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Abstract: We investigate minimal extension sheaves on arbitrary (possibly non-
rational) fans as an approach toward a combinatorial “virtual” intersection coho-
mology. These are flabby sheaves of graded modules over a sheaf of polynomial
rings, satisfying three relatively simple axioms that characterize the equivariant
intersection cohomology sheaves on toric varieties. As in “classical” intersection
cohomology, minimal extension sheaves are models for the pure objects of a “per-
verse category”; a Decomposition Theorem holds. – The analysis of the step from
equivariant to non-equivariant intersection cohomology of toric varieties leads us
to investigate “quasi-convex” fans (generalizing fans with convex or “co-convex”
support), where our approach yields a meaningful virtual intersection cohomology.
We characterize such fans by a topological condition and prove a version of Stan-
ley’s “Local-Global” formula relating the global intersection Poincaré polynomial
to local data. Virtual intersection cohomology of quasi-convex fans is shown to
satisfy Poincaré duality. To describe the local data in terms of the global data
for lower-dimensional complete polytopal fans as in the rational case, one needs
a ”Hard Lefschetz” type result. It requires a vanishing condition that is valid for
rational cones, but has not yet been proven in the general case.
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Introduction

A basic combinatorial invariant of a complete simplicial fan ∆ in Rn is its h-vector
(h1, . . . , hn): It encodes the numbers of cones of the different dimensions. By the
classical Dehn-Sommerville relations, the equality hi = hn−i holds, i.e., the vector
is palindromic; furthermore, for a polytopal fan ∆, it is known to be unimodal,
i.e., hi ≤ hi+1 holds for 0 ≤ i < n/2. If ∆ is even rational , then the h-vector
admits a topological interpretation in terms of the associated compact Q-smooth
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toric variety X∆: By the theorem of Jurkiewicz and Danilov, the real 1) cohomology
ring H•(X∆) is a quotient of the Stanley-Reisner ring of ∆. In particular, this result
implies that the Betti numbers of X∆ are combinatorial invariants of the fan ∆ (i.e.,
they are determined by the structure of ∆ as a partially ordered set), they “live”
only in even degrees, and the equality hi = dimH2i(X∆) holds for 0 ≤ i ≤ n.

Since every simplicial fan is combinatorially equivalent to a rational one, this in-
terpretation allows to apply topological results about toric varieties to combinatorics.
To give an example, we mention that the Dehn-Sommerville equations are just a com-
binatorial version of Poincaré duality. A deeper application is Stanley’s proof of the
necessity of McMullen’s conditions that characterize the possible h-vectors of simpli-
cial polytopal fans: To prove unimodality, it uses the “Hard” Lefschetz Theorem for
the rational cohomology of the corresponding projective toric variety.

We now consider complete non-simplicial fans, looking first at the rational case.
Unfortunately, the Betti numbers of the associated compact toric varieties no longer
enjoy such good properties as in the simplicial case: Poincaré duality fails to hold,
non-zero Betti numbers in odd degrees may occur, and worst of all, Betti numbers
may fail to be combinatorial invariants. Replacing singular cohomology with intersec-
tion cohomology, however, yields invariants that share the essential properties of the
classical h-vector in the simplicial case: Intersection Betti numbers satisfy Poincaré
duality, they vanish in odd degrees, and they are determined by the combinatorics
of the fan. The last property follows from the two “Local-Global Formulæ” that
serve as a kind of “Leitmotiv”: For a complete rational fan ∆ with associated toric
variety X∆, one considers the global (intersection cohomology) Poincaré polynomial
P∆ :=

∑2n
q=0 dimR IH

q(X∆) ·tq and its local counterparts Pσ :=
∑2n

q=0 dimR IHq
σ ·tq,

where IH•
σ denotes the local intersection cohomology along the orbit corresponding

to the cone σ ∈ ∆. These polynomials are related by the first formula

P∆(t) =
∑
σ∈∆

(t2 − 1)n−dim σPσ(t) .

By the second formula, each local polynomial Pσ in turn is readily obtained from the
global one of a projective toric variety XΛσ of strictly smaller dimension associated
to the “flattened boundary fan” Λσ of the cone σ: One has

Pσ(t) = τ≤d−1

(
(1− t2)PΛσ

(t)
)

for d := dimσ ,

where τ≤d−1 denotes truncation.

Combined, these formulæ yield inductively that the global and local intersection
cohomology Betti numbers

hi(∆) := dim IH2i(X∆), for i ≤ n and 0 elsewhere, and

gi(σ) := dim IH2i
σ = hi(Λσ)− hi−1(Λσ), for 0 ≤ i < dimσ/2 and 0 elsewhere,

1) Unless otherwise specified, we always use real coefficients for (intersection) cohomology.
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are combinatorial invariants that can be computed recursively, starting from gi =
hi = δi0 in the case n = 0. This observation was used by Stanley in [St] to define
generalized h- and g-vectors even for non-rational cones and fans. These invariants
are computable via linear functions in the numbers of flags of cones with prescribed
sequences of dimensions. —

In the case of a (complete) simplicial fan ∆, we may reverse the theorem of
Jurkiewicz and Danilov and take the quotient of the Stanley-Reisner ring as definition
of a “virtual cohomology algebra” H•(∆) of the fan, thus obtaining virtual Betti
numbers dimH2i(∆) that coincide with hi(∆) for 0 ≤ i ≤ n. Our main aim is to
define a “virtual intersection cohomology” with analoguous properties for arbitrary
fans.

Our approach toward such a theory builds on the previous study of equivariant
intersection cohomology of toric varieties in [BBFK]. Coming back to complete ra-
tional simplicial fans for a moment, we recall that the Stanley-Reisner ring itself has
a topological interpretation, namely, it is the equivariant cohomology ring of the toric
variety defined by such a fan: For affine open toric subvarieties Xσ ⊂ X∆, there are
natural isomorphisms H•

T(Xσ) ∼= A•σ with the algebra A•σ of real-valued polynomial
functions on σ. They induce an isomorphism between the associated sheaves H•

T

and A• on the “fan space” ∆, i.e., the fan ∆ identified with the (non-Hausdorff)
orbit space of the toric variety; its open subsets correspond to the subfans. Since
H•

T(∆) ∼= H•
T(X∆) and A•(∆) constitutes the algebra of ∆-piecewise polynomial

functions on the support of ∆, we only have to notice that the latter is nothing but the
Stanley-Reisner ring of ∆. The theorem of Jurkiewicz and Danilov may then be re-
stated as follows: A toric variety defined by a complete simplicial fan is equivariantly
formal, i.e., equivariant and non-equivariant cohomology determine each other by
Künneth type formulæ: Since the graded algebra A• of real valued polynomial func-
tions on Rn is canonically isomorphic to the cohomology ring H•(BT) of the classify-
ing space BT ∼= (P∞C)n of the torus, the equivariant cohomology H•

T(X∆) carries
the structure of an A•-module, and X∆ is called equivariantly formal if the natural
map H•

T(X∆) −→ H•(X) induces an isomorphism A•/m ⊗A• H
•
T(X∆) ∼= H•(X∆),

where m := A>0 is the unique homogeneous maximal ideal of A•.

These observations led us to study the equivariant intersection cohomology pre-
sheaf IH•

T in the case of a not necessarily simplicial rational fan ∆. This presheaf
turns out to be very well behaved: In fact, it is a flabby sheaf of A•-modules as has
been proved in [BBFK], and it may be characterized by three relatively simple prop-
erties that determine it up to isomorphism. Its global sections yield the equivariant
intersection cohomology IH•

T(X∆), a graded A•-module, and in the compact case,
we again have equivariant formality: The formula IH•(X∆) ∼= A•/m⊗A• IH

•
T(X∆)

holds. The axiomatic characterization now allows to carry the whole construction
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over to the case of not necessarily rational fans and leads to the notion of a so-called
“minimal extension sheaf” E• on ∆ (such that E• ∼= A• is the sheaf of piecewise
polynomial functions for simplicial ∆).

In particular, in the complete case, the role of the Stanley-Reisner ring is played
by the A•-module E•(∆) of global sections, and the virtual intersection cohomology
of a fan ∆ is defined as IH•(∆) := A•/m⊗A• E•(∆) (where m := A>0).

In the present article, we systematize the investigation of the algebraic theory
of such minimal extension sheaves. We do hope that this will finally lead to a proof
of the formula hi(∆) = dimR IH

2i(∆) that would provide an interpretation of the
components of the generalized h-vector in the case of a complete and possibly non-
rational fan. In the first section, we recall and extend some results of [BBFK]; in
particular, the virtual intersection Betti numbers of a complete rational fan ∆ are
seen to equal the intersection Betti numbers of X∆. The second section is devoted to
combinatorially pure sheaves over the fan space ∆. These turn out to be direct sums
of simple sheaves, which are generalized minimal extension sheaves: To each cone
τ ∈ ∆, we associate a simple pure sheaf τL•, where E• coincides with the sheaf oL•

associated with the zero cone o, and prove a Decomposition Theorem (Theorem 2.4)
for pure sheaves. As a corollary, we present a proof of Kalai’s conjecture for virtual
intersection cohomology Poincaré polynomials, as proposed by Tom Braden (see also
[BrMPh].)

In the third section, we provide a main technical tool for the following sections
in studying the cellular Čech cohomology of sheaves on the fan space. In the fourth
section, we show that the acyclicity of that complex with coefficients in a minimal
extension sheaf E• on a purely n-dimensional fan ∆ has both a surprisingly easy
algebraic and topological reformulation: It holds if and only if the A•-module E•(∆)
of global sections is free resp. if and only if the support |∂∆| of the boundary fan
∂∆ is a real homology manifold, cf. Theorems 4.3 and 4.4. In particular that holds
for fans with either convex or “co-convex” support, and that motivates to call such
fans quasi-convex . For a rational fan ∆, quasi-convexity is a necessary and sufficient
condition for the equality IH•(∆) ∼= IH•(X∆) to hold, where X∆ is the associated
toric variety, i.e. ∆ is quasi-convex iff X∆ is IH-equivariantly formal. An equivalent
formulation of that fact is the vanishing of the odd-dimensional intersection Betti
numbers of X∆.

On the other hand, the freeness condition is used in order to have a satisfactory
“Poincaré Duality” theory both on E•(∆) and IH•(∆) = A•/m ⊗A• E•(∆). As a
corollary we prove a conjecture of Bernstein and Lunts.

The fifth section deals with the computation of the virtual intersection Poincaré
polynomials P∆ :=

∑
dim IH2j(∆) · t2j : For a quasi-convex fan ∆, the polynomial

P∆ can be expressed, as in the rational case, in terms of the virtual local intersection
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Poincaré polynomials Pσ, see Theorem 5.3. That is a consequence of the above
mentioned acyclicity of the cellular complex, and the fact that the global section
modules IH•(∆) and E•(∆) and their local counterparts IH•

σ := A•/m ⊗A• E•(σ)
and E•(σ) are related by Künneth type formulae. To obtain a recursive computation
algorithm for P∆ as in the rational case, we relate the Poincaré polynomial Pσ to that
of the “flattened boundary fan” Λσ of σ, the polytopal fan obtained by projecting
the boundary of σ to Vσ/` , where Vσ := span(σ) and ` ⊂ Vσ is a line meeting the
relative interior of σ. To that end, we need the vanishing condition IHq

σ = 0 for
q ≥ dimσ > 0, see 1.7. In the case of a rational cone, that condition holds because it
is equivalent to the vanishing condition for the local intersection cohomology of Xσ

along its closed orbit, and we expect it even to hold in the non-rational case. The
above vanishing condition, together with Poincaré duality (see section 6), leads to a
“Hard Lefschetz Theorem” for the virtual intersection cohomology IH•(Λσ) of the
polytopal fan Λσ, see Theorem 5.6, and that theorem provides the background for
the description of Pσ in terms of PΛσ . In particular, if all the cones in ∆ satisfy the
above vanishing condition, we have hi(∆) = dim IH2i(∆).

Finally, the last section is devoted to Poincaré duality: On a minimal extension
sheaf E•, a (non-canonical) internal “intersection product” E• × E• → E• and an
evaluation map may be defined, leading to duality isomorphisms E•(∆) ∼= E•(∆, ∂∆)∗

and IH•(∆) ∼= IH•(∆, ∂∆)∗ for quasi-convex fans, see Theorem 6.3.

In order to make our results accessible to non-specialists, we have aimed at avoid-
ing technical “machinery” and keeping the presentation as elementary as possible.
Many essential results of the present article are contained in Chapters 7–10 of our
Uppsala preprint 2); the current version has been announced in the note [Fi2]. Us-
ing the formalism of derived categories, closely related work has been done by Tom
Braden in the rational case and by Paul Bressler and Valery Lunts in the polytopal
case. Tom Braden sent us a manuscript presented at the AMS meeting in Washing-
ton, January 2000. Even more recently, Paul Bressler and Valery Lunts published
their ideas in the e-print [BreLu2].

For helpful discussions, our particular thanks go to Michel Brion, Volker Puppe
and Tom Braden. – We also are indebted to the referee for his comments.

0. Preliminaries

0.A Cones and Fans: Let V be a real vector space of dimension n. A non-zero
linear form α:V → R on V determines the upper halfspace Hα := {v ∈ V ;α(v) ≥ 0}.
A (strictly convex polyhedral) cone in V is a finite intersection σ =

⋂r
i=1Hαi

of
halfspaces with linear forms satisfying

⋂r
i=1 kerαi = {0}. Let Vσ := σ+(−σ) denote

2) “Equivariant Intersection Cohomology of Toric Varieties”, UUDM report 1998:34
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the linear span of σ in V , and define dimσ := dimVσ. A cone of dimension d is called
a d-cone.

A cone also may be described as the set σ =
∑s

j=1 R≥0vj of all positive linear
combinations of a finite set of non-zero vectors vj in V . A cone spanned by a linearly
independent system of generators is called simplicial . Cones of dimension d ≤ 2 are
always simplicial; in particular, this applies to the zero cone o := {0} and to every
ray (i.e., a one-dimensional cone R≥0v).

A face of a cone σ is any intersection τ = σ ∩ kerβ, where β ∈ V ∗ is a linear
form with σ ⊂ Hβ . We then write τ � σ (and τ ≺ σ for a proper face). If in addition
dim τ = dimσ − 1, we call τ a facet of σ and write τ ≺1 σ.

A fan in V is a non-empty finite set ∆ of cones such that each face of a cone
in ∆ also belongs to ∆ and the intersection of two cones in ∆ is a face of both. To
a fan ∆, one associates its support |∆| := ∪σ∈∆ σ, a closed subset in V . The fan ∆
is generated by cones σ1, . . . , σr if ∆ consists of all cones that are a face of some
generating cone. In particular, a given cone σ generates the fan 〈σ〉 consisting of σ
and its proper faces; such a fan is also called an affine fan and occasionally is simply
denoted σ. Furthermore, we associate to σ its boundary fan ∂σ := 〈σ〉 \ {σ}, and its
relative interior σ̊ := σ \ |∂σ|.

Every fan is generated by the collection ∆max of its maximal cones. We define

∆k := {σ ∈ ∆ ; dimσ = k} and ∆≤k :=
⋃
r≤k

∆r ,

the latter being a subfan called the k-skeleton. The fan ∆ is called purely n-
dimensional if ∆max = ∆n. In that case, we define its boundary fan ∂∆ as the
subfan generated by those (n− 1)-cones that are facets of precisely one n-cone in ∆.
The boundary fan is supported by the topological boundary of |∆|. In contrast with
the case of a single cone, we use ∆̊ to denote the collection ∆ \ ∂∆ of interior cones.

A fan is called simplicial if all its cones are simplicial; this holds if and only if
its maximal cones are simplicial. It is is called complete if it is supported by all of V .

A subfan Λ of a fan ∆ is any subset that itself is a fan; we then write Λ � ∆
(and Λ ≺ ∆ if in addition Λ is a proper subfan). The collection of all subfans of ∆
clearly satisfies the axioms for the open sets of a topology on ∆, the empty set being
admitted as a fan. In the sequel, we always endow ∆ with this fan topology and
consider it as a topological space, the fan space.

A refinement of a fan ∆ is a fan ∆̌ with |∆̌| = |∆| such that each cone σ̌ ∈ ∆̌ is
contained in some cone σ ∈ ∆. If σ is minimal with that property, we write σ = π(σ̌)
and obtain in that way the associated refinement map π: ∆̌ −→ ∆. Every purely n-
dimensional fan ∆ admits a refinement which can be embedded into a complete fan:
For a cone σi ∈ ∆n, we fix a line ` meeting σ̊i and set % := −(`∩σi); then the fan ∆i
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generated by σi and all cones %+ τ for τ ≺1 σi is complete. For ∆n = {σ1, . . . , σr},
the fan-theoretic intersection

r⋂
i=1

∆i :=
{ r⋂

i=1

τi ; τi ∈ ∆i

}
.

is a complete fan including a refinement of ∆ as a subfan.

A fan ∆ in V is called rational (or, more precisely, N -rational) if there exists
a lattice (i.e., a discrete additive subgroup) N ⊂ V of maximal rank such that
% ∩N 6= {0} for each ray % ∈ ∆.

0.B Graded A•-modules: Let A• denote the symmetric algebra S•(V ∗) over the
dual vector space V ∗ of V . Its elements are canonically identified with polynomial
functions on V . In the case of a rational fan, A• is isomorphic to the cohomology
algebra H•(BT) of the classifying space BT ∼= (P∞C)n of the complex algebraic
n-torus T ∼= (C∗)n acting on the associated toric variety. Motivated by that topo-
logical considerations, we endow A• with the positive even grading determined by
setting A2q := Sq(V ∗); in particular, A2 = V ∗ consists of all linear forms on V . Cor-
respondingly, for a cone σ in V , we let A•σ denote the graded algebra S•(V ∗

σ ); if σ is
of dimension n, then A•σ = A• holds. The natural projection V ∗ → V ∗

σ extends to an
epimorphism A• → A•σ of graded algebras. We usually consider the elements in A•σ
as functions f :σ → R; the above epimorphism then corresponds to the restriction of
polynomial functions.

For a graded A•-module F •, we write F
•

for its residue class module

F
•

:= F •/(m·F •) ∼= R• ⊗A• F
• ,

where m := A>0 ⊂ A• is the unique homogeneous maximal ideal of A• and where
R• := A•/m = A

•
is the field R, considered as graded algebra concentrated in degree

zero. Obviously F
•

is a graded vector space over R, which is finite dimensional if F •

is finitely generated over A•. If F • is positively graded or, more generally, bounded
from below, then the converse holds: A family (f1, . . . , fr) of homogeneous elements
in F • generates F • over A• if and only if the system of residue classes (f1, . . . , fr)
modulo m·F • generates the vector space F

•
. In that case, we have rkA•F

• ≤ dimF
•
,

where equality holds if and only if F • is a free A•-module. The collection (f1, . . . , fr)
is part of a basis of the free A•-module F • over A• if and only if (f1, . . . , fr) is
linearly independent over R. Furthermore, every homomorphism ϕ:F • → G• of
finitely generated graded A•-modules induces a homomorphism ϕ:F

• → G
•
of graded

vector spaces, which is surjective if and only if ϕ is so. If F • is free, then every
homomorphism ψ:F

• → G
•

can be lifted to a homomorphism ϕ:F • → G• (i.e.,
ϕ = ψ holds); if G• is free, then ϕ is an isomorphism if and only if that holds for ϕ.

A finitely generated A•-module F • is free if and only if TorA•

1 (F •,R•) = 0. That
condition is obviously necessary, so let us show that it is also sufficient: As we have
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seen above, there is a surjection (A•)d → F • where d := dimF
•
; let K• be its kernel.

Since TorA•

1 (F •,R•) = 0, the exact sequence

0 −→ K• −→ (A•)d −→ F • −→ 0

induces an exact sequence

0 −→ K
• −→ (A

•
)d −→ F

• −→ 0 .

By construction, (A
•
)d → F

•
is an isomorphism, so we have K

•
= 0 and thus also

K• = 0, i.e., F • ∼= (A•)d is free.

By means of the restriction map A• → A•σ, an A•σ-module F •σ is an A•-module,
and there is a natural isomorphism F

•

σ = F •σ/(m·F •σ) ∼= F •σ/(mσ·F •σ). Let us denote by
V ⊥

σ the orthogonal complement of Vσ ⊂ V in the dual vector space V ∗. We remark
that, using the Koszul complex for the A•-module I(Vσ) := A• · V ⊥

σ ⊂ A•, one finds
a natural isomorphism of vector spaces

(0.B.1) TorA•

i (A•σ,R
•) ∼= ΛiV ⊥

σ

over R• = A•/m.

0.C Sheaves on a fan space: Sheaf theory on a fan space is particularly simple
since the “affine” open sets 〈σ〉 � ∆ form a basis of the fan topology whose elements
can not be covered by strictly smaller open sets. In fact, let (Fσ)σ∈∆ be a collection
of abelian groups, say, together with “restriction” homomorphisms %σ

τ :Fσ → Fτ for
τ � σ, i.e., we require %σ

σ = id and %τ
γ ◦%σ

τ = %σ
γ for γ � τ � σ. Then there is a unique

sheaf F on the fan space ∆ such that its group of sections F(σ) := F
(
〈σ〉

)
agrees

with Fσ. The sheaf F is flabby if and only if each restriction map %σ
∂σ:F(σ) → F(∂σ)

is surjective. – In the same spirit of ideas, sheaves on a fan space occur in the work
of Bressler and Lunts [BreLu2], Brion [Bri2] and McConnell [MCo].

In particular, we consider the sheaf A• of graded polynomial algebras on ∆
determined by A•(σ) := A•σ, the homomorphism %σ

τ :A•σ → A•τ being the restriction
of functions on σ to the face τ � σ. The set of sections A•(Λ) on a subfan Λ � ∆
constitutes the algebra of (Λ-) piecewise polynomial functions on |Λ| in a natural
way.

If F• is a sheaf of A•-modules, then every F•(Λ) also is an A•-module, and if
F•(σ) is finitely generated for every cone σ ∈ ∆, then so is F(Λ) for every subfan
Λ � ∆: This is an immediate consequence of the facts that A• is a noetherian ring
and F•(Λ), a submodule of

⊕
σ∈Λmax F•(σ).

For notational convenience, we often write

F •Λ := F•(Λ) and F •σ := F•(σ) ;

8
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more generally, for a pair of subfans (Λ,Λ0), we define

F •(Λ,Λ0)
:= ker(%Λ

Λ0
:F •Λ −→ F •Λ0

) ,

the submodule of sections on Λ vanishing on Λ0. In particular, for a purely n-
dimensional fan ∆, we obtain in that way the module

F •(∆,∂∆) := ker(%∆
∂∆:F •∆ −→ F •∂∆)

of sections over ∆ with “compact supports”.

To a sheaf F• of A•-modules, we may associate the presheaf of graded R•-
modules given by the assignment Λ 7→ F•(Λ). The associated sheaf F•

satisfies the
equality F•

(σ) = F•(σ) on the basic open sets. This fact does not carry over to
an arbitrary open set, i.e., the above presheaf need not be a sheaf. As an example,
consider a complete simplicial rational fan ∆. Then A•

is the constant sheaf R•

on ∆, so A•
(∆) ∼= R•, while A

•

∆ := A•(∆) ∼= H•(X∆) has a non-vanishing weight
subspace in degree 2n since the compact toric variety X∆ satisfies H2n(X∆) 6= 0.

0.D Fan constructions associated with a cone: In addition to the affine fan 〈σ〉
and the boundary fan ∂σ associated with a cone σ, we need two more constructions.
Firstly, if σ belongs to a fan ∆, we consider the star

st∆(σ) := {γ ∈ ∆ ; σ � γ}

of σ in ∆. This set is not a subfan of ∆ – we note in passing that it is the closure of
the one-point set {σ} in the fan topology –, but its image

∆σ := p
(
st∆(σ)

)
= {p(γ) ; σ � γ}

under the quotient projection p:V → V/Vσ is a fan in V/Vσ, called the “transversal
fan” of σ in ∆.

Secondly, let σ be a non-zero cone. Fixing an auxiliary line ` in V passing
through the relative interior σ̊, we consider the “flattened boundary fan” Λσ = Λσ(`)
that is obtained by projecting the boundary fan ∂σ onto the quotient vector space
Vσ/`: If π:Vσ → Vσ/` is the quotient projection, then we set

(0.D.1) Λσ := π(∂σ) = {π(τ) ; τ ≺ σ} .

This fan is complete. Restricting the projection π to the support of ∂σ yields a
(piecewise linear) homeomorphism

π||∂σ|: |∂σ| −→ |Λσ| = Vσ/`

that in turn induces a homeomorphism ∂σ → Λσ of fan spaces; in particular, the
combinatorial type of Λσ is independent of the choice of `. Any linear function T ∈ A2

σ

not identically vanishing on ` provides an isomorphism `
∼=−→ R; furthermore, it gives

9
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rise to a decomposition Vσ = ker(T )⊕` and hence, to an isomorphism ker(T ) ∼= Vσ/`.
Identifying Vσ and (Vσ/`)×R via these isomorphisms yields a natural identification

A•σ = B•
σ[T ] ,

where

(0.D.2) B•
σ := π∗

(
S•

(
(Vσ/`)∗

))
⊂ A•σ

is the algebra of polynomial functions on Vσ that are constant along parallels to `.
Moreover, the support |∂σ| of the boundary fan is the graph of the strictly convex
Λσ-piecewise linear function

(0.D.3) f := T ◦ (π||∂σ|)−1:Vσ/`→ R .

On the other hand, for a complete fan Λ in a vector space W and a strictly
convex Λ-piecewise linear function f :W → R, the convex hull γ of the graph Γf in
W ×R is a cone with boundary ∂γ = Γf .

1. Minimal Extension Sheaves

The investigation of a “virtual” intersection cohomology theory for arbitrary fans is
couched in terms of a certain class of sheaves on fans called minimal extension sheaves.
In this section, we introduce that notion and study some elementary properties of
such sheaves.

1.1 Definition. A sheaf E• of graded A•-modules on a fan ∆ is called a minimal

extension sheaf (of R•) if it satisfies the following conditions:

(N) Normalization: One has E•
o
∼= A•o = R• for the zero cone o.

(PF) Pointwise Freeness: For each cone σ ∈ ∆, the module E•
σ is free over A•σ.

(LME)Local Minimal Extension mod m: For each cone σ ∈ ∆ \ {o}, the re-
striction mapping

%σ := %σ
∂σ:E•

σ −→ E•
∂σ

induces an isomorphism
%σ:E

•

σ

∼=−→ E
•

∂σ

of graded real vector spaces.

The above condition (LME) implies that E• is minimal in the set of all flabby
sheaves of graded A•-modules satisfying conditions (N) and (PF), whence the name
“minimal extension sheaf”.

1.2 Remark. Let E• be a minimal extension sheaf on a fan ∆.

i) The sheaf E• is flabby and vanishes in odd degrees.

10
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ii) For each subfan Λ � ∆, the A•-module E•
Λ is finitely generated.

iii) For each cone σ ∈ ∆, there is an isomorphim of graded A•σ-modules

(1.2.1) E•
σ
∼= A•σ ⊗R E

•

σ .

Proof: (i) and (ii): By the results of 0.B, condition (LME) implies that %σ is surjective
for each cone σ ∈ ∆; hence, 0.C asserts flabbiness. To prove finite generation, we
proceed by induction. Let us assume that E•

τ is finitely generated for dim τ ≤ k, then
so is E•

Λ for each subfan Λ � ∆≤k, see 0.C. In particular, if σ is a cone of dimension
k+1, then E•

∂σ is finitely generated, whence E
•

σ
∼= E

•

∂σ is finite-dimensional, and thus
the free A•σ-module E•

σ is finitely generated. Now an application of 0.C yields (ii).
Since A• only lives in even degrees, the obvious R•-splitting F • = F even ⊕ F odd of
a graded A•-module actually is a decomposition into graded A•-submodules. Hence,
a finitely generated A•-module F • vanishes in odd degrees if and only if F

•
does.

Thus, we may achieve the proof of (i) by induction over the skeleta of ∆ as above.

(iii) The isomorphism (1.2.1) is an immediate consequence of the results quoted
in 0.B since the A•σ-module E•

σ is free and finitely generated.

On every fan ∆, a minimal extension sheaf exists, it can be constructed recur-
sively, and it is unique up to isomorphism; hence, we may speak of the minimal
extension sheaf E• = ∆E• of ∆:

1.3 Proposition (Existence and Uniqueness of Minimal Extension Sheaves):
On every fan ∆, there exists a minimal extension sheaf E•; it is unique up to an iso-
morphism of graded A•-modules. More precisely, for any two such sheaves E• and F•

on ∆, every isomorphism E•
o
∼= F •o extends to an isomorphism ϕ: E•

∼=−→ F• of graded
A•-modules.

As to the uniqueness of ϕ, see Remark 1.8, (iii).

Proof: For the existence, we define the sheaf E• inductively on the k-skeleton sub-
fans ∆≤k, starting with E•

o := R• for k = 0. For k > 0, we assume that E• has been
defined on ∆<k; in particular, E•

∂σ exists for every cone σ ∈ ∆k. It thus suffices to
define E•

σ, together with a restriction homomorphism E•
σ → E•

∂σ. To that end, we
fix an R•-linear section s:E

•

∂σ → E•
∂σ of the residue class map E•

∂σ → E
•

∂σ that is
homogeneous of degree zero. According to (1.2.1), we set

(1.3.1) E•
σ := A•σ ⊗RE

•

∂σ and %σ
∂σ:E•

σ = A•σ ⊗RE
•

∂σ
1⊗s−→ A•σ ⊗RE

•
∂σ −→ E•

∂σ .

For the uniqueness of minimal extension sheaves up to isomorphism, we use
the same induction pattern and show how a given isomorphism ϕ: E• → F• of such
sheaves on ∆<k may be extended to ∆≤k. It suffices to verify that, for each cone σ ∈
∆k, there is a lifting of ϕ∂σ:E•

∂σ

∼=−→ F •∂σ to an isomorphism ϕσ:E•
σ

∼=−→ F •σ . Using

11
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the results recalled in section 0.B, the existence of such a lifting follows easily from
the properties of graded A•σ-modules: We choose a homogeneous basis (e1, . . . , er)
of the free A•σ-module E•

σ. Since F• is a flabby sheaf, the images ϕ∂σ(ei|∂σ) in F •∂σ

can be extended to homogeneous sections f1, . . . , fr in F •σ with deg ej = deg fj . The
induced restriction isomorphism F

•

σ

∼=−→ F
•

∂σ maps the residue classes f1, . . . , fr to
a basis of F

•

∂σ. It is immediate that these sections f1, . . . , fr form a basis of the free
A•σ-module F •σ , and that ei 7→ fi defines a lifting ϕσ:E•

σ

∼=−→ F •σ of ϕ∂σ.

Simplicial fans are easily characterized in terms of minimal extension sheaves:

1.4 Proposition: The following conditions for a fan ∆ are equivalent:

i) ∆ is simplicial,

ii) A• is a minimal extension sheaf on ∆.

Proof: “(ii) =⇒ (i)” Assuming that A• is a minimal extension sheaf, we show by
induction on the dimension d for each cone σ ∈ ∆d that the number k of its rays
equals d, i.e., that σ is simplicial. This is always true for d ≤ 2. As induction
hypothesis, we assume that the boundary fan ∂σ is simplicial. On each ray of σ,
we choose a non-zero vector vi. Then there exist unique piecewise linear functions
fi ∈ A2

∂σ with fi(vj) = δij for i, j = 1, . . . , k. These functions f1, . . . , fk are linearly
independent over R, whence dimRA

2
∂σ ≥ k.

We proceed to prove the equality dimRA
2
∂σ = dimRA

2
σ = d, thus obtaining

the inequality k ≤ d that yields (i). Since A• is a minimal extension sheaf, the
induced restriction homomorphism A

•

σ → A
•

∂σ is an isomorphism. From A
•

σ = R•,
we conclude A

2

σ = 0 and thus A
2

∂σ = 0, i.e., A2
∂σ is the homogeneous component

of degree 2 in the graded module mA•∂σ. That component obviously is nothing but
A2 · A0

∂σ = A2|∂σ
∼= A2

σ|∂σ. Hence, k ≤ dimA2
∂σ = dimA2

σ|∂σ ≤ dimA2
σ = d, while

d ≤ k is obvious.

“(i) =⇒ (ii)”: We again proceed by induction on the dimension d, proving that
for any simplicial cone σ with dimσ = d, a minimal extension sheaf E• on 〈σ〉 in a
natural manner is isomorphic to the sheaf A•. The case d = 0 being immediate, let
us first remark that a simplicial cone is the sum σ = %+τ of any facet τ ≺1 σ and the
remaining ray %. The decomposition Vσ = V% ⊕ Vτ provides projections p:Vσ → V%

and q:Vσ → Vτ and thus subalgebras

(1.4.1) D•
% := p∗(S•(V ∗

% )) and D•
τ := q∗(S•(V ∗

τ ))

of A•σ, together with an isomorphism

(1.4.2) A•σ
∼= D•

% ⊗R D•
τ .

As the facet τ is simplicial and thus E•
τ
∼= D•

τ holds by induction hypothesis,

12
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Lemma 1.5 below yields isomorphisms

E•
σ
∼= A•σ ⊗D•τ E

•
τ
∼= A•σ ⊗D•τ D

•
τ = A•σ .

1.5 Lemma. If a cone σ is the sum %+ τ of a facet τ and a ray %, then the minimal
extension sheaf E• on 〈σ〉 satisfies in a natural way

E•
σ
∼= A•σ ⊗D•τ

E•
τ
∼= D•

% ⊗R E•
τ ,

using an isomorphism as in (1.4.2). In particular, the restriction homomorphism
E•

σ → E•
τ induces an isomorphism E

•

σ
∼= E

•

τ of graded vector spaces.

Proof: We use induction on dimσ. For a proper face γ ≺ τ , we write γ̂ := %+ γ ≺ σ;
furthermore, with the projection qγ :Vγ̂ = V% ⊕ Vγ → Vγ and the subalgebra D•

γ :=
q∗γ(A•γ) of A•γ̂ , we have A•γ̂ ∼= D•

% ⊗R D•
γ . By induction hypothesis, there are natural

isomorphisms E•
γ̂
∼= A•γ̂ ⊗D•γ

E•
γ
∼= D•

% ⊗R E•
γ . With a non-zero linear form T ∈ A2

σ

that vanishes on Vτ , we may write D•
% = R[T ] and thus

A•σ = D•
τ [T ] , A•γ̂ = D•

γ [T ] and E•
γ̂
∼= A•γ̂ ⊗D•γ E

•
γ = E•

γ [T ] = E•
γ ⊕ TE•

γ [T ] .

Since ∂σ = 〈τ〉 ∪ {γ̂ ; γ ≺ τ}, there is an isomorphism E•
∂σ

∼= E•
τ ⊕ TE•

∂τ [T ].
To prove the isomorphism E•

σ
∼= A•σ ⊗D•τ E

•
τ of the assertion, we first note that

the A•σ-module on the right hand side is free. It thus suffices to show that the
restriction homomorphism A•σ ⊗D•τ E

•
τ → E•

∂σ induces an isomorphism modulo m.
This homomorphism agrees with the natural map

A•σ ⊗D•τ
E•

τ
∼= E•

τ [T ] = E•
τ ⊕ TE•

τ [T ] −→ E•
τ ⊕ TE•

∂τ [T ] .

It is surjective, since E•
τ → E•

∂τ is; hence, the restriction modulo m is surjective, too;
furthermore, it is injective since the composition E•

τ [T ] → E•
τ ⊕ TE•

∂τ [T ] → E•
τ even

is an isomorphism modulo m.

If ∆ is an N -rational fan for a lattice N ⊂ V of rank n = dimV , one associates
to ∆ a toric variety X∆ with the action of the algebraic torus T := N ⊗Z C∗ ∼=
(C∗)n. Let IH•

T(X∆) denote the equivariant intersection cohomology of X∆ with
real coefficients. The following theorem, proved in [BBFK], has been the starting
point to investigate minimal extension sheaves:

1.6 Theorem. Let ∆ be a rational fan and E• a minimal extension sheaf on ∆.

i) The presheaf
IH•

T: Λ 7−→ IH•
T(XΛ)

is a minimal extension sheaf on the fan space ∆.

ii) For each cone σ ∈ ∆, the (non-equivariant) intersection cohomology sheaf IH•

of X∆ is constant along the corresponding T-orbit, and its stalks are isomorphic
to E

•

σ.

13
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iii) If ∆ is complete or is affine of dimension n, then one has

IH•(X∆) ∼= E
•

∆ .

Statement (iii) will be generalized in Theorem 4.3 to a considerably larger class
of rational fans, called “quasi-convex”.

For a non-zero rational cone σ, the vanishing axiom for intersection cohomology
together with statement (ii) yields E

q

σ = 0 for q ≥ dimσ. This fact turns out to be a
cornerstone in the recursive computation of intersection Betti numbers in section 5.
In the non-rational case, we have to state it as a condition; we conjecture that it
holds in general:

1.7 Vanishing Condition V(σ): A non-zero cone σ satisfies the condition V(σ) if

E
q

σ = 0 for q ≥ dimσ

holds. A fan ∆ satisfies the condition V(∆) if V(σ) holds for each non-zero cone
σ ∈ ∆.

We add some comments on that condition. Note that the statements (ii) and (iii)
in the following remark are not needed for later results; in particular, the results
cited in their proof do not depend on these statements. – Statement (iii) has been
influenced by a remark of Tom Braden.

1.8 Remark. i) If a fan ∆ is simplicial or rational, then condition V(∆) is satisfied.

ii) Condition V(σ) is equivalent to

Eq
(σ,∂σ) = {0} for q ≤ dimσ .

iii) If ∆ satisfies V(∆), then every homomorphism E• → F• between minimal ex-
tension sheaves on ∆ is determined by the homomorphism R• ∼= E•

o → F •o
∼= R•.

Proof: (i) The rational case has been mentioned above; for the simplicial case, see
Proposition 1.4.

(ii) Replacing V with Vσ if necessary, we may assume dimσ = n; hence, the
affine fan 〈σ〉 is “quasi-convex” (see Theorem 4.4). According to Corollary 6.9, there
exists an isomorphism of vector spaces E

q

σ
∼= E

2n−q

(σ,∂σ). Hence, condition V(σ) holds

if and only if E
≤n

(σ,∂σ) = 0. It remains to show that this is equivalent to the vanishing
E≤n

(σ,∂σ) = 0. To that end, we may apply the following fact: Let F • 6= 0 be a finitely

generated A•-module; if r <∞ is minimal with F r 6= 0, then F
r ∼= F r and F

<r
= 0.

(iii) We use the terminology of the proof of Proposition 1.3: We have to show
that a homomorphism ϕ∂σ:E•

∂σ → F •∂σ extends in a unique way to a homomorphism
ϕσ:E•

σ → F •σ . Statement (ii) implies that the restriction homomorphisms Eq
σ → Eq

∂σ

14
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and F q
σ → F q

∂σ are isomorphisms for q ≤ dimσ. Since, as a consequence of V(σ), the
A•-modules E•

σ and F •σ can be generated by homogeneous elements of degree below
dimσ, the assertion follows.

2. Combinatorial Pure Sheaves

In the case of a rational fan, “the” minimal extension sheaf is represented by the
equivariant intersection cohomology sheaf (see Theorem 1.6) and thus can be consid-
ered as an object of a class of “pure” sheaves. This observation holds also for general
minimal extension sheaves, regardless of rationality. The simple objects in this class
are generalizations of minimal extension sheaves. We introduce such objects and
prove an analogue to the decomposition theorem in intersection cohomology.

2.1 Definition: A (combinatorially) pure sheaf on a fan space ∆ is a flabby sheaf F•

of graded A•-modules such that, for each cone σ ∈ ∆, the A•σ-module F •σ is finitely
generated and free.

2.2 Remark: As a consequence of the results in section 0.B and 0.C, we may
replace flabbiness with the following “local” requirement: For each cone σ ∈ ∆, the
restriction homomorphism %σ

∂σ:F •σ → F •∂σ induces a surjective map F
•

σ → F
•

∂σ.

Pure sheaves are built up from simple objects, which are generalized minimal
extension sheaves:

(Combinatorially) Simple Sheaves: For each cone σ ∈ ∆, we construct induc-
tively a “simple” sheaf σL• on ∆ as follows: For a cone τ ∈ ∆ with dim τ ≤ dimσ,
we set

σL
•
τ := σL•(τ) :=

{
A•σ if τ = σ,
0 otherwise.

If σL• has been defined on ∆≤m for some m ≥ dimσ, then for each τ ∈ ∆m+1, we
set

σL
•
τ := A•τ ⊗R σL

•

∂τ

and define the restriction map %τ
∂τ just as in (1.3.1).

Let us collect some useful facts about these sheaves.

2.3 Remark: i) The simple sheaf F• := σL• is pure; it is determined by the following
properties:

a) F
•

σ
∼= R•,

b) for each cone τ 6= σ, the reduced restriction map F
•

τ → F
•

∂τ is an isomor-
phism.

ii) The sheaf σL• vanishes outside of st∆(σ) and can be obtained from a minimal
extension sheaf ∆σ

E• on the transversal fan ∆σ in the following way: We choose a
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decomposition V = Vσ ⊕W , and let D•
W ⊂ A• denote the image of S•

(
(V/Vσ)∗

)
in

A• and D•
σ, the image of S•(V ∗

σ ) with respect to the projection with kernel W . Then
A• ∼= D•

σ ⊗R D•
W , and on st(σ), there is a decomposition

σL• ∼= D•
σ ⊗R (∆σ

E•) ,

where we identify ∆σ with st(σ).

iii) For the zero cone o, the simple sheaf oL• is the minimal extension sheaf of ∆.

iv) If ∆ is a rational fan and Y ⊂ X∆ the orbit closure associated to a cone σ ∈ ∆,
then the presheaf

Y IH•
T : Λ 7→ IH•

T(Y ∩XΛ)

on ∆ is a sheaf isomorphic to σL•.

As main result of this section, we provide a Decomposition Formula for pure
sheaves.

2.4 Algebraic Decomposition Theorem: Every pure sheaf F• on ∆ admits a
direct sum decomposition

(2.4.1) F• ∼=
⊕
σ∈∆

(
σL• ⊗R K•

σ

)
with K•

σ := K•
σ(F•) := ker ( %σ

∂σ:F
•

σ → F
•

∂σ), a finite dimensional graded vector
space.

Since a finite dimensional graded vector space K• has a unique representation
in the form K• =

⊕
i R

•[−`i]ni , the decomposition (2.4.1) may be written as

F• ∼=
⊕

i

σi
L•[−`i]ni ,

which is the “classical” version of the Decomposition Theorem.

Proof: The following result evidently allows an inductive construction of the decom-
position (2.4.1):

Let F• be a pure sheaf on ∆. For each cone σ ∈ ∆ of minimal dimension with
F •σ 6= 0, there is a decomposition F• = G•⊕H• as a direct sum of pure A•-submodules
G• ∼= σL• ⊗R F

•

σ and H• (where H•
σ = 0).

We construct the decomposition recursively on each skeleton ∆≤m, starting with
m = dimσ: We set K•

σ := F
•

σ and

G•(τ) :=
{
F •σ

∼= A•σ ⊗R K•
σ if τ = σ,

0 otherwise, and H•(τ) :=
{

0 if τ = σ,
F•(τ) otherwise.

We now assume that we have constructed the decomposition on ∆≤m. In order to ex-
tend it to ∆≤m+1, it suffices to fix a cone τ ∈ ∆m+1 and to extend the decomposition
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from ∂τ to the affine fan 〈τ〉. By induction hypothesis, there exists a commutative
diagram

F •τ →→ F •∂τ
∼= G•

∂τ ⊕H•
∂τy y y

K•
τ ↪→ F

•

τ →→ F
•

∂τ
∼= G

•

∂τ ⊕H
•

∂τ

.

We choose a first decomposition F
•

τ = K•
τ ⊕ N• ⊕ M• satisfying N• ∼= G

•

∂τ

and M• ∼= H
•

∂τ . We may then lift it to a decomposition F •τ = G•
τ ⊕ H•

τ into free
A•τ -submodules such that G

•

τ = N• and H
•

τ = K•
τ ⊕M• as well as G•

τ |∂τ = G•
∂τ and

H•
τ |∂τ = H•

∂τ .

2.5 Geometric Decomposition Theorem: Let π: ∆̌ → ∆ be a refinement map
of fans with minimal extension sheaves Ě• and E•, respectively. Then there is a
decomposition

π∗(Ě•) ∼= E• ⊕
⊕

σ∈∆≥2

σL• ⊗R K•
σ

of A•-modules, where the K•
σ are (positively) graded vector spaces, and the “correction

terms” are supported on ∆≥2.

Proof: For an application of the Algebraic Decomposition Theorem 2.4, we have
to verify that the flabby sheaf π∗(Ě•) is pure. We still need to know that the A•σ-
modules π∗(Ě•)(σ) are free. If σ is an n-dimensional cone, then the affine fan 〈σ〉 is
quasi-convex, see section 4. According to Corollary 4.7, the same holds true for the
refinement σ̌ := π−1(〈σ〉) � ∆̌; hence, by Theorem 4.3, Ěσ̌ is a free A•-module. For a
cone of positive codimension, we may go over to Vσ. – The fact that π∗(Ě•) ∼= E• ∼= A•

on ∆≤1 provides the condition dimσ ≥ 2, while K<0
σ = 0 is an obvious consequence

of the corresponding fact for π∗(Ě•).

2.6 Corollary: Let π: ∆̌ → ∆ be a simplicial refinement of ∆. Then the minimal
extension sheaf E• on ∆ can be embedded as a direct factor into the sheaf of functions
on |∆| that are ∆̌-piecewise polynomial.

Proof: According to Proposition 1.4, the sheaf Ǎ• is a minimal extension sheaf on ∆̌.
By the Geometric Decomposition Theorem 2.5, we know that E• is a direct subsheaf
of π∗(Ǎ•), which is the sheaf of functions on |∆| that are ∆̌-piecewise polynomial.

We conclude this section with an application of the Algebraic Decomposition
Theorem 2.4 to Poincaré polynomials

P∆(t) :=
<∞∑
q≥0

dim E
2q

∆ · t2q , Pσ(t) :=
<∞∑
q≥0

dim E
2q

σ · t2q

which has been communicated to us by Tom Braden (cf. also [BrMPh]):
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2.7 Theorem (Kalai’s Conjecture): For an affine fan ∆ := 〈σ〉 and a face τ � σ

with transversal fan ∆τ , there is a coefficientwise inequality of polynomials

Pσ ≥ Pτ · P∆τ .

Proof. Let E• denote the minimal extension sheaf on ∆ and F•, the trivial extension
of E•|st(τ) by zero to ∆. For a subfan Λ of ∆, we have F •Λ = E•

Λ0
, where Λ0 � Λ is

the subfan generated by the cones in Λ ∩ st(τ). In particular, we see that F• is a
pure sheaf and hence, according to the Algebraic Decomposition Theorem 2.4, may
be written in the form

F• ∼= (τL• ⊗K•
τ )⊕ . . . .

Thus, if we denote P (K•) the Poincaré polynomial of the graded vector space K•,
we obtain the inequality

P (F
•

∆) ≥ P (τL
•

∆ ⊗K•
τ ) = P (τL

•

∆) · P (K•
τ ) .

The equalities K•
τ = E

•

τ and F
•

∆ = E
•

σ are readily checked, so that P (Kτ ) = Pτ and
P (F

•

∆) = Pσ holds. In the notation of 2.3 (ii), we have

A•σ
∼= D•

τ ⊗R D•
W , τL

•
∆
∼= D•

τ ⊗R E•
∆τ

,

i.e., the Poincaré polynomial of τL
•

∆
∼= E

•

∆τ
coincides with P∆τ

.

3. Cellular Čech Cohomology

In this section, we introduce and discuss a “cellular” cochain complex associated with
a sheaf on a fan and the corresponding cohomology. This theory will later be used
as a principal technical tool to reach one of the main aims of the present article,
namely, to characterize those fans ∆ for which the A•-module E•

∆ of global sections
of a minimal extension sheaf E• on ∆ is free.

3.1 The cellular cochain complex. To a sheaf F of abelian groups on a fan
space ∆, we associate a cellular cochain complex C•(∆,F): The cochain groups are

Ck(∆,F) :=
⊕

dim σ=n−k

F(σ) .

To define the coboundary operator δk:Ck → Ck+1, we first fix, for each cone σ ∈ ∆,
an orientation or(σ) of Vσ such that or|∆n is a constant function. To each facet
τ ≺1 σ, we then assign the orientation coefficient orσ

τ := 1 if the orientation of Vτ ,
followed by some inward pointing vector, coincides with the orientation of Vσ, and
orσ

τ := −1 otherwise. We then set

δ(f)τ :=
∑

σ�1τ

orσ
τ fσ|τ for f = (fσ) ∈ Ck(∆,F) and τ ∈ ∆n−k−1 .
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For a minimal extension sheaf E• on ∆, the complex C•(∆, E•) is, up to a
rearrangement of indices, a minimal complex in the sense of Bernstein and Lunts.
We shall come back to that at the end of section 4.

More generally, we have to consider relative cellular cochain complexes with
respect to subfans.

3.2 Definition: For a subfan Λ of ∆ and a sheaf F on the fan space ∆, we set

C•(∆,Λ;F) := C•(∆;F)/C•(Λ;F) and Hq(∆,Λ;F) := Hq(C•(∆,Λ;F))

with the induced coboundary operator δ• := δ•(∆,Λ;F). If ∆ is purely n-dimensional,
Λ a purely (n − 1)-dimensional subfan of ∂∆, and Λc its “complementary” subfan
generated by the cones in (∂∆)n−1 \ Λ, then the restriction of sections induces an
augmented complex

C̃•(∆,Λ;F) : 0 → F(∆,Λc)
δ−1

−→ C0(∆,Λ;F) δ0

−→ . . . −→ Cn(∆,Λ;F) → 0

with cohomology H̃q(∆,Λ;F) := Hq
(
C̃•(∆,Λ;F)

)
.

In fact, we need only the two cases Λ = ∂∆ and Λ = ∅, where the complementary
subfan is Λc = ∅ resp. Λc = ∂∆. We mainly are interested in the case where F is an
A•-module. Then, the cohomology H̃q(∆,Λ;F) is an A•-module. – In the augmented
situation described above, we note that C0(Λ;F) = 0 and hence C0(∆,Λ;F) =
C0(∆;F) holds.

For the constant sheaf F = R, we want to compare the cohomology H̃•(∆, ∂∆;R)
with the usual real singular homology of a “spherical” cell complex associated with a
purely n-dimensional fan ∆. To that end, we fix a euclidean norm on V (and hence
on V/Vσ for every cone σ ∈ ∆); let SV ⊂ V be its unit sphere, and for a subfan
Λ � ∆, let

SΛ := |Λ| ∩ SV .

For each non-zero cone σ in V , the subset Sσ := σ ∩ SV is a closed cell of dimension
dimσ − 1. Hence, the collection (Sσ)σ∈∆\{o} is a cell decomposition of S∆, and the
corresponding (augmented) “homological” complex C•(S∆;R) of cellular chains with
real coefficients essentially coincides with the cochain complex C•(∆;R): We have
Cq(∆;R) = Cn−1−q(S∆;R) and δq = ∂n−1−q for q ≤ n− 1.

Let us call a facet-connected component of ∆ each purely n-dimensional subfan Λ
being maximal with the property that every two n-dimensional cones can be joined
by a chain of n-dimensional cones in Λ where two consecutive ones meet in a facet.

3.3 Remark: Let ∆ be a purely n-dimensional fan.

(i) If ∆ is complete or n ≤ 1, then H̃•(∆, ∂∆;R) = 0.
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(ii) If ∆ is not complete and n ≥ 2, then

H̃q(∆, ∂∆;R) ∼= Hn−1−q(S∆, S∂∆;R) for q > 0 ;

in particular, H̃q(∆, ∂∆;R) = 0 holds for q ≥ n− 1.

(iii) If s is the number of facet-connected components of ∆, then

H̃0(∆, ∂∆;R) ∼= Rs−1 .

Proof: The case n ≤ 1 is straightforward. For n ≥ 2, the cohomology is computed
via cellular homology; in the complete case, one has to use the fact that such a fan
is facet-connected and that there is an isomorphism

H̃q(∆;R) ∼= H̃n−1−q(SV ;R) for n ≥ 2 and q ≥ 1 .

For iii), we note that ∆ is connected; hence, the global sections of the constant sheaf
R form a one-dimensional vector space.

In order to study the cellular cohomology of a flabby sheaf F of real vector spaces
on ∆, we want to write such a sheaf as a direct sum of simpler sheaves: To a cone σ
in ∆, we associate its characteristic sheaf σJ , i.e.,

σJ (Λ) :=
{

R if Λ 3 σ,
0 otherwise,

while the restriction homomorphisms are idR or 0.

The following lemma is an elementary analogue of the Algebraic Decomposition
Theorem 2.4.

3.4 Lemma: Every flabby sheaf F of real vector spaces on ∆ admits a direct sum
decomposition

F ∼=
⊕
σ∈∆

σJ ⊗R Kσ

with the vector spaces Kσ := ker
(
%σ

∂σ:F(σ) → F(∂σ)
)
.

Proof: The following arguments are analoguous to those in the proof of the Algebraic
Decomposition Theorem 2.4. Evidently, it suffices to decompose such a flabby sheaf F
as a direct sum

(3.4.1) F = G ⊕H

of flabby subsheaves G and H, where G ∼= σJ ⊗ Kσ and H(σ) = 0 for some cone
σ ∈ ∆. We then may use induction on the number of cones τ ∈ ∆, such that
F(τ) 6= 0.

For (3.4.1), let σ be a cone of minimal dimension, say d, with F(σ) 6= 0. We
construct the subsheaves G and H on the skeleton ∆≤d as follows:

G(τ) :=
{F(σ) = Kσ if τ = σ,

0 otherwise
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while

H(τ) :=
{

0 if τ = σ,
F(τ) otherwise.

We now suppose that the decomposition (3.4.1) has been constructed on ∆≤m. Let
τ be a cone of dimension m+ 1. In particular, there is a decomposition

F(∂τ) = G(∂τ)⊕H(∂τ) .

Since F is flabby, the restriction map %τ
∂τ :F(τ) → F(∂τ) is surjective. We can find

a decomposition F(τ) = U ⊕W into complementary subspaces U,W ⊂ F(τ) such
that %τ

∂τ induces an isomorphism U
∼=−→ G(∂τ) and an epimorphism W →→ H(∂τ).

Now we set G(τ) := U and H(τ) := W . In that manner, we can define G and H for
all (m+ 1)-dimensional cones and thus on ∆≤m+1.

Cellular cohomology commutes with direct sums and the tensor product with a
fixed vector space. Hence, from Lemma 3.4 stems an isomorphism of graded vector
spaces

(3.4.2) H̃•(∆, ∂∆;F) ∼=
⊕
σ∈∆

H̃•(∆, ∂∆; σJ )⊗R Kσ .

We thus are led to compute the cohomology of characteristic sheaves.

3.5 Remark: For a cone σ ∈ ∆, its transversal fan ∆σ, and the characteristic
sheaf σJ , there are isomorphisms

H̃•(∆; σJ ) ∼= H̃•(∆σ;R) and H̃•(∆, ∂∆; σJ ) ∼= H̃•(∆σ, ∂∆σ;R) .

In particular, Remark 3.3 ii) implies

H̃q(∆, ∂∆; σJ ) = 0 for q ≥ n− dimσ − 1

for each cone σ ∈ ∆.

4. Quasi-Convex Fans

In this section, we study those fans ∆ for which the A•-module E•
∆ of global sections of

a minimal extension sheaf E• on ∆ is free. The great interest in that freeness condition
is due to the “Künneth formula” E•

∆
∼= A• ⊗R• E

•

∆, which holds in that case. The
name “quasi-convex” introduced below for such fans is motivated by Theorem 4.4.
Quasi-convexity allows us in sections 5 and 6 first to compute virtual intersection
Betti numbers and Poincaré duality on the “equivariant” level E•

∆, and then to pass to
“ordinary” (virtual) intersection cohomology E

•

∆. We give various characterizations
of quasi-convex fans: We first formulate the main result of this section, then restate
it in topological terms, and then proceed to the proof.
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4.1 Definition: A fan ∆ is called quasi-convex if the A•-module E•
∆ is free.

Quasi-convex fans are known to be purely n-dimensional, see [BBFK; 6.1]. In
the rational case, quasi-convexity can be reformulated in terms of the associated toric
variety:

4.2 Theorem: A rational fan ∆ is quasi-convex if and only if the intersection
cohomology of the associated toric variety X∆ vanishes in odd degrees:

IHodd(X∆;R) :=
⊕
q≥0

IH2q+1(X∆;R) = 0 .

In that case, there exists an isomorphism IH•(X∆) ∼= E
•

∆.

Proof: See Proposition 6.1 in [BBFK].

4.3 Theorem (Characterization of Quasi-Convex Fans): For a purely n-
dimensional fan ∆ and its minimal extension sheaf E•, the following statements are
equivalent:

(a) The fan ∆ is quasi-convex,

(b) H̃•(∆, ∂∆; E•) = 0,

(c) H̃•(∆σ, ∂∆σ;R) = 0 for each cone σ ∈ ∆.

We put off the proof for a while, since we first want to deduce a topological
characterization of quasi-convex fans. In its proof and in the subsequent lemma, we
use the following notations:

For a cone σ in a fan ∆, we set Lσ := S∆σ ⊂ (V/Vσ) and ∂Lσ := S∂∆σ ; in
particular, we have Lo = S∆. It is important to note that the cellular complex Lσ

in the (k − 1)-sphere SV/Vσ
(for k := n − dimσ) may be identified with the link at

an arbitrary point of the (n − k − 1)-dimensional stratum Sσ \ S∂σ of the stratified
space S∆, while its boundary ∂Lσ is the link of such a point in S∂σ.

4.4 Theorem: A purely n-dimensional fan ∆ is quasi-convex if and only if the
support |∂∆| of its boundary fan is a real homology manifold. In particular, ∆ is
quasi-convex if ∆ is complete or if S∆ is a closed topological (n− 1)-cell, e.g., if the
support |∆| or the complement of the support V \ |∆| are convex sets.

Proof: For a cone σ ∈ ∆ \ ∂∆, the transversal fan ∆σ is complete; thus Remark 3.3,
(i) implies H̃•(∆σ, ∂∆σ;R) = 0, which means that condition (c) in Theorem 4.3 is
satisfied for such a cone. In particular, Theorem 4.3 implies that a complete fan
is quasi-convex. It remains to discuss the cones in ∂∆. If dimσ is at least n − 1,
then again 3.3 (i) implies the corresponding vanishing condition in 4.3 (c). Hence, it
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suffices to consider cones σ ∈ (∂∆)n−k for k ≥ 2. The proof in that case is achieved
by Lemma 4.5. In fact, part (ii) of Remark 3.3 implies that

(4.4.1) H̃q(∆σ, ∂∆σ;R) ∼= Hk−1−q(Lσ, ∂Lσ;R) for q > 0 ,

while H̃0(∆σ, ∂∆σ;R) = 0 if and only if H0(∆σ, ∂∆σ;R) ∼= Hk−1(Lσ, ∂Lσ;R) = R.

4.5 Lemma: For a non-complete purely n-dimensional fan ∆, the following state-
ments are equivalent:

(i) The fan ∆ is quasi-convex.

(ii) Each cone σ in ∂∆ satisfies the following condition:

(ii)σ The pair (Lσ, ∂Lσ) is a real homology (k − 1)-cell modulo boundary for
k := n− dimσ.

(iii) Each cone σ in ∂∆ satisfies the following condition:

(iii)σ The link Lσ has the real homology of a point.

(iv) Each cone σ in ∂∆ satisfies the following condition:

(iv)σ The boundary of the link ∂Lσ has the real homology of a sphere of dimen-
sion k − 2 for k := n− dimσ.

Proof: We already have seen in (4.4.1) that condition (c) of Theorem 4.3 and state-
ment (ii) are equivalent; thus we have reduced the equivalence “(i) ⇐⇒ (ii)” to
Theorem 4.3.

In order to prove the equivalence of (ii), (iii), and (iv), we use induction on n.
The case n = 0 is vacuous, and in case n = 1, it is trivial to check that (ii), (iii), and
(iv) hold. We thus assume that the equivalence holds for every non-complete purely
d-dimensional fan with d ≤ n− 1. If we apply that to the fans ∆σ for σ ∈ ∂∆ \ {o},
we see that the condition (ii)σ is satisfied for each cone σ ∈ ∂∆ \ {o}, if and only if
(iii)σ resp. (iv)σ is. Hence it suffices to derive the equivalence of (ii)o, (iii)o and (iv)o

under one of that assumptions. We need the following result:

4.6 Lemma: Let L := Lo. If the condition (iii)σ is satisfied for each non-zero cone
σ ∈ ∂∆, then

(4.6.1) H•(L,L \ ∂L) = 0

holds.

Proof. For i = −1, . . . , n − 2, we set Ui := L \ (∂L)i, where (∂L)i is the i-skeleton
of ∂L = S∂∆. By induction on i, we show that H•(L,Ui) = 0 holds. This is evident
for i = −1, and the case i = n − 2 is what we are aiming at. For the induction
step, we use the homology sequence associated to the triple (L,Ui, Ui+1) and show
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H•(Ui, Ui+1) = 0. Let ∆′ be the following ”barycentric” subdivision of ∆: For each
cone σ ∈ ∆ \ ∂∆, we choose an additional ray %σ meeting σ̊. Then ∆′ consists of the
cones

τ + %τ1 + . . .+ %τr
, where τ ∈ ∂∆ and τ ≺1 τ1 ≺1 . . . ≺1 τr with τi ∈ ∆̊ .

Let st′(̊σ) denote the open star of Sσ̊ with respect to the cellular decomposition of L
induced by ∆′. Then, by excision, the inclusion( •⋃

σ∈(∂∆)i+2

st′(̊σ),
•⋃

σ∈(∂∆)i+2

(
st′(̊σ) \ Sσ̊

))
⊂ (Ui, Ui+1)

induces an isomorphism in homology, while

H•

( •⋃
σ∈(∂∆)i+2

st′(̊σ),
•⋃

σ∈(∂∆)i+2

(
st′(̊σ) \ Sσ̊

)) ∼=
⊕

σ∈(∂∆)i+2

H•

(
st′(̊σ), st′(̊σ) \ Sσ̊

)
.

Furthermore, there is a homeomorphism st′(̊σ) ∼= c̊(Lσ) × Sσ̊, where c̊(Lσ) denotes
the open cone over Lσ with vertex v. By the Künneth formula, we thus obtain the
first isomorphism in the chain

H•

(
st′(̊σ), st′(̊σ) \ Sσ̊

) ∼= H•(̊c(Lσ), c̊(Lσ) \ {v}) ∼= H̃•(Lσ)[−1] = 0 ;

the second one follows from the homotopy equivalences c̊(Lσ) ' v and c̊(Lσ) \ {v} '
Lσ, and the final equality from the assumption (iii)σ.

We now continue the proof of Lemma 4.5.

“(ii)o ⇐⇒ (iii)o” With L̊ := L \ ∂L, we conclude from (4.6.1) this chain of isomor-
phisms

Hq(L) ∼= Hq(L̊) ∼= Hn−1−q(SV , SV \ L̊) ∼= Hn−1−q(L, ∂L) ∼= Hn−1−q(L, ∂L)∗ ,

where the first one follows from the above lemma, the second one, from relative
Poincaré duality (see, e.g., [Sp: Thm. 6.2.17]), the third one is obtained by excision,
and the fourth one is the obvious duality.

“(iii)o =⇒ (iv)o”: We may assume n ≥ 3; we then have to show that ∂L has the same
homology as an (n − 2)-dimensional sphere. From (iii) together with the equivalent
assumption (ii) and the exact homology sequence of the pair (L, ∂L), we derive that
H̃j−1(∂L) ∼= Hj(L, ∂L) = 0 for j 6= n− 1, and Hn−2(∂L) ∼= Hn−1(L, ∂L) = R.

“(iv)o =⇒ (iii)o”: It remains to verify that the reduced homology H̃•(L) vanishes.
We set C := Sn−1 \ L̊ and look at the Mayer-Vietoris sequence

. . .→ Hq+1(Sn−1) → Hq(∂L) → Hq(L)⊕Hq(C) → Hq(Sn−1) → Hq−1(∂L) → . . .

associated to Sn−1 = L∪C. The hypothesis immediately yields H̃q(L)⊕ H̃q(C) = 0
for q ≤ n − 3, which settles the claim for these values of q. The term Hn−1(L) ⊕
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Hn−1(C) vanishes since both, L and C, are (n − 1)-dimensional cell complexes in
Sn−1 with non-empty boundary. That is obvious for L; for C, it is true since ∆
has a refinement which can be embedded into a complete fan, see 0.A. The arrow
Hn−1(Sn−1) → Hn−2(∂L) in the exact sequence under consideration is thus injective;
hence, it is even an isomorphism of one-dimensional vector spaces. This implies that
the mapping Hn−2(L) ⊕ Hn−2(C) → Hn−2(Sn−1) is injective, too, and that yields
Hn−2(L) = 0.

As a consequence, we see that quasi-convexity of a purely n-dimensional fan
depends only on the topology of its boundary:

4.7 Corollary: Let ∆ and ∆′ be purely n-dimensional fans. If their boundaries have
the same support |∂∆| = |∂∆′|, then ∆ is quasi-convex if and only if ∆′ is.

In particular, that applies to the following special cases:

i) ∆′ is a refinement of ∆,

ii) ∆ and ∆′ are “complementary” subfans, i.e., ∆ ∪∆′ is a complete fan, and ∆
and ∆′ have no n-dimensional cones in common.

We now come to the proof of Theorem 4.3:

4.8 Proof of Theorem 4.3: For convenience, we briefly recall that we have to prove
the equivalence of the following three statements for a purely n-dimensional fan ∆
and the minimal extension sheaf E• on ∆:

(a) The A•-module E•
∆ = E•(∆) is free;

(b) H̃•(∆, ∂∆; E•) = 0,

(c) H̃•(∆σ, ∂∆σ;R) = 0 for each cone σ ∈ ∆.

“(b) ⇐⇒ (c)”: If we write
E• ∼=

⊕
σ∈∆

σJ ⊗Kσ

according to Lemma 3.4, we obtain the following direct sum decomposition

H̃•(∆, ∂∆; E•) ∼=
⊕
σ∈∆

H̃•(∆σ, ∂∆σ;R)⊗Kσ

according to Remark 3.5 and the isomorphism (3.4.2). Hence it is sufficient to see
that none of the vector spaces Kσ = ker(%σ

∂σ:E•
σ → E•

∂σ) is zero: Since E•
σ is a non-

zero free A•σ-module and E•
∂σ is a torsion module (see [BBFK: 6.1]), the restriction

homomorphism %σ
∂σ never is injective.

“(b) =⇒ (a)”: We shall use the abbreviations

Cr := Cr(∆, ∂∆; E•) , Ir := im δr−1 , and Tork := TorA•

k .
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By downward induction on r, we verifiy the vanishing statement

(4.8.1) Tork(Ir,R•) = 0 for k > r .

That yields the quasi-convexity: Since I0 = E•
∆, we obtain Tor1(E•

∆,R
•) = 0; hence,

according to (0.B), the graded A•-module E•
∆ is free.

Obviously (4.8.1) holds for r = n+1. By assumption, the complex C• is acyclic;
hence, each sequence

0 −→ Ir −→ Cr −→ Ir+1 −→ 0

is exact and thus induces an exact sequence

Tork+1(Ir+1,R•) −→ Tork(Ir,R•) −→ Tork(Cr,R•) .

By induction hypothesis, its first term vanishes; thus, it suffices to verify the vanishing
of the last term for k > r: The module Cr =

⊕
dim σ=n−r E

•
σ actually is a direct sum

of shifted modules A•σ, so Tork(Cr,R•) = 0 for k > r, see (0.B.1).

“(a) =⇒ (b)” In addition to the above, we use the abbreviations

Kr := ker δr and H̃r := H̃r(∆, ∂∆; E•) = Kr/Ir .

In order to verify the vanishing of H̃• := H̃•(∆, ∂∆; E•), we choose an increasing
sequence of subspaces V0 := 0 ⊂ V1 ⊂ . . . ⊂ Vn := V such that V = Vr ⊕ Vσ

holds simultaneously for each σ ∈ ∆n−r. Then the algebras D•
r := S•((V/Vr)∗)

form a decreasing sequence of subalgebras of A•; moreover, there are isomorphisms
D•

r
∼= A•σ induced by the composed mappings D•

r ⊂ A• −→ A•σ. In particular,
each Cr =

⊕
σ∈∆n−r E•

σ is a free D•
r-module. In addition, we choose linear forms

T1, . . . , Tn in A2 such that D•
r = R[T1, . . . , Tn−r].

By induction on r, we prove the stronger statement

H̃q = 0 for q < r , and Ir is a free D•
r-module.

Since I0 = E•
∆ is free by hypothesis, the assertion holds for r = 0. So let us proceed

from r to r+ 1. The vanishing of H̃r is a consequence of the fact that its support in
Spec(D•

r) is small: According to Lemma 4.10 below, the support of H̃r is of codimen-
sion at least r + 2 in Spec(A•) and thus, considered as D•

r-module, of codimension
at least 2 in Spec(D•

r). An application of Lemma 4.9 to the exact sequence

0 −→ Ir −→ Kr −→ H̃r −→ 0

yields the vanishing H̃r = 0.

It remains to prove that I := Ir+1 = im δr is a free module over D• := D•
r+1.

By 0.B, this is equivalent to
TorD•

1 (I,R) = 0 .

Recall that D•
r = D•[T ] with T := Tn−r. Thus, the formula

(4.8.2) TorD•

k (I,R) ∼= TorD•[T ]
k (I,R[T ])
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provides the bridge to the induction hypothesis on the previous level r. The multipli-
cation by T yields an endomorphism µ := µT of R[T ] that has degree two, providing
exact sequences

(4.8.3) 0 −→ R[T ]
µ−→ R[T ] −→ R −→ 0

and

TorD•[T ]
2 (I,R) −→ TorD•[T ]

1 (I,R[T ]) ϑ−→ TorD•[T ]
1 (I,R[T ]) .

The map ϑ is a homomorphism of degree two since it is induced by the multiplication
µT . Moreover, it is injective: In the exact sequence of D•

r-modules

(4.8.4) 0 −→ Kr −→ Cr δr

−→ I −→ 0 ,

the moduleKr is isomorphic to Ir since H̃r vanishes. Hence, by induction hypothesis,
the sequence (4.8.4) is a free D•

r-resolution of I, thus yielding TorD•[T ]
2 (I,R•) =

TorD•r
2 (I,R•) = 0. – Eventually, since TorD•[T ]

1 (I,R•[T ]) ∼= TorD•

1 (I,R•) is a finite-
dimensional graded vector space, the injective endomorphism ϑ of degree two is the
zero map, whence TorD•

1 (I,R•) = 0.

We still have to state and prove the two lemmata referred to above. The first
one is a general result of commutative algebra.

4.9 Lemma: Let R be a noetherian normal integral domain and consider an exact
sequence

0 −→ Rs −→M −→ H −→ 0

of finitely generated R-modules. If M is torsion free and H non-zero, then supp(H)
is of codimension at most 1 in SpecR.

Proof: We may assume that Y := suppH is a proper subset of X := SpecR.
Hence, H is a torsion module and thus M , of rank s. Let Q be the field of frac-
tions of R. Since M is torsion-free, there is a natural monomorphism

M = M ⊗R R ↪−→ M ⊗R Q =: MQ
∼= Qs .

We may interpret the given monomorphism Rs ↪→ M as an inclusion. Hence, an
R-basis of Rs may be considered as a Q-basis of MQ, thus providing an identification
MQ = Qs.

We now fix a non-zero element h ∈ H and an inverse image m = (q1, . . . , qs) ∈
M ⊂ Qs of that element h. A prime ideal p of R lies in X \ Y if and only if the
localized module Hp vanishes, or equivalently – since localization is exact –, if and
only if the localized inclusion (Rp)s ↪→Mp is an isomorphism. Hence, p 6∈ Y implies
q1, . . . , qs ∈ Rp. Since R is normal and noetherian, the stipulation codimX(Y ) ≥ 2
would yield q1, . . . , qs ∈ R, i.e., m ∈ Rs, providing the contradiction h = 0.
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4.10 Lemma: The support of the A•-module H̃q(∆, ∂∆; E•) in Spec(A•) is of codi-
mension at least q + 2.

Proof: For a prime ideal p ⊂ A•, let H̃q
p be the localization at p of the A•-module H̃q

p .
We show that supp H̃q := {p ∈ Spec(A•) ; H̃q

p 6= 0}, the support of H̃q, is contained
in the union

(4.10.1)
⋃

σ∈∆≤n−q−2

SpecAσ

of the “linear subspaces” SpecA•σ ⊂ SpecA•. To that end, we consider a prime ideal
p ∈ Spec(A•). Since localization of A•-modules at p is an exact functor, the localized
cohomology module H̃q

p is the q-th cohomology of the complex

C̃•
p
∼= C̃•(∆, ∂∆; E•p) ,

where the “localized” sheaf E•p is determined by

E•p(τ) := E•(τ)p .

Let k = k(p) be the minimal dimension of a cone τ ∈ ∆ such that p belongs to
Spec(A•τ ). Then E•p(σ) = 0 for a cone with dimσ < k, whence in particular a
decomposition

E•p ∼=
⊕

dim σ≥k

σJ ⊗Kσ ,

see Lemma 3.4. According to (3.4.2) and Remark 3.5,

H̃q(∆, ∂∆; E•p) ∼=
⊕

dim σ≥k

H̃q(∆, ∂∆; σJ )⊗Kσ

vanishes for q ≥ n−k−1. Consequently, if p belongs to supp H̃q, then k(p) ≤ n−q−2
holds, i.e., p appears in the union (4.10.1).

Theorem 4.3 provides a characterization of quasi-convex fans in terms of acyclic-
ity of the relative cellular cochain complex. An analoguous statement holds also for
the augmented absolute cellular cochain complex

(4.11.1) 0 −→ F(∆,∂∆) −→ C0(∆;F) −→ . . . −→ Cn(∆;F) −→ 0

for the sheaf F = E• on ∆. Up to a shift, that complex turns out to be a minimal
complex in the sense of Bernstein and Lunts: In [BeLu], a complex

Z• : 0 −→ Z−n δ−n

−→ Z−n+1 δ−n+1

−→ . . .
δ−1

−→ Z0 −→ 0

of graded A•-modules is called minimal if it satisfies the following conditions:

(i) Z0 ∼= R•[n], i.e., the A•-module A•/m ∼= R• placed in degree −n;

(ii) there is a decomposition Z−d =
⊕

σ∈∆d Zσ for 0 ≤ d ≤ n;

(iii) each Zσ is a free graded A•σ-module;
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(iv) for each cone σ ∈ ∆, the differential δ maps Zσ to
⊕

τ≺1σ Zτ , so for dimσ = d,
one obtains a subcomplex

0 −→ Zσ
δ−d

σ−→
⊕
τ≺1σ

Zτ
δ−d+1

σ−→ . . . −→ Zo −→ 0 ;

(v) with Iσ := ker δ−d+1
σ , the differential δ−d

σ induces an isomorphism

δ
−d

σ : Zσ := Zσ/mZσ

∼=−→ Iσ := Iσ/mIσ

of real vector spaces.

If the fan ∆ is purely n-dimensional, then the shifted cochain complex

Z• := C•(∆, E•[n])[n] i.e., Z−i = Cn−i(∆, E•[n])

is minimal: With Zσ := E•
σ[n], conditions (i) – (iv) are immediate; condition (v)

follows from (LME) using the isomorphism Iσ ∼= E•(∂σ)[n] = E•
∂σ[n] of A•σ-modules.

The following result proves a conjecture of Bernstein and Lunts in [BeLu], p.129:

4.11 Theorem: A purely n-dimensional fan ∆ is quasi-convex if and only if the
complex C•(∆, E•) is exact in degrees q > 0 and H0(∆, E•) ∼= E•

(∆,∂∆). Specifically,
for a complete fan ∆, a minimal complex in the sense of Bernstein and Lunts is exact
except in degree −n.

Proof: We use the fact that the sheaf E• is flabby, and we profit from the proof
of the equivalence (c) ⇐⇒ (b) in Theorem 4.3: By the absolute version of (3.4.2),
the complex (4.11.1) is acyclic for the sheaf E• if and only if it is acyclic for each
characteristic sheaf σJ of σ ∈ ∆ since none of the vector spaces Kσ vanishes, see
the proof of Theorem 4.3, (c) ⇔ (b). For σ 6∈ ∂∆, the characteristic sheaf σJ has
been treated at the beginning of the proof of Theorem 4.4. For σ ∈ ∂∆, we have
σJ (∆, ∂∆) = 0, such that the absolute versions of Remark 3.5 and formula (4.4.1)
yield isomorphisms

H̃q(∆, σJ ) ∼= Hq(∆, σJ ) ∼= Hq(∆σ,R) ∼= H̃k−1−q(Lσ,R) ,

where k = codimσ and Lσ is the link of some point x ∈ S∆ ∩ σ̊. Eventually,
statement (iii) of Proposition 4.5 gives H̃•(Lσ,R) = 0.

4.12 Corollary. For a minimal extension sheaf E• on a quasi-convex fan ∆, the
A•-submodule E•

(∆,∂∆) of E•
∆ is free.

Proof: Since the absolute cellular cochain complex is acyclic, we may proceed as in
the proof of Theorem 4.3.
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5. Poincaré Polynomials

In the present section, we discuss the virtual intersection Betti numbers b2q(∆) :=
dimE

2q

∆ and b2q(∆, ∂∆) := dimE
2q

(∆,∂∆) of a quasi-convex fan ∆, where E• is a
minimal extension sheaf on ∆. It is convenient to use the language of Poincaré
polynomials.

5.1 Definition: The (equivariant) Poincaré series of a fan ∆ is the formal power
series

Q∆(t) :=
∑
q≥0

dim E2q
∆ · t2q ,

its (intersection) Poincaré polynomial is the polynomial

P∆(t) =
<∞∑
q≥0

dim E
2q

∆ · t2q =
<∞∑
q≥0

b2q(∆)t2q .

For an affine fan 〈σ〉, we simply write

Qσ := Q〈σ〉 and Pσ := P〈σ〉 .

Furthermore, for a subfan Λ � ∆, the relative Poincaré polynomial P(∆,Λ) is defined
in an analoguous manner.

We refer to P∆ as the global Poincaré polynomial of ∆, while the polynomials
Pσ for σ ∈ ∆ are called its local Poincaré polynomials.

5.2 Remark. If the fan ∆ is quasi-convex, then

Q∆(t) =
1

(1− t2)n ·P∆(t) ;

for a cone σ, that implies

Qσ(t) =
1

(1− t2)dim σ
·Pσ(t) .

Proof. For a free graded A•-module F •, the Künneth formula F • ∼= A•⊗RF
•

holds,
while the Poincaré series of a tensor product of graded vector spaces is the product of
the Poincaré series of the factors. Since QA• = 1/(1− t2)n, the first formula follows
immediately. Going over to the base ring A•σ yields the second one.

The basic idea for the computation of the virtual intersection Betti numbers is
to use a two-step procedure. In the first step, the global invariant is expressed as a
sum of local terms. In the second step, these local invariants are described in terms
of the global ones associated to lower-dimensional complete fans.
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5.3 Theorem (Local-to-Global Formula): If ∆ is a quasi-convex fan of dimen-
sion n and ∆̊ := ∆ \ ∂∆, then

P∆(t) =
∑
σ∈∆̊

(t2 − 1)n−dim σPσ(t)

and
P(∆,∂∆)(t) =

∑
σ∈∆

(t2 − 1)n−dim σPσ(t) .

Proof. The augmented cellular cochain complex

0 −→ E•
∆ −→ C0(∆, ∂∆; E•) −→ . . . −→ Cn(∆, ∂∆; E•) −→ 0

of 3.2 associated to the quasi-convex fan ∆ is acyclic by Theorem 4.3. We set

Qi(t) :=
∑
q≥0

dim Ci(∆, ∂∆; E2q) · t2q =
∑

σ∈∆̊∩∆n−i

Qσ(t) .

Then we obtain the equality

Q∆ =
n∑

i=0

(−1)iQi =
∑
σ∈∆̊

(−1)n−dim σQσ(t) .

The first assertion follows from Remark 5.2. The second formula is obtained in the
same way using the acyclicity of the complex

0 −→ E•
(∆,∂∆) −→ C0(∆, E•) −→ . . . −→ Cn(∆, E•) −→ 0 ,

see Theorem 4.11 and Corollary 4.12.

For a non-zero cone σ, in order to reduce the computation of E
•

σ to a problem in
lower dimensions, we come back to section 0.D: We choose a line ` ⊂ V intersecting
the relative interior σ̊ and consider the flattened boundary fan Λσ := π(∂σ), where
π:Vσ → Vσ/` is the quotient map. Then the direct image sheaf

(5.3.1) G• := π∗(E•|∂σ) : τ 7→ E•
(
(π|∂σ)−1(τ)

)
is a minimal extension sheaf on Λσ. We use the identification A•σ = B•

σ[T ] of (0.D.2)
and the function f ∈ A2(Λσ) of (0.D.3). If we form residue classes of the A•σ-modules
E•

σ and E•
∂σ (with respect to mA•σ ) and of the B•

σ-module G•
Λσ

(with respect to mB•σ ),
then we obtain isomorphisms of graded vector spaces

(5.3.2) E
•

σ
∼= E

•

∂σ
∼= G

•

Λσ
/(f ·G•

Λσ
) .

A first result is an estimate for the degree of the Poincaré polynomials:

5.4 Corollary: Let ∆ be a quasi-convex fan and σ, a non-zero cone.
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i) The relative Poincaré polynomial P(∆,∂∆) is monic of degree 2n; if ∆ is not
complete, then the absolute Poincaré polynomial P∆ is of degree at most 2n− 2.

ii) The “local” Poincaré polynomial Pσ is of degree at most 2 dimσ − 2.

Proof. We proceed by induction on the dimension n of ∆: If (ii) holds up to dimen-
sion n, then so does (i), see Theorem 5.3. If (i) is valid up to dimension n−1, then (ii)
holds for dimσ = n. Since this is evident for n = 1, we may assume n > 1. Going
over to the complete fan Λσ of dimension n−1, we use the isomorphism (5.3.2). Since
G

q

Λσ
= 0 holds for q > 2n − 2 according to the induction hypothesis, assertion (ii)

follows.

For the second step in the computation of Betti numbers, we have to relate the
local Poincaré polynomial Pσ to the global Poincaré polynomial PΛσ of the complete
(and thus quasi-convex) fan Λσ of dimension dimσ−1. Here the vanishing condition
V(σ) of 1.7 plays a decisive role:

5.5 Theorem (Local Recursion Formula): Let σ be a cone.

i) If σ is simplicial, then Pσ ≡ 1.

ii) If the condition V(σ) is satisfied and σ is not the zero cone, then

Pσ(t) = τ<dim σ

(
(1− t2)PΛσ

(t)
)
.

The truncation operator τ<k is defined by τ<k(
∑

q aqt
q) :=

∑
q<k aqt

q. – Let us
note that for dimσ = 1 and 2, the statements (i) and (ii) agree.

Proof: Statement i) follows from the isomorphism E•
σ
∼= A•σ for a simplicial cone σ,

see 1.4. In order to prove statement ii), we use the isomorphism (5.3.2). We thus
have to investigate the graded vector space G

•

Λσ
/fG

•

Λσ
, or equivalently the kernel

and cokernel of the map

µf :G
•

Λσ
[−2] −→ G

•

Λσ
, h 7→ fh

induced by the multiplication µf :G•
Λσ

[−2] → G•
Λσ

. The formula ii) now is an imme-
diate consequence of the “Hard Lefschetz” type theorem 5.6 below.

5.6 Combinatorial Hard Lefschetz Theorem: Let ∆ be a complete fan and
f ∈ A2(∆), a strictly convex function. If the condition V

(
γ(f)

)
is satisfied, then

multiplication with f ,
µ2q

f :E
2q

∆ −→ E
2q+2

∆ , h 7→ fh ,

is injective for 2q ≤ n− 1 and surjective for 2q ≥ n− 1.

32



Combinatorial Intersection Cohomology for Fans – 33

Theorem 5.6 will be derived at the end of section 6 by means of the Poincaré
Duality Theorem 6.3.

6. Poincaré Duality

Our aim in this section is to prove a “Poincaré Duality Theorem” for the virtual
intersection cohomology of quasi-convex fans. The first step is to define a – non-
canonical and not necessarily associative – A•-bilinear “intersection product” E• ×
E• → E• on a minimal extension sheaf E• for an arbitrary fan ∆. On the level of
global sections, it provides an A•-bilinear “product” E•

∆ × E•
(∆,∂∆) → E•

(∆,∂∆) for
the “virtual equivariant intersection cohomology” of ∆. If ∆ is quasi-convex, then
in addition, there exists an evaluation mapping ε:E•

(∆,∂∆) → A•[−2n]. The crucial
result is the “equivariant Poincaré Duality Theorem” 6.3 according to which the
composition of the intersection product and the evaluation map is a dual pairing of
A•-modules. Passing to the quotients modulo the maximal ideal m, we reach our
aim.

In the case of a simplicial fan, where the sheaf A• of piecewise polynomial func-
tions is a minimal extension sheaf, such an “interesection product” is simply given
by the multiplication of functions. Hence, a possible approach to the general case is
as follows: We choose a simplicial refinement ∆̂ of ∆. According to the Decompo-
sition Theorem 2.5, we interpret E• as a direct factor of the sheaf Â of ∆̂-piecewise
polynomial functions on ∆. Then we restrict the multiplication of functions from Â•

to its direct factor E• and project onto it.

In order to keep track of the relation between the intersection product over the
boundary of a cone and the cone itself, we apply the above idea repeatedly in a
recursive extension procedure. The proof of Poincaré duality will follow the same
pattern.

6.1 An Intersection Product: The 2-dimensional skeleton ∆≤2 is a simplicial
subfan. Hence, up to scalar multiples, there is a canonical isomorphism A• ∼= E• on
∆≤2 (see 1.8). We thus define the intersection product on ∆≤2 to correspond via
that isomorphism to the product of functions.

We now assume that the intersection product is defined on ∆≤m and consider a
cone σ ∈ ∆m+1. So we are given a symmetric bilinear morphism E•

∂σ × E•
∂σ → E•

∂σ

of A•σ-modules. As in section 0.D, we fix a line ` ⊂ Vσ intersecting σ̊ and denote
B•

σ the subalgebra of A•σ consisting of the functions constant on parallels to `. We
recall that E•

∂σ
∼= G•

Λσ
is a free B•

σ-module, cf. Theorem 4.3 applied to the minimal
extension sheaf G• on the flattened boundary fan Λσ. Since E•

σ is a free A•σ-module,
the restriction homomorphism E•

σ → E•
∂σ admits a factorization

E•
σ

α−→ A•σ ⊗B•σ
E•

∂σ
β−→ A•σ ⊗A•σ

E•
∂σ = E•

∂σ
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through the free A•σ-module

(6.1.1) F •σ := A•σ ⊗B•σ E
•
∂σ .

Since the reduction of α modulo mσ ⊂ A•σ is injective, the map α:E•
σ → F •σ is a

“direct” embedding, i.e., there is a decomposition

(6.1.2) F •σ
∼= α(E•

σ)⊕K•

of free A•σ-modules. We may even assume that K• is contained in the kernel of the
natural map β:F •σ → E•

∂σ: We fix a homogeneous basis f1, . . . , fr of K•. The images
β(fi) of these elements in E•

∂σ are restrictions of elements gi ∈ E•
σ; hence, we may

replace K• with the submodule generated by the elements fi − α(gi) for 1 ≤ i ≤ r.

On the other hand, by scalar extension, there is an induced product

F •σ × F •σ −→ F •σ .

It provides the desired extension of the intersection product from ∂σ to σ via the
composition

E•
σ × E•

σ
α×α−→ F •σ × F •σ −→ F •σ = α(E•

σ)⊕K• −→ α(E•
σ) ∼= E•

σ ,

where the last arrow is the projection onto α(E•
σ) with kernel K•. This ends the

description of the extension procedure. To sum up, after a finite number of steps, we
arrive at a symmetric bilinear morphism

E• × E• −→ E•

of sheaves of A•-modules, called an intersection product on the minimal extension
sheaf E•. In particular, we thus have defined a product

E•
∆ × E•

∆ −→ E•
∆

on the level of global sections that maps E•
∆ ×E•

(∆,∂∆) to E•
(∆,∂∆) and thus induces

a product
E•

∆ × E•
(∆,∂∆) −→ E•

(∆,∂∆) .

In order to obtain a dual pairing in the case of a quasi-convex fan ∆, we compose
that induced product with an “evaluation” homomorphism

ε : E•
(∆,∂∆) −→ A•[−2n]

that can be defined as follows: Firstly, as a consequence of Corollary 5.4, we have

E
q

(∆,∂∆) =
{

R for q = 2n,
0 for q > 2n.

Moreover, according to Corollary 4.12, the A•-module E•
(∆,∂∆) is free. Hence, there

is a homogeneous base v1 ∈ E2n
(∆,∂∆), v2, ..., vr ∈ E<2n

(∆,∂∆) of E•
(∆,∂∆).
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Now set ε(vi) := δi1. In fact, ε is unique up to multiplication by a real scalar.
If ∆ is a simplicial fan, this homomorphism ε can be described quite explicitly:

Following [Bri2, p.13], we fix a volume form ω on the vector space V . For each
cone σ, we choose a basis (e1, . . . , en) of vectors spanning the rays such that we have
ω(e1, . . . , en) = 1. Let (e′1, . . . , e

′
n) be the dual basis, and set gσ := e′1 · · · e′n. We then

define the map ε as the composition

E•
(∆,∂∆)

∼= A•(∆,∂∆) ⊂
⊕

σ∈∆n

A•σ −→ Q(A•) , f = (fσ)σ∈∆n 7−→
∑

σ∈∆n

fσ

gσ
,

mapping to the homogeneous fractional ideal generated by the rational functions 1/gσ

(of degree −2n) in the quotient field Q(A•). We indicate why the rational function
ε(f) =

∑
σ fσ/gσ is even regular. The denominators are products of linear forms hτ

vanishing on the facets τ ∈ ∆n−1, and since such a factor hτ does not appear in any
denominator gσ except for τ ≺ σ, it suffices to show that

∑
σ�1τ fσ/gσ is regular

along τ̊ . If τ ≺1 σ lies in ∂∆, then the corresponding function fσ vanishes on τ and
hence is divisible by hτ . Thus, we may assume that τ is the common facet of two
cones σ+, σ− in ∆. It suffices to discuss the contribution f+/g+ + f−/g− of these
two cones to the sum. On τ , the linear form hτ and f+ − f− vanish; an explicit
computation yields the result.

Since the intersection product E• × E• → E• is a homomorphism of sheaves, we
may sum up the general situation as follows: For a quasi-convex fan ∆, there exists
homogeneous pairings (i.e., a pair of elements of degree p and q is mapped to an
element of degree p+ q)

(6.1.3) E•
∆ × E•

(∆,∂∆) −→ E•
(∆,∂∆) −→ A•[−2n]

and

(6.1.4) E
•

∆ × E
•

(∆,∂∆) −→ E
•

(∆,∂∆) −→ R•[−2n] .

Our aim is to prove that these are in fact both dual pairings. Fortunately, it
suffices to verify that property for one of them: By the very definition of quasi-
convexity and Corollary 4.12, the A•-modules E•

∆ and E•
(∆,∂∆) are both free. We

thus may apply the following result.

6.2 Lemma. Let E• and F • be two finitely generated free graded A•-modules. Then
a homogeneous pairing

E• × F • → A•[r]

is dual if and only if that holds for the induced pairing

E
• × F

• −→ A
•
[r] = R•[r] .
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Proof. Replacing F • with F •[−r], we may assume that r = 0. With respect to fixed
homogeneous bases of E• and F •, the pairing is represented by a square matrix M
over A•. We claim that M is invertible if and only if that holds for its residue class M
modulo mA: The implication “⇒” is obvious, while for “⇐”, it suffices to prove that
detM lies in A0 = R. To that end, we arrange the basis for E• in increasing order
with respect to the degrees, and in decreasing order for F •. Since the induced pairing
is dual, the homogeneous submodules of E• and F • generated by basis elements of
fixed opposite degrees have the same rank. Hence, the matrix M is a lower triangular
block matrix with square blocks along the diagonal all whose entries lie in A0. Thus
detM is the product of their respective determinants, so it lies in A0, too.

We come now to the central result of this section:

6.3 Theorem (Poincaré Duality): For a quasi-convex fan ∆ of dimension n, the
composition

E•
∆ × E•

(∆,∂∆) −→ E•
(∆,∂∆) −→ A•[−2n]

is a dual pairing of finitely generated free A•-modules.

Proof: For an affine simplicial fan ∆, Poincaré duality obviously holds. The gen-
eral case follows by the next two lemmata 6.4 and 6.5, using a two step induction
procedure. The proof of Lemma 6.5 will use the Lemmata 6.6 and 6.7.

6.4 Lemma. If Poincaré duality holds for complete fans in dimensions d < n, then
it holds for n-dimensional affine fans.

6.5 Lemma. If Poincaré duality holds for every affine fan 〈σ〉 of dimension at
most n, then it also holds for every quasi-convex fan ∆ of dimension n.

Proof of Lemma 6.4: Let σ be an n-cone. As in (5.3.1) – (5.3.2), we identify E•
∂σ

with the B•
σ-module G•

Λσ
of global sections of a minimal extension sheaf G• on the

flattened boundary fan Λσ in V/`. Since Λσ is (n− 1)-dimensional, we obtain a dual
pairing

E•
∂σ × E•

∂σ −→ E•
∂σ −→ B•

σ[2− 2n] .

By extension of scalars as in (6.1), that induces dual pairings

F •σ × F •σ −→F •σ
η−→ A•[2− 2n] ,

F
•

σ × F
•

σ −→F
•

σ −→ R•[2− 2n]

and, after a shift,

(6.4.1)
F •σ × F •σ [−2] −→F •σ [−2]

η[−2]−→ A•[−2n] ,

F
•

σ × F
•

σ[−2] −→F
•

σ[−2] −→ R•[−2n] .
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To achieve the proof, we show that there is a homomorphism ϑ:E•
(σ,∂σ) → F •σ [−2] and

a factorization of the induced pairing E
•

σ ×E
•

(σ,∂σ) → R•[−2n] obtained in (6.1.4) in
the following form:

(6.4.2) E
•

σ × E
•

(σ,∂σ)
α×ϑ−→ F

•

σ × F
•

σ[−2] −→ F
•

σ[−2] −→ R•[−2n] .

We further show the existence of a homomorphism µ:F
•

σ[−2] → F
•

σ such that α
and ϑ induce isomorphisms

E
•

σ
∼= cokerµ and E

•

(σ,∂σ)
∼= kerµ.

Finally, forgetting about the shifts, the map µ is shown to be self-adjoint with respect
to the dual pairing (6.4.1) on F

•

σ. Hence, the restriction to cokerµ× kerµ is a dual
pairing, too; and an application of 6.2 will finally complete the proof of the Lemma.

We interpret F •σ as the module of sections of a sheaf of A•-modules on the affine
fan 〈σ〉. To that end, we consider the subdivision

Σ := ∂σ ∪ {τ̂ := %+ τ ; τ ∈ ∂σ}

of 〈σ〉, where % is the ray ` ∩ σ. As in (1.4.1), let D•
τ ⊂ A•τ̂ denote the subalgebra

of functions constant on parallels to the line `. Then, according to Lemma 1.5, the
minimal extension sheaf F• on Σ is determined by

τ 7→ F •τ := E•
τ , τ̂ 7→ F •τ̂ := A•τ̂ ⊗D•τ E

•
τ for τ ∈ ∂σ

and the obvious restriction homomorphisms; it satisfies F•(Σ) ∼= A• ⊗B•σ
E•

∂σ = F •σ .
Furthermore, the sheaf F• inherits an intersection product from E•|∂σ

∼= F•|∂σ as
in 6.1.

For simplicity, we interpret the mapping α in 6.1 as an inclusion E•
σ ⊂ F •σ and

identify F• with its direct image sheaf on the affine fan 〈σ〉 with respect to the
refinement mapping Σ → 〈σ〉. Then the decomposition F •σ = E•

σ ⊕ K• of (6.1.2)
corresponds to a decomposition of sheaves F• ∼= E•⊕K• with E• ∼= oL• and the sheaf
K• := σL• ⊗ K

•
supported by the point σ, cf. section 2. In particular, there is an

inclusion
E•

(σ,∂σ) ⊂ F •(σ,∂σ) = E•
(σ,∂σ) ⊕K• ,

and F •(σ,∂σ) is a free A•-module.

We thus obtain a natural commutative diagram

0 −→ E•
(σ,∂σ) −→ E•

σ −→ E•
∂σ −→ 0

∩ ∩ ‖o

0 −→ F •(σ,∂σ)

λ−→ F •σ −→ F •∂σ −→ 0

consisting of free resolutions of the A•-module E•
∂σ
∼= F •∂σ.
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Using the very definition of TorA•(∗,R•) and the fact that E
•

(σ,∂σ) → E
•

σ is the
zero map since E

•

σ → E
•

∂σ is an isomorphism, we obtain identifications

E
•

σ
∼= coker(λ) ∼= E

•

∂σ and E
•

(σ,∂σ)
∼= Tor1(E•

∂σ,R
•) ∼= ker(λ) .

On the other hand, we may rewrite F •(σ,∂σ) = gF •σ
∼= F •σ [−2], where g ∈ A2(Σ)

is some piecewise linear function on Σ with ∂σ as zero set: In the description A• =
B•

σ[T ] of (0.D.2), we may assume that the kernel of T ∈ A2 intersects σ in the
point 0 only. Then, for τ ∈ (∂σ)n−1, we set gτ̂ = T − fτ , where fτ ∈ A2

τ̂ = A2

coincides with T on τ and is constant on parallels to `, i.e., fτ ∈ B•
σ.

We note that

E•
(σ,∂σ) ⊂ E•

(σ,∂σ) ⊕K• = F •(σ,∂σ) = gF •σ
∼= F •σ [−2]

determines the desired homomorphism

ϑ:E•
(σ,∂σ) −→ F •σ [−2]

and leads to an evaluation map

E•
(σ,∂σ) −→ F •σ [−2]

η[−2]−→ A•[−2n] .

Moreover, we have K
≥2n

= 0 because of the isomorphism

E
2n

(σ,∂σ)
∼= R ∼= F

2n

(σ,∂σ)
∼= F

2n−2

σ

and the vanishing F
>2n

(σ,∂σ) = 0, which yields that K• ⊂ F •(σ,∂σ) is contained in the
kernel of the map F •(σ,∂σ) → A•[−2n]. Next we remark that the first part of the
diagram

(6.4.3)

E•
σ × E•

(σ,∂σ) −→ E•
(σ,∂σ)

ε−→ A•[−2n]

∩ ∩ ‖

F •σ × F •(σ,∂σ) −→ F •(σ,∂σ)

η[−2]−→ A•[−2n]

need not be commutative, since E•
σ is not necessarily closed under the intersection

product in F •σ . Nevertheless, commutativity holds after evaluation (where the two
evaluation maps are scaled in such a way that the right square is commutative). This
is true since the difference of the products in the first and second row is an element
in K•, according to the construction.

As the intersection product in F •σ is A•(Σ)-linear, we may replace F •(σ,∂σ) in the
diagram (6.4.3) with F •σ [−2] and, combining with (6.4.1), we arrive at the following
pairing of A•-modules

E•
σ × E•

(σ,∂σ) −→ F •σ × F •σ [−2] −→ F •σ [−2] −→ A•[−2n] .

Passing to the quotients modulo mA, we obtain (6.4.2), where µ:F
•

σ[−2] → F
•

σ is
induced by multiplication with the function g ∈ A•(Σ).
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Proof of Lemma 6.5: To simplify notation, we introduce the abbreviation Ã• :=
A•[−2n]. We have to show that the “global” duality homomorphism

Φ:E•
∆ −→ HomA•(E•

(∆,∂∆), Ã
•)

induced by the pairing (6.1.3) is an isomorphism. To that end, we embed it into a
commutative diagram of the following form:

0 −→ E•
∆ −→ C0(∆, ∂∆; E•) −→ C1(∆, ∂∆; E•)

(6.5.1)

yΦ

yΨ

yΘ

0 −→ Hom(E•
(∆,∂∆), Ã

•)
κ−→

⊕
σ∈∆n

Hom(E•
(σ,∂σ), Ã

•)
λ−→

⊕
τ∈∆̊n−1

Hom(E•
(τ,∂τ), Ã

•
τ [2]) .

Here Hom abbreviates HomA• , and Ψ and Θ are the respective duality homomor-
phisms corresponding to the collections of dual pairings

E•
σ × E•

(σ,∂σ) → E•
(σ,∂σ) → Ã• resp. E•

τ × E•
(τ,∂τ) → E•

(τ,∂τ) → Ã•τ [2]

with suitably chosen evaluation maps. The proof now will run along the following
lines: The upper row of diagram (6.5.1) is exact, while the lower one is a complex
with an injective map κ. The homomorphism Ψ and Θ are isomorphisms, and thus,
a simple diagram chase yields that the same holds for Φ, which will end the proof of
the Lemma 6.5.

The exactness of the upper row in (6.5.1) follows immediately from Theorem 4.3
since ∆ is quasi-convex. We now describe the choice of the evaluation maps: The
evaluation map ε:E•

(∆,∂∆) → Ã• induces a system (εσ)σ∈∆n of maps εσ:E•
(σ,∂σ) ⊂

E•
(∆,∂∆) → Ã•. If we can show that each εσ is an evaluation map, then the direct

sum of the corresponding duality homomorphisms Ψσ:E•
σ → Hom(E•

(σ,∂σ), Ã
•) is

an isomorphism, since Poincaré duality on σ holds by hypothesis. We thus have
to show εσ 6= 0 for each σ. That follows immediately from the fact that the map
R ∼= E

2n

(σ,∂σ) → E
2n

(∆,∂∆)
∼= R induced by the homomorphism E•

(σ,∂σ) → E•
(∆,∂∆)

is an isomorphism, see Lemma 6.6. The system of duality isomorphisms Ψσ:E•
σ →

Hom(E•
(σ,∂σ), Ã

•) thus provides the isomorphism Ψ.

The map κ associates to a homomorphism ϕ:E•
(∆,∂∆) → Ã• its restrictions to the

submodules E•
(σ,∂σ) of E•

(∆,∂∆). It is injective, since
⊕

σ∈∆n E•
(σ,∂σ)

∼= E•
(∆,∆≤n−1)

is
a submodule of maximal rank in E•

(∆,∂∆): For h :=
∏

τ∈∆̊n−1 hτ , where hτ ∈ A2 \{0}
vanishes on Vτ ⊂ V , we have

hE•
(∆,∂∆) ⊂ E•

(∆,∆≤n−1) .

This ends the discussion of the first rectangle in (6.5.1).

The map λ will be composed of “restriction homomorphisms”

λσ
τ : Hom(E•

(σ,∂σ), Ã
•) → Hom(E•

(τ,∂τ), Ã
•
τ [2]), ϕ 7→ ϕτ ,
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where τ is a facet of σ ∈ ∆n. In order to define λσ
τ , we fix a euclidean norm on V

and thus also on V ∗ ∼= A2. Let hτ ∈ A2 be the unique linear form of norm 1 that
vanishes on Vτ and is positive on σ̊. Then we use three exact sequences, starting
with

0 → E•
(σ,∂σ) → E•

σ → E•
∂σ → 0 .

The second one is composed of the multiplication with hτ and the projection onto
the cokernel:

0 → Ã•
µ(hτ )−→ Ã•[2] → Ã•τ [2] → 0 .

Eventually the subfan ∂τσ := ∂σ \ {τ} of ∂σ yields the exact sequence

(6.5.2) 0 → E•
(τ,∂τ) → E•

∂σ → E•
∂τ σ → 0 .

The associated Hom-sequences provide a diagram
Ext(E•

∂τ σ, Ã•)

(6.5.3)

y
Hom(E•

σ, Ã•) −→ Hom(E•
(σ,∂σ), Ã

•)
α−→ Ext(E•

∂σ, Ã•)yβ

Hom(E•
(τ,∂τ), Ã

•[2]) −→ Hom(E•
(τ,∂τ), Ã

•
τ [2])

γ−→ Ext(E•
(τ,∂τ), Ã

•) −→ Ext(E•
(τ,∂τ), Ã

•[2])

with Ext = Ext1A• . We show that γ is an isomorphism; we then may set

λσ
τ := γ−1 ◦ β ◦ α .

Indeed the rightmost arrow in the bottom row is the zero homomorphism, since it is
induced by multiplication with hτ , which annihilates E•

(τ,∂τ). On the other hand, the

A•τ -module E•
(τ,∂τ) is a torsion module over A•, so that Hom(E•

(τ,∂τ), Ã
•[2]) vanishes.

An explicit description of λσ
τ is as follows: For a homomorphism ϕ:E•

(σ,∂σ) → Ã•,

the “restriction” λσ
τ (ϕ) = ϕτ :E•

(τ,∂τ) → Ã•τ [2] is this: To g ∈ E•
(τ,∂τ), we associate

a section ĝ ∈ E•
σ such that ĝ|∂σ is the trivial extension of g to ∂σ; then ϕτ (g) =

ϕ(hτ ĝ)|τ .

For the definition of λ, we apply the standard Čech coboundary construction
to the family (λσ

τ ), making the lower row of diagram (6.5.1) a complex. We may
do so since the following compatibility condition is satisfied: For two different cones
σ = σ1, σ2 ∈ ∆n with intersection τ ∈ ∆̊n−1, the description of ϕτ implies that the
compositions

(6.5.4) Hom(E•
(∆,∂∆), Ã

•) → Hom(E•
(σi,∂σi)

, Ã•) → Hom(E•
(τ,∂τ), Ã

•
τ [2]) , i = 1, 2

coincide.

In particular, the homomorphisms

ετ := λσ
τ (εσ):E•

(τ,∂τ) → Ã•τ [2] , τ ∈ ∆̊n−1
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do not depend on the choice of σ �1 τ . It remains to verify that ετ is not the zero
homomorphism, i.e., we have to see that λσ

τ is injective in degree 0. In diagram
(6.5.3), we have to show that α and β are injective in degree 0. By 5.4, the vector
spaces E

q

σ vanish for q ≥ 2n; hence, E•
σ can be generated by elements of degree < 2n,

and that yields the vanishing of Hom(E•
σ; Ã•) in degree 0. According to Lemma 6.7,

the exact sequence
0 → E•

(σ,∂τ σ) → E•
σ → E•

∂τ σ → 0

(see (6.5.2)) is a free resolution of E•
∂τ σ, in particular, the module Ext1(E•

∂τ σ, Ã
•)

is a quotient of Hom(E•
(σ,∂τ σ), Ã

•), which is trivial in degree 0, since according to

Lemma 6.7,. we have E≥2n
(σ,∂τ σ) = 0.

— For τ ∈ ∆̊n−1, the evaluation homomorphisms ετ induce isomorphisms

Θτ : E•
τ

∼=−→ Hom(E•
(τ,∂τ), Ã

•
τ [2]) ,

which constitute the isomorphism Θ.

Finally the commutativity of the second square in the diagram (6.5.1) follows
from the above explicit description of the restriction homomorphisms λσ

τ and the
appropriate choice of the evaluation homomorphisms ετ .

6.6 Lemma. If Λ ≺ ∆ are quasi-convex fans, then the trivial extension of sections
E•

(Λ,∂Λ) ⊂ E•
(∆,∂∆) induces an isomorphism

(6.6.1) R ∼= E
2n

(Λ,∂Λ)

∼=−→ E
2n

(∆,∂∆)
∼= R .

Proof. Let us first assume that ∆ is complete. To the complementary fan Λc � ∆
generated by the cones in ∆n \ Λn corresponds an exact sequence

0 → E•
(Λ,∂Λ)

∼= E•
(∆,Λc) −→ E•

∆ → E•
Λc → 0 ,

which induces an exact sequence E
2n

(Λ,∂Λ) → E
2n

∆ → E
2n

Λc . The fan Λc is quasi-convex

according to Corollary 4.7, ii) and non-complete. Hence, the last term E
2n

Λc vanishes
according to Corollary 5.4, and thus R ∼= E

2n

(Λ,∂Λ) → E
2n

∆
∼= R is onto resp. an

isomorphism.

We now assume that ∆ admits a completion ∆̄. We consider the composed map

E
2n

(Λ,∂Λ) −→ E
2n

(∆,∂∆) −→ E
2n

∆̄ .

Since it is an isomorphism, so is R ∼= E
2n

(Λ,∂Λ) → E
2n

(∆,∂∆)
∼= R.

In the general case, we choose a refinement map π: ∆̌ → ∆ where ∆̌ admits a
completion, see 0.A. Hence, it suffices to verify that (6.6.1) is an isomorphism for
the couple (∆,Λ) as that holds for (∆̌, Λ̌) according to the second step. By the
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Geometric Decomposition Theorem 2.5, we can write F• := π∗(Ě•) ∼= E•⊕G•. From
Corollary 5.4 and the very definition of the direct image sheaf stem isomorphisms

R ∼= Ě
2n

(∆̌,∂∆̌)
∼= F

2n

(∆,∂∆)
∼= E

2n

(∆,∂∆) ⊕G
2n

(∆,∂∆)
∼= R⊕G

2n

(∆,∂∆) ,

and thus, G
2n

(∆,∂∆) = 0 and Ě
2n

(∆̌,∂∆̌)
∼= F

2n

(∆,∂∆)
∼= E

2n

(∆,∂∆). The corresponding
isomorphisms also hold for Λ instead of ∆. Combining these isomorphisms, we obtain
the isomorphism (6.6.1).

The following result has been used in the proof of Lemma 6.5. For the notation,
we refer to (0.D.1).

6.7 Lemma. Let σ be a cone of dimension n and Λ ⊂ ∂σ be a fan such that π(Λ) is
a quasi-convex subfan of Λσ. Then E•

(σ,Λ) is a free A•-module, and, if in addition Λ

is a proper subfan, E
q

(σ,Λ) = 0 for q ≥ 2n.

Proof. As in (0.D.2), we write A• = B•
σ[T ] with a linear form T ∈ A2. The exact

sequence of A•-modules

0 → E•
(σ,Λ) → E•

σ → E•
Λ → 0

induces an exact Tor-sequence

TorA•

2 (E•
Λ,R

•) → TorA•

1 (E•
(σ,Λ),R

•) → 0 → TorA•

1 (E•
Λ,R

•) → E
•

(σ,Λ) → E
•

σ

since E•
σ is a freeA•-module. If TorA•

2 (E•
Λ,R

•) vanishes, then so does TorA•

1 (E•
(σ,Λ),R

•),
and E•

(σ,Λ) is a free A•-module by section 0.B. Since the fan 〈σ〉 is not complete, we

have E
q

σ = 0 for q ≥ 2n by 5.4; if the same vanishing holds for TorA•

1 (E•
Λ,R

•), then
it follows for E

q

(σ,Λ) as well. It thus remains to determine TorA•

i (E•
Λ,R

•). As in the
proof of Theorem 4.3, we use the exact sequence

(6.7.1) 0 → R•[T ][−2] → R•[T ] → R• → 0

of A•-module homomorphisms of degree 0; there R•[T ] is interpreted as the A•-
module A•/(mB•σA

•) = B•
σ/mB•σ

[T ] for the maximal homogeneous ideal mB•σ := B>0
σ

of B•
σ. Coming back to the identity (4.8.2) with E•

Λ instead of I, we obtain

TorB•σ [T ]
i (E•

Λ,R
•[T ]) ∼= TorB•σ

i (E•
Λ,R

•) = 0 for i ≥ 1,

since E•
Λ is a free B•

σ-module. Hence, from (6.7.1) stem exact sequences

0 → TorA•

i+1(E
•
Λ,R

•) → TorB•σ
i (E•

Λ,R
•[−2]) → 0 for i ≥ 1,

and
0 → TorA•

1 (E•
Λ,R

•) → E•
Λ ⊗B•σ R•[−2]

µ(T )−→ E•
Λ ⊗B•σ

R• .

This yields the desired description:

TorA•

i (E•
Λ,R

•) =
{

ker
(
µ(T ):E•

Λ ⊗B•σ
R•[−2] → E•

Λ ⊗B•σ
R•

)
, if i = 1;

0, if i ≥ 2 .
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Eventually, if π(Λ) ⊂ Λσ is not complete, then the vector space E•
Λ ⊗B•σ R•[−2]

vanishes in degrees ≥ 2n; hence, the same vanishing holds for TorA•

1 (E•
Λ,R

•).

This ends the proof of the auxiliary Lemmata, hence the proof of the Poincaré
duality theorem 6.3.

6.8 Remark. For every purely n-dimensional fan ∆, we can define an evaluation
map E•

(∆,∂∆) → A•[−2n] as the composition

E•
(∆,∂∆) ⊂ Ě•

(∆̌,∂∆̌)
= E•

(∆,∂∆) ⊕ . . . −→ Ě•
∆̄ −→ A•[−2n] ,

where ∆̌ is a refinement of ∆ admitting a completion ∆̄. It provides a homomorphism
E•

∆ → Hom(E•
(∆,∂∆), A

•[−2n]) via the intersection pairing. In accordance with the
proof of Lemma 6.5, that is an isomorphism whenever H̃0(∆, ∂∆; E•) = 0, or equiva-
lently, if H̃0(∆σ, ∂∆σ;R•) = 0 holds for each cone σ ∈ ∆ (see Remark 3.5). In more
geometrical terms, ∆ has to be both facet-connected and locally facet-connected,
where we call a fan locally facet-connected if, for each non-zero cone σ ∈ ∆, the
transversal fan ∆σ is facet-connected.

The smallest example of a three-dimensional fan that is both facet-connected
and locally facet-connected, but not quasi-convex, is provided by the fan swept out
by the “vertical” facets of a triangular prism.

Since the dual pairing E•
∆ × E•

(∆,∂∆) → A•[−2n] of A•-modules induces a dual
pairing of real vector spaces E

•

∆ × E
•

(∆,∂∆) → R•[−2n], we obtain the following
consequence.

6.9 Corollary. If ∆ is a quasi-convex fan of dimension n, then we have

bq(∆) := dimE
q

∆ = dimE
2n−q

(∆,∂∆) := b2n−q(∆, ∂∆) ;

rephrased in terms of Poincaré polynomials, we have the identity

P(∆,∂∆)(t) = t2nP∆(t−1) .

We finally are prepared to prove the “Combinatorial Hard Lefschetz” Theo-
rem 5.6.

Proof of the “Combinatorial Hard Lefschetz” Theorem 5.6: Since f is strictly
convex, its graph Γf in V ×R is the support of the boundary fan ∂γ of the (n+ 1)-
dimensional cone γ := γ(f) in V ×R as we have seen in 0.D. Let F• be a minimal
extension sheaf on ∂γ and ϕ:∆ → ∂γ, the map induced by idV × f :V → V × R.
Then ϕ∗(F•) is a minimal extension sheaf on ∆, which we thus may identify with E•.
Analoguous to (5.3.2), the residue class module of the A•[T ]-module F •∂γ satisfies

F
•

∂γ
∼= E

•

∆/fE
•

∆ = coker(µf : E
•

∆[−2] −→ E
•

∆)
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where E
•

∆ = (A•/m) ⊗A• E
•
∆. Now the vanishing condition V(γ) yields the sur-

jectivity of µ2q
f for 2q ≥ n − 1. On the other hand, the map µf is selfadjoint

with respect to the dual pairing E•
∆ × E•

∆ → A•[−2n] as well as µf with respect
to E

•

∆ × E
•

∆ → R•[−2n]. Hence by Poincaré duality the surjectivity of µ2q
f for

2q ≥ n− 1 implies the injectivity of µ2q
f for 2q ≤ n− 1.
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