
Riemannian Geometry

Karl-Heinz Fieseler

Uppsala 2015

1



Contents

1 Introduction 3

2 Differentiable Manifolds 5

3 Vector Fields 9

4 Vector space constructions 18

5 Vector bundles and tensor fields 25

6 Connections on Vector Bundles 34

7 Four Manifolds: A Survey 43

8 Connections on TM 47

9 Length and distance 53

10 Completeness 55

11 Jacobi fields 57

12 Negative and Positive Curvature, Coverings 67

13 Complex projective space 78

2



1 Introduction

Let M ↪→ R3 be a surface, i.e.

M = {x ∈ R3; f(x) = 0}

with a smooth function f : R3 −→ R, s.th. ∇f(x) 6= 0 for x ∈ M , e.g. a
sphere or a torus. in particular M is a metric space with the restriction of
the euclidean distance. But, unfortunately, though it induces the topology
of M , it doesn’t reflect the ”geometry” of M very well: The distance of two
points may be small, nevertheless it takes a lot of time to travel within M
from one of them to the other.

Take instead

d(x,y) := inf{L(γ); γ : I = [a, b]
smooth−→ M,γ(0) = x, γ(1) = y},

where

L(γ) =

∫ 1

0

||γ̇(t)||dt,

with the euclidean norm ||.|| : R3 −→ R.

Question: Given x,y ∈M , is there a (length-)minmizing path from x to y,
i.e. s.th.

d(x,y) = L(γ)?

Example 1.1. 1. M = P ⊂ R3 a plane: Minimizing paths are line seg-
ments.

2. M = S2 ⊂ R3 the unit sphere. Minimizing paths are segments of great
circles = S2 ∩ P with planes P 3 0.

Strategy: Look for locally minimizing paths γ : [a, b] −→M , i.e. such that
for sufficiently small ε > 0

d(γ(t+ ε), γ(t)) = L(γ|[t+ε,t])

for all t ∈ I. Indeed

Theorem 1.2. Let

n : M −→ R3,x 7→ nx,
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be s.th. nx ⊥M at x ∈M , a ”normal vector field”, e.g.

nx =
∇f(x)

||∇f(x)||
.

Then γ : I −→M ⊂ R3 is locally minimizing if

γ̈(t) ∈ Rnγ(t) + Rγ̇(t)

for all t ∈ I.

Remark 1.3. If ||γ̇(t)|| ≡ const, then γ is locally minimizing iff γ̈(t) ∈ Rnγ(t)

for all t ∈ I. Such a path is called a geodesic.

Program:

1. Consider not only surfaces M , but ”submanifolds” M ⊂ Rm+c of arbi-
trary dimensions m = dimM and codimension c.

2. Replace M ⊂ Rm+c with differentiable manifolds.

3. Introduce the concept of a Riemannian metric g on a differentiable
manifold.

4. Every M ⊂ Rm+c inherits a Riemannian metric g from Rm+c.

5. Study pairs (M, g) (Riemanian manifolds) instead of M ⊂ Rm+c.

We comment on 3): For a differentiable manifoldM of dimension dimM =
m one has the notion of

1. smooth paths γ : I −→M ,

2. smooth functions f : M −→ R,

3. for every a ∈M its tangent space TaM ∼= Rm at a, s.th. γ̇(t) ∈ Tγ(t)M
is defined for smooth paths γ : I −→M ,

4. of a Riemannian metric, a family g = (ga)a∈M of inner products ga :
TaM × TaM −→ R depending smoothly on a ∈M

Definition 1.4. 1. Riemannian manifold = a pair (M, g) with a differen-
tiable manifold M and a Riemannian metric g on M .
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2. Length of smooth paths:

L(γ) =

∫ b

a

√
gγ(t)(γ̇(t), γ̇(t))dt.

In contrast to Jost’s book we define geodesics by the differential equation
they satisfy and then prove that they are locally minimizing. Further studies
of the global behaviour of geodesics are planned.

2 Differentiable Manifolds

Definition 2.1. An m-dimensional topological manifold M is a Hausdorff
topological space admitting an open cover

M =
⋃
i∈I

Ui

with open subset Ui ⊂M homeomorphic to open subsets Vi ⊂ Rm.

Example 2.2. 1. Any open subset of Rm is an m-dimensional topological
manifold.

2. Denote ||x|| =
√
x2

1 + ...+ x2
n+1 the euclidean norm of a vector x ∈

Rn+1. Then the sphere

Sn := {x ∈ Rn+1; ||x|| = 1}

is an n-dimensional topological manifold: We have

Sn = U1 ∪ U2

with U1 := Sn \ {−en+1}, U2 := Sn \ {en+1}, where Ui ∼= Rn. For
example the maps

σi : Ui −→ Rn, x = (x′, xn+1) 7→ x′

1− (−1)ixn+1

, i = 1, 2

are homeomorphisms: For x ∈ Ui the point (σi(x), 0) is the intersection
of the line spanned by x and −en+1 (for i = 1) resp. en+1 (for i = 2)
with the hyperplane Rn × 0.
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Now one could try to study a function f : M −→ R on a topological
manifold M by considering what one gets by composing f with inverse home-

omorphisms Rm ⊃ V
ψ−→ U ⊂ M and then apply analysis to the composite

f ◦ψ : V −→ R. But then it will depend on the choice of the homeomorphism
ψ, whether f ◦ ψ is differentiable or not. One can avoid that difficulty by
restricting to a system, ”atlas”, of ”mutually compatible” homeomorphisms,
also called ”charts”:

Definition 2.3. Let M be an m-dimensional topological manifold.

1. A chart on M is a pair (U,ϕ), where U ⊂M is open and ϕ : U −→ V
is a homeomorphism between U and an open subset V ⊂ Rm. The
component functions ϕ1, ..., ϕm then are also called (local) coordinates
for M on U ⊂M .

2. Two charts (Ui, ϕi), i = 1, 2, on a topological manifold M are called
(C∞-)compatible if either U12 := U1 ∩ U2 is empty or the transition
map (”coordinate change”)

ϕ2 ◦ ϕ−1
1 : ϕ1(U12) −→ ϕ2(U12)

is a diffeomorphism between the open sets ϕ1(U12) ⊂ V1 ⊂ Rm and
ϕ2(U12) ⊂ V2 ⊂ Rm.

3. A differentiable atlas A on a topological manifold M is a system

A = {(Ui, ϕi); i ∈ I}

of mutually (C∞-)compatible charts, such that M =
⋃
i∈I Ui.

Example 2.4. 1. The charts (Ui, σi), i = 1, 2 on Sn, cf. 2.2.3, constitute
a differentiable atlas: Again we have Sn = U1 ∪ U2 and the transition
map

σ2 ◦ σ−1
1 : Rn \ {0} −→ Rn \ {0}, x 7→ x

||x||2
.

2. Let W ⊂ Rn be an open subset and

F : W −→ Rn−m

a differentiable map, such that for all a ∈ M := F−1(0) ⊂ W the
Jacobian map

DF (a) : Rn −→ Rn−m
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is surjective. For every point a ∈ M we shall construct a local chart
(Ua, ϕa). We may assume that ∂F

∂(xm+1,...,xn)
(a) 6= 0. Then the map

Φ : (x1, ..., xm, F1, ..., Fn−m) : Rn −→ Rn induces, according to the
inverse function theorem, a diffeomorphism Ũ −→ Ṽ between an open
neighborhood Ũ ⊂ W of a ∈ Rn and an open neighborhood Ṽ of
(a1, ..., am, 0) ∈ Rn. As a consequence the map

ϕa : Ua := Ũ ∩M −→ Va := {y ∈ Rm; (y, 0) ∈ Ṽ ⊂ Rm × Rn−m},

x 7→ (x1, ..., xm)

is a homeomorphism. Then the collection A := {(Ua, ϕa); a ∈ M}
constitutes a differentiable atlas on M . Note that all local coordinates
are obtained by choosing m suitable restrictions xi1|M , ..., xim |M of the
coordinate functions x1, ..., xn, i.e., with the choice of the set {i1, ..., im}
depending on the point a ∈M .

The last example shows that a differentiable atlas may depend on a lot
of choices and can be unnecessarily big as well. So we need to say when two
atlases are ”equivalent”:

Definition 2.5. 1. Two atlases A and Ã on an m-dimensional topological
manifold M are called equivalent if any chart in A is compatible with
any chart in Ã.

2. A differentiable structure on a topological manifold is an equivalence
class of differentiable atlases.

3. A differentiable manifold M is a topological manifold together with a
differentiable structure. We say that a differentiable atlas A is an at-
las for the differentiable manifold M , if A defines (or belongs to) the
differentiable structure of M .

If M is a differentiable manifold, then a ”chart (U,ϕ) on M” means always
a chart compatible with all the charts of a (resp. all) atlases defining the
differentiable structure of M .

We leave the details of the following remark to the reader:

Remark 2.6. 1. Any open subset U ⊂ M of a differentiable manifold
inherits a natural differentiable structure.
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2. The cartesian product M ×N of differentiable manifolds M,N carries
a natural differentiable structure.

Definition 2.7. Let M,N be differentiable manifolds of dimension m,n re-
spectively.

1. A function f : M −→ R is differentiable if the functions f ◦ ϕ−1 :
V −→ R are differentiable for all charts (U,ϕ : U −→ V ) ∈ A in
a differentiable atlas for M . The same definition applies for maps
F : M −→ Rn. We denote

C∞(M) := {f : M −→ R differentiable}

the set of all differentiable functions, indeed a real vector space which
is even closed with respect to the multiplication of functions.

2. A continuous map F : M −→ N is called differentiable if all the maps
ψ ◦ (F |F−1(W )) : F−1(W ) −→ Rn are differentiable, where (W,ψ) ∈ B
is any chart in an atlas B defining the differentiable structure of N .

3. A diffeomorphism F : M −→ N between two differentiable manifolds
M and N is a bijective differentiable map, such that its inverse F−1 :
N −→M is differentiable as well.

4. We say that M is diffeomorphic to N and write M ∼= N if there is a
diffeomorphism F : M −→ N .

Note that differentiable functions are continuous, and that the definition
of differentiability is independent from the choice of the differentiable atlases
for M and N .

Remark 2.8. Given a topological manifold M there are a lot of distinct
differentiable structures, but the corresponding differentiable manifolds may
be diffeomorphic nevertheless: By a smooth type on M we mean the diffeo-
morphism class of the differentiable manifold defined by some differentiable
structure on M .

1. For dimM ≤ 3 there is exactly one smooth type.

2. For dimM ≥ 4 it may happen that there is no differentiable structure
on M at all.
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3. A compact topological manifold of dimension at least 5 admits only
finitely many smooth types. E.g., the sphere Sn has the standard
smooth type as described above, but there may be other ones: For n =
5, ..., 20 we obtain 1, 1, 28, 2, 8, 6, 992, 1, 3, 2, 16256, 2, 16, 16, 523264, 24
smooth types respectively. For n = 4 it is not known whether there
are exotic smooth types, i.e. smooth types different from the standard
smooth type.

4. For n 6= 4 there is only the standard smooth type on Rn, while on R4

there are uncountably many different smooth types; some of them are
obtained as follows: One considers an open subset U ⊂ R4 with the
standard smooth type; if there is a homeomorphism U ∼= R4 one gets
an induced differentiable structure on R4.

Definition 2.9. Let M be an m-dimensional differentiable manifold. A
subset L ⊂ M is called a submanifold of codimension k iff for every point
a ∈ L there is a chart (U,ϕ), such that ϕ(U ∩L) = {x = (x1, ...., xm) ∈ V :=
ϕ(U);xm−k+1 = .... = xm = 0}.

Note that a submanifold L ⊂M inherits from M a unique differentiable
structure, such that the inclusion L ↪→M is differentiable.

3 Vector Fields

Imagine M = F−1(0) with F : Rn −→ Rn−m, where DF (a) ∈ Rn−m,n has
rank n−m for all a ∈M = F−1(0). Then

TaM := ker(DF (a)) ↪→ Rn.

and the affine subspace a + TaM is the intuitive idea behind the tangent
space. Here we describe the abstract notion:

Definition 3.1. A tangent vector Xa (or derivation) at a point a ∈M of a
differentiable manifold M is a linear map Xa : C∞(M) −→ R satisfying the
following Leibniz rule:

Xa(fg) = f(a)Xa(g) +Xa(f)g(a).

The set of all tangent vectors of M at a ∈ M forms a vector space TaM ,
called the tangent space of M at a ∈M .

Remark 3.2. (1) For R ⊂ C∞(M), the constant functions, we have
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Xa(R) = 0 for every tangent vector Xa ∈ TaM , since Xa(1) = Xa(1
2) =

Xa(1) +Xa(1).

(2) Take a chart ϕ : U → V ⊂ Rn with a ∈ U and ϕ(a) = 0. Then the
maps

∂ai := ∂ϕ,ai : f 7→ ∂f ◦ ϕ−1

∂xi
(0), i = 1, ..., n,

are tangent vectors at a.

(3) Another, may be more geometric, construction that avoids the choice of
charts is the following: To any curve, i.e. differentiable map, γ : I →M
defined on an open interval I ⊂ R with γ(t0) = a for some t0 ∈ I we
can associate the tangent vector γ̇(t0) ∈ TaM defined by

γ̇(t0) : f 7→ (f ◦ γ)′(t0) .

The vector γ̇(t0) is called the tangent vector of the curve γ : I → M
at t0 ∈ I.

Theorem 3.3. Using the notation of Remark 3.2.2 we have

TaM =
n⊕
i=1

R · ∂ai ,

i.e. the tangent vectors ∂ai := ∂ϕ,ai form a basis of the tangent space TaM .

For the proof we need

Lemma 3.4. 1. If f ∈ C∞(M) vanishes in a neighborhood of a ∈ M ,
then Xa(f) = 0 for all tangent vectors Xa ∈ TaM .

2. Let U ⊂ M be open. Denote % : C∞(M) −→ C∞(U), f 7→ f |U the
restriction from M to U . Then the map

TaU −→ TaM,Xa 7→ Xa ◦ %,

is an isomorphism.
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Proof. 1.) If f vanishes near a, take a function g ∈ C∞(M) with g = 1 near
a and fg = 0. Then 0 = Xa(fg) = g(a)Xa(f) + f(a)Xa(g) = Xa(f).
2.) Injectivity: Assume Xa ◦ % = 0. Take any function f ∈ C∞(U). Choose
f̃ ∈ C∞(M) with f̃ = f near a. Then, according to the first part, we have
Xa(f) = Xa(f̃ |U) = 0. Now the function f ∈ C∞(U) being arbitrary, we
obtain Xa = 0.
Surjectivity: For Ya ∈ TaM define Xa ∈ TaU by its value on f ∈ C∞(U) as
follows

Xa(f) := Ya(f̃),

where again f̃ ∈ C∞(M) with f̃ = f near a. Then Xa(f) is well defined as
a consequence of the first part and obviously Xa ◦ % = Ya.

Proof of 3.3. As a consequence of 3.4 we may assume, with the notation of
Rem.3.2.2, M = U = V ⊂ Rn and show that the tangent vectors ∂ 0

i ∈ T0V
with ∂ 0

i (f) := ∂f
∂xi

(0) form a basis of T0V . Since ∂ 0
i (xj) = δij they are linearly

independent. On the other hand, for any X0 ∈ T0V we have

X0 =
n∑
i=1

X0(xi)∂
0
i .

Take f ∈ C∞(V ). After, may be, a shrinking of V we may, according to the
below lemma 3.5, assume f = f(0) +

∑n
i=1 xifi with fi ∈ C∞(V ) and then

obtain X0(f) =
∑n

i=1 X0(xi)fi(0) =
∑n

i=1X0(xi)∂
0
i (f).

Lemma 3.5. Let f ∈ C∞((−ε, ε)m). Then we may write

f = f(0) +
n∑
i=1

xifi

with functions f1, ..., fm ∈ C∞((−ε, ε)m).

Proof. We have

f(x1, ..., xm) =
m−1∑
i=0

(f(x1, ..., xm−i, 0, .., 0)− f(x1, ..., xm−i−1, 0, .., 0))+f(0, ..., 0)

=
m∑
i=1

xm−i

(∫ 1

0

∂f

∂xm−i
(x1, ..., xm−i−1, txm−i, 0, .., 0)dt

)
+ f(0, ..., 0).
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Remark 3.6. 1. Any finite dimensional vector space V is a differentiable
manifold: Take an atlas containing one chart (V, ϕ), where ϕ : V −→
Rn is a linear isomorphism. The resulting manifold does not depend
on the choice of ϕ.

2. For any a ∈ V there is a natural isomorphism

V
∼=−→ TaV, v 7→ γ̇a,v(0)

with γa,v(t) = a+ tv.

Differentiable maps induce linear maps between tangent spaces:

Definition 3.7. Given a differentiable map F : M → N between the differ-
entiable manifolds M and N , there is an induced homomorphism of tangent
spaces:

TaF : TaM → TF (a)N

defined by
TaF (Xa) : C∞(N)→ R, f 7→ Xa(f ◦ F ) .

It is called the tangent map of F at a ∈M .

Obviously we have for a curve γ : (−ε, ε)→M with γ(0) = a that

TaF (γ̇(0)) = δ̇(0), where δ := F ◦ γ .

For explicit computations we note that, if F = (F1, ..., Fm) : U → W is a
differentiable map between the open sets U ⊂ Rn and W ⊂ Rm, and b = F (a)
for a ∈ U , then with respect to the bases ∂a1 , ..., ∂

a
n of TaU and ∂b1, ..., ∂

b
m of

TbW the linear map TaF has the matrix:

DF (a) =

(
∂Fi
∂xj

(a)

)
1≤i≤m,1≤j≤n

∈ Rm,n ,

the Jacobi matrix of F at a ∈ U .
Furthermore it is immediate from the definition, that the tangent map

behaves functorially, i.e. if F : M1 →M2 and G : M2 →M3 are differentiable
maps, then G ◦ F : M1 →M3 is again differentiable and the chain rule

Ta(G ◦ F ) = TF (a)G ◦ TaF
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holds.
All the tangent vectors at points in a differentiable m-manifold M form a

differentiable m2-manifold TM =
⋃
a∈M TaM , the tangent bundle of M . For

example, for M = F−1(0) ↪→ Rn as in the introduction we take

TM := {(a, ξ) ∈ Rn × Rn;F (a) = 0, DF (a)ξ = 0}

=
⋃
a∈M

{a} × TaM ↪→ Rn × Rn.

We introduce first the notion of a vector bundle, a smooth family of vector
spaces, over M .

Definition 3.8. A vector bundle of rank n over M is a triple (E, π,M),
where E is a differentiable manifold and π : E −→ M a differentiable map,
such that

1. the fibers Ea := π−1(a) carry the structure of an n-dimensional vector
space,

2. there is an open covering M =
⋃
i∈I Ui together with diffeomorphisms

τi : π−1(Ui) −→ Ui × Rn,

such that π = prUi
◦ τi, and inducing vector space isomorphisms

prRn ◦ τi : Ea −→ Rn × {a} ∼= Rn.

The τi are called trivializations.

Remark 3.9. If E is a vector bundle, the comparison of two trivializations
τi, τj results over Uij := Ui ∩ Uj in the following transition function

τj ◦ τ−1
i : Uij × Rn −→ Uij × Rn, (x,y) −→ (x, Aij(x)y)

with a smooth function Aij : Uij −→ GLn(R).

Example 3.10. 1. E := M × Rn, the trivial vector bundle of rank n.

2. Let M be a differentiable n-manifold. The tangent bundle TM is, as a
set, the disjoint union

TM :=
⋃
a∈M

TaM
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of all tangent spaces at points a ∈ M . Take a differentiable atlas
A = {(Ui, ϕi); i ∈ I}. Denote π : TM →M the map, which associates
to a tangent vector Xa ∈ TaM its “base point” a ∈ M . We pick the
following trivialization

τi : π−1(Ui)→ Ui × Rm, Xa =
m∑
j=1

λj∂
ϕi,a
j 7→ (a, λ1, ..., λm).

We endow TM with a topology: A set W ⊂ TM is open if τi(W ∩Ui) ⊂
Ui × Rm is open for all charts i ∈ I. in an atlas A for M . We obtain
a topological manifold TM with differentiable atlas {(π−1(Ui), τi). In-
deed the corresponding transition functions are

τj ◦ τ−1
i : Uij × Rn −→ Uij × Rn, (x,y) −→ (x, DFij(x)y)

with Fij := ϕj ◦ ϕ−1
i : ϕi(Uij) −→ ϕj(Uij).

Now we can generalize Definition 3.7: given a differentiable map F :
M → N the pointwise tangent maps TaF : TaM → TF (a)N combine to a
differentiable map TF : TM → TN , i.e.

TF |TaM := TaF : TaM → TF (a)N.

Indeed, the map TF fits into a commutative diagram

TM
TF−→ TN

↓ ↓
M

F−→ N

,

i.e. πN ◦ TF = F ◦ πM holds with the projections πM : TM −→ M and
πN : TN → N of the respective tangent bundles.

Definition 3.11. The restriction of a vector bundle (E, π,M) to an open
subset U ⊂M is

E|U := (π−1(U), π, U).

Definition 3.12. Let E be a vector bundle over M .
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1. A section of E is a differentiable map σ : M −→ E with π ◦ σ = idM .
We denote

Γ(E) := {σ : M −→ E, section of E},
a C∞(M)-module with the scalar multiplication (fσ)(a) := f(a)σ(a).

2. Let U ⊂M be open. A vector field on U is a section

X ∈ Γ(TM |U), a 7→ Xa ∈ TaM.

We write as well
Θ(U) := Γ(TM |U).

Remark 3.13. 1. Let (U,ϕ) be a chart. Then

∂i := ∂ϕi : U −→ TM, a 7→ ∂ai for i = 1, ...,m,

with

∂ai (f) :=
∂f ◦ ϕ−1

∂xi
(ϕ(a))

are vector fields on U , the ”coordinate vector fields” associated to the
local chart (or local coordinates) xi = ϕi(a), i = 1, ...,m. Since TaM =⊕m

i=1 R∂ai , any section X : U −→ TM of π : TM −→M can be written

X =
m∑
i=1

gi∂i,

with unique functions gi ∈ C∞(U).

2. Note that on an arbitrary differentiable manifold M it is in general not
possible to find vector fieldsX1, ..., Xm ∈ Θ(M), such that (X1)a, ..., (Xm)a
is a frame at a, i.e., a basis of TaM , for all a ∈M . If such vector fields
exist, the manifold M is called parallelizable. In a more algebraic way:
M is parallelizable iff Θ(M) ∼= C∞(M)m.

3. The vector fields onM can be identified with derivationsD : C∞(M)→
C∞(M), i.e. linear maps satisfying the Leibniz rule D(fg) = D(f)g +
fD(g) for all f, g ∈ C∞(M). Given a vector field X ∈ Θ(M) the
corresponding derivation X : C∞(M)→ C∞(M), f 7→ X(f) is defined
by (X(f))(a) := Xa(f). In fact, every derivation D : C∞(M) →
C∞(M) is obtained from a vector field: Take X ∈ Θ(M) with

Xa : C∞(M)→ R, f 7→ D(f)(a) .
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4. For an open subset U ⊂ M the tangent bundle TU is identified, in a
natural way, with the open subset π−1(U) ⊂ TM .

5. Let F : M → N be a differentiable map. Given a vector field X ∈
Θ(M), we can consider TF ◦ X : M → TN , but that map does not
in general factor through N , e.g. if F is not injective. But it does if
F : M → N is a diffeomorphism: then we may define a map

F∗ : Θ(M)→ Θ(N), X 7→ F∗(X) := TF ◦X ◦ F−1 ∈ Θ(N),

the push forward of vector fields with respect to a diffeomorphism.

The vector space Θ(M) carries further algebraic structure: Though the
compositionsXY and Y X of two derivations (vector fields)X, Y : C∞(M)→
C∞(M) are no longer derivations, their commutator is:

(XY − Y X)fg = XY (fg)− Y X(fg)

= X(fY g + gY f)− Y (fXg + gXf)

= fXY g + (Xf)Y g + gXY f + (Xg)Y f

− fY Xg − (Y f)(Xg)− gY Xf − (Y g)(Xf)

= fXY g − fY Xg + gXY f − gY Xf
= f(XY − Y X)g + g(XY − Y X)f.

Definition 3.14. The Lie bracket [X, Y ] ∈ Θ(M) of two vector fields X, Y ∈
Θ(M) is the commutator of the derivations X, Y : C∞(M)→ C∞(M), i.e.

[X, Y ] := XY − Y X,

or, in other words, the vector field [X, Y ] satisfying

[X, Y ]a(f) := Xa(Y (f))− Ya(X(f))

for all differentiable functions f ∈ C∞(M) at every point a ∈M .

Note that the tangent vector [X, Y ]a is not a function of the values
Xa, Ya ∈ TaM only, since the local behavior of the vector fields X, Y near
a ∈M also enters in the computation rule. If x1, ..., xn are local coordinates
on U ⊂M , and X, Y ∈ Θ(U) have representations

X =
n∑
i=1

fi ∂i, Y =
n∑
i=1

gi ∂i,
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then

[X, Y ] =
n∑
i=1

(X(gi)− Y (fi)) ∂i .

So, in particular, [∂i, ∂j] = 0 for coordinate vector fields. On the other hand
we mention:

Theorem 3.15. (Frobenius Theorem) Let X1, ..., Xn ∈ Θ(M) be pair-
wise commuting vector fields, i.e. [Xi, Xj] = 0 for 1 ≤ i, j ≤ n. Then every
point a ∈ M , such that (X1)a, ..., (Xn)a is a frame at a (i.e. a basis of the
tangent space TaM) admits a neighborhood U ⊂ M with local coordinates
x1, ..., xn ∈ C∞(U) such that

Xi|U = ∂i.

For the proof one needs the notion of an integral curve of a vector field:

Definition 3.16. Let X ∈ Θ(M) be a vector field. A smooth curve γ : I →
M is called an integral curve of the vector field X, if γ̇(t) = Xγ(t) holds for
all t ∈ I.

Theorem 3.17. Let X ∈ Θ(M) be a vector field.

1. Given a relatively compact open set U ⊂ M there is an ε > 0 and a
smooth map

γ : U × (−ε, ε) −→M,

such that for all a ∈ U the path t 7→ γa(t) := γ(a, t) is an integral curve
of the vector field X with γa(0) = a. The path γa is unique.

2. If Xa 6= 0, there is a local chart (U,ϕ) around a, such that X|U = ∂1.

3. The set

D(X) := {(a, t) ∈M×R;∃ X-integral curve γa : I −→M ; 0, t ∈ I, γa(0) = a}

is open and the map

γ : D(X) −→M, (a, t) 7→ γa(t),

is smooth.

4. If M is compact, we have D(X) = M × R.
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Proof. The first statement follows from the fundamental theorem of ODE’s
including the fact, that solutions depend smoothly on initial conditions. For
the second one we may assume a = 0 ∈ U ⊂ Rm, X0 = ∂0

1 . Take an open
subset V ⊂ Rm−1, such that {0} × V is relatively compact in U and note
that the map V × R −→ U, (x, t) 7→ γ(x,0)(t) is a diffeomorphism near the
origin. For the third one we refer to Lang, Differential and Riemannian
manfolds, Th.2.6. Finally, if M is compact, choose ε > 0 as in the first point,
with U = M . Then, if γ : (t0, t1) −→ M is an integral curve of X, it can
be extended to (t0 − ε, t1 + ε), since the corresponding statement holds for
[t2, t3] with t0 < t2 < t3 < t1.

Remark 3.18. 1. An integral curve γ : (0, t0) −→ M has a set of limit
points in M , the points of the form limn→∞ γ(tn) with some sequence
tn → t0. Then either γ can be extended over t0 or the limit point set
is empty.

2. If M is compact, t 7→ µt generates a one parameter group of diffeomor-
phisms µt : M −→ M , since µ0 = idM and µs ◦ µt = µs+t, called the
flow of X.

3. The proof of Th.3.15 relies on the fact that given the flows (µt) and
(µ̃t) of commuting vector fields X, X̃ ∈ Θ(M), one has µs ◦ µ̃t = µ̃t ◦µs
for all sufficiently small s, t ∈ R.

4 Vector space constructions

The tangent space TaM at a point a ∈M of the manifold M has been defined
without referring to local coordinates, in particular there is no distinguished
basis. For the definition of an infinitesimal metric on M , which allows us
to measure the length of piecewise smooth curves and the study of the cor-
responding geometry we need Linear Algebra constructions applying to an
n-dimensional vector space V without a distinguished basis. For explicit
calculations one needs of course a basis of V (resp. local coordinates near
a ∈ M in the case V = TaM), so it is important to understand how the in-
duced bases behave under a change of basis of V (resp. a coordinate change).
This is most easily remembered when taking into account the ”naturality”
(or ”functoriality”) of our constructions, and one need not know by heart a
lot of complicated formulae with many indices.
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We shall discuss

1. the space of (k, `)-tensors T k,`(V ),

2. the tensor algebra T ∗(V ),

3. the exterior algebra Λ∗V .

The tensor product V ⊗W of two vector spaces V,W is characterized by
the following features:

1. There is a bilinear map

τ : V ×W −→ V ⊗W,

where one traditionally writes

v ⊗w := τ(v,w),

2. V ⊗W = span{v ⊗w; v ∈ V,w ∈ W}, so any element in V ⊗W is of
the form v1 ⊗ u1 + ...+ vr ⊗ ur,

3. dimV ⊗W = n ·m.

Remark 4.1. 1. If e1, ..., en is a basis of V and f1, ..., fm a basis of W ,
then the ei ⊗ fj form a basis of V ⊗W .

2. The universal mapping property (UMP): Given a bilinear map ϕ :
V ×W −→ U there is a unique linear map ϕ̂ : V ⊗W −→ U , s.th. the
diagram

V ⊗W ϕ̂−→ A
τ ↑ ↗ ϕ

V ×W
is commutative. Indeed, define

ϕ̂(ei ⊗ fj) := ϕ(ei, fj).

3. Given f : V −→ V ′, g : W −→ W ′ there is an induced linear map

f ⊗ g : V ⊗W −→ V ′ ⊗W ′,v ⊗w 7→ f(v)⊗ g(w).
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Example 4.2. 1. There is a natural isomorphism

ϕ̂ : V ∗ ⊗W −→ Hom(V,W )

induced by

ϕ : V ∗ ×W −→ Hom(V,W ), (v∗,w) 7→ v∗(..)w.

2. The space of k-tensors: We define T k(V ), k ∈ N, by

T 0(V ) := R, T k+1(V ) := T k(V )⊗ V

and obtain a k-linear map

V k −→ T k(V ), (v1, ...,vk) 7→ v1 ⊗ ...⊗ vk,

such that the UMP for k-linear (instead of bilinear) maps is satisfied.

3. A k-tensor is an expression of the form

α =
∑

(i1,...,ik)

λi1,...,ikvi1 ⊗ ...⊗ vik .

4. Denote Multk(V ) the vector space of k-linear forms. There is a natural
isomorphism

T k(V ∗)
∼=−→ Multk(V )

induced by the k-linear map

(V ∗)k −→ Multk(V ), (v∗1, ...,v
∗
k) 7→ v∗1(..) · ..... · v∗k(..).

In the sequel we identify elements in T k(V ∗) with k-multilinear forms,
such that

v∗1 ⊗ ...⊗ v∗k(v1, ...,vk) = v∗1(v1) · ..... · v∗k(vk).

5. There is a natural isomorphism

T k(V )⊗ T `(V ) ∼= T k+`(V ),

the ”concatenation”:

(v1 ⊗ ...⊗ vk)⊗ (u1 ⊗ ...⊗ u`) = v1 ⊗ ...⊗ vk ⊗ u1 ⊗ ...⊗ u`.

20



6. In particular

T ∗(V ) :=
∞⊕
k=0

T k(V )

carries the structure of a graded algebra, the product being the tensor
product. It is called the tensor algebra of V .

7. Any linear map f : V −→ W induces a ring homomorphism T ∗f :
T ∗(V ) −→ T ∗(W ).

8. If α ∈ Multk(V ) ∼= T k(V ∗) and β ∈ Mult`(V ) ∼= T `(V ∗), then α⊗ β ∈
Multk+`(V ) satisfies

α⊗ β(v1, ....,vk+`) = α(v1, ....,vk)β(vk+1, ....,vk+`).

Definition 4.3. A (k, `) tensor α is an element in

T k,`(V ) := T k(V )⊗ T `(V ∗),

it can be written:

α :=
∑

(i1,...,ik,j1,...,j`)

λi1,...,ik,j1,...,j`vi1 ⊗ ...⊗ vik ⊗ v∗j1 ⊗ ...⊗ v∗j` .

Example 4.4. Here are some natural isomorphisms:

1. T 1,1(V ) ∼= End(V ).

2. T 0,2(V ) ∼= Mult2(V ).

3. The tensors in

T 1,2V = V ⊗ V ∗ ⊗ V ∗ ∼= Mult2(V )⊗ V

may be understood as bilinear maps V × V −→ V .

4. The tensors in

T 1,3V = V ⊗ V ∗ ⊗ V ∗ ⊗ V ∗ ∼= Mult2(V )⊗ End(V )

may be understood as bilinear maps V × V −→ End(V ).
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Definition 4.5. The exterior algebra is the factor algebra

Λ∗V := T ∗(V )/a,

with the two-sided homogeneous ideal a =
⊕∞

k=2 ak ⊂ T ∗(V ) generated by
the elements v ⊗ v ∈ T 2(V ). The induced product is denoted ∧.

Remark 4.6. 1. We have

v ∧ v = 0,u ∧ v = −v ∧ u.

2. More generally, for α ∈ ΛkV, β ∈ Λ`V , we have

β ∧ α = (−1)k`α ∧ β.

3. If f : V −→ W is a linear map, there is an induced homomorphism
Λkf : ΛkV −→ ΛkW .

4. For an endomorphism f : V −→ V the induced homomorphism is
multiplication with the determinant:

Λnf = µdet f .

Proposition 4.7. Let ΛkV := T k(V )/ak. We have

ΛkV = {0}, k > n.

In particular

Λ∗V =
n⊕
k=0

ΛkV.

Furthermore

dim ΛkV =

(
n

k

)
and the elements

ei1 ∧ .... ∧ eik , 1 ≤ i1 < ... < ik ≤ n,

form a basis of ΛkV .

We may identify Λ∗V with a subspace of T ∗(V ). We start with:
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Remark 4.8. There is a natural action of Sk on T k(V ):

(π,v1 ⊗ ...⊗ vk) 7→ π∗(v1 ⊗ ...⊗ vk) := vπ(1) ⊗ ...⊗ vπ(k).

Definition 4.9. A k-tensor α ∈ T k(V ) is called alternating, if

π∗(α) = sign(π)α

holds for all permutations π ∈ Sk.

Proposition 4.10. The alternating k-tensors form a subspace

Ak(V ) ⊂ T k(V ),

such that the quotient map T k(V ) −→ ΛkV induces an isomorphism

Ak(V )
∼=−→ ΛkV.

Remark 4.11. 1. Though the direct sum

A∗(V ) :=
n⊕
k=0

Ak(V ) ⊂ T ∗(V )

is not a subring, we can describe the wedge product on A∗(V ) as follows:
There is a projection operator:

Altk : T k(V ) −→ T k(V ),

i.e. Altk(T k(V )) = Ak(V ),Altk|Ak(V ) = idAk(V ), namely

Altk(α) :=
1

k!

∑
π∈Sk

sign(π)π∗(α).

If we define ∧ on Ak(V ) as the pull back of the wedge product w.r.t.
the isomorphism

A∗(V )
∼=−→ Λ∗V,

we obtain

α ∧ β =
(k + `)!

k!`!
Altk+`(α⊗ β).

for α ∈ Ak(V ), β ∈ A`(V ).
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2. Under the isomorphism T k(V ∗) ∼= Multk(V ) the alternating tensors
in Ak(V ∗) correspond to alternating k-linear forms α ∈ Multk(V ), i.e.
such that

∃ i 6= j : vi = vj =⇒ α(v1, ...,vk) = 0.

Euclidean vector spaces: Finally we consider the situation, where the
vector space V is endowed with an inner product g : V × V −→ R. It
induces an isomorphism

ψ : V
∼=−→ V ∗,v 7→ g(v, ..),

such that, because of the symmetry of the inner product,

ψ = ψ∗ ◦ β : V −→ V ∗∗ −→ V ∗.

Here β : V −→ V ∗∗ is the biduality isomorphism. In the sequel we shall
simply identify V with V ∗∗, vectors v ∈ V acting on V ∗ by evaluation
v(v∗) := v∗(v).

We want to show that there is an induced inner product on T k,`(V ). First
of all there is an isomorphism

T k,`(V ∗) ∼= T k(V ∗)⊗ T `(V ) ∼= T k,`(V )∗,

induced by the multilinear map

(V ∗)k × V ` −→ T k,`(V )∗,

(v∗1, ...,v
∗
k,v1, ....,v`) 7→ v∗1 ⊗ ...⊗ v∗k ⊗ v1 ⊗ ....⊗ v`,

the RHS being the tensor product of the linear maps v∗i : V −→ R and
vj : V ∗ −→ R.

Now the inner product on T k,`(V ) correspond to the isomorphism

T k,`(V ) −→ T k,`(V )∗ ∼= T k(V ∗)⊗ T `(V )(∼= T `,k(V ))

v1 ⊗ ...⊗ vk ⊗ v∗1 ⊗ ...⊗ v∗` 7→
ψ(v1)⊗ ...⊗ ψ(vk)⊗ ψ−1(v∗1)⊗ ...⊗ ψ−1(v∗` ).

Thus the inner product on T k,`(V ) is defined without referring to a basis of
V . For practical purposes we note that, given a g-orthonormal basis e1, ..., en
of V , we have

e∗i = ψ(ei)
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for the dual basis e∗1, ..., e
∗
n of V ∗. It follows that the (k, `)-tensors

ei1 ⊗ ...⊗ eik ⊗ e∗j1 ⊗ ....⊗ e∗j` ∈ T
k,`(V )

form a g-orthonormal basis.
A similar discussion applies to the exterior product ΛkV .

5 Vector bundles and tensor fields

The above vector space constructions are of the following type: We have a
map

Φ : V 7→ Φ(V ),

which associates to a vector space V another one, Φ(V ), and with any iso-
morphism f : V −→ W an isomorphism Φ(f) : Φ(V ) −→ Φ(W ), such that

1. Φ(g ◦ f) = Φ(g) ◦ Φ(f) and

2. Φ(idV ) = idΦ(V ),

3. finally, if fa ∈ End(V ) smoothly depends on a ∈ U ⊂M , so does Φ(fa).

Example 5.1. 1. Φ(V ) = V with Φ(f) = f .

2. Φ(V ) = V ∗ with Φ(f) = (f−1)∗.

3. Φ(V ) = T k,`(V ) with Φ(f) = T k(f)⊗ T `((f−1)∗).

4. Φ(V ) = Λk(V ) with Φ(f) := Λk(f).

Now, given a vector bundle E −→M we can form a vector bundle Φ(E)
as follows: Take a covering

M =
⋃
i∈I

Ui

with trivializations
τi : π−1(Ui) −→ Ui × V,

and transition functions:

τj ◦ τ−1
i : Uij × V −→ Uij × V, (x,y) −→ (x, Fij(x)y)

with smooth Fij := Uij −→ End(V ).
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Remark 5.2. Given smooth functions Fij := Uij −→ End(V ), s.th. we have
the following ”cocycle relation”

Fik(x) = Fjk(x) ◦ Fij(x),∀ x ∈ Uijk := Ui ∩ Uj ∩ Uk

satisfied for all i, j, k ∈ I as well as Fii ≡ idV (s.th. Fij(x) ∈ GL(V )), we
consider on the disjoint union

Ê :=
⋃
i∈I

Ui × V

the relation

Ui × V 3 (x,v) ∼ (x, Fij(x)v) ∈ Uj × V,

in particular that implies x ∈ Uij. Due to the cocycle relation ∼ it is an
equivalence relation, and we can form the quotient space

E := Ê/ ∼,

which obviously is the total space of a vector bundle π : E −→M .

Definition 5.3. Let E be a vector bundle over M with fiber V , obtained
as in Rem.5.2 from an open cover (Ui)i∈I of M with Fij : Uij −→ End(V )
satisfying the cocycle relation. Then we define

Φ(E) :=
⋃
i∈I

Ui × Φ(V )/ ∼

with the equivalence relation

Ui × Φ(V ) 3 (x,v) ∼ (x,Φ(Fij(x))v) ∈ Uj × Φ(V ).

Example 5.4. 1. The dual bundle E∗. Indeed the sections in Γ(E∗) may
be regarded as smooth functions E −→ R, which restrict to a linear
form on each fiber Ea.

2. T k,`(E).

3. Λk(E).
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Definition 5.5. 1. The dual bundle of the tangent bundle

T ∗M := (TM)∗.

is called the cotangent bundle of M . We use also the notation

Ω(M) := Γ(T ∗M)

and call sections ω ∈ Ω(M) differential forms of degree 1 or simply
1-forms.

2. Given f ∈ C∞(M) its differential df ∈ Ω(M) is defined as the 1-form
given by

dfa : Xa 7→ Xaf.

Remark 5.6. Indeed, if x1, ..., xm are local coordinates on U , we have

Ω(U) =
m⊕
i=1

C∞(U)dxi

and

df |U =
m∑
i=1

∂f

∂xi
dxi.

Note that on a manifold there is no notion of the gradient of a function!

Definition 5.7. The bundle of tensors of type (k, `) is defined as

T k,`(M) := T k,`(TM).

A global section α ∈ Γ(T k,`(M)) is called a (k, `)-tensor field.

Remark 5.8. If f : M −→ N is differentiable, there is a pull back

F ∗ : Γ(T 0,`N) −→ Γ(T 0,`M)

given by

(F ∗σ)a((X1)a, ..., (X`)a) := σF (a)(TaF ((X1)a), ..., TaF ((X`)a)).

If M = V ⊂ Rn and F = (F1, ..., Fn) we have

F ∗(dyi1 ⊗ ...⊗ dyi`) = dFi1 ⊗ ...⊗ dFi` .
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Definition 5.9. 1. A pseudo-Riemannian metric on a differentiable man-
ifold M is a section g ∈ Γ(T 0,2M), such that the bilinear form

ga : TaM × TaM −→ R

is symmetric and nondegenerate for all a ∈ M . It is called a Rieman-
nian metric if the forms ga are positive definite for all a ∈M .

2. A Riemannian manifold is a pair (M, g) consisting of a differentiable
manifold and a Riemannian metric g ∈ Γ(T 0,2(M)).

Remark 5.10. 1. On a local chart U with local coordinates x1, ..., xm we
have

g|U =
∑
i,j

gijdxi ⊗ dxj.

with functions gij ∈ C∞(M).

2. Let M = F−1(0) ⊂ W ⊂ Rn be a submanifold. Then M is a Rieman-
nian manifold with g := ι∗(

∑n
i=1 dxi ⊗ dxi). Here ι : M ↪→ W denotes

the inclusion.

Definition 5.11. Differential forms of degree k are the sections of the bundle
Λk(T ∗M); we set

Ωk(M) := Γ(Λk(T ∗M)).

Note that Ω0(M) = C∞(M),Ω1(M) = Ω(M).

Remark 5.12. 1. Usually we regard a k-form ω as a map associating to
each point a ∈M an alternating form ωa ∈ Ak(T ∗aM) ∼= Λk(T ∗aM).

2. If x1, ..., xm are local coordinates on U ⊂M , we have

Ωk(U) =
⊕

1≤i1<...<ik≤m

C∞(U)dxi1 ∧ ... ∧ dxik .

=
⊕

I⊂{1,...,m},|I|=k

C∞(U)dxI ,

where
dxI := dxi1 ∧ ... ∧ dxik ,

if I = {i1, ..., ik}, 1 ≤ i1 < ... < ik ≤ m.
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Definition 5.13. The exterior derivative

d : Ωk(M) −→ Ωk+1(M)

is defined as follows: Starting with the alternating k-C∞(M)-linear form

ω : Θ(M)k −→ C∞(M),

we define the C∞(M)-(k + 1)-linear form

dω : Θ(M)k+1 −→ C∞(M)

by

dω(X1, ..., Xk+1) =
k+1∑
i=1

(−1)i+1Xiω(X1, ..., X̂i, ..., Xk+1)

+
∑
i<j

(−1)i+jω([Xi, Xj], X1, ..., X̂i, .., X̂j, ..., Xk+1).

Remark 5.14. 1. In order to see that dω ∈ Ωk+1(M), we have to check
that

(a) dω is C∞(M)-multilinear

(b) and alternating. For that we may assume that the vector fields
Xi are coordinate vector fields (so the second sum vanishes) and
then show that the exchange of two arguments results in a change
of sign.

2. W.r.t.local coordinates we have

d(fdxi1 ∧ ... ∧ dxik) = df ∧ dxi1 ∧ ... ∧ dxik .

3. d(α ∧ β) = dα ∧ β + (−1)kα ∧ dβ, where α ∈ Ωk(M).

4. d(F ∗ω) = F ∗(dω) for differentiable F : M −→ N .

Definition 5.15. A differemtial form ω ∈ Ωk(M) is called

1. closed, if dω = 0,

2. exact, if ω = dη with a form η ∈ Ωk−1(M).
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Example 5.16. 1. ω = fdx+ gdy ∈ Ω(V ), V ⊂ R2, is closed iff ∂f
∂y

= ∂g
∂x

.

2. Let M := R2 \ {0} be the punctured plane. Then ω := − y
x2+y2

dx +
x

x2+y2
dy is closed, but not exact. Indeed, on U := R2 \ R≤0 × {0} we

havev ω = dϕ, but ϕ does not admit an extension to M .

Proposition 5.17. 1. Exact forms are closed, or equivalently d ◦ d = 0.

2. Lemma of Poincaré: On a starshaped open subset U ⊂ Rm every closed
form is exact.

Proof. 1. W.l.o.g. ω = fdx1 ∧ ... ∧ dxk ∈ Ω(V ), V ⊂ Rm. Then we have

dω = df ∧ dx1 ∧ ..... ∧ dxk

and
ddω = ddf ∧ dx1 ∧ ..... ∧ dxk,

hence it suffices to show ddf = 0. Exercise!

2. We first show

Lemma 5.18. Let W ⊂ R×Rm, U ⊂ Rm be open with [0, 1]×U ⊂ W ,
furthermore

ι0 : U −→ W,x 7→ (0,x), ι1 : U −→ W,x 7→ (1,x).

Let σ ∈ Ωk(W ) be a closed form. Then there is a form η ∈ Ω(U) with

(ι1)∗σ − (ι0)∗σ = dη.

Let us first prove the Poincaré lemma: We may assume that U is
starshaped w.r.t. the origin and consider the map ϕ : R × Rm −→
Rm, (t,x) 7→ tx, and apply Lemma 5.18 with W := ϕ−1(U). We take
σ = ϕ∗(ω) and obtain

dη = (ι1)∗ϕ∗(ω)− (ι0)∗ϕ∗(ω) = (ϕ ◦ ι1)∗ω − (ϕ ◦ ι0)∗ω = ω.

Proof of 5.18. We write

σ =
∑
|I|=k

fIdxI +
∑
|J |=k−1

gJdt ∧ dxJ
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and then have

ι∗1σ =
∑
|I|=k

fI(1,x)dxI , ι
∗
0σ =

∑
|I|=k

fI(0,x)dxI .

We know

0 = dσ =
∑
I

(
∂fI
∂t

dt ∧ dxI +
m∑
i=1

∂fI
∂xi

dxi ∧ dxI

)

−
∑
J

m∑
i=1

∂gJ
∂xi

dt ∧ dxi ∧ dxJ ,

in particular ∑
I

∂fi
∂t
dxI =

∑
J

m∑
i=1

∂gJ
∂xi

dxi ∧ dxJ .

Now take

η :=
∑
J

(∫ 1

0

gJ(t,x)dt

)
dxJ .

Then we find

dη =
∑
J

m∑
i=1

(∫ 1

0

∂gJ
∂xi

(t,x)dt

)
dxi ∧ dxJ .

∫ 1

0

(∑
J

m∑
i=1

∂gJ
∂xi

(t,x)dxi ∧ dxJ

)
dt

=

∫ 1

0

(∑
I

∂fI
∂t

(t,x)dxI

)
dt

=
∑
I

(fI(1,x)− fI(0,x)dxI = (ι1)∗σ − (ι0)∗σ.
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Definition 5.19. The factor vector spaces

Hq
dR(M) :=

ker(d : Ωq(M) −→ Ωq+1(M))

dΩq−1(M)

are called the de Rham cohomology groups of M , a topological invariant due
to the lemma of Poincaré. The dimension

bq(M) := dimHq
dR(M)

is called the q-th Betti number of M .

Remark 5.20. Integration on a Riemannian manifold: If F : U −→ V
is a differentiable map between open subsets U, V ⊂ Rm, we have

F ∗(fdy1 ∧ ... ∧ dym) = f ◦ F · det

(
∂Fi
∂xj

)
dx1 ∧ ... ∧ dxm.

On the other hand: If F is even a diffeomorphism and f : V −→ R is
continuous with compact support, then there is the following transformation
formula for integrals∫

V

fdy1...dym =

∫
U

f ◦ F ·
∣∣∣∣det

(
∂Fi
∂xj

)∣∣∣∣ dx1....dxm.

Now let us consider a Riemannian manifold M . On each connected U ⊂ M
with local coordinates x1, ..., xm there are two normalized forms ω ∈ Ωm(M)
as follows: Denote X1, ..., Xm the corresponding coordinate vector fields.

Choose A : U −→ GLm(R), such that the components of A

 X1
...
Xm

 form

an ON -basis of TaM at all a ∈ U . (They are in general not coordinate vector
fields!) Then

± det(A(x))dx1 ∧ ... ∧ dxm ∈ Ωm(U)

are the two normalized m-forms on U . Take G : U −→ GLm(R), such that

dxT ⊗G(x)dx (with dx :=

 dx1
...

dxm

) is the metric tensor on U . It follows

ATGA = E,
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the unit matrix, hence

| detA| = 1√
| detG|

.

Thus

±dx1 ∧ ... ∧ dxm√
| det(G)|

∈ Ωm(U)

are the two normalized m-forms over U . We may now integrate functions
f ∈ C0(M). If supp(f) := f−1(0) ⊂ U with U ∼= V ⊂ Rm as above, we set∫

M

f =

∫
V

f(x)√
| det(G(x)|

dx1...dxm.

Take M =
⋃
i∈I Ui with local charts ϕi : Ui −→ Vi ⊂ Rm. Finally choose a

partition of unity ψi subordinate to (Ui)i∈I and define∫
M

f :=
∑
i∈I

∫
M

ψif.

In order to see that this does not depend on the choices involved use the
transformation formula for integrals.

In general there is no normalized m-form ω ∈ Ωm(M). The reason for
that is as follows: Imagine we have two open subsets taken from the above
open covering. Assuming the Ui to be connected we can take a normalized
form ωi ∈ Ωm(Ui), which is unique up to sign. But if Uij = W1 ∪W2 is a
disjoint union, we can not exclude that

ωj|W1 = ωi|W1 , ωj|W2 = −ωi|W2 .

So there is no normalized m-form on Ui ∪ Uj!

Definition 5.21. 1. Anm-dimensional differentiable manifoldM is called
orientable, if there is a nowhere vanishing m-form ω ∈ Ωm(M), or
equivanlently, if ΛmT ∗M ∼= M × R.

2. An orientation of M is given by such a form; two nonvanishing forms
define the same orientation if they differ only by a positive function.

3. An oriented manifold is a manifold together with an orientation.
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Remark 5.22. 1. M is orientable iff there is an atlas A, such that the
transition functions have a positive functional determinant.

2. On an oriented Riemannian manifold M we may define
∫
M
η for m-

forms η with compact support: We write η = fω, where ω is the
normalized orientation form (volume form), and define∫

M

η :=

∫
M

f.

6 Connections on Vector Bundles

If E is a vector bundle over M , there is no natural way to produce an iso-
morphism Ea ∼= Eb for different points a, b ∈M . In this section we define an
additional datum D on E, called a connection or covariant derivative, which
can be used in order to define a derivative DXcµ ∈ Ec of a section µ ∈ Γ(E)
w.r.t. a tangent vector Xc ∈ TcM . Thus we are able to define what it means
that µ ◦ γ is constant, where γ : I −→M is a curve from a to b: We want to
have

Eγ(t) 3 Dγ̇(t)µ = 0

for all t ∈ I. Then we may ”transport” a vector x ∈ Ea to a vector y ∈ Eb
along γ by requiring that there is a section µ ∈ Γ(E), which is constant along
γ and satisfies x = µ(a), y = µ(b).

Definition 6.1. An affine connection or covariant derivative on a vector
bundle E over M is an R-bilinear map

D : Θ(M)× Γ(E) −→ Γ(E), (X,µ) −→ DXµ,

which is C∞(M)-linear in X and R-linear in µ, such that the Leibniz rule

DX(fµ) = X(f)µ+ fDXµ

holds. A section µ ∈ Γ(E) is called (D-)flat if DXµ = 0 for all X ∈ Θ(M).

Example 6.2. 1. On E = M × Rn we have the ”trivial connection” D0:
We have Γ(E) ∼= C∞(M)n and set

D0
X(f1, ..., fn) := (X(f1), ..., X(fn)).
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2. If M = F−1(0) ↪→ Rn, we may consider the inclusion

TM ↪→ TRn|M = M × Rn

and the fiberwise orthogonal projection

pr : M × Rn −→ TM,

i.e.
Rn ∼= {a} × Rn −→ TaM

is the orthogonal projection onto pra : TaM ↪→ Rn. Then

DXµ := pr(D0
X(µ))

defines a connection on E = TM . Here we regard µ ∈ Γ(TM) as
section of TRn|M = M × Rn, thus µ = (f1, ..., fn) and

DXµ = pr(X(f1), ..., X(fn)).

Remark 6.3. 1. Let U ⊂ M be an open subset. If X|U = 0 or µ|U = 0,
we have DXµ|U = 0 as well. Given a ∈ U take f ∈ C∞(M) vanishing
near a and = 1 in a neighourhood of the support of X resp. µ. We
find X = fX and thus

DXµ = DfXµ = fDXµ = 0

near a. On the other hand

DX(µ) = DX(fµ) = (Xf)µ+ fDXµ = 0

near a.

2. As a consequence a connection on E induces a connection of E|U for
any open subset U ⊂M .

3. Connections are determined by local data, the so called Christoffel
symbols: Let U ⊂ M be an open subset over which both TM and E
are trivial:

Θ(U) =
m⊕
i=1

C∞(U)Xi, Γ(E|U) =
n⊕
j=1

C∞(U)µj.
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Then we may write

(DXi
µj)|U =

n∑
k=1

Γkijµk

with functions Γkij ∈ C∞(U), the Christoffel symbols. We leave it to
the reader to establish that connections on E|U are in one-to-one cor-
respondence with systems of functions Γkij ∈ C∞(U), furthermore that
if M =

⋃
i∈I Ui is an open cover and Di are connections on E|Ui

that
agree over Ui ∩Uj, they can be patched together to a connection on E.
Details are left to the reader.

4. The value of DXµ at a ∈M depends only on Xa ∈ TaM and the section
µ: Given D we may define

TaM × Γ(E) −→ Ea, (Xa, µ) 7→ DXaµ,

such that
(DXµ)a = DXaµ.

We have to show that Xa = 0 implies (DXµ)a = 0 and may assume
that TM is trivial. If X =

∑m
i=1 fiXi with a frame X1..., Xm, we have

fi(a) = 0, i = 1, ...,m, and obtain

(DXµ)a =
m∑
i=1

fi(a)(DXi
µ)a = 0.

In general there are no non-zero flat sections over an open subset U ⊂M .
But over a curve in M there are! We need the following definition:

Definition 6.4. 1. Let f : Q −→M be a differentiable map. A section of
E above or over f is a differentiable map µ : Q −→ E with µq ∈ Ef(q)

for all q ∈ Q.
E

µ ↗ ↓
Q

f−→ M

2. We denote Γf (E) the vector space of all sections of E above f , a C∞(Q)-
module.

3. For E = TM we write Θf (M) := Γf (TM).
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Remark 6.5. If D is a connection on E we may define DXµ, where X ∈
Θ(Q) is a vector field on Q and µ a section of E above f . Assume first there
is a frame µ1, ..., µn ∈ Γ(E|U) in an open neighbourhood U of f(Q). Write
then µ =

∑n
i=1 gi(µi ◦ f) with functions gi ∈ C∞(Q) and define

DXµ =
m∑
i=1

Xgi · (µi ◦ f) + gi(DTf(X)µi) ◦ f

with DTf(X)µi being defined pointwise as in Rem.6.3.4. This definition is
independent from the chosen frame and thus can be used locally in order to
patch together the definitions on the members of an open cover of f(Q) in
the general case. If f = γ is a curve t 7→ γ(t) one writes also

∇γ̇µ := ∇ d
dt
µ.

Definition 6.6. A section µ ∈ Γf (E) over f is called D-flat if DXµ = 0
holds for all vector fields X ∈ Θ(Q).

Proposition 6.7. Let γ : I −→ M be a smooth curve with start point
γ(0) = a ∈M and end point γ(1) = b ∈M .

1. For any x ∈ Ea there is a unique flat section µx ∈ Γγ(E) with µx(0) =
x.

2. The parallel transport from a to b along γ is the map

PTγ : Ea −→ Eb, x 7→ µx(1).

3. If γ̃ = γ ◦ τ with a reparametrization τ : J −→ I of γ, we have

PTγ̃ = PTγ.

Proof. We may subdivide

I = I1 ∪ ... ∪ Ir

into subintervals Ik, s.th. γ(Ik) is contained in a local chart over which E is
trivial and then prove the theorem separately for all the Ik, k = 1, ..., r.
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So w.l.o.g. there is a local frame µ1, ..., µn of E in a neighbouhood of γ(I)
and local coordionates x1, ..., xm. Writing µ =

∑
j fjµj with fj ∈ C∞(I) we

want to have

0 = Dγ̇(t)

(
n∑
j=1

fjµj

)
=

n∑
j=1

ḟjµj + fjDγ̇(t)µj.

=
n∑
j=1

(
ḟjµj + fj

(
m∑
i=1

γ̇i(t)D∂iµj

))

=
n∑
j=1

ḟjµj + fj

(
m∑
i=1

γ̇i(t)
n∑
k=1

Γkijµk

)

=
n∑
j=1

ḟjµj +
n∑
k=1

fk

(
m∑
i=1

γ̇i(t)
n∑
j=1

Γjikµj

)
,

whence we see that

0 = ḟj +
n∑
k=1

fk

m∑
i=1

γ̇i(t)Γ
j
ik

should hold for j = 1, ..., n. As a linear differential equation it has a unique
solution over the entire interval I for a given initial value. Finally a solution
f1, ..., fn induces the solution f̃j := fj ◦ τ with γ̃ instead of γ, since passing
from γ to γ̃ means for each term composition with τ and multiplication with
τ ′(s).

Theorem 6.8. If M is paracompact, there is a connection on E.

Proof. Write M =
⋃
i∈I Ui with a locally finite cover (Ui)i∈I , such that E|Ui

is
trivial over all i ∈ I. In particular there are connections Di on E|Ui

. Choose
a partition of unity (ϕi)i∈I , subordinate to the cover (Ui)i∈I . Then define our
connection by the locally finite sum

DXµ :=
∑
i∈I

ϕi ·Di
X(µ),

where, by definition, ϕi ·Di
X(µ) = 0 outside Ui.

Remark 6.9. If D, D̃ are connections, then their difference is a tensor:

D − D̃ ∈ Hom(Θ(M),End(E)) ∼= Γ(T ∗(M)⊗ End(E)).
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Definition 6.10. The curvature of D is the map

FD : Θ(M)2 × Γ(E) −→ Γ(E),

defined as
FD(X, Y )µ := DXDY µ−DYDXµ−D[X,Y ]µ.

Remark 6.11. 1. We may also regard the curvature as a map

FD : Θ(M)2 −→ EndC∞(M)(Γ(E)).

Exercise: Check C∞(M)-linearity w.r.t. µ!

2. Since FD is C∞(M)-linear in X, Y as well, it is a tensor field, can be
regarded as follows

FD ∈ Γ((T 0,2M)⊗ End(E)),

indeed FD ∈ Γ(A2(T ∗M)⊗ End(E)), i.e. FD(Y,X) = −FD(X, Y ).

Theorem 6.12. The following statements are equivalent:

1. FD = 0.

2. Every point a ∈M has a neighbourhood U , over which there is a frame
of flat sections µ1, ..., µn ∈ Γ(E|U) .

Proof. ”1) =⇒ 2)”: We have

FD(X, Y )µi = 0, i = 1, .., n,

hence FD = 0.
”1) =⇒ 2)”: We may assume U = (−1, 1)m and do induction on m = dimM .
Given a flat section µ ∈ Γ(E|(−1,1)n−1×{0}) we may extend it uniquely to a
section µ̂ ∈ Γ(E|U) by defining it for x = (x′, xn) as

µ̂(x′, xn) := PTγx(µ(x′, 0)),

where
γx(t) = (x′, txn), 0 ≤ t ≤ 1.

We have to show that
DXi

µ̂ = 0, i = 1, ..., n,
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holds for the coordinate vector fields Xi = ∂
∂xi

. Since [Xi, Xj] = 0, we know
that

DXi
DXj

µ̂ = DXj
DXi

µ̂.

By construction we have
DXnµ̂ = 0.

Now we show that
DXi

µ̂(x′, xn), i = 1, ..., n− 1,

is obtained from
DXi

µ(x′, 0) = 0

by parallel transport along γx, hence it also vanishes. Indeed

Dγ̇DXi
µ̂ = xnDXnDXi

µ̂ ◦ γ = xnDXi
DXnµ̂ ◦ γ = 0.

Thus, starting with a flat frame µ1, .., µn ∈ Γ(E|(−1,1)n−1×{0}) we obtain a flat
frame µ̂1, .., µ̂n ∈ Γ(E|U)

Connections may also be understood in a geometric way: The correspond-
ing geometric objects are here called E-linear horizontal subbundles of TE.
In the literature there is also the term linear Ehresmann connection. We
start with the definition of horizontal subbundles:

Definition 6.13. Let V := ker(Tπ) ⊂ TE (with the bundle projection
π : E −→M) be the ”vertical subbundle”.

1. A horizontal subbundle H ↪→ TE is a subbundle with TE = V ⊕H.

2. A curve ϕ : I −→ E is called (H-)horizontal if ϕ̇(t) ⊂ Hϕ(t) for all
t ∈ I.

3. A section σ : U −→ E is called (H-)horizontal, if Taσ(TaM) ⊂ Hσ(a)

for all a ∈ U .

Example 6.14. A horizontal bundle H ⊂ TE induces a horizontal subbun-
dle H⊕ ⊂ T (E ⊕ E) as follows: For x, y ∈ Ea we have

T(x,y)(E ⊕ E) = {(Xx, Yy) ∈ TxE ⊕ TyE;Tπ(Xx) = Tπ(Yy)}

and define
H⊕(x,y) := (Hx ⊕Hy) ∩ T(x,y)(E ⊕ E).
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Definition 6.15. A horizontal subbundle H ⊂ TE is called E-linear if the
scalar multiplication µλ : E −→ E for all λ ∈ R and the addition α :
E ⊕ E −→ E satisfy

Tα(H⊕) ⊂ H,Tµλ(H) ⊂ H.

Remark 6.16. Fix a horizontal subbundle H ⊂ TE.

1. Any vector field X ∈ Θ(M) has a unique lift to a vector field X̂ ∈
Γ(H) ⊂ Θ(E).

2. Horizontal subbundles are in one-to-one coorrespondence with right
inverses

π∗(TM) ↪→ TE

of

TE
Tπ−→ π∗(TM).

In particular, given a ∈M and x ∈ Ea we have a map

Fx : TaM ∼= π∗(TM)x −→ TxE � Ea.

Here the projection TxE � Ea depends on the choice of a trivialization
E|U ∼= U × Ea on a neighbourhood of U 3 a, it is obtained from the
projection U × Ea −→ Ea and the natural isomorphism Tx(Ea) ∼= Ea.

3. A horizontal subbundle H ⊂ TE is E-linear if and only if Ea −→
Hom(TaM,Ea), x 7→ Fx, is a linear map for all a ∈M .

4. For an E-linear horizontal subbundle H ⊂ TE a parallel transport may
be defined using horizontal liftings of curves: Given γ : I −→ M and
x ∈ Ea, a = γ(0), there exists a unique H-horizontal lifting γ̃x : I −→
E of γ with γ̃x(0) = x. Locally the lifting is the solution of a linear
differential equation of first order.

Proposition 6.17. There is a one-to-one correspondence between connec-
tions on a vector bundle E and E-linear horizontal subbundles H ⊂ TE.

Proof. Let us start with H ⊂ TE. We want to define DXaσ and pick a curve
γ : I −→ M with start point a ∈ M and γ̇(0) = Xa. Denote γ̃1, ..., γ̃n
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H-horizontal liftings of γ, such that γ̃1(0), ..., γ̃n(0) ∈ Ea is a basis. Then
γ̃1(t), ..., γ̃n(t) ∈ Eγ(t) is a basis for all t ∈ I. Now, given σ ∈ Γ(E) write

σ ◦ γ =
n∑
i=1

fi · γ̃i

with functions fi : I −→ R. Now define

DXaσ :=
n∑
i=1

ḟi(0) · γ̃i(0).

On the other hand, given a connection D we are looking for the horizontal
subspace Hx ⊂ TxE, x ∈ E. Let a := π(x). We define a linear injection
Fx : TaM ↪→ TxE and take Hx := Fx(TaM). Let Xa ∈ TaM . Take a curve
γ : I −→M with start point a ∈M and γ̇(0) = Xa. Then

Fx(Xa) :=
dγ̂x
dt

(0).

Definition 6.18. 1. A metric vector bundle E −→M is a vector bundle
together with a fibre metric σ ∈ Γ(T 0,2(E)), i.e. σa is an inner product
on Ea for all a ∈M .

2. A metric connection on E is a connection D, such that Xσ(µ, ν) =
σ(DXµ, ν) + σ(µ.DXν). for µ, ν ∈ Γ(E), X ∈ Θ(M).

Definition 6.19. Let M be a metric bundle over the compact Riemannian
manifold M . The map

D 7→ YM(D) :=

∫
M

||FD||2

from the set of all metric connections on E to the reals is called the Yang-
Mills functional of E.

An application of the Yang-Mills functional is discussed in the next sec-
tion.
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7 Four Manifolds: A Survey

For a four dimensional oriented simply connected compact Riemannian man-
ifold M its (real) intersection form is the bilinear symmetric form

H2
dR(M)×H2

dR(M) −→ R,

(α + dΩ1(M), β + dΩ1(M)) 7→
∫
M

α ∧ β.

Indeed, it may already be defined over the integers: Singular integral coho-
mology associates to a topological space M a Z-module

H2(M) ↪→ H2
dR(M),

the inclusion being nothing but Zn ↪→ Rn, where n := b2(X) is the second
Betti number of X. In technical terms:

H2
dR(M) ∼= H2(M)⊗Z R.

There is as well an integral intersection form

σM : H2(M)×H2(M) −→ Z,

a unimodular symmetric bilinear form, the restriction of the dR-bilinear form,
which thus in particular maps Zn × Zn ⊂ Rn × Rn to Z ⊂ R. Fixing an
isomorphism

H2(M) ∼= Zn,

we may write
σM(u,v) = uTAv

with a symmetric matrix A ∈ GLn(Z). In that case we write

σM ∼= A.

In particular

A′ ∼= σM ∼= A⇐⇒ A′ = STAS, S ∈ GLn(Z).

The classification of nondegenerate symmetric bilinear forms on Rn is given
by Ip ⊕ −Iq with p + q = n. Here Ir denotes the unit matrix of size r × r.
But over the integers there are more refined invariants:
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Definition 7.1. A symmetric bilinear form σ : Zn × Zn −→ Z is called

1. even if σ(u,u) ∈ 2Z holds for all u ∈ Zn, or, equivalently, the diagonal
entries of A are even,

2. odd otherwise.

Example 7.2. 1. H :=

(
0 1
1 0

)
is even, while I1 ⊕ −I1 is not. Both

forms are indefinite and equivalent over the reals; both matrices satisfy
A ∼= −A.

2. E8 ∈ GL8(Z), the Cartan matrix of the exceptional Lie algebra E8, is
even and definite.

3. Any odd indefinite form is diagonalizable, i.e. of the form Ip⊕−Iq with
p, q > 0.

4. Any even indefinite form is of the type pE8⊕qH with unique p ∈ Z, q >
0. The representation as sum of indecomposable forms is nevertheless
not unique: Any indecomposable even positive definite form A gives
rise to an indefinite form A⊕H.

5. For definite A the decomposition into a direct sum of indecomposable
forms is unique.

6. For given rank n there are only finitely many indecomposable forms.

Theorem 7.3 (Freedman). Every unimodular form σ on Zn is realized as
σM by some compact simply connected oriented topological four manifold M .
Indeed

1. If σM is even, then M is determined up to homeomorphy by the iso-
morphy type of σM .

2. if σM is odd, then there are two non-homeomorphic possible M . For
one of them, M×S1 admits a differentiable structure, for the other one
it does not.

In particular the topological type of a differentiable manifold as above is
uniquely determined by its intersection form σM .
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So there are a lot of non-smoothable four manifolds. Th.7.6 gives further
severe restriction for smoothability. For the sake of completeness we mention:

Theorem 7.4 (Quinn). Any non-compact four manifold admits a differen-
tiable structure.

Example 7.5. Here are the most basic building blocks for four manifolds:

1. S4 realizes the zero form.

2. P2(C) realizes ±I1 depending on the choice of orientation.

3. S2 × S2 realizes H.

4. We have
σM ⊕ σN ∼= σM#N

with the connected sumM#N ofM andN . Take closed disks B4
(M) ⊂

M,B4
(N) ⊂ N with boundary spheres S(M),S(N). Now glue as fol-

lows:
M \ B4(M) ⊃ S(M)

f−→ S(N) ⊂ N \ B4(N),

where f : S(M) −→ S(N) is an orientation reversing homeomorphism.
That operation makes also sense in the category of differentiable man-
ifolds (with an an orientation reversing diffeomorphism).

5. The Kummer surface (a complex(!) surface, hence a four manifold)

K := {[z0, .., z3] ∈ P3(C); z4
0 + ...+ z4

3 = 0}

has σK ∼= 2E8 ⊕ 3H.

Theorem 7.6 (Donaldson). For a compact oriented simply connected differ-
entiable four manifold M with definite intersection form σM we have

σM ∼= ±In

with n = b2(M).

Theorem 7.7. There is a differentiable structure on R4, such that there is

no smooth embedding j : S3 ↪→ R4, s.th. B4
lies in the bounded component of

R4 \ j(S3).
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Proof. Write

K = M # 3(S2 × S2)

Then M does not admit a differentiable structure according to Th.7.6. The
attempt to amputate 3(S2× S2) from K leads to an ”exotic four plane”.

Sketch of the proof of Th.7.6. Let σM be definite. One considers a suitable
metric rank 4 vector bundle E −→ M . We consider the space of metric
connections

MC(E) = D + Γ(T ∗(M)⊗ Ad(E)).

Indeed, if D̃,D are metric connections we have D̃−D ∈ Γ(T ∗(M)⊗Ad(E)),
where Ad(E) ⊂ End(E) is the bundle of skew symmetric endomorphisms.

Definition 7.8. The group

Aut(E) := {f : E −→ E;∀a ∈M : f(Ea) ⊂ Ea, f |Ea isometry}

is called the gauge group of E.

Remark 7.9. 1. Aut(E) acts on MC(E) by conjugation:

f∗(D)X(µ) := f(DX(f−1 ◦ µ)).

2. Ff∗(D)(X, Y )µ = f ◦ FD(X, Y ) ◦ (f−1 ◦ µ)

3. YM(f∗(D)) = YM(D).

4. The space SD(E) ⊂MC(E) of ”self dual connections” (instantons) is
contained in the set of critical points of YM , it is Aut(E)-invariant.

One considers the ”moduli space”

M := SD(E)/Aut(E).

It is a topological space with the following properties:

1. There are points a1, ..., an with n := b2(M), s.th. the puncture M∗ :=
M \ {a1, ..., an} is a five dimensional oriented manifold.
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2. There are mutually disjoint open neighbourhoods Ui of the singular
points ai homeomorphic to a cone

Ui ∼= C(P2(C)), i = 1, ..., b2(M)

over the complex projective plane P2(C). Here

C(X) := X × [0, 1)/ ∼

with (x, 0) ∼ (y, 0) for all x, y ∈ X.

3. M has one end diffeomorphic to M × R, i.e. there is a compact set
K ⊂M, s.th.

M \K ∼= M × R.

Then we may produce from M a five dimensional manifold N with bound-
ary

∂N ∼= M ∪
∐
n

P2(C).

That implies

σM ∼= σ∐
n P2(C)

∼= In.

8 Connections on TM

Denote

∇ : Θ(M)×Θ(M) −→ Θ(M)

a connection on the tangent bundle of the differentiable manifold M .

Definition 8.1. The torsion tensor field T∇ ∈ Γ(T 1,2M) of the connection
∇ is defined by

T∇(X, Y ) := ∇XY −∇YX − [X, Y ].

We call ∇ torsion free if T∇ = 0.
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Remark 8.2. If ∇ has Christoffel symbols Γkij with respect to the local
coordinates x1, ..., xm, we have

T∇ =
∑
i,j

(Γkij − Γkji) ∂k ⊗ dxi ⊗ dxj.

Hence ∇ is torsion free if Γkji = Γkij holds for k = 1, ...,m.

Theorem 8.3. Let M be a pseudo-Riemannian manifold. Then there is a
unique torsion free ”metric” connection ∇ on TM , called the Levi-Civita-
connection.

Example 8.4. 1. M = Rm with g =
∑

i dxi ⊗ dxi has Levi-Civita con-
nection with Γkij = 0 for all i, j, k. With other words

∇∂i∂j = 0, i, j = 0, ...,m

resp.

∇X(
m∑
k=1

fk∂k) =
m∑
k=1

X(fk)∂k.

2. Let M = F−1(0) ↪→ W ⊂ Rn with F : W −→ Rn−m. Denote P :
M × Rn −→ TM the orthogonal projection. Then ∇M

X Y = P ◦ ∇XY
is the Levi-Civita connection of M .

Proof. We show that on every coordinate patch U with coordinates x1, ..., xm
the Christoffel symbols are uniquely determined; hence the corresponding
connections can be glued to a global connection.

Denote g =
∑

i,j gijdxi ⊗ dxj the metric tensor, Xi := ∂i. Consider a

triple in {1, ..,m}3. We want

Xkg(Xi, Xj) = g(DXk
Xi, Xj) + g(Xi, DXk

Xj)

and obtain three equations permuting for a given triple the indices. On the
other hand

Xig(Xj, Xk)−Xkg(Xi, Xj) +Xjg(Xi, Xk) = 2g(DXi
Xj, Xk)

has to hold for a metric torsion free connection (use ∇Xi
Xj = ∇Xj

Xi).
Indeed the two systems of three equations turn out to be equivalent for a
torsion free connection ∇. Since

g(DXi
Xj, Xk) =

∑
`

Γ`ij · g`k,
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we obtain with the matrix G = (g`k) the following equality

(g(DXi
Xj, X1), ..., g(DXi

Xj, Xm) = (Γ1
ij, ...,Γ

m
ij ) ·G

respectively

(Γ1
ij, ...,Γ

m
ij ) = (g(DXi

Xj, X1), ..., g(DXi
Xj, Xm)) ·G−1.

Combining that with our previous result we arrive at an explicit formula for
the Christoffel symbols.

Definition 8.5. A smooth curve γ : I −→ M in a pseudo-Riemannian
manifold M is called a geodesic, if its tangent field γ̇ : I −→ TM is (∇-)flat:

∇γ̇ γ̇ = 0.

Proposition 8.6. Given a ∈M and Xa ∈ Ta(M) there is a unique geodesic
γ : (−ε, ε) −→M with γ(0) = a, γ̇(0) = Xa.

Proof. Assume that x1, ..., xm are local coordinates on U ⊂ M . If then
γ = (γ1, ..., γm) is a smooth path, and Γkij ∈ C∞(M) the Christoffel symbols
w.r.t. the coordinate vector fields X1, ..., Xm, the condition for γ to be a
geodesic is the following non-linear system of differential equations

γ̈k +
∑
i,j

Γkij γ̇iγ̇j, k = 1, ...,m.

Now apply the fundamental theorem of the theory of ODE.

Remark 8.7. 1. If γ is the geodesic as in Prop.8.6, then t 7→ γ(λt) is the
geodesic starting at a with tangent vector λXa.

2. Taking λ = 0 in the previous point we see that γ ≡ a is a geodesic.
Using that together with the above uniqueness result we obtain that a
geodesic γ either is constant or γ̇(t) 6= 0 for all t.

3. For a geodesic γ we have g(γ̇, γ̇) ≡ c ∈ R.

In the theory of ODEs one reduces the order of a system of differential
equations by introducing additional variables. Here is a geometric version of
that process applied to the second order system for geodesics.
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Definition 8.8. Given a smooth path γ in M denote γ̇ : I −→ TM and
γ̈ : I −→ TTM the first and second derivative of γ. The geodesic flow
Z ∈ Θ(TM) is the vector field such that

ZXa := γ̈Xa(0),

where γ = γXa : (−ε, ε) −→M is the geodesic with γ(0) = a, γ̇(0) = Xa.

Remark 8.9. 1. If (x1, ..., xm, y1, ..., ym) are local coordinates on π−1(U) ⊂
TM,, such that

(x1, ..., xm, y1, ..., ym) 7→ (x1, ..., xm,

m∑
i=1

yi∂
x
i )

with x = (x1, ..., xm), we find

Z =
n∑
k=1

(
yk

∂

∂xk
−

(∑
i,j

yiyjΓ
k
ij

)
∂

∂yk

)
,

in particular Z0a = 0 holds for 0a ∈ TaM .

2. Denote π : TM −→M the projection. For an integral curve σ : I −→
TM of Z through Xa the path γ := π ◦ σ : I −→ M is the geodesic
through a with tangent vector Xa.

For the next definition remember that D(Z) ⊂ TM ×R consists of those
points (Xa, t), such that Z has an integral curve defined on [0, t] starting at
Xa, see also Th.3.17.

Definition 8.10. Let

U := {Xa ∈ TM ; (Xa, 1) ∈ D(Z) ⊂ TM × R},

an open neighbourhood of the zero section in TM . The map

exp : U −→M,Xa 7→ γXa(1)

is called the exponential map for the pseudo-Riemannian manifold M . Here
γXa denotes the geodesic starting at a with tangent vector Xa. Set

expa := exp |Ua : Ua −→M.

with Ua := TaM ∩ U .
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Lemma 8.11. We have exp(tXa) = γXa(t) and

T0(expa) = idTaM

holds for the differential of the exponential

T0(expa) : T0(Ua) = T0(TaM) ∼= TaM −→ TaM

at 0 = 0a ∈ TaM . In particular expa induces a diffeomorphism from a
neighbourhood ot 0a ∈ TaM onto a neighbourhood of a ∈M .

The next statement deals with the differential of the exponential outside
the origin:

Proposition 8.12. Let Xa ∈ Ua ⊂ TaM and γ(t) = expa(tXa) be the
geodesic with γ̇(0) = Xa. Then the differential of the exponential map
expa : Ua −→M at Xa, the map

TXa expa : TaM ∼= TXa(TaM) −→ Tγ(1)M

1. induces an isometry RXa −→ Rγ̇(1) and

2. preserves the orthogonal complements:

TXa expa(X
⊥
a ) ⊂ γ̇(1)⊥,

a statement also known as Gauß’ lemma.

Proof. The first part of the statement follows from the fact that ||γ̇(t)|| =
||Xa|| for all t, in particular ||γ̇(1)|| = ||Xa||. For the second part take a
vector Ya ⊥ Xa with ||Ya|| = ||Xa||. Now choose ε > 0, such that the map

f : I × (−ε, ε) −→M, (t, w) 7→ expa(t(cos(w)Xa + sin(w)Ya)),

is defined. Obviously all paths t 7→ f(t, w) are geodesics with tangent vectors
of length ||Xa||. We want to apply the below lemma with T := Tf(∂t),W =
Tf(∂w) ∈ Θf (M). So we have to compute g(W,T ). We obtain

W(t,w) = T expa(t(− sin(w)Xa + cos(w)Ya)).

In particular
W(t,0) = T expa(tYa))

and thus, according to Rem. 8.13,

g(W(t,0), γ̇(t)) = g(W(0,0), γ̇(0)) = g(0, γ̇(0)) = 0.

With t = 1 we obtain TXa expa(Ya) ⊥ γ̇(1).
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Lemma 8.13. Assume f : I × (−ε, ε) −→ M is a variation of the geodesic
γ(t) := f(t, 0), i.e. all curves t 7→ f(t, w) are geodesics. If in addition
they have tangent vectors of the same length, then for T := Tf(∂t),W :=
Tf(∂w) ∈ Θf (M) the inner product g(W,T ) : I × (−ε, ε) −→ R does not
depend on t.

Proof. The assumption yields

0 =
∂

∂w
g(T, T ) = 2g(∇∂wT, T ),

whence

∂

∂t
g(W,T ) = g(∇∂tW,T ) + g(W,∇∂tT ) = g(∇∂wT, T ) = 0,

the connection ∇ being torsion free and ∇∂tT = 0.

Theorem 8.14. Let M be a pseudo-Riemannian manifold with metric tensor
g, Levi-Civita connection ∇ and curvature R = F∇. Then the following
statements are equivalent:

1. R = 0

2. Every point a ∈M has a neighbourhood isomorphic to an open subset of
Rm endowed with the standard metric

∑m
i=1 εidxi⊗dxi, where εi = ±1.

Proof. According to Th. 6.12 there is a connected neighbourhood U 3 a
with flat vector fields X1, ..., Xm ∈ Θ(U). We have

Xig(Xj, Xk) = g(∇Xi
Xj, Xk) + g(Xj,∇Xi

Xk) = 0,

hence g(Xi, Xj) ≡ gij ∈ R. On the other hand

[Xi, Xj] = ∇Xi
Xj −∇Xj

Xi = 0;

thus by Frobenius there are, after a shrinking of U at least, local coordinates
x1, ..., xm on U with Xi = ∂

∂xi
. With other words

g|U =
∑
i,,j

gijdxi ⊗ dxj.

Finally diagonalize.
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9 Length and distance

Definition 9.1. Given a Riemannian manifold M we define the metric d =
dM by

d(p, q) = inf{L(γ); γ a broken smooth curve from p to q}.

Proposition 9.2. The manifold topology of M coincides with the topology
of the metric space (M,dM).

Proof. Fix a point p ∈M and local coordinates

U
∼=−→ B2 := {x ∈ Rm; ||x|| < 2}, p 7→ 0.

Here ||..|| denotes the euclidean norm on Rn. Consider

ĝ : B2 × Rm −→ R,

ĝ(x,y) =

√∑
i,j

gij(x)yiyj

and
R := sup {ĝ(x,y); ||x|| ≤ 1, ||y|| = 1} <∞,

and
r := inf {ĝ(x,y); ||x|| ≤ 1, ||y|| = 1} > 0.

We show for x ∈ B1 the estimates:

r · ||x|| ≤ d(0,x) ≤ R · ||x||.

First of all looking at the path t 7→ tx, 0 ≤ t ≤ 1, we obtain

d(0,x) ≤
∫ 1

0

ĝ(tx,x)dt ≤ R

∫ 1

0

||x||dt = R||x||.

Second, take any path γ : I −→M from 0 to x. Denote c ∈ I the first point
with ||γ(c)|| = ||x||. Then

L(γ) ≥ L(γ|I0) =

∫ c

0

ĝ(γ(t), γ̇(t))dt ≥ r

∫ c

0

||γ̇(t)||dt ≥

r · ||
∫ c

0

γ̇(t)dt|| = r||γ(c)|| = r||x||.

Since that holds for all γ, we are done.
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Theorem 9.3. Assume that

TaM ⊃ Bε(0a)
expa−→ U ⊂M

is a diffeomorphism. Then

1. U = Bε(a),

2. for b = expa(Xa), Xa ∈ Bε(0a), we have d(a, b) = ||Xa||, and

3. any minimizing path from a to b has support {expa(tXa), 0 ≤ t ≤ 1}.

Proof. Let R := ||Xa||. We show L(σ) ≥ R for any broken C∞-path σ from
a to b, furthermore that equality implies that σ is a reparametrization of the
geodesic γXa|[0,1].

1. We may assume σ−1(a) = {0} and then find a ”subpath” σ0 = exp ◦τ ,
where τ : I = [0, c] −→ Bε(0a) with τ(0) = 0a, ||τ(c)|| = R and
0 < ||τ(t)|| ≤ R.

2. We show L(σ0) ≥ R. We may assume

τ(t) = r(t)ϕ(t)

with r(t) > 0 for t > 0 and ϕ : I \ {0} −→ S(TaM), i.e. one starts
travelling at t = 0 and never returns to the origin 0a ∈ TaM . For
σ0 = expa ◦τ we have

σ̇0(t) = Tτ(t) expa(ṙ(t)ϕ(t) + r(t)ϕ̇(t)),

where we use the isomorphism Tτ(t)TaM ∼= TaM . Since ϕ(t) ⊥ ϕ̇(t),
we find with Gauß’ lemma (Prop. 8.12) the estimate

||σ̇0(t)||2 = ||Tτ(t) expa(ṙ(t)ϕ(t))||2 + ||Tτ(t) expa(r(t)ϕ̇(t))||2 ≥ ṙ(t)2.

Indeed, if ϕ̇(t) 6= 0 somewhere we obtain a strict inequality over some
open subinterval I0 ⊂ I, the map Tτ(t) expa being an isomorphism, and
thus ∫ c

0

||σ̇0(t)||dt >
∫ c

0

|ṙ(t)|dt ≥
∫ R

0

dr = R.

3. We thus know that L(σ0) = R implies ϕ̇ ≡ 0.
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4. If σ0 is broken, we may apply the above estimates to its smooth pieces.
In particular we see, that for L(σ0) = R no breaks can occur, since that
would mean that ϕ̇ 6≡ 0 on some of its smooth pieces.

5. If L(σ) = R, it follows σ = σ0 and because of ϕ̇ ≡ 0, we have

τ(t) = r(t)R−1Xa.

Corollary 9.4. Let γ be a piecewise smooth path from a ∈ M to b ∈ M .
Then if L(γ) = d(a, b), it is a reparametrization of a geodesic, i.e. it is the
composition of a nondecreasing surjective function I −→ J and a geodesic
J −→M .

Proof. First of all any subpath of γ is minimizing as well. Pick a point

a ∈ |γ|. Using expa : Bε(0a)
∼=−→ Bε(a) as in Prop. 9.3 we see that γ

is immediately before and after a a reparametrized geodesic. It remains
to exclude a break at a. For that we choose ε > 0, s.th. expc defines a
diffeomorphism Bε(0c) −→ Bε(c) for all c ∈ |γ|. Take c ∈ |γ|, c 6= a, with

a ∈ Bε(c) and apply Prop. 9.3 to expc : Bε(0c)
∼=−→ Bε(c)

10 Completeness

Theorem 10.1 (Hopf/Rinow). For a connected Riemannian manifold M
denote U ⊂ TM the domain of definition for the exponential exp : U −→M .
Then the following statements are equivalent:

1. There is a point a ∈M , such that TaM ⊂ U .

2. The exponential is defined everywhere, i.e. U = TM .

3. (M,d) is a complete metric space.

4. The closed d-balls

Br(a) := {b ∈M ; d(a, b) ≤ r} ⊂M

are compact.
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Furthermore if M is complete, i.e. if one (or all) of the above conditions
are satisafied, then for any two points a, b ∈ M there is a (not necessarily
unique) geodesic γ between a and b with L(γ) = d(a.b).

Remark 10.2. Note that the exponential expa : TaM −→ M for complete
M in general neither is injective nor distance preserving; we only know

d(a, expa(Xa)) ≤ ||Xa||

with equality for sufficiently short tangent vectors Xa.

Proof. ”4) =⇒ 3)”: Any d-Cauchy sequence is d-bounded, hence contained
in a compact subset, thus has points of accumulation, indeed, exactly one,
its limit.
”3) =⇒ 2)”: Assume γ : I = [0, c) −→ M is a geodesic. Then if c < ∞
the completeness of M implies that the limit limt→c γ(t) = b exists, and
K := γ(I) ∪ {b} is a compact set. Thus there is some ε > 0, s.th.

{Xa ∈ TM ; a ∈ K, ||Xa|| < ε} ⊂ U.

It follows that γ can be extended to the interval [0, d+ ε) for all d < c, hence
to [0, c+ ε). Thus, after all, γ can be extended to [0,∞).
”2) =⇒ 1)”: Clear.
”1) =⇒ 4)”: If we show that

Er(a) := expa(Br(0a)) = Br(a)

holds for all r > 0, we are done: In that case, any Br(a) is compact being
the continuous image of a compact set. Furthermore, if d(a, b) = r, we have
b = expa(Xa) with ||Xa|| = r and t 7→ expa(tXa), 0 ≤ t ≤ 1, is a geodesic of
minimal length joining a and b.

Now, for small r > 0 the equality Er(a) = Br(a) follows from Prop.9.3.
We show then, that the set of all r > 0 with E%(a) = B%(a) for % ≤ r is both
open and closed in R>0. In any case it is an interval.

1. It is closed: Assume that we have E%(a) = B%(a) for % < r. Let
d(a, b) = r. We claim that there is a sequence bn → b with d(a, bn) < r
for all n. If so, write bn = expa(Xa(n)). Since ||Xa(n)|| ≤ r for all n,
we find a convergent subsequence resp. may assume that Xa(n)→ Xa.
Then we have b = expa(Xa). To find the sequence bn, choose paths γn
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from a to b with L(γn) ≤ r + 1
n
. Indeed, we take points bn ∈ |γn| with

r > d(a.bn) > r− 1
n

and decompose γn into a path αn from a to bn and
a second one, βn, from bn to b. Then we have d(bn, b) ≤ L(βn) → 0
because of

L(αn) + L(βn) = L(γn)→ r

and L(αn)→ r as well.

2. It is open: Assume Er(a) = Br(a). We show that Er+δ(a) = Br+δ(a)
for sufficiently small δ > 0. Choose ε > 0, such that for every point
c ∈ Sr(a) (the set of all points in M at distance r from a, a closed subset
of the compact set Br(a), hence compact as well) the exponential map
expc defines a diffeomorphism Bε(0c) −→ Bε(a). Let δ ≤ ε and take a
point b ∈ Br+δ(a). Choose c ∈ Sr(a) with minimal d(b, c). We claim
d(a, b) = d(a, c) + d(c, b). We have to show L(γ) ≥ d(a, c) + d(c, b) for
any path γ from a to b. We may cut γ into two subpaths at some point
in |γ| ∩ Sr(a). The first has length at least r = d(a, c), the second one
at least d(c, b) because of the choice of c.

Now write c = expa(Xa) and b = expc(Yc). If our equality holds, then
the geodesics t 7→ expa(tXa), 0 ≤ t ≤ 1, and t 7→ expc(tYb), 0 ≤ t ≤ 1,
form together a minimizing path, hence, according to Cor 9.4, there is
no break at c and they form a geodesic from a to c of length d(a, b).
Hence b = expa((r + d(c, b))Xa) ∈ Er+δ(a).

11 Jacobi fields

Remark 11.1. Let f : Q −→ M be a differentiable map. Here M is a
Riemannian manifold with Levi-Civita connection ∇, metric tensor g and
curvature R = R∇. If X, Y ∈ Θf (Q),W ∈ Θ(Q), then

Wg(X, Y ) = g(∇WX, Y ) + g(X,∇WY ).

Definition 11.2. Let γ : I −→ M be a geodesic. A vector field W : I −→
TM above γ is called a Jacobi field, if

∇2
γ̇W := ∇2

d
dt

W = R(γ̇,W )γ̇.
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Proposition 11.3. Let γ : I −→ M be a geodesic. Given a point t0 ∈ I
and tangent vectors Xa, Ya ∈ TaM at a = γ(t0), there is a unique Jacobi field
W : I −→ TM along γ with Wt0 = Xa,∇γ̇(t0)W = Ya.

Proof. Denote T1, ..., Tm a basis of γ-parallel vector fields along γ. Then a
vector field W =

∑m
i=1 ϕiTi with functions ϕi ∈ C∞(I) is a Jacobi field iff

∇2
γ̇W =

m∑
i=1

ϕ̈iTi =
m∑
i=1

ϕiR(γ̇, Ti)γ̇.

Now we may write

R(γ̇, Ti)γ̇ =
m∑
j=1

ajiTj

with functions aji ∈ C∞(I), so our equation is equivalent to the equation

ϕ̈ = Aϕ

with ϕ :=


ϕ1

.

.
ϕm

 and the matrix A = (aji) ∈ (C∞I)m,m. Now the solution

theory for linear differential equations gives the result.

Example 11.4. 1. A tangential vector field W = fγ̇, f ∈ C∞(I), is a
Jacobi field, if and only if f̈ = 0, i.e. f is an affine linear function:
f(t) = at+ b.

2. On Rn parallel vector fields are constant vector fields and Jacobi fields
are of the form tV +W with constant vector fields V,W .

3. On Sn geodesics γ are segments of intersections Sn ∩ H with a two
dimensional subspace H ⊂ Rn+1, and the vector space of parallel vector
fields is

Rγ̇ ⊕H⊥,

where the elements in H⊥ are regarded as restrictions to Sn of constant
vector fields on Rn+1. Futhermore

R(X, Y )Z = g(Y, Z)X − g(Z,X)Y,
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see problem 7.3 a) with L = idTSn . So the equation for a Jacobi field
W is

∇2
d
dt

W = g(W, γ̇)γ̇ − g(γ̇, γ̇)W.

Now writing W = f1γ̇ +
∑n

i=2 fiYi with a basis Y2, ..., Yn of H⊥ we
obtain

f̈1γ̇ +
n∑
i=2

f̈iYi = f1γ̇ − f1γ̇ −
n∑
i=2

fiYi,

where we assume γ to be parametrized by arc length. Thus

f̈1 = 0, f̈i = −fi, i = 2, ..., n,

and f1(t) = λ1t+ µ1, while fi = λi cos(t) + µi sin(t), i = 2, ..., n.

Proposition 11.5. Assume f : I × (−ε, ε) −→ M is a variation of the
geodesic γ(t) := f(t, 0), i.e. all curves t 7→ f(t, w) are geodesics. Then the
vector field

W := Tf ◦ ∂

∂w
: I × (−ε, ε) −→ TM

restricts to a Jacobi field on I = I ×{0}. Indeed, every Jacobi field W along
the geodesic γ is obtained in that way.

Proof. We leave it to the reader to check that W and

T := Tf ◦ ∂
∂t

: I × (−ε, ε) −→ TM

satisfy

∇ ∂
∂t
W = ∇ ∂

∂w
T

as well as

∇ ∂
∂t
∇ ∂

∂w
X −∇ ∂

∂w
∇ ∂

∂t
X = R(T,W )X.

Now

∇ ∂
∂t

(∇ ∂
∂t
W ) = ∇ ∂

∂t
(∇ ∂

∂w
T ) = ∇ ∂

∂w
(∇ ∂

∂t
T ) +R(T,W )T = R(T,W )T.

For the proof of the second part we refer to the text book.
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Example 11.6. Given a tangent vector Va ∈ TaM and a geodesic γ := γXa

with start point a we can explicitly write down the Jacobi field W : I −→
TM with W0 = 0,∇γ̇(0)W = Va. Denote V ∈ Θ(TaM) the constant vector
field V ≡ Va (remember TYa(TaM) ∼= TaM naturally.).Then we have

Wt = TtXa expa(tVtXa).

Indeed, it is obtained from the following variation of geodesics

f(t, w) := expa(t(Xa + wVa)).

Then we have
∇ d

dt
W = ∇ d

dt
(tTtXa expa(VtXa))

= TtXa expa(VtXa) + t∇ d
dt

(TtXa expa(VtXa)).

Thus for t = 0 we obtain (∇ d
dt
W )0 = Va. Note that if Va ⊥ Xa, we have

g(W, γ̇) ≡ 0 as a consequence of Gauß’ lemma.

Definition 11.7. A point b ∈ M is called conjugate to a ∈ M iff b =
expa(Xa) and expa is not a diffeomorphism near Xa, i.e.

TXa expa : TaM ∼= TXa(TaM) −→ TbM

is not an isomorphism.

Proposition 11.8. The point b = expa(Xa) is conjugate to a ∈ M iff there
is a Jacobi field W : I −→ TM above γXa : I −→M with W0 = 0,W1 = 0.

Proof. ”=⇒”: Denote Z ∈ Θ(TaM) a nonzero constant vector field such that
ZXa ∈ ker(TXa expa) and take

Wt := TtXa expa(tZtXa).

”⇐=”: Given W : I −→ TM we choose Z ∈ Θ(TaM) as the constant vector
field with Z0 = ∇γ̇(0)W 6= 0 (because of W 6≡ 0). Then the Jacobi fields
W and Yt = TtXa expa(tZtXa) satisfy W0 = 0 = Y0,∇γ̇(0)W = ∇γ̇(0)Y , hence
coincide. In particular

TXa expa(ZXa) = W1 = 0.
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Corollary 11.9. 1. A point b ∈ M is conjugate to the point a ∈ M iff a
is conjugate to b.

2. If γ : I = [0, 1] −→ M is a geodesic from a ∈ M to b ∈ M and b is
not conjugate to a, then, given Xa ∈ TaM and Xb ∈ TbM , there is a
unique Jacobi field W along γ with W0 = Xa,W1 = Xb.

Theorem 11.10. First variation of arc length: Let

f : I = [0, b]× (−ε, ε) −→M, (t, w) 7→ f(t, w)

be a variation of paths and

L(w) := L(γw), γw(t) = f(t, w).

Furthermore T := Tf(∂t),W := Tf(∂w). If γ0 is parametrized by arc length,
we have

L′(0) = g(W,T )
∣∣(0,b)
(0,0)
−
∫ b

0

g(Wγ0(t), (∇∂tT )γ0(t))dt,

In particular L′(0) = g(W,T )
∣∣(0,b)
(0,0)

, if γ0 is a geodesic.

Proof. Indeed

L′(w) =

∫ b

0

∂

∂w
(
√
g(T, T ))dt =

∫ b

0

g(∇∂wT, T )√
g(T, T )

dt.

For w = 0 we have g(T, T ) ≡ 1 and

g(∇∂wT, T ) = g(∇∂tW,T ) =
∂

∂t
g(W,T )− g(W,∇∂tT ).

Finally integrate!

Corollary 11.11. Let p, q ∈ M . For a smooth path σ : [0, b] −→ M from p
to q parametrized by arc length the following statements are equivalent:

1. If f : I = [0, b] × (−ε, ε) −→ M, (t, w) 7→ f(t, w) is a variation of
curves with fixed end points f(0, w) ≡ p, f(b, w) ≡ q and ”base curve”
γ0 = σ, then L′(0) = 0.

61



2. σ is a geodesic.

Proof. ”2) =⇒ 1)”: For a variation f with fixed end points we have W(0,b) =
0 = W(0,0); hence Th.11.10 gives L′(0) = 0.
”1) =⇒ 2)”: First of all note that any vector field W : [0, b] −→ TM above
σ with boundary values 0 can be realized by some variation of σ with fixed
end points: Take

f(t, w) := exp(wWt).

Now assume (∇ d
dt
σ)t0 = 0 with 0 < t0 < b. Denote f : [0, b] −→ R≥0 a

smooth function vanishing at the boundary points with f(t0) > 0 and take
W := f∇ d

dt
σ. Then we find L′(0) < 0.

Theorem 11.12. Second variation of arc length: If in the situation of
Th.11.11 the basic path γ0 is a geodesic parametrized by arc length, we have

L′′(0) = g(∇∂wW,T )
∣∣(b,0)

(0,0)

+

∫ b

0

(
g(R(W,T )W,T ) + g(∇∂tW,∇∂tW )− (

∂

∂t
g(W,T ))2

)
dt.

In particular, if g(W,T ) is constant along the base curve γ0, then

L′′(0) = g(∇∂wW,T )
∣∣(b,0)

(0,0)
+

∫ b

0

(g(R(W,T )W,T ) + g(∇∂tW,∇∂tW )) dt.

Here the first term only depends on the restrictions W |0×(−ε,ε)) resp. W |b×(−ε,ε)).
Finally, if furthermore W is a Jacobi field

L′′(0) =
∂

∂w
g(T,W )

∣∣(b,0)

(0,0)
.

In particular
L′′(0) = 0,

if all geodesics γ have the same start and end point

Proof. We compute

∂2

∂w2

√
g(T, T ) =

∂

∂w

(
g(∇∂wT, T )√

g(T, T )

)

62



= −g(∇∂wT, T )2√
g(T, T )

3 +
1√

g(T, T )

(
g(∇2

∂wT, T ) + g(∇∂wT,∇∂wT )
)
.

We evaluate at w = 0 and obtain with ∇∂wT = ∇∂tW the following

∂2

∂w2

√
g(T, T ) = −g(∇∂tW,T )2 + g(∇∂w∇∂tW,T ) + g(∇∂tW,∇∂tW )

= g(R(W,T )W +∇∂t∇∂wW,T ) + g(∇∂tW,∇∂tW )−
(
∂

∂t
g(W,T )

)2

=
∂

∂t
g(∇∂wW,T ) + g(R(W,T )W,T ) + g(∇∂tW,∇∂tW )−

(
∂

∂t
g(W,T )

)2

.

Now integration gives the first formula. If W is Jacobi, we have along the
bae curve

g(R(W,T )W,T ) = −g(W,R(W,T )T ) = g(R(T,W )T,W )

= g(∇2
∂tW,T ) =

∂

∂t
g(∇∂tW,W )− g(∇∂tW,∇∂tW ).

Finally use

∂

∂w
g(T,W ) = g(∇∂wT,W ) + g(T,∇∂wW ) = g(∇∂tW,W ) + g(T,∇∂wW ).

Here is a funny application of the second variation formula:

Theorem 11.13. If γ : [0, a] −→ M is a geodesic and there is a point
γ(b), 0 < b < a, in between, which is conjugate to the start point γ(0), then
we have

L(γ) > d(γ(0), γ(a)).

Remark 11.14. In the cylinder M := S1 × R ↪→ R2 × R = R3 there are no
pairs of conjugate points. Nevertheless for the geodesic γ(t) = (cos(t), sin(t), λt), 0 ≤
t ≤ a, we have L(γ) > d(γ(0), γ(a)) for a > π. Indeed the above theorem
means that after a conjugate point there is a variation, such that the geodesic
is not of minimal length within that family of curves. On the other hand
such families do not exist before the first conjugate point.

For the proof of Th.11.13 we need
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Proposition 11.15. Let γ : [0, b] −→ M be a geodesic. For a a continuous
piecewise smooth vector field W : [0, b] −→ TM along γ with W0 = 0 we set

F (W ) :=

∫ b

0

(
g(R(W,T )W,T ) + g(∇ d

dt
W,∇ d

dt
W )
)
dt.

Then, if Z : [0, b] −→ TM denotes the Jacobi field with Z0 = 0, Zb = Wb and
no point γ(t) is conjugate to the start point γ(0), we have

F (W ) ≥ F (Z)

with equality iff W = Z.

We start with a useful observation:

Remark 11.16. If X, Y are Jacobi vector fields along the geodesic γ we have

g(∇ d
dt
X, Y )− g(X,∇ d

dt
Y ) ≡ const.

Indeed
d

dt

(
g(∇ d

dt
X, Y )− g(X,∇ d

dt
Y )
)

= g(R(γ̇, X)γ̇, Y )− g(X,R(γ̇, Y )γ̇)

= g(R(γ̇, X)γ̇, Y )− g(R(γ̇, Y )γ̇, X) = 0.

Proof of Th.11.15. Choose a basis of Tγ(0)M and denote V1, ..., Vm ∈ Θ(Tγ(0)M)
the associated constant vector fields. Then Wi := T exp(Vi) is a frame of TM
along γ, since there is no point conjugate to γ(0), and the vector fields Zi
with Zi,t = tWi,t are Jacobi fields. Write W =

∑m
i=1 giWi with continuous

piecewise smooth functions gi : [0, b] −→ R, indeed gi(t) = tfi(t) because of
W0 = 0 with continuous piecewise smooth functions fi : [0, b] −→ R. Thus
Z =

∑m
i=1 fi(b)Zi, while W =

∑m
i=1 fiZi.

We write

∇ d
dt
W = A+B

with

A =
m∑
i=1

ḟiZi, B =
m∑
i=1

fi∇ d
dt
Zi.
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Note that the functions ḟ1, ..., ḟm are bounded and piecewise continuous – we
need not care about their values at the breaks. We show that

F (W ) = F (Z) +

∫ b

0

g(At, At)dt,

and obviously
∫ b

0
g(At, At)dt = 0 ⇐⇒ fi ≡ fi(b), i = 1, ...,m ⇐⇒ W = Z.

We have
g(∇ d

dt
W,∇ d

dt
W ) = g(A,A) + 2g(A,B) + g(B,B)

and

g(R(T,W )T,W ) =
m∑
i=1

fig(R(T, Zi)T,W ) =
m∑
i=1

fig(∇2
d
dt

Zi,W )

=
m∑
i=1

fi

(
d

dt
g(∇ d

dt
Zi,W )− g(∇ d

dt
Zi,∇ d

dt
W )

)

=
d

dt
g(B,W )−

m∑
i=1

ḟig(∇ d
dt
Zi,W )− g(B,A)− g(B,B).

Hence
g(R(T,W )T,W ) + g(∇ d

dt
W,∇ d

dt
W )

=
d

dt
g(B,W ) + g(A,A) + g(B,A)−

m∑
i=1

ḟig(∇ d
dt
Zi,W ).

On the other hand

g(A,B)−
m∑
i=1

ḟig(∇ d
dt
Zi,W ) =

∑
i,j

ḟifj

(
g(Zi,∇ d

dt
Zj)− g(∇ d

dt
Zi, Zj)

)
= 0

according to Lagrange’s identity, since Zi,0 = 0 for i = 1, ...,m. Thus

F (W ) =

∫ b

0

(
g(R(W,T )W,T ) + g(∇ d

dt
W,∇ d

dt
W )
)
dt = g(Bb,Wb)+

∫ b

0

g(At, At)dt,

since W is continuous and W0 = 0. If we take W = Z we have Wb = Zb
and A = 0, while the respective vector fields B coincide at b. This gives the
result.
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Proof of Th.11.13. It suffices to show the inequality for a > b close to b, since
for ã > a we have

L(γ|[0,ã]) = L(γ|[0,a]) + L(γ|[a,ã]) > d(0, a) + d(a, ã) ≥ d(0, ã).

We choose a, such that γ(b) is contained in the diffeomorphic image w.r.t.
expγ(a) of a ball around 0a ∈ TaM . Choose c < b s.th. γ(c) is contained in
there as well.

If V is a vector field over γ|I with a subinterval I ⊂ [0, a], we consider
the variation

I × (−ε, ε) −→M, (t, w) 7→ exp(wVγ(t))

and denote LW (w) the length of the path I −→M, t 7→ exp(wVγ(t)). Denote
Z : [0, b] −→ M a nontrivial Jacobi field vanishing at the end points. We
have g(Z, T ) ≡ 0 along γ, since Zt = T exp(tU) with a constant vector field
orthogonal to γ̇(0) (Gauß’ lemma), and thus have

0 = L′′Z(0) = L′′Z0
(0) + L′′Z1

(0),

where Z0 = Z|[0,c], Z1 = Z|[c,b]. Denote Y : [c, a] −→M the Jacobi field along
γ with Yc = Zc, Ya = 0 and define the broken vector field X by X|[0,c] =
Z0, X|[c,a] = Y . According to Prop.11.15 we have

L′′Y (0) < L′′W (0) = L′′Z1
(0),

where W |[c,a] = Z1,W |[b,a] = 0. Thus

0 > L′′Z0
(0) + L′′Y (0) = L′′X(0),

and it follows that LX has a local maximum at 0.

Theorem 11.17. Let γ : I −→ M be a geodesic emanating from a ∈ M .
Then the set of points on γ conjugate to a is discrete.

Proof. Assume a = γ(0) and that b = γ(c), c ∈ I, is conjugate to a, write
b = expa(Xa). Take a basis of constant vector fields Y1, ...., Ym ∈ Θ(TaM),
such that Y1,Xa , ..., Yr,Xa span the kernel of TXa expa. Then consider the
Jacobi vector fields (Zi)t = TXa expa(tYi) along γ. We claim that the tangent
vectors (∇ d

dt
Z1)c, ..., (∇ d

dt
Zr)c, (Zr+1)c, ..., (Zm)c form a basis of TbM . If so,

we obtain because of

(∇ d
dt
Zi)c = lim

t→c

(Zi)t
t− b

,
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that for t 6= c close to c, the vectors (Z1)t
t−b , ...,

(Zr)t
t−b , (Zr+1)t, ...., (Zm)t are a

basis for Tγ(t)M ; in particular γ(t) is not conjugate to a = γ(0). First of all
(∇ d

dt
Z1)c, ..., (∇ d

dt
Zr)c are linearly independent: If

λ1(∇ d
dt
Z1)c + ...+ λr(∇ d

dt
Zr)c = 0,

then X :=
∑r

i=1 λiZi is be a Jacobi field with Xc = 0 = (∇ d
dt
X)c, hence

X = 0. Now

0 = X0 =
r∑
i=1

λi(∇ d
dt
Zi)0 =

r∑
i=1

λiYi,0

implies λ1 = ..... = λr = 0. Now the claim follows from the fact that

(∇ d
dt
Zi)c ⊥ Zj,c

for all t ∈ I, i = 1, .., r, j = r + 1, ...,m: According to Rem. 11.16 we

g((∇ d
dt
Zi), Zj)− g(Zi, (∇ d

dt
Zj)) ≡ d,

while t = 0 gives d = 0, whence

g((∇ d
dt
Zi), Zj) = g(Zi, (∇ d

dt
Zj)).

The result now follows, since Zi,c = 0 for i = 1, ..., r.

12 Negative and Positive Curvature, Cover-

ings

Theorem 12.1. A complete simply connected Riemannian manifold M of
constant sectional curvature K and dimension m ≥ 2 is isomorphic to either

1. (K < 0) m-diomensional hyperbolic space

Hm(K) := {x ∈ Rm+1;x2
1 + ...+ x2

m − x2
m+1 =

1

K
, xm+1 > 0}

endowed with the restriction of the Lorentz metric

m∑
i=1

dxi ⊗ dxi − dxm+1 ⊗ dxm+1,

67



2. (K = 0) euclidean m-space Rm, or

3. (K > 0) the m-dimensional sphere Sm(K) ↪→ Rm+1 of radius 1√
K

.

Proof. Given a complete M with constant curvature we construct a local
isometry, indeed a covering, see Def.12.2,

M̃ −→M

with
M̃ = Hm(K),Rm, Sm(1/

√
K).

The fact that M is simply connected implies then that it is an isomorphism.
Indeed, given a point a ∈ M we study the exponential map expa : TaM −→
M at some point a ∈ M and find that the pair (TaM, exp∗a(g)) does only
depend on K. For K ≤ 0 it is a Riemannian manifold isomorphic to M̃ ,
while for K > 0 we have to be slightly more careful. Indeed we obtain:

(expa)
∗(g)|TXa (TaM) = ĝa|RXa ⊕ hK(||Xa||) · ĝa|X⊥a

with a function hK ∈ C∞([0,∞)) depending only on K. Here we denote ĝa
the metric tensor associated to the inner product ga. For K ≤ 0 it has no
zeros; thus (expa)

∗(g) is a Riemannian metric.
The zeros of hK for K > 0 are the integer multiples of π/

√
K. It follows,

that expa maps the sphere of radius π/
√
K to one point b ∈ M . Now

apply the same arguments to b ∈ M instead of a ∈ M . Since the two open
balls with radius π/

√
K in TaM and TbM (with the above metrics) can be

patched together to a sphere Sm(K), we obtain a locally diffeomorphic map
Sm(K) −→ M . It is onto since its image is both closed and open in the
connected manifold M .

Let us now establish the formula for the pull back of the metric g. First
of all we may write the curvature tensor as follows

R(X, Y )Z = K(g(Y, Z)X − g(Z,X)Y ).

We study Jacobi fields Z along a geodesic γ(t) = expa(tXa), ||Xa|| = 1, with
initial value Z0 = 0. (The above formula for the pull back of the metric
is established for tXa instead of the unnormalized Xa in the formula.) We
have then Zt = TtXa exp(tVtXa) with a constant vector field V ∈ Θ(TaM), in
particular ∇ d

dt
Z = V0. On the other hand look at the parallel vector field Y
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over γ with Y0 = V0. We investigate whether fY with f ∈ C∞([0,∞)) is a
Jacobi field, assuming V0 ⊥ Xa. We find

f̈Y = R(γ̇, fY )γ̇ = Kf(g(Y, γ̇)γ̇ − g(γ̇, γ̇)Y ) = −KfY,

since Yt ⊥ γ̇(t) for all t, that being true for t = 0. So fY is a Jacobi
field if f̈ = −Kf . The unique solution of that differential equation with
f(0) = 0, ḟ(0) = 1 is

1. f(t) = 1√
|K|

sinh(
√
|K|t) for K < 0,

2. f(t) = t for K = 0 and

3. f(t) = 1√
K

sin(
√
Kt) for K > 0.

Finally, since they have the same value and the same (covariant) derivative
at t = 0, we find Z = fY and

TtXa expa(tVtXa) = f(t)Yt,

whence
TtXa expa(VtXa) = hK(t)Yt

with hK(t) = f(t)t−1.

Definition 12.2. A surjective continuous map π : X −→ Y between topo-
logical spaces X and Y is called a covering iff every point b ∈ Y admits an
open neighbourhood V ⊂ Y , such that its inverse image is the disjoint union

π−1(V ) =
⋃
i∈I

Ui

of open subsets Ui ⊂ X with π|Ui
: Ui −→ V being a homeomorphism for

every i ∈ I.

Remark 12.3. Note that a locally homeomorphic map need not be a cov-
ering. For example removing a point in X leads to a non-covering X∗ −→
Y . On the other hand: If X is compact, then a local homeomorphism is
even a covering. The fiber of b ∈ Y is finite, say a1, ..., an. Take neigh-
bourhoods Ui 3 ai, s.th. π|Ui

: Ui −→ Vi is a homeomorphism. Finally
f(X \U1∩ ...∩Un) ⊂ Y is compact, hence closed. Take V as its complement.
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Example 12.4. 1. Sm −→ Pm.

2. If f : M −→ N is a local isometry from a complete Riemannian
manifold M to a connected one, then π is a covering and N is com-
plete as well. Indeed, its image f(M) is both open and closed, hence
f(M) = N . Openness is trivial. If b ∈ f(M) take ε > 0, s.th.

expb : Bε(0b)
∼=−→ Bε(b) is a diffeomorphism. In particular there is

a geodesic from b to some point c = f(a) ∈ Bε(b). Now take the
geodesic in M starting at a with tangent vector ”opposite” to that one
of the geodesic segment from b to c and follow it up to t = d(b, c).
(M is complete!) The end point d then satisfies f(d) = b. Finally if
f−1(b) = {ai, i ∈ I}, we have

π−1(Bε(b)) =
⋃
i∈I

Bε(ai).

3. If M is complete and a ∈ M , s.th. there are no points conjugate to a,
then expa : TaM −→M is a covering. Indeed, the pull back exp∗a(g) is
a Riemannian metric on TaM and TaM is complete w.r.t. it, the lines
through the origin being geodesics.

In order to complete the proof of Th.12.1 we show that a covering X −→
Y with simply connected Y and connected X is a homeomorphism. For that
we need the following lifting theorem:

Theorem 12.5. Let y0 ∈ Y and x0 ∈ X, z0 ∈ Z. Given a covering π : X −→
Y with π(x0) = y0 and a continuous map ϕ : Z −→ Y with ϕ(z0) = y0 with
simply connected Z, there is a unique lifting ϕ̂ : Z −→ X of ϕ, i.e. we have
a commutative diagram:

X
↗ ↓

Z
ϕ−→ Y

s.th. ϕ̂(z0) = x0.

Corollary 12.6. A covering π : X −→ Y with path connected X and simply
connected Y is a homeomorphism.

Proof. We apply Th.12.5 with Z = Y, ϕ = idY , and suitable points y0 ∈
Y, x0 ∈ X. Then ϕ̂ is a homeomorphism: Obviously it is injective and a local
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homeomorphism. Now take a point x ∈ X, denote γ : I −→ X a path from
x0 to x. Both γ and ϕ̂◦π ◦γ are liftings of π ◦γ, hence coincide, in particular
x ∈ ϕ(Y ).

Proof of Th.12.5. 1. The case Z = [0, 1], z0 = 0. Write [0, 1] = I1∪ ...∪ In
with Ik = [k−1

n
, k
n
]. For sufficiently big n ∈ N every piece ϕ(Ik) ⊂ ϕ(I)

is contained in an open path connected set V = Vk ⊂ Y , such that
π−1(V ) is a disjoint union as in Def. 12.2. Now assume we have found
a lift

ϕ̂k :
[
0, k/n

]
−→ X,

of ϕk := γ|[0, k
n

]. Choose U ⊂ π−1(Vk+1) with π|U : U −→ Vk+1 being

homeomorphic and ϕ̂k(
k
n
) ∈ U . Now define ϕ̂k+1 by

ϕ̂k+1|[0,k/n] := ϕ̂k , ϕ̂k+1|Ik+1
:= (π|U)−1|Ik+1

.

2. The case Z = [0, 1]2, z0 = (0, 0). Fix n ∈ N. We consider the subdivi-
sion of the unit square

[0, 1]2 =
⋃

1≤i,j≤n

Qij

with

Qij :=

[
i− 1

n
,
i

n

]
×
[
j − 1

n
,
j

n

]
, 1 ≤ i, j ≤ n.

For sufficiently big n ∈ N every ϕ(Qij) ⊂ Y is contained in an open
connected set V = Vij ⊂ Y , such that π−1(V ) is a disjoint union as in
Def. 12.2. Now assume we have found a lift

ϕ̂ij : Bij :=
⋃

(k,`)≺(i,j)

Qk` −→ X,

of ϕ|Bij
, where≺ is the lexicographic order on {1, ..., n}2. Since Bij∩Qij

is connected, we have ϕ̂ij(Bij ∩ Qij) ⊂ U for one of the subsets U ⊂
π−1(V ) with π|U : U −→ V being homeomorphic. Hence we may
extend ϕ̂ij to Bij ∪Qij defining it on Qij as (π|U)−1.

3. The general case: Given a point z ∈ Z, take a path βz : [0, 1] −→ Z
with βz(0) = z0, βz(1) = z. Denote γ̂z : [0, 1] −→ X the lift of γz :=
ϕ ◦ βz with γ̂z(0) = x0 and take ϕ̂(z) := γ̂z(1). It remains to show that
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different choices of βz : [0.1] −→ Z give the same value ϕ̂(z). This is
done below.

We start with the notion of homotopic paths :

Definition 12.7. Two paths α, β : [0, 1] −→ Y with same start and end
point are called homotopic: ”α ∼ β”, if there is a homotopy from α to β,
i.e., a continuous map F : [0, 1]× [0, 1] −→ Y with the following properties:

F (0, s) = α(0) = β(0), F (1, s) = α(1) = β(1)

and Fs(t) := F (t, s) satisfies

F0 = α, F1 = β.

Remark 12.8. 1. To be homotopic is an equivalence relation on the set
of paths from a given point x ∈ Y to another given point y ∈ Y . We
denote [γ] the equivalence class (homotopy class) of the path γ. If
τ : [0, 1] −→ [0, 1] is a continuous map with τ(0) = 0, τ(1) = 1 (a
”reparametrization“), then γ ◦ τ ∼ γ.

2. Given paths α, β : [0, 1] −→ Y , such that β(0) = α(1), we define the
concatenation αβ : [0, 1] −→ Y by

(αβ)(s) =

{
α(2s) , if 0 ≤ s ≤ 1

2

β(2s− 1) , if 1
2
≤ s ≤ 1

3. If α ∼ α̃, β ∼ β̃ and the end point of α is the starting point of β, then
αβ ∼ α̃β̃, in particular we can concatenate homotopy classes. Note
that in general α(βγ) 6= (αβ)γ, but that α(βγ) ∼ (αβ)γ, i.e. on the
level of homotopy classes concatenation becomes associative.

4. We can not only compose paths, but there is also the notion of an
inverse path: Given α : [0, 1] −→ Y , we denote α−1 : [0, 1] −→ Y the
path α−1(s) := α(1− s). Note that α−1α ∼ α(0) ∼ αα−1.

5. A path connected top. space X is simply connected if there is a point
x0 ∈ X s.th. every closed curve with x0 as starting and end point
is homotopic to the constant path ≡ x0. Indeed, if that condition is
satisfied for one base point x0 ∈ X then it holds for all base points.
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6. In a simply connected topological space X any two paths with the same
start and the same end points are homotopic.

Example 12.9. 1. Obviously Rm is simply connected.

2. A path connected space X = U ∪ V , which is the union of two open
simply connected subsets U, V ⊂ X with a path connected intersection
U ∩ V , is simply connected. In particular the spheres Sn, n ≥ 2, are
simply connected. – To see this take a base point x0 ∈ U ∩ V and
consider a closed path γ : [0, 1] −→ X. Then for sufficiently big n ∈ N
every interval Ik := [k−1

n
, k
n
] satisfies γ(Ik) ⊂ U or γ(Ik) ⊂ V . Choose

a path αk from x0 to γ( k
n
) within U resp. V if γ( k

n
) ∈ U resp. γ( k

n
) ∈

V . That is possible, since U ∩ V is connected. Then γ ∼ β1...βn :=
(..(β1β2)....βn) with β1 := γ1α

−1
1 , βk := αk−1γkα

−1
k , 2 ≤ k < n and βn :=

αn−1γn. Since both U and V are simply connected and βk([0, 1]) ⊂ U
or βk([0, 1]) ⊂ V , we get βk ∼ x0, 1 ≤ k ≤ n, and thus γ ∼ x0.

Definition 12.10. A covering π : X̂ −→ X is called a universal covering of
the path connected space X, if X̂ is simply connected.

Remark 12.11. 1. If X̂ −→ X, X̃ −→ X are universal coverings of X,
then it follows from Th.12.5, that there is a homeomorphism X̂ −→ X̃
making

X̂ −→ X̃
↘ ↙

X

a commutative diagram. But it is not unique, since it depends on the
choice of base points.

2. If X̂ −→ X is a universal covering and x̂0 ∈ X̂, x0 ∈ X base points
with π(x̂0) = x0, then

[γ] 7→ γ̂(1),

where γ : [0, 1] −→ X is a path with γ(0) = x0 and γ̂ : [0, 1] −→ X̂ its
lifting with γ̂(0) = x̂0, defines a bijection between the set of homotopy
equivalence classes of paths in X starting at x0 and the points x̂ ∈ X̂.
Here γ, β are called homotopic if γ(1) = β(1) and γ ∼ β.

As next we want to construct, given a topological space X, its universal
covering X̂ −→ X. The second part of the last remark suggests how to do
that.
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Call a topological space locally simply connected if every point has an
open simply connected neighbourhood.

Theorem 12.12. Every path connected and locally simply connected topo-
logical space X admits a covering π : X̂ −→ X with a simply connected X̂,
called the universal covering of X.

Proof. We choose a base point x0 ∈ X and define X̂ to be the set of all
homotopy classes of paths with the base point x0 as start point. The map
π : X̂ −→ X then is defined as π([γ]) := γ(1). The topology on X̂ is defined
as follows: Given a point x̂ := [γ] with x := π(x̂) and a simply connected
neighbourhood U of x, we set

U(x̂) := {[γδ]; δ : [0, 1] −→ U, δ(0) = x} , x̂ = [γ].

Then the sets U(x̂) with an open neighbourhood U ⊂ X of x ∈ X constitute
a basis for the topology of X̂. We claim, that for simply connected U we
have U(a) ∩ U(b) = ∅ for a, b ∈ π−1(x), a 6= b. Let a = [α], b = [β]. Assume
that [αδ] = [βδ′] with paths δ, δ′ : [0, 1] −→ U . Take a path γ : [0.1] −→ U
from δ(1) = δ′(1) to α(1) = β(1). Now, U being simply connected, we have
δγ ∼ 0 ∼ δ′γ and thus

αδ ∼ βδ′ =⇒ αδγ ∼ βδ′γ =⇒ α ∼ β,

a contradiction. It follows easily that X̂ is Hausdorff and π : X̂ −→ X a
covering.

Finally we show that X̂ is simply connected: Let α̂ : [0, 1] −→ X̂ be
a closed path with start end point x̂0 := [x0] (where x0 is regarded as the
constant path). Consider the path α := π ◦ α̂. We have α̂(1) = [α], since α̂
is a lift of α with starting point x̂0 as well as the path t 7→ [αt] with the path
αt : [0, 1] −→ X̂, s 7→ α(ts). So because of the unique lifting property we
obtain α̂(1) = [α1] = [α]. But α̂ was a closed path, i.e. [α] = α̂(1) = α̂(0) =
x0, i.e. α ∼ x0. By Proposition ?? we obtain α̂ ∼ x̂0.

Remark 12.13. Fundamental Group: The construction of the universal
covering π : X̂ −→ X can be used to associate to any connected and locally
simply connected space a group, namely the set

Deck(X) := {f : X̂ −→ X̂ homeomorphism;π ◦ f = π}
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of all π-fiber preserving homeomorphisms of X̂ (”deck transformations”)
with the composition of maps as group law. From our above reasoning
it follows that, given a base point x0 ∈ X, the restriction Deck(X) −→
S(π−1(x0)), f 7→ f |π−1(x0) is injective. On the other hand, given points
a, b ∈ π−1(x0) there is exactly one f ∈ Deck(X) with f(a) = b. If one wants
to avoid the universal covering π : X̂ −→ X in the definition of Deck(X),
one can construct an isomorphic group as follows: Take again a base point
x0 ∈ X and define the fundamental group of X as the set

π1(X, x0) := {[γ]; γ path in X, γ(0) = x0 = γ(1)}

of homotopy classes of closed paths in X with start and end point x0, the
group law being the concatenation of paths representing homotopy classes:

[α][β] := [αβ].

Then there is a natural isomorphism

π1(X, x0) ∼= Deck(X)

as follows: Given [γ] take any lifting γ̂ of γ, then the unique f ∈ Deck(X)
with f(γ̂(1)) = γ̂(0) is the image of [γ].

Furthermore note that a path α from x0 ∈ X to x1 ∈ X induces an
isomorphism

π1(X.x0)
∼=−→ π1(X, x1), [γ] 7→ [α−1γα].

Theorem 12.14. Denote M a connected complete Riemannian manifold.
Then we have:

1. If M has everywhere nonpositive sectional curvature then there are no
pairs of conjugate points in M . In particular for any a ∈ M the expo-
nential map expa : TaM −→M is the universal covering of M .

2. If M has sectional curvature ≥ K > 0, then

d(a, b) ≤ π√
K

holds for a, b ∈ M . In particular M is compact and the fundamental
group of M is finite, the universal covering of M being of the same
type.
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Example 12.15. If M has finite fundamental group it is the quotient

M = M̂/Γ

of a simply connected compact manifold by the free action of a finite group
Γ: Take M̂ as the universal covering of M and Γ its deck transformation
group. E.g. take M̂ = S2n−1 ⊂ Cn and Γ = Cq, the group of q-th roots of
unity, (lens spaces).

We mention without proof the theorem of Synge:

Theorem 12.16. If M is a compact manifold with positive sectional curva-
ture, then π1(M) is trivial or Z2, if m = dimM is even, and M is orientable
if m is odd.

Remark 12.17. 1. There is no positive curvature metric on P2 × P2.

2. Conjecture (Hopf): There is no such metric on S2 × S2.

Proof. 1.) We consider a geodesic γ : R −→ M parametrized by arc length,
write a := γ(0). Denote X ∈ Θ(M) a constant vector field with X0 ⊥
γ̇(0), ||X0|| = 1, furthermore Z the vector field along γ with

Zt := Ttγ̇(0) exp(Xtγ̇(0)).

For the function

F (t) := ||tZt|| − t.

we have F (0) = 0 as well as F ′(0) = 0 and show F ′′(t) ≥ 0. It follows that F
is a convex function and F (t) ≥ 1 for t ≥ 0, whence ||Zt|| ≥ 1 for t ≥ 0. Since
that holds for all vector fields Z with the above properties it follows that the
exponential is a local diffeomorphism along γ, the kernel of Ttγ̇(0) exp being
orthogonal to γ̇(0) according to Gauß’ lemma. Now Y = tZ is a Jacobi field
and

F ′′(t) =
d2

dt2

√
g(Y, Y ).

On the other hand we have Yt 6= 0 for small t > 0 and thus

d

dt

√
g(Y, Y ) =

g(∇ d
dt
Y, Y )

||Y ||
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and thus

d2

dt2

√
g(Y, Y ) =

1

||Y ||

(
g(∇2

d
dt

Y, Y ) + g(∇ d
dt
Y,∇ d

dt
Y )−

g(∇ d
dt
Y, Y )2

||Y ||2

)

=
1

||Y ||3
(
g(∇2

d
dt

Y, Y ) · ||Y ||2 + g(∇ d
dt
Y,∇ d

dt
Y ) · ||Y ||2 − g(∇ d

dt
Y, Y )2

)
=

1

||Y ||3
(
g(R(γ̇, Y )γ̇, Y ) · ||Y ||2 + ||∇ d

dt
Y ||2 · ||Y ||2 − g(∇ d

dt
Y, Y )2

)
≥ −K(RYt + Rγ̇(t)) · ||Yt|| ≥ 0

with Cauchy-Schwartz and the fact that the curvature tensor is skew symmet-
ric. It follows that the function t 7→ ||Yt|| is convex with nonzero derivative
at t = 0, hence increasing and without zeros t > 0; in particular the above
argument applies to all t > 0.

2.) We show that on every geodesic γ : [0, π√
K

] −→ M parametrized by

arc length there is a point conjugate to the starting point γ(0). Assume the
contrary. Denote E parallel unit vector field orthogonal to γ̇. We consider
the vector field W along γ given by

Wt = sin
(√

K · t
)
Et.

It vanishes at the end points of [0, π√
K

] and Z = 0 is the unique Jacobi vector
field which agrees with W at the boundary points. We thus have

L′′W (0) > L′′Z(0) = 0.

On the other hand with b = π√
K

and K(t) := K(Rγ̇(t) + REt) we have

L′′W (0) =

∫ b

0

(
g(R(W, γ̇)W, γ̇) + ||∇ d

dt
W ||2

)
dt

=

∫ b

0

(
−K(t) sin2(

√
K · t) +K cos2(

√
K · t)

)
dt

≤ K

∫ b

0

(
− sin2(

√
K · t) + cos2(

√
K · t)

)
dt = 0.
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Example 12.18. 1. For m ≤ 3 the only simply connected differentiable
manifolds underlying a Riemannian manifold of curvature ≥ K > 0 are
the spheres Sm.

2. The metric product of Riemanian manifolds M,N of curvature ≥ K >
0 has sectional curvature ≥ 0, not more, since the ”sections” U ⊂
T(a,b)(M × N) ∼= TaM ⊕ TbN spanned by vectors (Xa, 0), (0, Yb) have
curvature 0.

3. For m = 2n ≥ 4 there are Riemannian manifolds of curvature ≥ K > 0,
which are not spheres, e.g. the complex projective spaces Pn(C) to be
discussed in the next section.

13 Complex projective space

In this section we study complex projective space

Pn(C) := {L = C · z; z ∈ Cn+1 \ {0}},

the set of all complex lines (one dimensional subspaces) in Cn+1, from the
point of view of differential geometry. Write

[z] := [z0, ..., zn] := Cz.

We consider Cn+1 with the standard hermitian metric and identify the tan-
gent space at a point z ∈ Cn+1 with Cn+1. The first thing we note is that
the tangent map of the quotient map

π : Cn+1 \ {0} −→ Pn(C), z 7→ [z]

induces an isomorphism
z⊥ −→ T[z]Pn(C).

Hence T[z]Pn(C) is even in a natural way a complex vector space and TPn(C)
a complex vector bundle. Furthermore assuming ||z|| = 1 the tangent space
inherits a hermitian metric giving rise to a hermitian metric

g + iω

on TPn(C), the so called Fubini-Study metric; its real part g is a Riemannian
metric, while ω ∈ Ω2(Pn(C)).
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Geodesics: A non-constant geodesic on P1(C) is given by

{[z]; zTAz = 0}

with a nondegenerate nondefinite selfadjoint matrix A ∈ C2,2. Under the
stereographic projection S2 −→ P1(C) they correspond to great circles, while
when interpreting the projective line as extended complex plane C∪{∞} they
are the generalized circles (circles or lines together with the point at infinity)
meeting the unit circle in (at least) two antipodal points. If P(U) ⊂ Pn(C)
with a two dimensional subspace U , then the geodesics in P(U) are obtained
from P(U) ∼= P1(C) induced by any isometric isomorphism U ∼= C2. Every
geodesic is obtained in that way.
Curvature: Projective spaces are homogeneous, but don’t have constant
sectional curvature - for n > 1 they are not spheres. We have

K(RXa + RYa) = 1 + 3g(iXa, Ya)
2,

where Xa, Ya are orthonormal. As a consequence of the Cauchy-Schwartz
inequality we find 1 ≤ K(U) ≤ 4, where K(U) = 4 means that U ⊂ TaPn(C)
is a complex subspace.

Remark 13.1. Complex projective spaces are among the most basic exam-
ples of complex manifolds; we conclude our notes with some remarks about
that subject: Replace R with C and ”differentiable” with ”holomorphic” in
order to obtain the definition of a complex (analytic) manifold M . In partic-
ular complex manifolds are smooth manifolds, hence one should understand
how real and complex notions are related. First of all we need germs of com-
plex valued smooth functions: Every smooth function f : U −→ C, where U
is an open neighbourhood of a given point a ∈M , gives rise to its germ at a:
We have fa = ga, if the representing functions coincide in some sufficiently
small neighbourhood W 3 a. Germs can be added and multiplied, they form
a C-algebra Ea with Oa, consisting of the germs of holomorphic functions, as
subalgebra. Now a real tangent vector may be regarded as a derivation

Xa : Ea −→ C

mapping real valued functions to R, s.th. we obtain an isomorphism

TaM ↪→ Dera(Ea,C) � Dera(Oa,C)
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of real vector spaces, composed of an injection and a surjection, the latter
being the restriction of a derivation to Oa ⊂ Ea. Thus the left hand side,
TaM , inherits the structure of a complex vector space from the right hand
Dera(Oa,C). We remark that the kernel of the right arrow is generated by
the operators

∂

∂zν
=

1

2

(
∂

∂xν
+ i

∂

∂yν

)
, ν = 1, ..., n

and thus we see that i ∈ C acts on TaM as follows:

i
∂

∂xν
=

∂

∂yν
, i

∂

∂yν
= − ∂

∂xν
.

Definition 13.2. A hermitian metric g+ iω on the tangent bundle TM of a
complex manifold is called a Kähler metric if ω ∈ Ω2(M) is closed: dω = 0.
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