition 11.28. Let g be a Lie algebra. The Cartan-Killing form is the
following bilinear symmetric form

〈., .〉 : g× g −→ K, (X, Y ) 7→ 〈X, Y 〉 := Tr(ad(X)ad(Y )).

Let us mention:
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Theorem 11.29. Let g be a Lie algebra with Cartan-Killing form 〈., .〉 :
g× g −→ K. Then g is

1. solvable iff 〈g, C(g)〉 = {0} and

2. semisimple iff its Cartan-Killing form is nondegenerate.

Moreover in the latter case its restriction to h × h with a CSA h ⊂ g is
nondegenerate as well, and its dual form, also denoted

〈., .〉 : h∗ × h∗ −→ C,

is real valued on h∗R × h∗R and even positive definite.

Remark 11.30. Define Hα ∈ h by 〈Hα, H〉 = α(H). Then

[X, Y ] = 〈X, Y 〉Hα 6= 0

for X ∈ gα \ {0}, Y ∈ g−α \ {0}.

In particular we see that

CHα ⊕ gα ⊕ g−α ∼= sl2(C).

The classification of complex semisimple Lie algebras now depends on a
better understanding of the set ∆ ⊂ h∗R. Indeed it has a remarkable symmetry
property: It forms a root system:

Definition 11.31. A finite subset ∆ ⊂ E \ {0} of a finite dimensional eu-
clidean vector space E with inner product 〈., .〉 is called a root system if the
following conditions are satisfied:

1. E = span(∆)

2. ∆ ∩ Rα = {±α} for all α ∈ ∆.

3. For any root (i.e. element) α ∈ ∆ the reflection

sα : E −→ E, v 7→ v − 2〈v, α〉
〈α, α〉

α

on the hyperplane α⊥ ⊂ E leaves ∆ invariant:

sα(∆) = ∆, ∀ α ∈ ∆.
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4. For all β, α ∈ ∆ we have

χ(β, α) :=
2〈β, α〉
〈α, α〉

∈ Z.

The fourth condition is a very strong condition on the possible angles
between the roots: Denote ϑ ∈ [0, π) the angle between the non proportional
roots α, β. Then

χ(β, α)χ(α, β) = 4 cos2(ϑ) ∈ Z,

hence cos(ϑ) ∈ {0,±1
2
,± 1√

2
,±
√

3
2
} resp. ϑ = 0, π

6
, π

4
, π

3
, π

2
, 2π

3
, 3π

4
, 5π

6
.

Furthermore χ(β, α) = ±1,±2,±3, if α, β are neither proportional nor
orthogonal. A more detailed analysis of that situation shows that in case
||β|| ≥ ||α|| we have

||β||2 = 4 cos2(ϑ) · ||α||2 = χ(β, α)χ(α, β)||α||2.

Indeed, that means nothing but β = ±(α − sβ(α)), the sign depending on
whether ϑ < π

2
or ϑ > π

2
.

The proof that the above conditions hold for ∆ ⊂ h∗ relies on the knowl-
edge of the irreducible sl2(C)-modules. Indeed, given nonproportional α, β,
the subspace ⊕

k∈Z

gβ+kα

is a module over the subalgebra

CHα ⊕ gα ⊕ g−α ∼= sl2(C).

Now let us concentrate on abstract root systems:

Definition 11.32. Let ∆ ⊂ E be a root system, and demote O(E) the group
of linear isometries of the euclidean space E. The Weyl group W (∆) ⊂ O(E)
is defined as the subgroup of O(E) generated by the reflections sα, α ∈ ∆.

The symmetries of a root system ∆ given by the action of the Weyl group
W (∆) make it possible to compress the information contained in it in a basis
B:
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Definition 11.33. A subset B ⊂ ∆ is called a basis of the root system
∆ ⊂ E if B is a basis of the vector space E and every β ∈ ∆ is an integral
linear combination

β =
∑
α∈B

kα · α,

where the coefficients kα ∈ Z satisfy either kα ≥ 0 for all α ∈ B or kα ≤ 0
for all α ∈ B.

A basis of a root system ∆ ⊂ E gives rise to a decomposition

∆ = ∆B + (−∆B),

with ∆B := ∆ ∩ (
∑

α∈B N≥0α). On the other hand, starting with certain
decompositions we get all the bases of a root system ∆:

Proposition 11.34. Let ∆ ⊂ E be a root system and H ⊂ E a hyperplane
with H∩∆ = ∅. Given a connected component E0 of E\H the indecomposable
elements in ∆ ∩ E0, i.e. those which can not be written as a sum β1 + β2

with β1, β2 ∈ ∆ ∩ E0, constitute a basis of the root system ∆. Indeed, any
basis of ∆ is obtained in that way. In particular any root can be realized as
an element of a suitable basis B ⊂ ∆. Furthermore the angle between two
base vectors is obtuse, i.e. ∈ [π

2
, π).

Proposition 11.35. Let ∆ ⊂ E be a root system.

1. The action of the Weyl group W (∆) on the set of bases of ∆ is simply
transitive.

2. Given a basis B, the reflections σα, α ∈ B, generate W (∆).

As a consequence we see that |W (∆)| < ∞. Furthermore that given a
basis B we can recover the Weyl group W (∆) as well as ∆ = W (∆)B.

Let us explain a little bit more in detail the different bases a root system
∆ admits: Writing a hyperplane as H = Pγ := γ⊥ for γ ∈ E we see that it
is a separating hyperplane for ∆, i.e., Pγ ∩∆ = ∅, iff γ 6∈ E \

⋃
α∈∆ Pα.

Definition 11.36. Let ∆ ⊂ E be a root system. The connected components
of E\

⋃
α∈∆ Pα are called Weyl chambers. An element γ ∈ E is called regular

if γ 6∈ E \
⋃
α∈∆ Pα. For such an element γ denote Ch(γ) the Weyl chamber

containing γ.
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Proposition 11.37. For a regular element γ denote Bγ ⊂ ∆ the unique basis
of ∆ with 〈γ,Bγ〉 > 0. Then Bδ = Bγ for all δ ∈ Ch(γ) and Ch(γ) 7→ Bγ is
a bijection between the set of Weyl chambers of ∆ and the set of bases of ∆.

Now the information contained in a basis B ⊂ ∆ can be encoded in a
so called Dynkin diagram, a graph whose vertices are the base roots α ∈ B.
Two vertices α, β are connected by χ(β, α)χ(α, β) = 4 cos2(ϑ) edges, i.e. by
one edge, if the angle ϑ ∈ [0, π) equals 2π

3
, by two edges, if ϑ = 3π

4
and by

three edges if ϑ = 5π
6

. In the last two cases the two or three edges are even
oriented, the arrow pointing from the longer root to the smaller one. Note
that the diagram does not depend on the choice of the basis B.

Let us come back to Lie algebras: A Lie algebra can be reconstructed -
up to isomorphy - from its root system, and a root system from one of its
bases resp. - again up to isomorphy - from its Dynkin diagram. First of all,
it is connected if and only if the corresponding algebra is simple, and there
is a complete classification of the connected Dynkin diagrams. Here it is, the
index counting the number of vertices:

1. A`, ` ≥ 1: A linear string with ` vertices and only simple edges.

2. B`, ` ≥ 2: A linear string with ` vertices with ` − 2 simple edges and
one double edge at one of its ends, the arrow pointing to the end point
(for ` ≥ 3).

3. C`, ` ≥ 3: A linear string with ` vertices with `−2 simple edges and one
double edge at one of its ends, the arrow pointing to the inner point.
Note that C2 = B2.

4. D`, ` ≥ 4: A string with `− 2 vertices, with the two remaining vertices
connected to the same end point of the string. All edges are simple.
Note that D3 = A3.

5. E`, ` = 6, 7, 8: A string with ` − 1 vertices, the `-th vertex being con-
nected to the third vertex of the string. All edges are simple.

6. F4: A linear string with 4 vertices, the outer edges being simple, the
inner one being a double edge (the orientation is not important, since
both choices give isomorphic Dynkin diagrams).

7. G2: Two vertices connected by three edges.
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Indeed, for every of the above Dynkin diagrams, there is a complex simple
Lie algebra realizing it.

Now let us look at complex semisimple Lie groups, i.e. complex connected
Lie groups G with semisimple Lie algebra g = Lie(G).

First of all the adjoint representation Ad : G −→ GL(g) is a covering of
the subgroup Ad(G) ⊂ Aut(g) ⊂ GL(g), since its differential ad : g −→ gl(g)
is injective for a semisimple algebra g, its center being trivial. So there is not
only a maximal Lie group - the simply connected one - but also a minimal
Lie group with Lie algebra g, since Ad(G) only depends on g: It is the
connected Lie subgroup of Aut(g) with Lie algebra ad(g). Indeed, for a
semisimple algebra we have ad(g) = Der(g) and hence Ad(G) = Aut0(g), the
component of the identity of Aut(g).

If G is simply connected, any other connected Lie group with Lie algebra
g is of the form G/D with a discrete subgroup D ⊂ Z(G). Indeed the
center Z(G) ⊂ G is finite, it can even be read off from the root system
∆ associated to a CSA h ⊂ g = Lie(G): If we denote Γ0 ⊂ E := h∗R the
lattice generated by ∆ (in fact Γ0 =

⊕
α∈B Zα with any basis B ⊂ ∆) and

Γ := {γ ∈ E;χ(γ,∆) ⊂ Z}, then, obviously Γ0 ⊂ Γ and (less obviously)

Z(G) ∼= Γ/Γ0.

The connected Lie subgroup H ⊂ G is a maximal (complexified) torus (C∗)`,
a closed subgroup of G containing the center Z(G).

Furthermore semisimple Lie groups can be realized as algebraic (in par-
ticular closed) subgroups of GL(V ) for some complex vector space V ; and
even better, any homomorphism G −→ GL(W ) for an arbitrary vector space
W is algebraic. Indeed this follows from the knowledge of all irreducible
g-modules W resp. all irreducible representations g −→ gl(W ).

Here is the table of all simply connected complex simple Lie groups:
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Dynkin diagram simply connected Lie group Dimension Center

A`, ` ≥ 1 SL`+1(C) `(`+ 2) Z`+1

B`, ` ≥ 2 Spin2`+1(C) `(2`+ 1) Z2

C`, ` ≥ 3 Sp2`(C) `(2`+ 1) Z2

D`, ` ≥ 4, even Spin2`(C) `(2`− 1) Z2 × Z2

D`, ` ≥ 5, odd Spin2`(C) `(2`− 1) Z4

E6 — 78 Z3

E7 — 133 Z2

E8 — 248 0
F4 — 52 0
G2 Aut(O(C)) 14 0

Here Spinn(C) denotes the universal covering group of SOn(C), and O(C)
is the complexified algebra of Cayley numbers (octonians). The remaining
exceptional group do not have an immediate geometric realization.

Note that an arbitrary semisimple complex Lie group is of the form G/D,
where G is a finite product of copies of the above Lie groups and D ⊂ Z(G),
with Z(G) being the direct product of the centers of the simple factors.

Complex semisimple and real compact Lie groups: Finally let
us comment on the relation between complex semisimple groups and real
compact Lie groups. Let us start with a semisimple Lie algebra g and look
for a ”real compact form” k ⊂ g, i.e., a real subalgebra k ∼= Lie(K) for some
real compact Lie group K satisfying g = k⊕ ik. We start with a CSA h ⊂ g
and write

g = h⊕
⊕
α∈∆

gα,

noting that, with respect to the Cartan Killing form 〈., .〉 we have h ⊥ gα for
all α ∈ ∆ as well as gα ⊥ gβ for α+ β 6= 0. We shall represent k = Fix(τ) as
fix algebra of a conjugation

τ : g −→ g,

i.e. an involutive automorphism of g as real Lie algebra (τ 2 = idg) satisfying
τ(iX) = −iX. Setting

g0 = hR ⊕
⊕
α∈∆

RZα ⊂ g

with hR := span(Hα;α ∈ ∆) (see Remark 11.30) we have g = g0 ⊕ ig0 and a
conjugation σ := idg0 ⊕−idig0 .
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We want to take τ = ϕ ◦ σ with a complex automorphism ϕ : g −→ g: In
order to define ϕ, we choose elements Zα ∈ gα, Z−α ∈ g−α with 〈Zα, Z−α〉 =
−1. Then the linear map ϕ : g −→ g with ϕ|h = −idh and ϕ(Zα) = Z−α is
the desired Lie algebra automorphism.

Example 11.38. For g = sln(C), h = sdn(C) we have σ(A) = A and ϕ(A) =
−AT .

Since X = iH +
∑
cαZα ∈ k satisfies H ∈ hR and cα = c−α we find

〈X,X〉 = −〈H,H〉 − 2
∑
α∈∆

|cα|2 < 0,

so the negative Cartan-Killing form −〈., .〉 is positive definite on k. So we
have obtained an inner product on k invariant under any automorphism of k
(an automorphism of k extends to an automorphism of g). Hence the closed
subgroup Aut(k) ⊂ O(k,−〈., .〉) is compact. On the other hand one can prove
that Lie(Aut(k)) = Der(k) = ad(k), whence k = Lie(K) with K := Aut(k).

Theorem 11.39. Given a complex semisimple algebraic group G there is
a compact real Lie subgroup K ⊂ G (unique up to conjugacy) such that
k := Lie(K) is a compact real form of g := Lie(G), and the map

K × ik −→ G, (x,X) 7→ x exp(X)

is a diffeomorphism.

Trevlig Sommar!
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