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Preface

These notes give an introduction to the basic notions of abstract algebra,
groups, rings (so far as they are necessary for the construction of field exten-
sions) and Galois theory. Each section is followed by a series of problems,
partly to check understanding (marked with the letter “R”: Recommended
problem), partly to present further examples or to extend theory.

For useful hints and remarks I am indebted to my colleague Ernst Dieterich.

Uppsala, September 2010 Karl-Heinz Fieseler
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1 Introduction

Assume we want to solve an equation

0 = f(x) := xn + an−1x
n−1 + ...+ a1x+ a0,

where the coefficients an−1, ..., a1, a0 ∈ Q of the polynomial f(x) are rational
numbers. The fundamental theorem of algebra1 tells us that for any n > 0
and arbitrary complex coefficients an−1, ..., a0 ∈ C there is a complex solu-
tion x = λ ∈ C, and an iterated application of that fact then leads to a
factorization

f(x) = (x− λ1) · ... · (x− λn)

of the polynomial f(x) with (not necessarily pairwise different) complex num-
bers λ1, ..., λn ∈ C. In particular f(x) = 0 if and only if x = λj for some
j ∈ {1, ..., n}.

But is it possible to describe these solutions explicitly? For n = 2 we
have the solutions x = λ1,2 ∈ C given by the well known formula

λ1,2 = −a1

2
±
√
a2

1

4
− a0 ,

and for n = 3, 4 there are similar, but more complicated formulae due
to Gerolamo Cardano (1501-1576) involving the four arithmetic operations
+,−, ·, : as well as taking square and cubic roots.

On the other hand for n ≥ 5 there was no further progress during the
next 300 years.. So one started to suspect:

Theorem 1.1. For n ≥ 5 there is no formula giving the solutions λ1, ..., λn ∈
C of the equation

0 = f(x) := xn + an−1x
n−1 + ...+ a1x+ a0,

as a function of the coefficients an−1, ..., a0 using only the four arithmetic
operations +,−, ·, : as well as taking r-th roots z 7→ r

√
z (with arbitrary

r ∈ N).

1There are several proofs of that result, all of them use completeness arguments. We
shall present in section 4.7 an algebraic version, where the only result from analysis needed
is the fact that a real polynomial of odd degree has a real zero.
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Having thus no hope anymore in the general case we are led to the fol-
lowing

Question: Which polynomial equations f(x) = 0 are solvable by radicals,
i.e. when can we obtain the solutions λ1, ..., λn ∈ C of the equation

f(x) = 0

starting with rational numbers and using only the four arithmetic operations
+,−, ·, : as well as taking r-th roots z 7→ r

√
z (with arbitrary r ∈ N)?

So here we do not require that we take the coefficients a0, ..., an−1 ∈ Q as
starting point and perform the operations independently from the polynomial
f(x).

Example 1.2. For the polynomial f(x) = xn + a0 it is obviously possible:
The numbers

n
√
−a0

are the solutions of the equation f(x) = 0. On the other hand the solutions
of the equation

x5 − 4x+ 2 = 0

do not admit such a representation as we shall see later on.

Strategy: First of all it can happen that some solutions λi can be obtained
from rational numbers using only the four arithmetic operations +,−, ·, : as
well as taking roots and others can not, e.g. if

f(x) = (xn + a0)(x5 − 4x+ 2).

So we can expect a reasonable answer depending only on f(x) only if we
assume the polynomial f(x) to be irreducible, i.e. there should be no factor-
ization

f(x) = g(x)h(x)

of f(x) as a product of nonconstant polynomials g(x) and h(x) with rational
coefficients.
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Example 1.3. The polynomial

f(x) = x2 − 1 = (x− 1)(x+ 1)

is not irreducible (or rather reducible), while

f(x) = x2 + 1

is: Otherwise it would be the product of two linear polynomials each of which
would give rise to a rational zero of f(x).

The zeros λ1, ..., λn ∈ C of an irreducible polynomial are pairwise differ-
ent, and so the set

N(f) := {x ∈ C; f(x) = 0} = {λ1, ..., λn}

of all complex zeros of our polynomial f(x) satisfies

|N(f)| = n.

Denote
S(N(f)) := {π : N(f) −→ N(f) bijective} .

the set of its permutations.
The Galois group of the polynomial f(x) is a subset

Gal(f) ⊂ S(N(f))

closed with respect to the composition and inversion of maps, hence it forms
a group in the sense of Def.2.1. And from the properties of Gal(f) as a group
we can read off whether the equation f(x) = 0 is solvable by radicals or not.

In order to describe which permutations of N(f) belong to the Galois
group Gal(f) we first determine the splitting field

E = E(f) ⊂ C

of the polynomial f(x), a subset of the complex plane containing N(f).
This splitting field E ⊂ C admits natural symmetries, i.e. distinguished
permutations

σ : E −→ E
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called automorphisms. Each automorphism preserves N(f) ⊂ E, so we
obtain a diagram

σ : E −→ E
∪ ∪

σ|N(f) : N(f) −→ N(f)
,

and an automorphism is uniquely determined by its restriction σ|N(f). The
elements of the Galois group then are the restrictions of such automorphisms.
Thus, if we denote

Aut(E) ⊂ S(E)

the set of all automorphisms we can simply write

Gal(f) = Aut(E)|N(f)

using the suggestive notation

Aut(E)|N(f) := {σ|N(f), σ ∈ Aut(E)}.

So finally what is a splitting field? And an automorphism?
First of all we give a restricted definition of a field, indeed an embedded

version of the abstract notion of a field:

Definition 1.4. A field (kropp) is any subset E ⊂ C of the set of complex
numbers containing the numbers 0, 1 and being closed with respect to the
four arithmetic operations.

Remark 1.5. 1. A subset E ⊂ C is a field iff 0,±1 ∈ E and E is closed
with respect to addition, multiplication and inversion of nonzero num-
bers.

2. Any field E ⊂ C contains Q.

3. An arbitrary intersection of fields is again a field.

Example 1.6. 1. The subsets E = Q,R,C are fields.

2. The subset
E = Q + Qi := {a+ bi; a, b ∈ Q}

is a field.
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3. The subset
E = Q + Q

√
d := {a+ b

√
d; a, b ∈ Q}

is a field, where d ∈ Q>0 is not a square..

Definition 1.7. The splitting field E = E(f) ⊂ C of the polynomial

f(x) = (x− λ1) · ... · (x− λn)

is defined as the intersection

E :=
⋂

N(f)⊂F field

F

of all fields F ⊃ N(f). With other words E = E(f) is the smallest field
containing N(f).

Remark 1.8. Here is an explicit description of the splitting field of f(x) =
(x− λ1) · ... · (x− λn), namely

E =

{ ∑
ν1,...,νn∈N

qν1,...,νnλ
ν1
1 · ... · λνnn ;∀ν1, ..., νn ∈ N : qν1,...,νn ∈ Q

}
.

Obviously the right hand side contains 0,±1 and is closed with respect to
addition and multiplication. Only the fact that with a nonzero element its
reciprocal is again a sum of the given type is nontrivial: This follows from
the fact that each λi is an ”algebraic number”, i.e. a zero of some polynomial
gi(x) with rational coefficients (namely gi(x) = f(x)).

Example 1.9. 1. The splitting field of f(x) = x2 + 1 is E = Q + Qi.

2. The splitting field of f(x) = x2 − d is E = Q + Q
√
d.

The symmetries of the splitting field E are called automorphisms:

Definition 1.10. An automorphism of the field E ⊂ C is a bijective map

σ : E −→ E

compatible with the four arithmetic operations, i.e.

σ(x± y) = σ(x)± σ(y), σ(xy) = σ(x)σ(y), σ

(
x

y

)
=
σ(x)

σ(y)
.
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We denote

Aut(E) := {σ : E −→ E automorphism }

the set of all automorphisms of the field E.

Remark 1.11. For an automorphism σ ∈ Aut(E) we have σ(0) = 0 and
σ(1) = 1, since for example σ(a) = σ(a+0) = σ(a)+σ(0). As a consequence
σ(n) = n for n ∈ N and finally

σ|Q = idQ.

In particular

σ(f(λ)) = f(σ(λ))

for any polynomial f(x) with rational coefficients and λ ∈ E.

Example 1.12. 1. For E = Q + Qi we have

Aut(E) = {idE, τ},

where τ(z) = z is complex conjugation. Indeed, if σ ∈ Aut(E), we
have

σ(a+ bi) = σ(a) + σ(b)σ(i) = a+ bσ(i),

while σ(i)2 = σ(i2) = σ(−1) = −1 implies σ(i) = ±i. Hence σ = idE
or σ = τ .

2. For E = E(f) the equality σ(f(λ)) = f(σ(λ)) together with σ(0) =
0 implies that σ(N(f)) = N(f), and the explicit description of the
splitting field E(f) in Rem.1.8 gives that σ can be reconstructed from
its restriction σ|N(f). From the point of view of abstract group theory
we need thus not distinguish between the Galois group

Gal(f) = Aut(E)|N(f) ⊂ S(N(f))

of the polynomial f(x) and the automorphism group

Aut(E) ⊂ S(E)

of its splitting field E = E(f).
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In the general approach one considers not only polynomials f(x) with
rational coefficients. Instead they are taken from a fixed base field K, where
now in contrast to the restricted definition Def.1.4 we mean an abstract,
not an embedded field, i.e. a set K with two distinguished elements 0, 1
and four arithmetic operations satisfying the ”usual rules”. Then given a
polynomial one has first to construct the splitting field E = E(f) ⊃ K, since
in general there is a priori no field at hand taking the rôle of the complex
numbers in the case K = Q. For that construction one has to study the
basics of commutative ring theory. Finally the automorphism group Aut(E)
is replaced with

AutK(E) := {σ : E −→ E automorphism, σ|K = idK} .

Here is a short survey of the material presented in these notes:

1. Chapter I: Groups. Here we discuss the basic notions of group the-
ory: Groups play an important rôle nearly in every part of mathematics
and can be used to study the symmetries of a mathematical object.

2. Chapter II: Rings. Commutative rings R are sets with three arith-
metic operations: Addition, subtraction and multiplication ±, · as for
example the set Z of all integers, while division in general is not always
possible. We need rings, that are not fields, mainly in order to con-
struct extensions of a given field K, but they play also an important
rôle in algebraic number theory (Number theory deals with the ring
Z ⊂ Q of integers, but for a deeper understanding of Z one has to
extend the notion of an integer and to study rings of algebraic integers
R ⊂ E, where E ⊂ C is the splitting field of some polynomial with
rational coefficients) and in algebraic geometry, where one investigates
the set of solutions of polynomial equations in several variables.

3. Chapter III: Field Extensions and Galois Theory. The main
result relates subgroups of AutK(E) for the splitting field E ⊃ K of
some polynomial with coefficients in K to intermediate fields of the
extension E ⊃ K. As an easy application we prove the fundamental
theorem of algebra and discuss cyclotomic fields, i.e. the splitting fields
over Q of the polynomials f(x) = xn−1, before we eventually attack our
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original problem, whether the zeros of an irreducible equation f(x) =
0 can be obtained from elements in the base field K with our five
operations.

4. Appendix: Zorns lemma. Here we prove Zorns lemma. That lemma
is usually needed if one wants to show the existence of certain objects in
case one deals with infinite sets, e.g. the existence of bases of infinite
dimensional vector spaces. An other example is this: There are no
explicit automorphisms σ ∈ Aut(C) except the identity and complex
conjugation, but with Zorns lemma we see that any automorphism of
a splitting field E ⊂ C of a polynomial f(x) with rational coefficients
can be extended to an automorphism of C.
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2 Groups

2.1 Definitions and Examples

Definition 2.1. A group is a pair (G, µ) with a non-empty set G and a
“binary operation”, i.e., a map

µ : G×G −→ G, (a, b) 7→ ab := µ(a, b),

called the “group multiplication” or “group law”, satisfying the following con-
ditions

G1: Group multiplication is ”associative”, i.e. for all a, b, c ∈ G we have

(ab)c = a(bc) .

G2: Existence of a ”neutral element”: There is an element e ∈ G such that

ea = a = ae

for all elements a ∈ G.

G3: Existence of ”inverse elements”: For all a ∈ G there is an element
a−1 ∈ G, such that

aa−1 = e = a−1a .

Notation: Often one writes G instead of (G, µ). And the number |G| is
called the order of the group G. Here we denote |M | ∈ N ∪ {∞} the
number of elements in the set M . We define powers an for a ∈ G and n ∈ N
inductively by

a0 := e, an+1 := ana,

and the associative law yields

an+m = anam .

Remark 2.2. 1. There is only one neutral element in a group G: If ẽ ∈ G
is a further neutral element, we obtain ẽ = ẽe = e.
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2. There is only one inverse element a−1 for a given element a ∈ G: If ã
is a further inverse element, we have

ã = ãe = ã(aa−1) = (ãa)a−1 = ea−1 = a−1 .

In particular we can also define negative powers

a−n := (a−1)n .

3. In many books for a group only the existence of a left neutral element
e, i.e. such that ea = a holds for all a ∈ G, and left inverse elements
a−1 (with e = a−1a) is required. So the group axioms are a priori
weaker, but it turns out that they are equivalent to ours, though group
multiplication need not be “commutative”:

Definition 2.3. A group is called commutative or abelian (Niels Henrik
Abel, 1802-1829) iff ab = ba holds for all a, b ∈ G.

Notation: If a group G is commutative, one often writes the group law in
additive notation:

a+ b := µ(a, b) ,

the symbol 0 denotes the neutral element, and −a the inverse element of
a ∈ G, while for n ≥ 0 powers look as follows

na := a+ ...+ a︸ ︷︷ ︸
n times

, (−n)a := n(−a) = (−a) + ...+ (−a)︸ ︷︷ ︸
n times

.

In that case we say that G is an ”additively written” group.

Example 2.4. 1. A set G := {e} with only one element e and the obvious
group multiplication constitutes a group, the trivial group.

2. With the ordinary addition of numbers as group law the set Z of all
integers forms a (commutative) group, and so do the rational, real and
complex numbers:

Q := { all rational numbers} , R := { all real numbers} and

C := { all complex numbers}.

13



3. A real or complex vector space V endowed with the addition of vectors
is a (commutative) group.

4. Let K = Q,R or C. With the ordinary multiplication of numbers
the set K∗ := K \ {0} becomes a (commutative) group. (We have to
exclude 0, since it does not have an inverse element.)

5. For K = Q,R,C we denote Kn,n the set of all square matrices of size
n with entries in K. Then the set

GLn(K) := {A ∈ Kn,n, detA 6= 0}

of all invertible matrices in Kn,n with matrix multiplication as group
law is a group, which for n ≥ 2 is not commutative. It is called the
(n-dimensional) general linear group over K.

6. For a set M let

S(M) := {f : M −→M bijective map}

be the set of all bijective maps from M to itself (”permutations” of
M). It constitutes a group together with the composition of maps as
group law µ, i.e., fg = µ(f, g) := f ◦ g. (The neutral element is the
identity idM .)

7. Let V be a finite dimensional vector space over K with K = Q,R,C.
Then we define the general linear group GL(V ) of V as

GL(V ) := {f ∈ S(V ); f K-linear},

endowed with the group multiplication induced by S(V ).

8. For Mn := {1, ..., n}, the group

Sn := S(Mn)

is called the symmetric group on n letters. For m ≥ n we can
understand Sn as subset of Sm by extending f ∈ Sn to f̂ ∈ Sm with
f̂(k) = k for k > n.

There are two different ways to denote a permutation f ∈ Sn, either as
a 2× n-matrix: (

1 2 · · · n
f(1) f(2) · · · f(n)

)
14



or as product of ”cycles”: A permutation f ∈ Sn is called a cycle of
length r ≥ 2, if there are pairwise distinct numbers a1, . . . , ar ∈ Mn,
such that

f(k) =


ai+1 , if k = ai, i < r
a1 , if k = ar
k , otherwise

.

In that case we write also f = (a1, . . . , ar). Obviously (a1, ..., ar) =
(b1, ..., bs), iff s = r and there is a number ` ∈ N, 0 ≤ ` < r, with

bj =

{
aj+`, , if j + ` ≤ r
aj+`−r, , if j + ` > r

.

Two cycles f = (a1, ..., ar), g = (b1, ..., bs) are called disjoint iff ai 6= bj
for all indices i = 1, ..., r, j = 1, ..., s. In that case the cycles commute:
fg = gf , but otherwise, that need not be true, e.g.:

(1, 2, 3)(1, 2) = (1, 3) 6= (2, 3) = (1, 2)(1, 2, 3) .

An arbitrary permutation can be factorized as product of pairwise dis-
joint cycles, the factors being unique up to reordering (the identity
“permutation” being the empty product: In a group a “product with-
out factors” (a contradictio in se?) is defined to be the neutral element.)
For example the permutation(

1 2 3 4 5 6 7 8
2 7 5 4 6 3 8 1

)
becomes (1, 2, 7, 8)(3, 5, 6), while (1, 2, 3, 7)(4, 8) has the matrix(

1 2 3 4 5 6 7 8
2 3 7 8 5 6 1 4

)
.

We remark that Sn is abelian iff n ≤ 2, cf. the above counterexample
for n ≥ 3.

9. If G1, ..., Gr are groups, then their cartesian product G1 × ... × Gr

endowed with the componentwise multiplication

(g1, ..., gr)(h1, ..., hr) := (g1h1, ..., grhr)

is again a group, the direct product of the groups G1, ..., Gr. The
group S2 × S2 is also called ”four-group” or ”Klein’s four-group”
(Felix Klein, 1849-1925).
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Remark 2.5. If the group G = {e, a, b, c, ...} is finite, the group multiplica-
tion can be given in a multiplication table

e a b c ...
e e a b c ...
a a a2 ab ac ...
b b ba b2 bc ...
c c ca cb c2 ...
...

...
...

...
...

,

where an element in G occurs in every row and column exactly once, since
the equation

ax = b resp. xa = b

has in G a unique solution, namely x = a−1b resp. x = ba−1.
Two such tables are equivalent from the point of view of algebra, if one of
them is obtained from the other by exchange of letters. The corresponding
groups then are called isomorphic, cf. Def. 2.7.

Problems 2.6. 1. R: For a set M denote P(M) its power set. Consider the following
binary operations P(M)× P(M) −→ P(M) on it:

(A,B) 7→ A ∪B, A ∩B, A4B := (A \B) ∪ (B \A) .

Which one does provide on P(M) a group law?

2. Which of the following subsets of Rn,n endowed with either matrix addition or
matrix multiplication becomes a group?

(a) R: The diagonal matrices.

(b) R: The diagonal matrices, where all entries in the diagonal are non-zero.

(c) R: The symmetric matrices.

(d) R: The invertible symmetric matrices.

(e) The diagonalizable matrices.

(f) The invertible diagonalizable matrices.

3. R: For K = Q,R,C we denote Affn(K) ⊂ S(Kn) the subset of all affine linear
transformations:

Affn(K) := {f ∈ S(Kn);∃ A ∈ GLn(K), b ∈ Kn : f(x) = Ax+ b,∀ x ∈ Kn} .

Show: Affn(K) is a group together with the composition of maps as group multi-
plication. Is Aff(K) := Aff1(K) commutative?
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4. R: Let G := {e, a, b, c} be a set with four elements. Show that there are exactly two
different multiplication tables for a group law on G (up to exchange of letters).

5. R: Let f := (1, 2, 3), g := (1, 2) ∈ S3. Show: S3 = {id, f, f2, g, gf, gf2}. Using that
notation write a multiplication table for S3!

6. R: Show: |Sn| = n!.

7. R: A cycle (i, j) ∈ Sn of length 2 is called a transposition. Show: Every permu-
tation f ∈ Sn can be written as a product of transpositions. Hint: Induction on
n.

8. R: Show: A group, where a2 = e for all a ∈ G, is abelian.

9. A group is called finitely generated iff there are elements a1, ..., ar ∈ G such that
every g ∈ G can be written g = ak1i1 · ... · a

ks
is

with integers k1, ..., ks, 1 ≤ i1, .., is ≤ r.
In that case the elements a1, ..., ar are said to genererate the group G, or to be
generators of G (but as such they are of course not uniquely determined - there
are many different systems of generators!) If G is abelian, the defining condition
for generators a1, ..., ar can be simplified: It is enough to require that every g ∈ G
can be written g = ak11 · ... · akrr resp., with additive notation, g = k1a1 + ...+ krar
with integers k1, ..., kr ∈ Z. Show: The group Z is generated by the element 1 as
well as by 2, 3. The group (Q,+) is not finitely generated!

10. Show: The symmetric group Sn is generated by the transpositions (1, 2), ..., (1, n)
resp. by (1, 2), (2, 3), ..., (n− 1, n) resp. by (1, 2), (1, 2, 3, ..., n).

2.2 Homomorphisms

Definition 2.7. A map

ϕ : G −→ H

between two groups G and H is called a (group) homomorphism, iff

ϕ(ab) = ϕ(a)ϕ(b) ∀ a, b ∈ G.

A bijective homomorphism is called a (group) isomorphism, and an iso-
morphism ϕ : G −→ G is called a (group) automorphism.

Two groups G,H are called isomorphic, iff there is a (group) isomorphism
ϕ : G −→ H. In that case one writes G ∼= H.

17



Remark 2.8. For a group homomorphism we have always

ϕ(eG) = eH , ϕ(an) = ϕ(a)n

with the neutral elements eG and eH of G resp. H, and arbitrary elements
a ∈ G, n ∈ Z.

Example 2.9. 1. For all groups G,H the constant map ϕ : G −→ H
with ϕ(a) = e := eH , ∀a ∈ G, is a homomorphism.

2. For every group the identity map ϕ := idG : G −→ G is an automor-
phism.

3. Let G be a group and a ∈ G. Then the ”exponential map” ϕa : Z −→
G, n 7→ an, is a homomorphism, since ϕa(n + m) = an+m = anam =
ϕa(n)ϕa(m).

4. Let G be a group and n ∈ Z. We regard the n-th power map pn :
G −→ G, a 7→ an, and find: p0 and p1 are always homomorphisms, cf.
the previous points, while p−1 is a so called ”anti-homomorphism”, i.e.,
we have

(ab)−1 = b−1a−1 .

Only if G is abelian, all the power maps pn, n ∈ Z, are homomorphisms.

5. The complex exponential map ϕ : C −→ C∗, z 7→ e2πiz, is a group
homomorphism from an additively written group into a multiplicatively
written one, since ϕ(z + w) = ϕ(z)ϕ(w).

6. Let K = Q,R,C and V be a K-vector space, dimV = n < ∞. If we
choose a basis e1, ..., en of V , then

GL(V )
∼=−→ GLn(K), f 7→ Af ,

where Af = (αij) ∈ Kn,n denotes the matrix of f with respect to the
basis e1, ..., en, i.e. f(ej) =

∑n
i=1 αijei, is a group isomorphism.

7. The determinant det : GLn(K) −→ K∗, A 7→ det(A), is a group homo-
morphism. (K = Q,R or C).
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8. The map sign : Sn −→ Q∗, where

sign(f) :=
∏

1≤i<j≤n

f(i)− f(j)

i− j
,

is a group homomorphism, and sign(f) = ±1 for all permutations f ∈
Sn. The latter follows immediately from the fact that any factor i− j
equals a factor f(`)− f(k) up to sign. In order to see that sign indeed
is a group homomorphism, we consider for any set

A = {i, j} ⊂Mn

consisting of of two different natural numbers i, j between 1 and n the
rational number

σA(f) :=
f(i)− f(j)

i− j
.

It is well defined, since the RHS remains unchanged after exchange of
i and j. Denote P2(n) the set of all subsets A ⊂ Mn of order |A| = 2.
Since

σA(g ◦ f) = σf(A)(g) · σA(f),

we obtain

sign(g ◦ f) =
∏

A∈P2(n)

σA(g ◦ f) =
∏

A∈P2(n)

σf(A)(g)
∏

A∈P2(n)

σA(f)

 ∏
A∈P2(n)

σA(g)

 · sign(f) = sign(g) · sign(f).

9. For each element g ∈ G in a group G the conjugation with g, i.e., the
map

κg : G −→ G, a 7→ gag−1 ,

is a group homomorphism. We remark, that κg even is an automor-
phism of the group G with inverse κg−1 . Such an automorphism is also
called an ”inner automorphism”, since it can be described using the
group multiplication of the group G. Indeed any automorphism is the
restriction to G of an inner automorphism of a suitable bigger group
G̃ ⊃ G. Note that κg = idG for all g ∈ G iff G is abelian.
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10. The map κ : G −→ S(G), g 7→ κg, associating to g ∈ G the conjugation
with g, is a group homomorphism for every group G. Remember that
S(G) is the group of all permutations of G; so we have to show that
κg ◦ κh = κgh for all g, h ∈ G. Do that!

The homomorphisms ϕ : G −→ S(M) from a group G to the permutation
group S(M) of a set M correspond to “G-actions on M”:

Definition 2.10. Let G be a group and M a set. A G-action on M is a
map

G×M −→M, (g, x) 7→ gx ,

satisfying the following conditions:

1. ex = x, ∀x ∈M ,

2. g(hx) = (gh)x, ∀ g, h ∈ G, ∀ x ∈M .

A group action is called effective if gx = x for all x ∈M implies g = e.

Remark 2.11. The G-actions on a set M correspond bijectively to group
homomorphisms ϕ : G −→ S(M). Namely:

1. Given a G-action on M and an element g ∈ G, the map

ϕg : M −→M,x 7→ gx,

is bijective with inverse ϕg−1 . Hence we obtain a homomorphism

ϕ : G −→ S(M), g 7→ ϕg.

2. On the other hand to a homomorphism ϕ : G −→ S(M), g 7→ ϕg, we
associate the G-action (g, x) 7→ gx := ϕg(x).

In particular a group action is effective iff the homomorphism ϕ : G −→ S(M)
is injective.

Example 2.12. 1. The symmetric group Sn acts naturally on Mn :=
{1, ..., n} by (f, k) 7→ f(k).
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2. The general linear group GLn(K) acts on Kn by (A, x) 7→ Ax, where
Ax denotes the product of the matrix A with the column vector x ∈ Kn.

3. The general linear group GLn(K) acts on Kn,n by (A,X) 7→ AXA−1.

4. The general linear group GLn(K) acts on the subspace Symn(K) ⊂
Kn,n of all symmetric matrices by (A,X) 7→ AXAT , where AT denotes
the transposed matrix.

5. For M = G there are three different natural actions of G on itself (The
products in the below formulae denote the group multiplication in G!):

(a) Left translation: G×G 3 (g, x) 7→ gx ∈ G.

(b) Right translation with the inverse element: G × G 3 (g, x) 7→
xg−1 ∈ G.

(c) Conjugation, i.e., the first two (commuting!) actions simultane-
ously: G×G 3 (g, x) 7→ κg(x) = gxg−1 ∈ G.

Definition 2.13. Let the group G act on the set M . The orbit Gx ⊂M of
an element x ∈M is defined as

Gx := {gx; g ∈ G}.

Example 2.14. With respect to the natural action of GLn(K) on Kn there
are exactly two different orbits inKn, namelyGLn(K)0 = {0} andGLn(K)x =
Kn \ {0}, where x ∈ Kn is an arbitrary vector 6= 0.

In general we have

Proposition 2.15. Two orbits in a set M with G-action are either equal or
disjoint. In particular M is the disjoint union of all orbits.
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Proof. If y ∈ Gx, we have Gy = Gx: Let y = hx, h ∈ G. Gy ⊂ Gx follows
from gy = g(hx) = (gh)x. But on the other hand also x = h−1y ∈ Gy, so
Gx ⊂ Gy resp. Gx = Gy.
Assume now that Gx ∩ Gy 6= ∅, say z ∈ Gx ∩ Gy: According to what we
already know, that implies Gx = Gz = Gy.

Remark 2.16. If there is only one orbit (which then coincides with M), one
says that G acts transitively on M . For example, that is the case, if G acts
on itself by left translation or by right translation with the inverse element.
But for conjugation the situation is different: The orbits

κG(x) = {gxg−1; g ∈ G} ⊂ G

then are called conjugacy classes and two elements in the same orbit are
called conjugate. Since κG(e) = {e}, the action of G on itself by conjugation
is never transitive for a nontrivial group G. Note that a cunjugacy class κG(x)
is trivial, i.e. κG(x) = {x}, iff x commutes with all elements g ∈ G.

Definition 2.17. Let G be a group. The center Z(G) ⊂ G is the subset

Z(G) := {x ∈ G;κG(x) = {x}} .

consisting of the elements x ∈ G with trivial conjugacy class. Equivalently

Z(G) = {x ∈ G;xg = gx ∀g ∈ G} .

In particular, a group G is abelian iff Z(G) = G.

Problems 2.18. 1. R: Determine all automorphisms of Klein’s four group S2 × S2!
What about the other group (cf. Problem 2.6.4) of order 4?

2. R: Compute sign(f) for a cycle f ∈ Sn of given length! Hint: Induction on the
length starting with 2-cycles (transpositions) resp. τ = (1, 2).

3. R: Assume that f ∈ Sn admits two different factorizations as product of transposi-
tions (2-cycles). Show that the numbers of factors have the same parity!

4. R: Show: Two permutations f, g ∈ Sn are conjugate iff in their respective factor-
ization as product of disjoint cycles, for any given length r ≥ 2, there are as many
cycles of length r in the factorization of g as in the factorization of f . How many
conjugacy classes are there in S5?
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5. Show: An automorphism ϕ : Sn −→ Sn mapping transpositions to transpositions
is an inner automorphism, i.e. has the form κh with some h ∈ Sn. Hint: Consider
the transpositions τi := (i, i+ 1) for i < n.

6. Show: An automorphism ϕ : Sn −→ Sn maps transpositions to permutations which
are the product of mutually disjoint 2-cycles.

7. Show that for n 6= 6 every automorphism of Sn is an inner automorphism. Hint:
Compute the number |κSn(f)| of elements in the conjugacy class of a permutation
f ∈ Sn, which is the product of mutually disjoint 2-cycles.

8. R: Let R∗ act on the plane R2 by t ·(x, y) := (tax, tby) with integers a, b ∈ Z. Sketch
the orbits!

9. Classify the orbits of the GL2(C)-action of Example 2.12.3.

10. Classify the orbits of the GL2(R)-action of Example 2.12.4.

11. R: Show Z(Sn) = {idMn} for n ≥ 3.

12. R: Show Z(GLn(K)) = K∗E with the unit matrix E of size n.

13. The group GLn+1(K) acts in a natural way on the set

Pn(K) := {L ⊂ Kn+1 a one dimensional subspace }

of all lines in Kn+1 through the origin via:

GLn+1(K)× Pn(K) −→ Pn(K), (A,L) 7→ A(L).

The set Pn(K) is also called the n-dimensional projective space over K. Determine
the kernel of the corresponding group homomorphism ϕ : GLn+1(K) −→ S(Pn(K))!

14. A continuation of the previous problem: Using the bijection

K̂ := K ∪ {∞} −→ P1(K), x 7→ K(x, 1),∞ 7→ K(1, 0)

and writing A =

(
a b
c d

)
compute the corresponding action

GL2(K)× K̂ −→ K̂, (A, x) 7→ Ax = ? .

Show that given two triples (L1, L2, L3) and (L̃1, L̃2, L̃3) of pairwise different lines
there is a matrix A ∈ GL2(K), unique up to a nonzero scalar factor, satisfying
L̃i = A(Li) for i = 1, 2, 3.

For K = C the set Ĉ is nothing but the ”Riemann sphere” from complex analysis,
and the transformations z 7→ Az are called Möbius transformations (August
Ferdinand Möbius, 1790-1868).
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2.3 Subgroups

Definition 2.19. Let G be a group. A non-empty subset H ⊂ G is called
a subgroup iff H is closed with respect to both, group multiplication and
“inversion”

a, b ∈ H =⇒ ab ∈ H , a ∈ H =⇒ a−1 ∈ H .

In order to emphasize that a subset H ⊂ G actually is a subgroup, we also
write

H ≤ G.

Remark 2.20. 1. Let H ≤ G be a subgroup, a ∈ H. Since a−1 ∈ H,
we get e = aa−1 ∈ H. In particular a subgroup is itself a group when
endowed with the restriction of the group multiplication of G.

2. The intersection H1 ∩ H2 of two subgroups H1, H2 ≤ G is again a
subgroup: H1 ∩H2 ≤ G. But the union H1 ∪H2 in general is not.

Example 2.21. 1. For any group G the subsets H = {e} ⊂ G as well as
H = G provide subgroups.

2. Let ϕ : G −→ F be a group homomorphism between the groups G and
F . If G0 ≤ G,F0 ≤ F are subgroups, the image ϕ(G0) ⊂ F of G0 as
well as the inverse image ϕ−1(F0) ⊂ G of F0 are subgroups of F resp.
of G. If G0 = G, we obtain the image

ϕ(G) = {ϕ(g); g ∈ G} ≤ F

of ϕ, and if F0 = {e} the corresponding subgroup is called the kernel
of the homomorphism ϕ:

Definition 2.22. Let ϕ : G −→ F be a group homomorphism between groups
G and F . Its kernel is the subgroup

ker(ϕ) := {g ∈ G;ϕ(g) = e} ≤ G ,

where e := eF denotes the neutral element in the group F .
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Proposition 2.23. A group homomorphism ϕ : G −→ F is injective iff
ker(ϕ) = {e}.

Proof. In any case we have e ∈ ker(ϕ); so if ϕ is injective, necessarily ker(ϕ) =
{e}. Assume now ker(ϕ) = {e} and ϕ(a) = ϕ(b). Then we have ϕ(ab−1) =
ϕ(a)ϕ(b)−1 = e ∈ F , i.e., ab−1 ∈ ker(ϕ) = {e} resp. ab−1 = e resp. a = b.

Example 2.24. 1. The center Z(G) ≤ G of a group G, cf. Def. 2.17,
satisfies

Z(G) = ker(κ : G −→ S(G))

with the homomorphism κ : G −→ S(G), g 7→ κg, in particular it is a
subgroup of G.

2. The unit circle
S1 := {z ∈ C; |z| = 1}

is a subgroup of the multiplicative group C∗ of nonzero complex num-
bers, in fact the kernel of the homomorphism C∗ −→ R∗, z 7→ |z|.

3. The kernel of the determinant homomorphism det : GLn(K) −→ K∗,
the (sub)group SLn(K) := ker(det) ⊂ GLn(K) is called the special
linear group. Remember that the neutral element of K∗ is 1 ∈ K∗ =
K \ {0}; so

SLn(K) = {A ∈ GLn(K); det(A) = 1} = {A ∈ Kn,n; det(A) = 1}.

4. Let σ : Rn×Rn −→ R be the the standard inner product, i.e., σ(x, y) :=
xTy. Then

O(n) := {A ∈ GLn(R);σ(Ax,Ay) = σ(x, y) ∀ x, y ∈ Rn}

= {A ∈ GLn(R);ATA = E}

(E ∈ Rn,n denotes the unit matrix) is a subgroup of GLn(R), the
orthogonal group.

5. The intersection SO(n) := SLn(R) ∩ O(n) is also a subgroup, the
special orthogonal group. For n = 2, 3 the matrices A ∈ SO(n)
correspond to rotations around the origin resp. some axis through
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the origin. In particular, if we identify R2 with the complex plane C
and denote Rϑ the counterclockwise rotation with angle ϑ ∈ R, i.e.
Rϑ(z) := eiϑz, we obtain

SO(2) = {Rϑ;ϑ ∈ R} ∼= S1.

The orthogonal group O(2) itself is the union

O(2) = SO(2) ∪ SO(2) · S,

of its subgroup SO(2) ⊂ O(2) and the set

SO(2) · S = {RϑS;ϑ ∈ R}

of all reflections. Here S denotes the reflection at the real axis, i.e.
complex conjugation S(z) := z.

With C instead of R there is an analogous construction:

6. Let σ : Cn × Cn −→ C be the standard inner product, i.e. σ(x, y) :=
xTy. Then

U(n) := {A ∈ GLn(C);σ(Ax,Ay) = σ(x, y) ∀ x, y ∈ Cn}

= {A ∈ GLn(C);ATA = E}

is a subgroup of GLn(C), the unitary group. And

SU(n) := SLn(C) ∩ U(n)

is called the special unitary group. We remark that

SU(2) = {A ∈ C2,2;A =

(
z w
−w z

)
; z, w ∈ C, zz + ww = 1};

so as a topological space, it is nothing but the three dimensional unit
sphere S3 ⊂ C4 ∼= C2,2.

7. An := ker(sign) ⊂ Sn is called the alternating group on n letters.
The permutations in An are called even, the other ones odd. As a
consequence of problems 2.6.7 and 2.18.3 we see that if an even resp.
odd permutation is a product of transpositions, then the number of
factors is even resp. odd; this explains the etymology.
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8. For n ≥ 1 we consider the power map pn : C∗ −→ C∗, z 7→ zn. Its
kernel Cn := ker(pn) is called the group of all n-th roots of unity,
i.e.

Cn = {z ∈ C; zn = 1} = {1, η, ..., ηn−1}

with η := e
2πi
n .

9. Given a subset P ⊂ Kn with K = R or K = C we define the sym-
metry group of P as the subgroup Sym(P ) ⊂ GLn(K) of the general
linear group GLn(K) consisting of all matrices transforming P into
itself:

Sym(P ) := {A ∈ GLn(K);A(P ) = P} ≤ GLn(K).

10. The dihedral group Dn, n ≥ 3 : In the complex plane C we consider
the regular n-gon Pn with the n-th roots of unity 1, η, ..., ηn−1 as vertices
(where η := e

2πi
n ). We identify C with R2 as usual and define the

dihedral group Dn as the (real) symmetry group of Pn, i.e.

Dn := Sym(Pn) ⊂ GLn(R).

Then, with the rotation R := R2π/n and the reflection S on the x-axis,
we have

(1) Dn = {E,R, ..., Rn−1, S, RS, ..., Rn−1S},

where E denotes the identity map (or the unit matrix). We note the
relations

Rn = E = S2, SRS−1 = R−1.

Of course SRS−1 = SRS because of S2 = E, but for systematic reasons
we prefer the expression SRS−1, since in order to classify groups up
to isomorphy, it is important to understand how elements in the group
act on others by conjugation.

Proof of Equality 1. Obviously the given 2n linear maps transform Pn
into itself, and we have to show the opposite inclusion. A linear map
A ∈ Dn maps the vertices of Pn onto themselves, i.e. A(Cn) = Cn. In
particular A(1) = ην for some ν, 0 ≤ ν ≤ n−1. Then B := R−νA ∈ Dn

satisfies B(1) = 1; and since edges are mapped to edges we obtain
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B(η) = η or B(η) = ηn−1 = η. But 1, η is a basis of the real vector
space C, and thus B = E or B = S. For the matrix A that means
A = Rν or A = RνS.

11. Let I := [−1, 1] ⊂ R. The complex symmetry group of the 4-cube
I4 ⊂ R4 ∼= C2 is the group

SymC(I4) := {A ∈ GL2(C);A(I4) = I4}

=

{
A ∈ GL2(C);A =

(
η 0
0 ζ

)
or A =

(
0 η
ζ 0

)
with η, ζ ∈ C4

}
.

In particular |SymC(I4)| = 32. As motivation we can say that a matrix
A ∈ SymC(I4) maps midpoints of the facets of the cube again to such
midpoints (they are the arithmetic means of the vertices). But these
are the points (α, 0) or (0, α) with α ∈ C4.

12. The intersection
Q := SymC(I4) ∩ SL2(C)

of the complex symmetry group SymC(I4) of the 4-cube with SL2(C)
is called the quaternion group, it has 8 elements:

Q = {±E,±I,±J,±K}

with the unit matrix E and

I :=

(
i 0
0 −i

)
, J :=

(
0 1
−1 0

)
, K := IJ =

(
0 i
i 0

)
.

We note that −E commutes with all elements in Q and the relations
IJ = K = −JI, JK = I = −KJ,KI = J = −IK.

13. For each group G the set

Aut(G) := {ϕ ∈ S(G);ϕ group automorphism }

is a subgroup of the group S(G) of all permutations of the set G, it is
called the automorphism group of G.

The subgroups of the additive group Z of all integers are determined in the
next proposition:
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Proposition 2.25. The subgroups H ⊂ Z are the sets Zn := {kn; k ∈ Z},
where n ∈ N.

Proof. The subsets H := Zn ⊂ Z obviously are subgroups. Consider now
an arbitrary subgroup H ≤ Z. For H = {0} we have H = Z0, and for non-
trivial H there is a least positive integer n := min(H ∩N≥1) in H, the subset
H being symmetric with respect to the origin: a ∈ H =⇒ −a ∈ H. Let us
show H = Zn: On the one hand n ∈ H =⇒ Zn ⊂ H, since H is a subgroup.
Now take any a ∈ H and divide a by n with remainder: a = qn + r with
q, r ∈ Z, 0 ≤ r < n. But r = a− qn ∈ H, such that because of the choice of
n ∈ H only r = 0 is possible. Hence a = qn ∈ Zn.

Let H ≤ G be a subgroup of the group G. We restrict the left translation
resp. right translation with the inverse to the subgroup H ⊂ G and obtain
H-actions

H ×G −→ G.

These actions are not any longer transitive; their orbits

aH := {ah;h ∈ H} = {ah−1;h ∈ H} resp. Ha := {ha;h ∈ H} ,

are called left resp. right cosets:

Definition 2.26. Let H ≤ G be a subgroup of the group G. A left coset
resp. right coset or residue class mod(ulo) H is a set aH ⊂ G resp.
Ha ⊂ G, where a ∈ G. A representantive of the coset aH resp. Ha is any
element b ∈ aH resp. b ∈ Ha, i.e. any element b = ah with some h ∈ H
resp. b = ha with an h ∈ H. Then aH = bH resp. Ha = Hb.
If G is abelian, the left and right coset given by a representative a ∈ G agree,
and in additive notation it is written a+H or H + a.
The set of all left resp. right cosets is denoted G/H resp. H\G, i.e.

G/H := {aH; a ∈ G} ( resp. H\G := {Ha; a ∈ G}) .

Example 2.27. 1. Let G := Sn and H := {f ∈ Sn; f(n) = n} ∼= Sn−1.
Then there are n left resp. right cosets mod H, namely

(i, n)H = {f ∈ Sn; f(n) = i}
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resp.
H(i, n) = {f ∈ Sn; f(i) = n},

where 1 ≤ i ≤ n.

2. If G = Z and H = Zn, n ≥ 1, there are again n cosets, namely the sets

r + Zn, 0 ≤ r < n.

So a coset consists of all integers which give after division with n the
same remainder r, 0 ≤ r < n.

3. A geometric interpretation: Let G = R2 and H ≤ R2 a line through
the origin. The cosets mod H are then nothing but the lines parallel
to H.

4. The cosets of S1 ≤ C∗ are the circles centered at the origin.

Proposition 2.28. Let H ≤ G be a subgroup of the group G.

1. Two left (resp. right) cosets mod H are disjoint or coincide; we have
aH = bH (resp. Ha = Hb), iff a−1b ∈ H (resp. ab−1 ∈ H).

2. If H is finite, a coset mod H contains as many elements as H.

3. Let G be finite. Then

|G| = |G/H| · |H| = |H\G| · |H|;

in particular the order |H| of the subgroup H divides the order |G| of
the group G.

4. If G/H is finite, so is H\G, more precisely |G/H| = |H\G|.

Definition 2.29. Let H ≤ G be a subgroup of the group G. If G/H is finite,
the number

(G : H) := |G/H| = |H\G|

is called the index of the subgroup H in G.
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Proof. i) The first part is a consequence of Prop. 2.15, the second is left to
the reader as an exercise.
ii) The left translation λa : G −→ G, x 7→ ax, is bijective, and λa(H) = aH,
whence |aH| = |H| for all a ∈ G. (An analogous argument works for right
cosets).
iii) follows immediately from i) and ii).
iv) The “inversion” p−1 : G −→ G, a 7→ a−1 is bijective and satisfies p−1(aH) =
Ha−1, hence induces a bijection G/H −→ H\G.

Given an action of a group G on a set M we associate to each element
x ∈M a subgroup Gx ⊂ G as follows:

Definition 2.30. Let G be a group acting on the set M . For an element
x ∈M we define its isotropy group or stabilizer Gx by

Gx := {g ∈ G; gx = x} .

The left coset space G/Gx can be identified with the orbit Gx ⊂M :

Proposition 2.31 (Class formula). Assume the group G acts on the set M .
Then:

1. For any x ∈ M the map G/Gx −→ Gx, gGx 7→ gx, is bijective; in
particular we have |Gx| = (G : Gx).

2. If M is finite and Gx1, .., Gxr are the (pairwise different) G-orbits, the
“class formula” says

|M | = (G : Gx1) + ...+ (G : Gxr) .

Proof. The given map is obviously well defined and surjective, and it is injec-
tive as well, since gx = hx implies g−1h ∈ Gx and thus hGx = g(g−1h)Gx =
gGx. (Its inverse is given by y 7→ ψ−1(y) with the orbit map ψ : G −→
Gx, g 7→ gx.) Finally M is the disjoint union of the orbits Gx1, ..., Gxr.

If G acts on itself by conjugation, then the center Z(G) ⊂ G consists
exactly of the elements with one point conjugacy class. In that case the class
formula reads as follows:
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Corollary 2.32. Let G be a finite group group and x1, ..., xr ∈ G a system of
representatives for the non-trivial conjugacy classes in G, i.e. every conju-
gacy class with more than one element is of the form κG(xi) and the κG(xi)
are pairwise distinct. Then we have

|G| = |Z(G)|+ (G : Gx1) + ...+ (G : Gxr)

with the proper subgroups Gxi = {a ∈ G; axia
−1 = xi} ⊂ G. In particular if

|G| = pr > 1 with a prime number p, its center is nontrivial: Z(G) 6= {e}.

Proof. The order |G| and the indices (G : Gxi), i = 1, ..., r, are divisible with
p, hence so is the order |Z(G)| of the center, in particular |Z(G)| > 1.

2.3.1 Digression: Quaternions

Motivated by the quaternion group, cf. Example 2.24.12, we conclude this
section with a digression about quaternions in general:

The elements in the four-dimensional real vector space

H :=

{(
z w
−w z

)
; z, w ∈ C

}
= R≥0 · SU(2) ⊂ C2,2

are called quaternions; they have been found by William Rowan Hamil-
ton (1805-1865) - of course not in this form, but instead using a basis like
E, I, J,K below. For the second equality we refer to Example 2.24.6; as a
consequence we see that H is even closed with respect to matrix multiplica-
tion and that all non-zero quaternions A ∈ H are invertible, but note that
H ⊂ C2,2 is not a complex vector subspace! In fact

H = R · E + R · I + R · J + R ·K ∼= R4

with the unit matrix E ∈ C2,2 and the matrices I, J,K of Example 2.24.12.
There is more structure on the vector space H: We have a conjugation:

H −→ H, A 7→ A∗ := A
T

satisfying

(A+B)∗ = A∗ +B∗, (AB)∗ = B∗A∗, (A∗)∗ = A
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and the inner product

σ : H×H −→ R, (A,B) 7→ σ(A,B) :=
1

2
trace(AB∗).

It satisfies
σ(AB,C) = σ(A,CB∗),

and the corresponding norm

|A| =
√
σ(A,A) =

√
det(A)

is multiplicative, i.e.

|AB| = |A| · |B| as well as |A∗| = |A|

and has unit sphere

S3 = {A ∈ H; |A| = 1} = SU(2).

We can write H as an orthogonal sum

H = Re(H)⊕ Im(H)

with the “real” subspace

Re(H) := {A ∈ H;A∗ = A} = R · E

and the “imaginary” subspace

Im(H) := {A ∈ H;A∗ = −A} = R · I + R · J + R ·K ∼= R3.

Note that AA∗ = |A|2 · E, whence

A2 = −|A|2 · E, ∀ A ∈ Im(H),

this motivates the name “imaginary subspace”.

Realizations of the quaternion group: Let us now show that, given two
orthogonal purely imaginary unit quaternions A,B ∈ Im(H), we obtain an
ON-basis

A,B,AB = −BA
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of Im(H). From that andA2 = −E = B2 we easily derive that {±E,±A,±B,±C}
with C := AB is a group isomorphic to the quaternion group Q.

First of all AB,BA ∈ Im(H) = E⊥, since for example σ(AB,E) =
σ(A,B∗) = −σ(A,B) = 0. Hence

AB = −(AB)∗ = −B∗A∗ = −(−B)(−A) = −BA.

Furthermore, AB is orthogonal to both A and B:

σ(AB,B) = σ(A,BB∗) = σ(A,E) = 0,

while

σ(AB,A) = σ(A,AB∗) = σ(AB∗, A) = σ(−AB,A) = −σ(AB,A),

whence σ(AB,A) = 0 as well. As a consequence of this discussion we see
that the product of quaternions is closely related to vector geometry in three
space: The map

Im(H)× Im(H) −→ Im(H), (A,B) −→ Im(AB) =
1

2
(AB −BA)

is nothing but the vector product of the “vectors” A,B ∈ Im(H) ∼= R3: It
is bilinear, alternating and associates to two orthogonal unit vectors a unit
vector orthogonal to both factors.

Orthogonal and unitary groups: Finally let us use quaternions in order
to find an interesting relationship between the special unitary group

SU(2) = S3 = {A ∈ H; |A| = 1}

and the special orthogonal groups SO(3) and SO(4).
We have an action by conjugation

SU(2)×H −→ H, (A,X) 7→ AXA∗ = AXA−1.

Since |AXA∗| = |X|, that action is isometric. Furthermore since Im(H) =
E⊥ and AEA∗ = E, the imaginary subspace Im(H) ∼= R3 is invariant under
that action; hence we obtain a group homomorphism

SU(2) −→ SO(3).
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In fact, it is onto and has the kernel {±E}: Write A = cos(ϑ)E+sin(ϑ)B with
a matrix B ∈ Im(H) and 0 ≤ ϑ ≤ π. Take C ∈ Im(H) orthogonal to B and
D := BC. Then E,B,C,D is an ON-basis for H and {±E,±B,±C,±D} ⊂
S3 is isomorphic to the quaternion group Q. An explicit calculation now
shows that

ACA∗ = cos(2ϑ)C + sin(2ϑ)D,ADA∗ = − sin(2ϑ)C + cos(2ϑ)D

while AAA∗ = A implies ABA∗ = B. With other words X 7→ AXA∗ is a
rotation around the axis R · B ⊂ Im(H). From this it follows immediately
that any transformation in SO(3) can be written in the above form and that
X 7→ AXA∗ is the identity iff ϑ = 0, π resp. A = ±E.

There is also a similar description for SO(4): We consider the action

SU(2)2 ×H −→ H, ((A,B), X) 7→ AXB∗.

It induces a surjective homomorphism

SU(2)2 −→ SO(4)

with kernel {±(E,E)}, namely: If F : H −→ H is an isometry, consider
G : H −→ H with G(X) := F (E)−1 · F (X). Then G(E) = E implies
G(Im(H)) = Im(H), and we find as above a matrix B ∈ SU(2) with G(X) =
BXB∗. Finally take A := F (E)B ∈ S3 = SU(2). On the other hand if
AXB∗ = X for all X, then X = E gives us AB∗ = E resp. B = A and we
may proceed as above.

Problems 2.33. 1. R: Show: If a, b ∈ Z are integers and gcd(a, b) = 1, one has
Za + Zb = Z, in particular 1 can be written in the form 1 = ra + sb with integers
r, s ∈ Z.

2. R: Determine all subgroups of S3, Q,C2 × C2, D4!

3. R: Show that the subgroups of Cn are the groups Cm with m|n. Hint: Consider

the homomorphism ϕa : Z −→ Cn, n 7→ an with a := e
2πi
n .

4. R: Let G be a group and a ∈ G, η := e
2πi
n . Show: There is a homomorphism

ϕ : Cn −→ G with ϕ(η) = a, iff an = 1.

5. R: Show: Aut(C2 × C2) ∼= S3.

6. Compute Aut(Q)!
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7. Show that the ”Möbius-action”

GL2(C)× Ĉ −→ Ĉ,

see Problem 2.18.12, restricts to an action

SL2(R)×H −→ H

on the upper half plane H := {z = x+ iy ∈ C; y > 0}.

8. Show that for the Möbius action on triplets

GL2(K)× P1(K)3 −→ P1(K)3

the stabilizer of any triplet (L1, L2, L3) ∈ P1(K)3 with pairwise different lines Li ⊂
K2 is K∗ · E ≤ GL2(K), see also Problem 2.18.11.

9. Show that SL2(Z) := SL2(Q) ∩ Z2,2 is a subgroup of SL2(Q).

10. Show that O(n) = Sym(Bn), i.e. O(n) is the symmetry group of the closed unit
ball Bn := {x ∈ Rn; ||x|| ≤ 1}.

11. R: Show: Every group is isomorphic to a subgroup of a permutation group S(M)
with a suitable set M .

12. R: Let G be a group. Show that a non-empty set H ⊂ G is a subgroup iff ab−1 ∈ H
for all a, b ∈ H.

13. R: Let H1, H2 ⊂ G be subgroups of the group G. Show: The union H1 ∪H2 ⊂ G
is again a subgroup iff H1 ⊂ H2 or H2 ⊂ H1.

14. Show: A finitely generated subgroup H of Q can be generated by one element only,
i.e. H = Za with some a ∈ Q.

15. Show that the following statements for a group G are equivalent:

(a) Every subgroup H ⊂ G is finitely generated.

(b) Each increasing sequence H1 ⊂ H2 ⊂ ... of subgroups Hn ⊂ G becomes
constant, i.e. there is n0 ∈ N with Hn = Hn0 for n ≥ n0.

(c) Every set A, whose elements are (certain) subgroups of G, has (at least) one
maximal element H0 ∈ A, i.e. A 3 H ⊃ H0 =⇒ H = H0.

16. Let P ⊂ R3 be a regular tetrahedron or a cube with the origin as barycenter. Is
Sym(P ) isomorphic to one of the groups you have encountered up to now?
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2.4 Order and Cyclic Groups

In this section we study the most basic nontrivial groups:

Definition 2.34. For an element a ∈ G of a group G the subgroup

aZ := {an; n ∈ Z} ≤ G

is called the cyclic (sub)group generated by a ∈ G. The group G is
called cyclic iff

G = aZ

for some a ∈ G.

In order to understand cyclic groups we need the notion of the order of an
element a ∈ G:

Definition 2.35. Let G be a group. The order ord(a) ∈ N ∪ {∞} of the
element a ∈ G is defined as

ord(a) := min{n ∈ N≥1; an = e} ,

where we use the convention min ∅ :=∞.

Example 2.36. 1. In the multiplicative group C∗ we have: ord(z) <
∞ iff z = exp(2πip

q
) with a rational number p

q
∈ Q; in that case

ord(exp(2πip
q
)) = q, if p, q ∈ Z are relatively prime and q > 0.

2. For the elements R, S in the dihedral group Dn we have ord(R) = n
and ord(S) = 2.

Proposition 2.37. Let G be a group, a ∈ G and ϕa : Z −→ G the homo-
morphism n 7→ an.

1. If ord(a) = ∞, the homomorphism ϕa is injective, hence induces an
isomorphism Z ∼= aZ.

2. If ord(a) = d < ∞, then ker(ϕa) = Zd, and exp(2πik
d
) 7→ ak defines

an isomorphism Cd ∼= aZ. In particular the elements e, a, .., ad−1 ∈ G
are pairwise different and constitute aZ, i.e., aZ = {e, a, ..., ad−1}, and
ak = e iff d|k.

3. ord(a) = | aZ|.
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Proof. 1. According to 2.23 it suffices to show ker(ϕa) = {0}. Therefore let
n ∈ ker(ϕa), i.e. an = e. Since an = e ⇔ a−n = e, we may assume n ≥ 0.
But if ord(a) =∞ this is possible only with n = 0.
2. If ord(a) = d < ∞, we even have ker(ϕa) = Zd: The inclusion ⊃ is
obvious; if on the other hand an = e, write n = qd + r, 0 ≤ r < d, whence
e = an = (ad)qar = ar. But by the choice of d that implies r = 0 resp.
n ∈ Zd. Since exp(2πik

d
) = exp(2πi `

d
) iff d|(` − k) iff ` − k ∈ ker(ϕa) iff

ak = a`, the map exp(2πik
d
) 7→ ak is both well defined and injective, while

the surjectivity is immediate.
3. follows immediately from 1. and 2.

Corollary 2.38. Theorem of Lagrange (Joseph Louis Lagrange, 1736 -
1813) Let G be a finite group. Then the order ord(a) of any element a ∈ G
divides the group order |G|, or with other words

a|G| = e

holds for all a ∈ G.

Proof. Since G is finite, every element a ∈ G has finite order:
ord(a) = |aZ| = d <∞. On the other hand according to 2.28.3. the order of
the subgroup aZ ≤ G divides |G|.

Problems 2.39. 1. R: Let G be a group and a, b ∈ G elements of order m,n ∈ N
respectively. Show that ord(ak) = m/ gcd(k,m) and ord(ab) = mn, if ab = ba and
the numbers m,n are relatively prime.

2. R: Let f ∈ Sn be a permutation. Given a factorization of f as product of pairwise
disjoint cycles determine the order of f !

3. Let G :=
⋃∞
n=1 C2n . Show: The group G is not finitely generated, cf. Problem

2.6.9, but every proper subgroup is cyclic (and thus finitely generated), namely
coincides with some C2n .

4. R: Show: The direct product G×H of two nontrivial cyclic groups is again cyclic,
iff both G and H are finite and their orders are relatively prime.

5. Let p be a prime number. Show that Sp is generated by an arbitrary p-cycle and
any transposition. Hint: Use problem 2.6.10.

6. R: Show: Every automorphism Cn −→ Cn is of the form pk(a) = ak with some
k ∈ Z, gcd(k, n) = 1. When does pk = p` hold? Hint: 2.39.1.

7. R: Let p be a prime number. Show that a group of order p2 is isomorphic either to
Cp2 or to Cp × Cp! Hint: Corollary 2.32.
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2.5 Factor Groups

Having discussed cyclic groups as the most basic non-trivial groups one can
attack the problem of classification of (finite) groups by trying to decompose
a given group into smaller pieces. If for example H ⊂ G is a subgroup of
the group G, one could look at H and the set G/H of all left cosets mod
H. But is G/H again a group? If so, one would expect the quotient map
% : G −→ G/H, a 7→ aH, to be a group homomorphism. That means nothing
but:

aH · bH = abH,

and it looks like we have succeeded in making G/H a group, taking the RHS
as a definition of the LHS. But unfortunately, there is the following problem:
The elements a and b are by no means distinguished representatives of the
cosets aH and bH, and we have to show that the right hand side depends
only on aH and bH as sets (and not on the way to write them), i.e. does not
change if we replace a and b with other representatives ã = ah1 and b̃ = bh2,
where h1, h2 ∈ H.

On the other hand if in some given situation the above definition works,
then the subgroup H ⊂ G is the kernel of the group homomorphism % : G −→
G/H, and subgroups realized as the kernel of a suitable group homomorphism
turn out to be “normal”:

Definition 2.40. A subgroup H of a group G is called normal if it is in-
variant under conjugation, i.e. if for all a ∈ G we have

κa(H) = aHa−1 = {aha−1;h ∈ H} ⊂ H .

In that case we also write
H �G.

Remark 2.41. 1. For a normal subgroup H �G, the above condition is
satisfied for all a ∈ G, in particular also for a−1, i.e.

a−1H(a−1)−1 = a−1Ha ⊂ H ⇐⇒ H ⊂ aHa−1.

Hence we could also have required aHa−1 = H for all a ∈ G, but the
given condition is a priori easier to check.

2. Since aHa−1 = H is equivalent to aH = Ha, for a normal subgroup
left and right cosets coincide. In particular G/H = H\G for a normal
subgroup H ⊂ G.
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3. Let us emphasize that for normality we do not require aha−1 = h,∀h ∈
H,∀a ∈ G. If H satisfies that condition, it is of course normal, but not
vice versa.

Example 2.42. 1. Let h := (1, 2, 3), g := (1, 2) ∈ S3. Then hZ � S3 is
normal, but gZ ≤ S3 is not.

2. In an abelian group every subgroup is normal.

3. The center Z(G) ≤ G of a group G is a normal subgroup.

4. A subgroup H ≤ G of index (G : H) = 2 is normal, since for a ∈ G\H
we have aH = G \ eH = G \He = Ha.

5. The kernel ker(ϕ) of a group homomorphism ϕ : G −→ F is a nor-
mal subgroup, since h ∈ ker(ϕ) =⇒ ϕ(aha−1) = ϕ(a)ϕ(h)ϕ(a−1) =
ϕ(a)eϕ(a)−1 = e, i.e. aha−1 ∈ ker(ϕ).

6. Note that F � H � G does not imply F � G. For example consider
G = D4. We have H := {E,R2 = −E, S, SR2 = −S} � G, but
F = SZ = {E, S}�H is not a normal subgroup of D4, since RSR−1 =
R2S = −S.

Hence H has to be a normal subgroup, in order to have on G/H a natural
group structure. Luckily that is the only condition needed:

Proposition 2.43. If H is a normal subgroup of the group G, then

aH · bH := abH

defines a group multiplication on G/H, and the coset map % : G −→ G/H, a 7→
aH becomes a group homomorphism.

Proof. It is sufficient to show that the group multiplication is well defined,
i.e. does not depend on choices of representatives. So let ã := ah1, b̃ := bh2

with elements hi ∈ H. Then we have

ãb̃ = ah1bh2 = ab(b−1h1b)h2 = abh

with h = (b−1h1b)h2 ∈ H, since H is normal. With other words ãb̃H =
abH.
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Definition 2.44. If H is a normal subgroup of the group G, then the (left)
coset space G/H with the multiplication

aH · bH := abH

is called the factor group of G with respect to (or mod(ulo)) H.

Proposition 2.45. Let ϕ : G −→ F be a group homomorphism and H ≤
ker(ϕ) a normal subgroup of G. Then there is a unique homomorphism ϕ :
G/H −→ F with ϕ = ϕ ◦ %, where % : G −→ G/H is the coset map.
We have ker(ϕ) = ker(ϕ)/H. In particular, if ϕ : G −→ F is surjective,
ϕ : G/ ker(ϕ) −→ F is a group isomorphism: G/ ker(ϕ) ∼= F .

We leave the proof as an exercise to the reader.

Notation: If it is clear from the context which groups G and H are involved,
we usually write a instead of aH.

Example 2.46. 1. For G := Z and H := Zn we write

Zn := Z/Zn

additively, i.e.

Zn =
{

0 = Zn = 0 + Zn, 1 = 1 + Zn, .., n− 1 = (n− 1) + Zn
}
.

2. Let G be a group, a ∈ G an element of order ord(a) = d <∞. Then the
homomorphism ϕa : Z −→ G, n 7→ an, has the kernel ker(ϕa) = Zd and
we obtain an isomorphy Zd ∼= aZ with the isomorphism Zd 3 k 7→ ak.

In particular with G = Cd, a = exp(2πi
d

) we find Zd ∼= Cd.

3. The homomorphism exp : R −→ S1, ϑ 7→ e2πiϑ, induces an isomorphism
R/Z ∼= S1.

4. The homomorphism sign : Sn −→ Q∗ induces an isomorphism Sn/An
∼=

sign(Sn) = C2
∼= Z2.

Corollary 2.47. Let G be a group and E,H�G normal subgroups of G and
E ⊂ H. Then H/E is a normal subgroup of G/E, and there is a natural
isomorphism

G/E

H/E

∼=−→ G/H, aE(H/E) 7→ aH.
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Proof. The kernel of the coset map G −→ G/H contains E ⊂ G, hence,
according to 2.45, factors through a unique surjective group homomorphism
G/E −→ G/H, the kernel of which is H/E ⊂ G/E. Now apply once again
2.45.

Returning to our motivation in the beginning of this section we ask whether
a group G can be reconstructed from a normal subgroup H � G and the
factor group G/H. Unfortunately the answer is no: For H = C2 � G = C4

and H̃ = C2 × {1} � G̃ = C2 × C2 we have H̃ ∼= H and G̃/H̃ ∼= G/H, but
G̃ 6∼= G. In order to avoid such counterexamples let us assume that H � G
admits a complementary subgroup F ≤ G, i.e. such that the composition

F ↪→ G −→ G/H

of the inclusion F ↪→ G and the coset map G −→ G/H is an isomorphism.
Then the map

H × F −→ G, (h, f) 7→ hf

is bijective, but unfortunately only a group homomorphism if fh = hf holds
for all f ∈ F, h ∈ H.

For example take G := S3 and H := hZ ∼= Z3, F := gZ ∼= Z2 with the 3-
cycle h := (1, 2, 3) and the transposition g := (1, 2). Then G 6∼= H ×F , since
H×F ∼= C3×C2

∼= C6 is abelian. In fact, the information lost when passing
from G to H,G/H is the way how the complementary subgroup F ⊂ G acts
on the normal subgroup H by conjugation, i.e. the homomorphism

σ : F −→ Aut(H), f 7→ κf |H .

If σ ≡ idH , then G ∼= H × F . Otherwise we can reconstruct G from H,F
and σ as follows:

Definition 2.48. Let F,H be groups and σ : F −→ Aut(H), f 7→ σf := σ(f)
a group homomorphism. Then the group

H ×σ F := (H × F, µ := µσ), where µσ((h, f), (h′, f ′)) := (hσf (h
′), ff ′)

is called the semidirect product of H and F with respect to the homomor-
phism σ.
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So the underlying set of a semidirect product is in any case the cartesian
product, but the group multiplication is the componentwise multiplication
only if σ : F −→ Aut(H) is the trivial homomorphism: σf = idH for all
f ∈ F .

The proof that µ really is a group multiplication is left to the reader.

Remark 2.49. 1. The sets H×{e} and {e}×F are subgroups of H×σF
isomorphic to H resp. F , and H × {e} is normal; furthermore

F ∼= {e} × F ↪→ H ×σ F −→ (H ×σ F )/(H × {e})

is an isomorphism.

2. Let G be a group and F,H ⊂ G subgroups, H normal. If the restriction
%|F : F −→ G/H of the coset map % : G −→ G/H is an isomorphism
and we take σ : F −→ Aut(H) with σf := κf |H : H −→ H, h 7→ fhf−1,
then

H ×σ F
∼=−→ G, (h, f) 7→ hf

is a group isomorphism.

3. Let us now consider the case that G/H is cyclic: G/H = aZ. Take
F := aZ ∼= Zn, i.e. n = 0, if ord(a) = ∞ and n = ord(a) otherwise
(where Z0

∼= Z). Define d ∈ N by H ∩ F = (ad)Z, where we may
assume that d|n. The homomorphism σ : F −→ Aut(H) is defined by
σa` := (κa|H)` with the restriction κa|H : H −→ H of the conjugation.
We remark that κna = κan = idH as well as κa(a

d) = ad. Finally we
obtain an isomorphism

(H ×σ F )/(a−d, ad)Z
∼=−→ G, (h, a`) 7→ ha`.

The corresponding abstract construction starts with a group H, natural
numbers d, n ∈ N with d|n and a group isomorphism ψ : H −→ H
(playing the rôle of κa|H), such that ψn = idH , furthermore an element
h0 ∈ H (corresponding to ad ∈ H) with ψ(h0) = h0. The rôle of F
is played by the (additive) group Zn. Let now σ : Zn −→ Aut(H) be
the homomorphism with σk = ψk. The cyclic subgroup (h−1

0 , d)Z ≤
(H ×σ Zn) is normal, and the group we associate to these data is

(H ×σ Zn)/(h−1
0 , d)Z .
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Example 2.50. 1. Let H := C3 and F := Z2. The automorphism group
Aut(C3) consists of two maps, the power maps p1 = idC3 and p−1

(remember that pn(a) := an), hence there are two possibilities for σ :
Z2 −→ Aut(C3): Either σ1 = idC3 = p1 or σ1 = p−1 : C3 −→ C3. In
the first case we obtain the direct product C3 × Z2

∼= C3 × C2
∼= C6,

while in the second case we get C3 ×σ Z2
∼= S3.

2. We consider the quaternion group Q, with H := IZ ∼= C4, F := JZ ∼=
C4
∼= Z4. We find F ∩H = (−E)Z = (J2)Z and thus n = 4, d = 2 with

ψ = p−1 and a = J, h0 = a2 = −E. So the abstract construction is

Q ∼= (C4 ×σ Z4)/(−1, 2)Z ,

where σ : Z4 −→ Aut(C4) is determined by σ1 = ψ = p−1 and h0 =
−1 ∈ C4.

2.5.1 Digression: Free Groups

In this section we present a method how to describe infinite groups in a
concise way. Indeed, it is even useful for finite groups, since in general it is
not very economic to write down a complete multiplication table. First of
all we need the notion of a set (”system”) of generators of a group G:

Definition 2.51. Let G be a group, M ⊂ G a subset. Then the intersection
of all subgroups H ≤ G containing M , i.e.

〈M〉 :=
⋂

M⊂H≤G

H,

is called the subgroup of G generated by the subset M . If G = 〈M〉, the set
M ⊂ G is also called a system of generators for the group G.

Remark 2.52. The subgroup 〈M〉 ≤ G generated by a subset M ⊂ G
admits also an explicit description:

〈M〉 = {an1
1 · ... · anrr ; a1, ..., ar ∈M, r ∈ N>0, n1, ..., nr ∈ Z},

the right hand side being a subgroup contained in any subgroup H ≤ G
containing M .
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Notation: If M = {c1, ..., cs} we often simply write

〈c1, ..., cs〉 := 〈{c1, ..., cs}〉.

Example 2.53. 1. A group admits a generator system with only one el-
ement iff it is cyclic.

2. Z = 〈1〉 = 〈2, 3〉, so distinct minimal generator systems (a generator
system which can not be shrinked) may have different cardinalities!

3. The cyclic group Cn of all n-th roots of unity is generated by e2πi/n, i.e.

Cn = 〈e2πi/n〉.

4. The dihedral group Dn satisfies

Dn = 〈R, S〉

with the counterclockwise rotation R(z) = e2πi/nz and the reflection
S(z) = z at the real axis.

5. The quaternion group Q satisfies

Q = 〈I, J〉.

6. The symmetric group Sn satisfies

Sn = 〈T 〉,

where T := {(i, j); 1 ≤ i < j ≤ n} is the set of all transpositions.

7. Commutator subgroup C(G) ≤ G: If G is any group and

M := {aba−1b−1; a, b ∈ G},

the subgroup C(G) := 〈M〉 is called the commutator subgroup. It is
a ”characteristic subgroup” of G, i.e. invariant under every automor-
phism σ : G −→ G: σ(C(G)) = C(G). So in particular it is a normal
subgroup: C(G) �G.
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In order to describe a group G one often finds the following: A system
M ⊂ G of generators is specified together with a set of relations, i.e. a
number of equalities

Li = Ri, i = 1, ..., s,

where both Li and Ri are products of elements and inverses of elements of
the system M of generators.

Example 2.54. 1. A finite group G = 〈a, b〉 with 〈a〉�G can be charac-
terized by the relations

an = e,

where n denotes the order of a ∈ G,

bm = ar,

where m is the order of b ∈ G/〈a〉, and the conjugation relation

bab−1 = as.

In particular:

2. For the dihedral group Dn = 〈R, S〉 we have the relations

Rn = E, S2 = E, SRS−1 = R−1.

3. For the quaternion group Q = 〈I, J〉 a possible set of relations is

I4 = E, J2 = I2, JIJ−1 = I3.

We want to explain what people mean with such a description: First
we should understand the case, where there are no relations at all: Such a
system of generators is called free:

Definition 2.55. A system of generators M ⊂ F of a group F is called free,
if the pair (F,M) satisfies the following “universal mapping property”: Given
any map ϕ : M −→ G into a group G, there is a unique group homomorphism
ϕ̂ : F −→ G extending ϕ, i.e. ϕ̂|M = ϕ. A group F is called free if it admits
a free system of generators.

Example 2.56. 1. The trivial group F = {e} is free: Take M = ∅.
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2. The additive group Z of integers is free: Take M = {1}.

3. A free generator system M of a commutative group F is either empty
or contains one element: If M = {a, b, ...} is a free generator system
of an abelian group F with a 6= b and g, h ∈ G arbitrary elements
in some group G, there is a group homomorphism ϕ̂ : F −→ G with
ϕ̂(a) = g, ϕ̂(b) = h. But then ab = ba implies gh = hg, so we could
conclude that any group is abelian!

4. The elements of a free system of generators M have infinite order (hence
the trivial group is the only free finite group!). If a ∈ M , there is a
group homomorphism ϕ̂ : F −→ R∗ with ϕ̂(a) = 2. Since 2 ∈ R∗ has
infinite order, the element a ∈ F has as well.

Hence given a set M with more than one element, it is not at all clear
whether there is a group F ⊃M freely generated by M , but if it exists, it is
unique up to isomorphy:

Remark 2.57. Let Fi ⊃ M be groups freely generated by M for i = 1, 2
and ϕi : M ↪→ Fi the inclusion. Then ϕ̂2 : F1 −→ F2 is an isomorphism. In
order to see that we apply the universal mapping property for (F2,M) to the
inclusion ϕ1 : M ↪→ F1 and obtain the extension ϕ̂1 : F2 −→ F1. Since both
ϕ̂1 ◦ ϕ̂2 and idF1 extend the identity idM , we get ϕ̂1 ◦ ϕ̂2 = idF1 , and in the
same way, ϕ̂2 ◦ ϕ̂1 = idF2 .

Fortunately we have:

Proposition 2.58. For every set M there is a group F (M) ⊃ M freely
generated by M . Indeed any element g ∈ F \{e} has a unique representation

g = an1
1 · ... · anrr ,

where r ∈ N>0, a1, ..., ar ∈M , the exponents are nonzero: n1, ...., nr ∈ Z\{0}
and immediate neighbours are different: ai+1 6= ai for 1 ≤ i < r.

Before we prove the proposition we come back to our original problem.
Consider any group G with a system of generators M ⊂ G. Denote ι : M −→
G the inclusion. Then the group homomorphism

ι̂ : F (M) −→ G
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is onto, hence G ∼= F (M)/H with the normal subgroup H := ker(ι̂). Thus
in order to describe G up to isomorphy it suffices to determine a system of
generators for the subgroup H. But since H �G is a normal subgroup it is
enough to give a system of generators of H as a normal subgroup: Given a
subset R ⊂ F (M) we denote N(R) � F (M) the smallest normal subgroup
of F (M) containing R; in fact

N(R) =
⋂

R⊂N�F (M)

N .

Or equivalently, N(R) is the subgroup generated by

κF (M)(R) :=
⋃

g∈F (M)

κg(R),

where κg : F (M) −→ F (M), x 7→ gxg−1, denotes the conjugation with g.
Hence in order to describe a group G completely one gives a set M ⊂ G

of generators and a set R ⊂ F (M), such that H = N(R) respectively

G ∼= F (M)/N(R) .

The elements in R then correspond to relations Li = Ri with the right hand
side Ri = e.

On the other hand, if it is said that a group G is generated by M with
relations Li = Ri, i = 1, ..., s, one means that the natural map F (M) −→ G
has kernel N(R) with

R = {LiR−1
i , i = 1, ..., s},

where Li, Ri are understood as elements in F (M). Of course R = {R−1
i Li, i =

1, ..., s} or R = {L−1
i Ri, i = 1, ..., s} etc. are possible choices as well.

Example 2.59. 1. For the generator system M = {R, S} of the dihedral
group Dn we may take

R := {Rn, S2, SRSR} ⊂ F (M).

In order to see that, we consider the surjective group homomorphism
F (M) −→ Dn; it factors through F (M)/N(R). Hence it is sufficient
to show that F (M)/N(R) has at most order 2n = |Dn|; and this we
leave as an exercise for the reader.
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2. For the generator system M = {I, J} of the quaternion group Q we
may take

R = {I4, I2J2, JIJ−1I} ⊂ F (M).

Proof of Proposition 2.58. We take a second (with M disjoint) copy M−1 of
the set M , the elements being denoted b−1, b ∈ M (this is nothing but a
notation). Thus there is a bijection

M −→M−1, b 7→ b−1

with the inverse
M−1 −→M, c = b−1 7→ c−1 := b.

Hence, if A := M ∪ M−1, then A −→ A, a 7→ a−1 is a permutation of A
interchanging M and M−1. Set

W (A) := {e, (a1, ..., ar); a1, ..., ar ∈ A, r ∈ N>0},

so the elements in W (A) are finite sequences, whose elements belong to A
(they are also called ”words” in the ”alphabet” A), and e denotes the empty
sequence (word). Words can be composed by concatenation and be simplified:
A simplification step looks as follows

u = (a1, ..., ai−1, a, a
−1, ai+2, ..., ar) −→ u′ = (a1, ..., ai−1, ai+2, ..., ar)

with u′ = e for u = (a, a−1). Call a word u = (a1, ..., ar) reduced if it can not
be simplified to a shorter word, i.e. if ai+1 6= a−1

i for i = 1, ..., r − 1. Denote
RW (A) ⊂ W (A) the subset of all reduced words.

It is clear that any word u ∈ W (A) can be transformed into a reduced
word u0 ∈ RW (A) by a finite number of simplifications. Indeed, the resulting
reduced word depends only on u and not on the simplification steps applied:

Lemma 2.60. Let u ∈ W (A) be a word. Then there is a unique reduced
word u0 ∈ RW (A), such that u0 is the outcome of any iterated simplification
procedure leading from u to a reduced word.

Let us now derive our claim from Lemma 2.60. Set F (M) := RW (A)
with the group law:

F (M)× F (M) −→ F (M), (u,v) 7→ (uv)0,
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where uv denotes the concatenation of the words u,v. The neutral element
is the empty word e, the element u = (a1, ..., ar) has the inverse (a−1

r , ..., a−1
1 ).

Finally associativity is obtained as follows:

((uv)0w)0 = (uvw)0 = (u(vw)0)0.

Namely: The left hand side is obtained from uvw by simplifying first to
(uv)0w and then to the reduced word ((wv)0u)0. Now Lemma 2.60 gives
the first equality; the second one follows with an analogous argument.

Identify A = M ∪M−1 with the one letter words in F (M) = RW (A).
Now given a map ϕ : M −→ G extend it first to ψ : A −→ G by setting
ψ(a−1) := ϕ(a)−1 and then to ψ̂ : W (A) −→ G with

ψ̂((a1, ..., ar)) := ψ(a1) · ... · ψ(ar), ψ(e) = eG

where (a1, ..., ar) is any word. Obviously ψ̂(uv) = ψ̂(u)ψ̂(v) and ψ̂(w0) =
ψ̂(w). It follows immediately that ϕ̂ := ψ̂|RW (A) : F (M) = RW (A) −→ G is
a group homomorphism.

Proof of Lemma 2.60. We do induction on the length of the word u. Assume
the word u may be reduced to the reduced words u1 and u2. If u itself is
reduced, we obviously have u1 = u = u2. Otherwise denote vi the result of
the first simplification on the way from u to ui. If v1 = v2 =: v, we may
apply the induction hypothesis to v and obtain u1 = u2. Otherwise u =
(a1, ..., ar) and v1 = (a1, ..., ai−1, ai+2, ..., ar),v2 = (a1, ..., aj−1, aj+2, ..., ar),
where we may assume i ≤ j. Since j = i, i + 1 gives v1 = v2, we have
i + 2 ≤ j, and then v := (a1, ..., ai−1, ai+2, ..., aj−1, aj+2, ..., ar) for j > i + 2
resp. v := (a1, ..., ai−1, aj+2, ..., ar) for j = i+ 2 is both a simplification of v1

and v2.
But vi being shorter than u has according to the induction hypothesis ui

as its unique reduction. Since we can obtain it via an iterated simplification
procedure through v, we have u1 = u2.

Remark 2.61. It is not difficult to see that F (M) ∼= F (N) implies |M | =
|N |. A more surprising fact is, that any subgroup H ≤ F (M) of a free group
again is free, i.e. H ∼= F (N) with some set N , but that not necessarily
|N | ≤ |M |, if |M | ≥ 2.

Problems 2.62. 1. R: Show: C/Z ∼= C∗ 6∼= C.
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2. R: Determine all groups of order 6.

3. R: Determine all non-commutative groups of order 8.

4. R: Let H ⊂ S4 be the subgroup consisting of the identity and the products of two
disjoint 2-cycles. Show: H ⊂ S4 is a normal subgroup and S4/H ∼= S3. Hint:
S3 ∩H = {id}.

5. Let Affn(R) := {f ∈ S(Rn); f(x) = Ax+ b with A ∈ GLn(R), b ∈ Rn} be the affine
linear group, cf. problem 2.6.3. Show: The subgroup T := {τb; b ∈ Rn} (where
τb(x) = x + b is the translation with the vector b ∈ Rn) is normal. Determine a
homomorphism σ : GLn(R) −→ Aut(Rn), such that Affn(R) ∼= Rn ×σ GLn(R)! Is
GLn(R) ≤ Affn(R) a normal subgroup?

6. R: We define on Z∗n := {a ∈ Zn; gcd(a, n) = 1 } a group structure: a · b := ab. Show
that this defines a group multiplication, and that Z∗n −→ Aut(Cn), k 7→ pk : Cn −→
Cn with pk(η) = ηk is a group isomorphism. Hint: Problem 2.39.6. If we replace
Cn with the isomorphic group Zn, what does the corresponding automorphism look
like?

7. Let p be a prime number. Give an example of a non-abelian group of order p3.
Hint: Consider semidirect products Zp2 ×σ Zp and use the previous problem.

8. Let p be a prime, n ∈ N>0. Show that

U(pn) := {1 + kp ∈ Z∗pn ; k ∈ Z}

is a subgroup of Z∗pn of order pn−1, and that U(pn) is cyclic for p > 2, more precisely

U(pn) = 1 + rp
Z

for any r 6∈ Zp.

9. Show: The permutations f : Zn −→ Zn of the form f(x) = kx + b, where k ∈ Z
and gcd(k, n) = 1 as well as b ∈ Zn constitute a subgroup of S(Zn). Show that it is
a semidirect product Zn ×σ Z∗n! Cf. with problem 2.62.6 and the group Aff1(R) in
problem 2.62.5.

10. Let σ, σ̃ : F −→ Aut(H) be group homomorphisms. Assume there are automor-
phisms ψ : F −→ F and ϕ : H −→ H, such that σ̃f = ϕσψ(f)ϕ

−1 for all f ∈ F .
Show: H ×σ̃ F ∼= H ×σ F .

11. Assume G = 〈a〉 with the relations an = e, am = e, where n,m ∈ N>0. Compute
|G|!

12. Let n,m, r ∈ N>0 and G = 〈a, b〉 be the group generated by the two elements a, b
with the relations an = e = bm, ba = arb, where n,m, r ∈ N>0. Show |G| ≤ nm
with equality iff rm ≡ 1 mod (n). Compute the order of a and b as well as |G| in
the general case!

Hint: 〈a〉�G and 〈b〉 −→ Aut(〈a〉), g 7→ κg is a group homomorphism.

13. Write C2∞ :=
⋃∞
n=1 C2n as a factor group F (M)/N(R)!

14. Let M be a finite set, say |M | = n. Show F (M)/C(F (M)) ∼= Zn. Use that in order
to conclude: F (M) ∼= F (N) =⇒ |M | = |N |, where M,N denote finite sets.
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15. Let M := {a, b} be a set with two elements. Set

M0 := {bkab−k; k ∈ N}.

For the subgroup 〈M0〉 ≤ F (M) show 〈M0〉 ∼= F (M0).

2.6 Simple Groups and Composition Series

We motivated factor groups with the idea to break down a given group into
smaller pieces. The final idea behind is that a group should somehow be
composed of smallest pieces, “atomic groups”:

Definition 2.63. A group G is called simple if there are no normal sub-
groups of G except the trivial subgroup {e} and the entire group G itself.

Example 2.64. A non-trivial abelian group is simple iff it is cyclic of prime
order, i.e. isomorphic to Cp (or Zp) for some prime number p.

Here is a series of non-commutative simple groups:

Proposition 2.65. The alternating groups An with n ≥ 5 are simple.

Proof. The proof is divided into three steps:
1.) The conjugacy class κAn((1, 2, 3)) consists of all 3-cycles: Let (i, j, k) be
any three cycle. For the permutation g ∈ Sn with g(1) = i, g(2) = j, g(3) = k
and g(`) = ` for ` > 3 we have (i, j, k) = κg((1, 2, 3)). If g has sign 1 and
thus g ∈ An, we are done, otherwise replace g with g̃ := τ ◦ g ∈ An, where
τ = (r, s) with two different numbers 6= i, j, k.
2.) The group An is generated by 3-cycles: According to Problem 2.6.7 any
f ∈ Sn is a product of transpositions; if even f ∈ An, there is an even
number of such factors (transpositions having sign -1); so it will be sufficient
to represent any product 6= id of two transpositions as a product of 3-cycles.
Consider first f = (i, j)(k, `) with four pairwise different numbers i, j, k, `.
Then f = (i, j)(j, k)(j, k)(k, `) = (i, j, k)(j, k, `). The second non-trivial
case is f = (i, j)(j, k) with three pairwise different numbers i, j, k. Then
f = (i, j, k) is itself a 3-cycle!
3.) Finally we show that a non-trivial normal subgroup N ⊂ An contains a
3-cycle. We take any f ∈ N \ {id}. If it already is a 3-cycle, we are done.
Otherwise we consider the elements h := fκg(f

−1) ∈ N for g ∈ An. We
rewrite fκg(f

−1) = κf (g)g−1 and choose g as a 3-cycle g = (a, b, c), such
that κf (g) = (f(a), f(b), f(c)). We distinguish three cases:
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a) If f contains a cycle (i, j, k, `, ...)...(...) of length at least 4, we take
g = (i, j, k) and obtain κf (g) = (j, k, `), g−1 = (k, j, i) and h = (i, `, j).

b) If f = (i, j, k)(`,m, ...)...(...) contains a 3-cycle, we take g = (i, j, `)
and obtain κf (g) = (j, k,m), g−1 = (`, j, i) and h = (i, `, k,m, j), hence can
apply the case a) with h instead of f .

c) If f = (i, j)(k, `)...(...) contains two 2-cycles, we choose m different
from i, j, k, ` and take g = (i, k,m) and obtain κf (g) = (j, `, f(m)), g−1 =
(m, k, i) and then have the following possibilities for h: If f(m) = m, then
h = (i, j, `,m, k), so we may apply the case a) with h instead of f . Otherwise
h = (j, `, f(m))(m, k, i) and we may again apply the case b) with h instead
of f .

Remark 2.66. The classification of all finite simple groups was a great
challenge; in fact, it has been completed only so late as in the early 1980-
ies: There are 17 series of finite simple groups, the first one consisting of
the alternating groups An, n ≥ 5. The remaining 16 series contain the simple
groups of “Lie type”: Given a finite field F (cf. section 4.5), their construction
is analogous to that of simple real or complex Lie groups (Marius Sophus Lie,
1842 - 1899) with F replacing R resp. C: They are realized as factor groups
of subgroups of the general linear group GLn(F) over the finite field F. The
first of these 16 series is discussed in Theorem 4.57. Eventually, there are 26
“sporadic” simple groups, which do not fit in one of the above 17 series. For
more detailed information see [3].

Now let us consider an arbitrary finite group G and study, how we can
find the simple groups it is “composed” of. That is done using the notion of
a “composition series”:

Definition 2.67. Let G be a group. A normal series is a finite increasing
sequence of subgroups

G0 = {e}�G1 � ...�Gr = G ,

i.e. Gi is a normal subgroup of Gi+1 for i < r. The successive factor groups
Gi+1/Gi for i = 0, .., r − 1 are called the factors of the normal series. A
composition series is a strictly increasing normal series with simple fac-
tors.
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Every finite group G admits a composition series, as one proves by in-
duction on the group order: Choose a maximal proper normal subgroup H.
Then H has by induction hypothesis such a composition series and we can
extend it with G, since G/H is simple.

In fact the multiplicity of a simple group as a factor of a composition
series of a given group G depends only on G itself, i.e. is independent of the
actual composition series:

Proposition 2.68. Theorem of Jordan-Hölder (Camille Jordan, 1838-
1922, and Otto Hölder, 1859-1937) Let G be a finite group and {e} = G0 ⊂
G1 ⊂ ... ⊂ Gr = G as well as {e} = H0 ⊂ H1 ⊂ ... ⊂ Hs = G composition
series. Then s = r and there is a permutation f ∈ Sr, such that for j = f(i)
we have

Gi/Gi−1
∼= Hj/Hj−1 .

Proof. We forget about the condition that a composition series be strictly
increasing and prove the statement for normal series with simple factors, but
of given length - we may extend the shorter series by adding terms {e} or G.
This gives our theorem, since the trivial group then has the same multiplicity
in both sequences.

Assume first r = s = 2. Then our composition series are of the form
{e} ⊂ E ⊂ G and {e} ⊂ F ⊂ G with simple normal subgroups E,F ⊂ G
and simple G/E,G/F . If G itself is simple or F = E, nothing remains to be
shown. Otherwise we have w.l.o.g. E ∩ F ( F . But then, F being simple,
the proper normal subgroup E ∩ F is trivial. Now consider the injective
homomorphism E ↪→ G −→ G/F : Its image is a normal non-trivial subgroup
of G/F , since E ⊂ G is normal, hence the entire group, i.e. E ∼= G/F . By
symmetry we have F ∼= G/E as well.

In the general case we consider the groups

Gij := Gi ∩Hj ⊂ G

and composition series of length r+ s starting with G00 and ending with Grs

and inclusion steps

Gij ⊂ Gi+1,j or Gij ⊂ Gi,j+1.

Then the composition series

G00 ⊂ G10 ⊂ ... ⊂ Gr0 ⊂ Gr1 ⊂ .... ⊂ Grs
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resp.

G00 ⊂ G01 ⊂ ... ⊂ G0s ⊂ G1s ⊂ .... ⊂ Grs

has the same non-trivial(!) factors as H0 ⊂ H1 ⊂ ... ⊂ Hs resp. G0 ⊂ G1 ⊂
... ⊂ Gr, and the first one can be connected to the second one by a chain of
composition series of length r + s, such that two successive series differ only
in two successive inclusions:

Gij ⊂ Gi+1,j ⊂ Gi+1,j+1

is replaced with

Gij ⊂ Gi,j+1 ⊂ Gi+1,j+1.

But then it is clear from our initial argument that the two successive com-
position series have the same simple factors taken with multiplicities.

If all the simple factors of a finite group are cyclic, it can successively
be obtained from cyclic groups using the extension procedure described in
2.49.3. Such groups are called “solvable”:

Definition 2.69. A group G is called solvable if it has a normal series with
abelian factors.

In fact we have:

Lemma 2.70. A finite group G is solvable if and only if all its simple factors
are cyclic of prime order.

Proof. The non-trivial implication is as follows: Take a normal series with
abelian factors Gi+1/Gi, i = 1, ..., r− 1. For each factor of that normal series
take a series with simple factors

{eGi} = H i+1
0 ⊂ ... ⊂ H i+1

si+1
= Gi+1/Gi

and then refine the original normal series by inserting the subgroups %−1
i+1(H i+1

j ), j =
0, ..., si+1 for i = 1, ..., r − 1. Here %i+1 : Gi+1 −→ Gi+1/Gi denotes the coset
map. As a consequence of 2.47 the simple factors of G are, counted with
multiplicities, exactly the simple factors of the Gi+1/Gi, i = 1, ..., r − 1.

Remark 2.71. 1. Abelian groups are solvable.
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2. A subgroup H ⊂ G of a solvable group is solvable: A normal series
G0 ⊂ ... ⊂ Gr with abelian factors for G induces a normal series Hi :=
Gi∩H ⊂ H for H with factors Hi+1/Hi ↪→ Gi+1/Gi, i.e. the restricted
sequence has abelian factors as well.

3. If H is a normal subgroup of a group G, we have: G is solvable if
both, H and G/H are. That follows immediately from the fact that
the simple factors of G are obtained as the union of the simple factors
of H and those of G/H.

4. A group G of order |G| < 60 is solvable. This can be seen using the
results of the next section.

We shall prove here that p-groups are solvable:

Definition 2.72. Let p be a prime number. A group G is called a p-group
if |G| = pr is a power of p.

Proposition 2.73. A p-group is solvable

Proof. We use induction on |G|. The center Z(G) ⊂ G is, according to
Corollary 2.32 and Example 2.42.3 a non-trivial normal subgroup. Hence
we may apply the induction hypothesis to G/Z(G) and conclude that with
G/Z(G) and Z(G) (the latter being abelian) also G is solvable.

In fact, all finite groups of odd order are solvable, as conjectured 1902
by Burnside (William Burnside, 1852-1927) and proved 1963 by Feit and
Thompson (Walter Feit, 1930- , John Griggs Thompson, 1932- ).

Problems 2.74. 1. R: For G = Cpq with different primes p, q determine all composi-
tion series!

2.7 Abelian Groups

In this section we present a complete classification of finite (or more generally:
finitely generated) abelian groups: They are all direct products of cyclic
groups. In order to have a systematic notation we shall write all groups
additively, such that for example ab, an, e, aH is replaced with a + b, na, 0
and a+H.

An abelian group contains as a characteristic subgroup, i.e. a subgroup
invariant under all automorphisms, its torsion subgroup:
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Definition 2.75. Let G be a group. We denote T (G) ⊂ G the subset

T (G) := {a ∈ G; ord(a) <∞}

consisting of all torsion elements, i.e. elements of finite order. For an abelian
group T (G) ≤ G is a subgroup, invariant under all automorphisms. We call
G torsion free if T (G) = {0}.

We remark that for nonabelian groups T (G) ⊂ G need not be a subgroup.
As one easily sees the factor group G/T (G) is torsion free. So one could start
the classification of abelian groups by looking for a complementary subgroup
F ≤ G, i.e. such that F ↪→ G −→ G/T (G) is an isomorphism, and hence,
G being abelian, even G ∼= T (G)×F . Such a “complementary subgroup” F
exists always for a finitely generated group (though not in a “natural way”):

Definition 2.76. An abelian group G is called finitely generated, if there
is a surjective homomorphism Zn −→ G for some natural number n ∈ N,
i.e. if there are elements a1, ..., an ∈ G, such that

G = Za1 + ...+ Zan := {k1a1 + ...+ knan; k1, ..., kn ∈ Z} .

A finitely generated abelian group G is called free, if G ∼= Zn for some n ∈ N.

Here we have to insert a warning about the use of the word “free”: A
finitely generated free abelian group is not a group which is free (cf. 2.55),
finitely generated and abelian! In fact, a free group F (M) is abelian if and
only if |M | ≤ 1 (then F (M) is trivial or isomorphic to Z); and vice versa,
the finitely generated free abelian group Zn is a free group only for n = 1.

For such a group G, the number n, such that G ∼= Zn, is called the rank
of G. It is well defined because of

Lemma 2.77. If Zr ∼= Zs, then r = s.

Proof. If Zr ∼= Zs, then also

(Z2)r ∼= Zr/2Zr ∼= Zs/2Zs ∼= (Z2)s,

whence 2r = |Zr2| = |Zs2| = 2s resp. r = s.

Example 2.78. 1. A finite (abelian) group is finitely generated.
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2. The additive group Q is not finitely generated: If Q = Za1 + ...+ Zan
with ai = pi

qi
, pi ∈ Z, qi ∈ Z \ {0}, we would have Q ⊂ q−1Z with

q := q1 · ... · qn. Contradiction!

Eventually we shall not go on with a direct proof of the existence of
a subgroup complementary to the torsion subgroup; instead it will be a
byproduct of a more general theorem.

First note that an abelian group G is finitely generated iff it is isomorphic
to a factor group F/H with a subgroup H ≤ F of a finitely generated free
abelian group F ∼= Zn. The next proposition is a generalization of Proposi-
tion 2.25: It describes the possible subgroups H ≤ F up to an automorphism
of F (Note that F = Z admits only the automorphisms Z −→ Z, x 7→ ±x):

Theorem 2.79. Let H ⊂ F be a subgroup of the finitely generated free
abelian group F ∼= Zn. Then there are natural numbers q1, ..., qn ∈ N with
qi|qi+1 and an isomorphism

ϕ : F
∼=−→ Zn, such that ϕ(H) = q1Z× ...× qnZ ⊂ Zn .

We remark that the numbers q1, ..., qn are uniquely determined by H ≤ F
as a consequence of Th. 2.84. – The proof of the above theorem is divided
into several steps, formulated as lemmata. Let us first show that H itself is
again a finitely generated free abelian group:

Lemma 2.80. Every subgroup H ⊂ Zn is isomorphic to a group Zr, r ≤ n.

Proof. We prove the lemma by induction on n. The case n = 1 is nothing
but Prop. 2.25. For n > 1 take H0 := H ∩ (Zn−1 × {0}). According to the
induction hypothesis there is an isomorphism ϕ : Zs −→ H0, s ≤ n− 1. Let
now π := πn : Zn −→ Z be the projection onto the last component. Its image
π(H) ⊂ Z is a subgroup and has therefore, again because of Prop. 2.25, the
form π(H) = Zq with some q ∈ N. If q = 0, we have H = H0 and we are
done. Otherwise choose v ∈ H with π(v) = q. Then Zs × Z −→ H, (u, k) 7→
ϕ(u) + kv is an isomorphism.

Furthermore we need the following easy, but useful fact:

58



Lemma 2.81. Let F be a finitely generated free abelian group and e ∈ F a
primitive element (or ”vector”), i.e.

e = λw, λ ∈ Z, w ∈ F =⇒ λ = ±1.

Then there is a group homomorphism π : F −→ Z with π(e) = 1.

Proof. We may assume F = Zn and e = (k1, ..., kn) with gcd(k1, ..., kn) = 1.
But then there are integers r1, ..., rn ∈ Z with r1k1 + ... + rnkn = 1 and we
define π : F −→ Z by π(x1, ..., xn) = r1x1 + ...+ rnxn.

Remark 2.82. As we see from the proof of Lemma 2.80, a nonzero ele-
ment e ∈ F is primitive, iff the subgroup Ze ≤ F admits a complementary
subgroup F0 ≤ F , i.e. such that the inclusions Ze, F0 ↪→ F induce an iso-
morphism F0 × Ze ∼= F . Equivalently, an element e ∈ F is primitive, iff
it can serve as the first element of a basis of F , i.e. iff there are elements
e2, ..., en ∈ F , such that e1 := e, e2, ..., en is a ”basis” of F , i.e. such that
Zn −→ F, (k1, ..., kn) 7→ k1e1 + ...+ knen, is a group isomorphism.

The essential argument in the proof of Th. 2.79 is the following:

Lemma 2.83. Let H ≤ F be a subgroup of the finitely generated free abelian
group F . If H is not contained in kF for any k > 1, then H contains a
primitive vector.

Proof. We consider the set Pr(F ) of all projections, i.e. surjective group
homomorphisms π : F −→ Z. Choose some π ∈ Pr(F ) with maximal π(H) ≤
Z. Writing π(H) = Zq, q ≥ 0, we are done if we succeed in showing q = 1,
since an element v ∈ F with π(v) = 1 is primitive. Assume the contrary:
q > 1. Take now v ∈ H with π(v) = q. Write v = λe with λ ≥ 1 and
a primitive vector e ∈ F . Obviously q = λπ(e). We show λ = q and
thus π(e) = 1. By Lemma 2.81 there is π̃ ∈ Pr(F ) with π̃(e) = 1 resp.
π̃(v) = λ. Thus π̃(H) ⊃ Zλ ⊃ Zq = π(H) resp. π̃(H) = π(H) because
of the maximality of π(H). With other words q = λ and π(e) = 1. Let
F0 := ker(π), H0 := H ∩ F0. Then the map

F0 × Z −→ F, (u, k) 7→ u+ ke

is an isomorphism restricting to an isomorphism

H0 × Zq −→ H.
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Since H 6⊂ qF , there is a vector v0 = µe0 ∈ H0 with µ 6∈ Zq and primitive
e0 ∈ F0. Now apply Lemma 2.80 once again and obtain a projection π0 :
F0 −→ Z with π0(e0) = 1. Then π̃ := π0 + idZ : F0×Z −→ Z is a projection
with µ, q ∈ π̃(H), in particular π(H) = Zq $ π̃(H), a contradiction.

Proof of 2.79. We use induction on n. Take q ≥ 1 maximal with H ≤ qF .
We apply Lemma 2.83 to H ≤ qF and find a primitive vector e ∈ F with
qe ∈ H (the primitive vectors in qF are of the form qe with primitive e ∈ F ).
Choose a projection π : F −→ Z with π(e) = 1 and define F0 ≥ H0 as in the
proof of 2.83. By the induction hypothesis H0 ≤ F0 satisfies 2.79, so we find
numbers q2, ..., qn with the given properties. Set q1 := q and note that q|q2

because of H0 ≤ qF0.

As a corollary we obtain the classification of all finitely generated abelian
groups:

Theorem 2.84. Fundamental Theorem on finitely generated abelian
groups: A finitely generated abelian group G is isomorphic to a finite direct
product of cyclic groups:

G ∼= Zq1 × ...× Zqn ,

where Z0 := Z and the natural numbers q1, ..., qn ∈ N \ {1} satisfy one of the
following two conditions:

1. The number qi divides qi+1 for i = 1, ..., n− 1.

2. All qi > 0 are prime powers.

The numbers q1, ..., qn are unique in case 1) and unique up to order in
case 2). (PS: The number n need not be the same in both cases!).

If we apply the above theorem to G := F/H in Th. 2.79, we see that the
numbers q1, ..., qn there are uniquely determined by H ≤ F .

Proof. Existence: 1.) Let us start with the first case: We have G ∼= Zn/H
with a subgroup H ⊂ Zn as in Th.2.79; hence

G ∼=
Z× ...× Z

q1Z× ...× qnZ
∼= Zq1 × ...× Zqn ,

where we of course may assume qi 6= 1 for i = 1, ..., n.
2.) We use the first part and apply the below Chinese remainder theorem

to all q = qi > 1.
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Proposition 2.85 (Chinese Remainder Theorem). Let q = pk11 · ... · pkrr be
the prime factorization of q ∈ Z (p1, .., pr pairwise distinct). Then

Zq −→ Z
p
k1
1
× ...× Zpkrr , ` = `+ Zq 7→ (`+ Zpk11 , ..., `+ Zpkrr )

defines an isomorphism of groups.

Proof. If ` + Zpkii = 0 for all i = 1, ..., r, then all pkii divide the number `,
hence q|` resp. `+Zq = 0. So our group homomorphism is injective, but then
also surjective since the start and the target group have the same order.

Uniqueness: The number r ≥ 0 of zeroes in q1, ..., qn is nothing but the rank
of the free abelian group G/T (G). The numbers qi > 0 can be read off from
T (G) ≤ G as follows:

2.) For m ∈ N>0 the m-torsion subgroup

Tm(G) := {a ∈ G;ma = 0}

behaves as follows:

Remark 2.86. 1. Tm(G×H) = Tm(G)× Tm(H).

2. Tm(Z) = {0}.

3. For gcd(m,n) = 1 we have

Tm(Zn) = {0},

since with r, s ∈ Z, rm+ sn = 1, and a ∈ Tm(Zn) we have

a = (rm+ sn)a = r(ma) + s(na) = r · 0 + s · 0 = 0.

4. Let p ∈ N>1 be a prime number. Then

Tp`(Zpk) =

{
pk−`Zpk , if ` ≤ k
Zpk , if ` ≥ k

.

Hence
Tp`+1(Zpk)
Tp`(Zpk)

∼=
{

Zp , if ` < k
{0} , if ` ≥ k

.
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As a consequence we obtain

|Tp`+1(G)/Tp`(G)| = ps,

where s = s(p, `) is the number of the qi = pk with k > `. Obviously the
numbers s(p, `) determine the prime powers qi > 0

1.) Given the numbers qi in a decomposition of type 1.) and a prime
number p, denote µ(p, i) ≥ 0 the multiplicity of p as divisor of qi. Now a
decomposition of type 2.) is determined by the group G itself and provides
for every prime number p the supply of possible µ(p, i). Since on the other
hand µ(p, i) ≤ µ(p, i+ 1), we can reconstruct the numbers qi.

2.7.1 Digression: Free Abelian Groups

In many applications one even needs not necessarily finitely generated free
abelian groups. We give here a short comment only: Let M be a set. We
consider the group

ZM := {f : M −→ Z}
of all maps from M to Z with the argument-wise addition (f + g)(x) =
f(x) + g(x). Its subgroup

Z[M ] := {f ∈ ZM , |f−1(Z \ {0})| <∞}

containing the maps f : M −→ Z, which are non-zero only on a finite subset
of M is called the free abelian group generated by M . If for a ∈M , we
denote χa the map χa(x) = δax, any f ∈ Z[M ] can uniquely be written

f =
∑
a∈M

naχa

with na := f(a). Formally, the above sum is infinite, and as such not well
defined in the framework of algebra, but since na = 0 for only finitely many
a ∈M , one can define ∑

a∈M

naχa :=
∑
a,na 6=0

naχa.

Furthermore one usually writes simply a instead of χa and thinks of the
elements in Z[M ] as finite “formal sums”∑

a∈M

na · a
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with integral coefficients in the elements of M . Now a free abelian group is
defined to be a group isomorphic to a group Z[M ]; so an abelian group is
free iff there is a subset M (a “basis”), such that any element has a unique
representation as a finite linear combination

∑
a∈M naa. Finally note that

the abelian group Z[M ] satisfies a similar universal property as F (M): Any
map ϕ : M −→ G to an abelian group G has a unique extension to a group
homomorphism ϕ̂ : Z[M ] −→ G, or, more down to earth, the values of a
group homomorphism can be arbitrarily prescribed on the elements of M ,
and these values determine the entire homomorphism. We leave it to the
reader to check that

Z[M ] ∼= F (M)/N(K)

with the set
K := {aba−1b−1; a, b ∈M}

of all “commutators” of elements a, b ∈ M . Note that N(K) ⊂ F (M) is
the subgroup generated (in the ordinary sense) by all commutators aba−1b−1

with a, b ∈ F (M), the conjugate of a commutator being again a commutator.

Problems 2.87. 1. R: Give an example of a (non-commutative) group G, for which
the elements of finite order do not constitute a subgroup!

2. R: Let H ⊂ Z2 be the subgroup generated by (a, b), (c, d) ∈ Z. Write the factor
group Z2/H as in Th.2.84!

3. Show that Aut(Zn) ∼= GLn(Z) := {A ∈ Zn,n,det(A) = ±1}. Furthermore for
A ∈ Zn,n,detA 6= 0, that the index of the subgroup A(Zn) ⊂ Zn is |detA|.

4. R: Write the groups Z∗n, cf. 2.62.6, for n = 13, 16, 25, 72, 624 as a direct product
of cyclic groups as in Th.2.84! Hint: The “Chinese remainder isomorphism” 2.85
induces an isomorphism Z∗q −→ Z∗

p
k1
1

× ...× Z∗
pkrr

for q = pk11 · ... · pkrr .

5. Show: Z∗4 ∼= Z2 and Z∗2n ∼= Z2 × Z2n−2 for n > 2. More precisely

Z∗2n ∼=< −1 > × < 1 + 4r > with any odd number r ∈ Z.

6. Show that T (G) ⊂ G in general does not have a complementary subgroup F ⊂ G ,
i.e. such that F −→ G −→ G/T (G) is an isomorphism.

2.8 Sylow Subgroups

According to Proposition 2.73 a p-group is solvable, hence, at least theoreti-
cally, understandable. That explains, why one in the study of a general finite
group G looks for subgroups which are p-groups.
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Definition 2.88. A subgroup H ⊂ G of a finite group G is called a p-Sylow-
subgroup (Peter Ludvig Mejdell Sylow, 1832-1918), if |H| is the maximal
p-power dividing |G|.

First of all we are not talking about the empty set:

Theorem 2.89. Let G be a finite group. For every prime p dividing the
group order |G|, there is a p-Sylow-subgroup.

Proof. We do induction on the group order |G|: Choose a system of represen-
tatives x1, ..., xr ∈ G of the non-trivial conjugacy classes, i.e. |κG(xi)| > 1.
If an index (G : Gxi) of an isotropy group is not divisible with p, then a
p-Sylow subgroup of Gxi is also a p-Sylow subgroup of G, and the induction
hypothesis can be applied to the proper subgroup Gxi ( G. Otherwise as a
consequence of Proposition 2.32 also |Z(G)| is divisible with p, and there is
an element a ∈ Z(G) of order p: This follows immediately from 2.84. But a
commutes with all elements in G; so < a >⊂ G is a normal subgroup and we
may apply the induction hypothesis to the factor group G/ < a > and find
a p-Sylow subgroup H ⊂ G/ < a >. Then the inverse image %−1(H) ⊂ G
with respect to the coset map % : G −→ G/ < a > is a p-Sylow subgroup of
G.

Theorem 2.90. Let G be a finite group and p a prime number. Then

1. Any p-subgroup F of G (i.e., F ⊂ G is a subgroup and |F | is a p-power)
is contained in a p-Sylow-subgroup.

2. Any two p-Sylow-subgroups are conjugate.

3. The number of p-Sylow-subgroups divides the group order |G| and has
the form 1 + kp with a natural number k ∈ N.

Proof. The first two parts are an immediate consequence of the following
fact: Given a p-Sylow subgroup H ⊂ G and a p-subgroup F ⊂ G, there is
an a ∈ G with F ⊂ κa(H): Denote Sylp(G) the set of all p-Sylow subgroups
of G. The group G acts by conjugation on Sylp(G):

G× Sylp(G) 3 (g,H) 7−→ κg(H) = gHg−1 ∈ Sylp(G) .

Choose some p-Sylow-subgroup H ∈ Sylp(G). Its stabilizer GH := {g ∈
G;κg(H) = H} is usually called the normalizer of the subgroup H in G
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and denoted NG(H). Obviously NG(H) = GH contains H - indeed NG(H)
is the largest subgroup of G containing H as normal subgroup - , hence
its index (G : GH) is not divisible with p. We consider now the induced
F -action F × Sylp(G) −→ Sylp(G) (i.e., obtained by restriction): The G-
orbit κG(H) ⊂ Sylp(G) of H ∈ Sylp(G) then is a disjoint union of F -orbits
κF (Hi), i = 1, ..., r with Hi = κai(H), and the number of elements in such
an F -orbit is some p-power = pri = (F : FHi). If ri > 0 for all i, then
|κG(H)| = (G : GH) is divisible with p. So there is an F -orbit consisting
only of one element, say H1. With other words, F normalizes H1, and thus

FH1 := {fh1; f ∈ F, h1 ∈ H1} ⊂ G

is a subgroup satisfying

(FH1)/H1
∼= F/(F ∩H1)

with an isomorphism induced by the homomorphism F ↪→ FH1 −→ (FH1)/H1,
the composite of the inclusion and the factor map.

As a consequence it is as a factor group of the p-group F again a p-group,
but on the other side also H1 is p-group, and thus FH1 as well because of
|FH1| = |H1| · |(FH1)/H1| = |H1| · |F/(F ∩H1)|. Since |H1| is the maximal
p-power dividing |G|, it follows that H1 = FH1 resp. F ⊂ H1 with the
p-Sylow-subgroup H1 = κa1(H).
In particular G acts transitively on Sylp(G) and therefore |Sylp(G)| = (G :
GH) is a divisor of |G|, where H ∈ Sylp(G) is arbitrary. But a p-Sylow-
subgroup F instead of G acts no longer transitively because of κF (F ) = {F},
while according to the above reasoning the remaining F -orbits contain more
than one element: Since the number of elements in such an orbit is a p-power
pr, r > 0, we have shown 3).

As an application we prove:

Theorem 2.91. A non-abelian simple group G of order |G| ≤ 60 is isomor-
phic to the alternating group on 5 letters: G ∼= A5. In particular, a group G
of order |G| ≤ 60 is either solvable or isomorphic to A5.

Proof. First, given a group G of non-prime order |G| < 60 we hunt for a
non-trivial normal proper subgroup H ⊂ G, then consider the case |G| = 60:

If |G| = pr, r ≥ 2, we may choose H := Z(G) 6= {e}, cf. Corollary 2.32.

The next case is:
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Proposition 2.92. Let p, q be different prime numbers. Then any group of
order pq or pq2 has a normal Sylow subgroup.

Proof. Let us first consider the case p < q. Then the number of q-Sylow
subgroups is of the form 1 + nq, and we want to show n = 0. Since on the
other hand 1 + nq divides |G| = pq2 or = pq, we obtain (1 + nq)|p, but
that is obviously possible only for n = 0. Secondly, if p > q, we denote
1 + np the number of p-Sylow subgroups of G. Now we get (1 + np)|q2, i.e.,
1 + np = 1, so n = 0, or 1 + np = q (but that is absurd!) or 1 + np = q2.
Thus p|(q2 − 1) = (q + 1)(q − 1), whence p|(q + 1) or rather p = q + 1,
i.e., q = 2, p = 3, in particular |G| = 12. We now assume that a 2-Sylow
subgroup H ⊂ G is not normal and show that then there is exactly one (and
hence normal) 3-Sylow subgroup: Take a conjugate H ′. Since |H ∩H ′| ≤ 2,
we have at least 5 elements of order 2 or 4 in G, hence at most 6 elements
of order 3. As a consequence, there are not more than 3 different 3-Sylow
subgroups. On the other hand, there are 1 + 3n such subgroups; so n = 0 is
the only remaining possibility.

Hence the cases still to be considered are |G| = 24, 30, 36, 40, 42, 48, 54, 56.
We remark first, that if p, but not p2, divides G, and H ⊂ G is a non-normal
p-Sylow subgroup, then G contains at least (p+ 1)(p− 1) = p2 − 1 elements
of order p.

Proposition 2.93. A group G of order 30 or 56 has a normal Sylow sub-
group.

Proof. Assume |G| = 30 = 2 · 3 · 5. If no Sylow subgroup is normal we
get, counting the elements of order 1, 2, 3, 5, following the above reasoning
30 ≥ 1 + 3(2 − 1) + 4(3 − 1) + 6(5 − 1) = 36, a contradiction. Now assume
|G| = 56 = 7 · 8. If there is no normal 7-Sylow subgroup, we obtain at least
48 = 8(7 − 1) elements of order 7, so there are at most 7 elements of even
order. But that means, that there is only one 2-Sylow-subgroup.

Proposition 2.94. A group of order 40, 42 or 54 admits a normal p-Sylow
subgroup with p the biggest prime dividing the group order.

Proof. If 1 + np divides |G|, then necessarily n = 0.
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When looking at the cases |G| = 24, 36, 48, 60 we shall encounter the
following situation: Let F ⊂ G be a subgroup. Denote

X := κG(F ) = {κg(F ); g ∈ G}

the set of all subgroups of G conjugate to F . It satisfies

m := |X| = [G : NG(F )] ≤ [G : F ]

with the normalizer NG(F ) ⊃ F of F in G. We consider the homomorphism

(2) π : G −→ S(X) ∼= Sm, g 7→ πg

with the permutation

πg : X −→ X,H 7→ κg(H).

Proposition 2.95. Let G be a group of order |G| = 2r · 3, r ≥ 2. Then
G admits a non-trivial normal 2-subgroup (but not necessarily a normal 2-
Sylow-subgroup!).

Proof. We take as subgroup F ⊂ G a 2-Sylow subgroup. If it is normal,
choose H := F . Otherwise the set X of its conjugates contains m = 3
elements. The image π(G) of the homomorphism π : G −→ S(X) ∼= S3

contains a 3-cycle, since it acts transitively on X, hence H := ker(π) is a
nontrivial (r ≥ 2) normal 2-subgroup of G.

Finally:

Proposition 2.96. A group G of order |G| = 36 admits a non-trivial normal
3-group H (but not necessarily a normal 3-Sylow-subgroup!).

Proof. Take F ⊂ G as a 3-Sylow subgroup. If it is normal, choose H := F .
Otherwise we have m = 4. Since |S4| = 24, the kernel K := ker(π) contains
a 3-group. It has index [G : K] > 2, since a group of order 2 can not act
transitively on a set X with 4 elements. If |K| = 9, it is itself a 9-Sylow
subgroup, hence, according to our assumption, not normal, a contradiction.
If |K| = 3, we choose H := K, and if |K| = 6, we have K ∼= C2 × C3 or
K ∼= S3. In both cases the elements in K of order 3 constitute a 3-subgroup
H of K, invariant with respect to every automorphism of K (why?), in
particular normal in G.
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Eventually we come to the case |G| = 60:

Proposition 2.97. A simple group G of order |G| = 60 is isomorphic to the
alternating group on 5 letters: G ∼= A5.

Proof. We show that the index [G : F ] of any non-trivial proper subgroup
F ⊂ G of a non-abelian simple group G is at least 5, and that in our case
|G| = 60 there really is a subgroup F ⊂ G of index [G : F ] = 5.

Since the kernel of any homomorphism is a normal subgroup, our homo-
morphism

π : G −→ S(X) ∼= Sm

is injective (F being not normal and G being simple). Hence G ∼= π(G) ⊂ Sm
with m = |X|. But Sm being solvable for m ≤ 4, we have 5 ≤ m ≤ [G : F ].

Now let us look for a subgroup F of index [G : F ] = 5: We consider a
2-Sylow subgroup H ⊂ G. Since it is not normal in G, there is a conjugate
H ′ = κg(H) 6= H. Consider the subgroup E ⊂ G generated by H and
H ′. It contains H ∩ H ′ as a normal subgroup (since either H ∩ H ′ = {e}
or H ∩ H ′ ⊂ H,H ′ is normal as a subgroup of index 2) and has an index
[G : E] < [G : H] = 15, so either [G : E] = 5, 1 - the possibility [G : E] = 3
having already being excluded by the above argument applied to F = E. If
[G : E] = 5, we choose F := E. Otherwise we have E = G and it follows
that H ∩ H ′ = {e} as a proper normal subgroup of G. So we may assume
that H ∩H ′ = {e} for different 2-Sylow subgroups H,H ′.

Now consider the normalizer NG(H) ⊃ H. It has the possible indices 5
or 15, (3 being again impossible) and thus we are done, if we can see that
15 is not possible either: In that case there are 15 pairwise different 2-Sylow
subgroups H1, ..., H15, with the H∗i = Hi \ {e} being pairwise disjoint. So
there are 45 elements in G of order 2 or 4, on the other hand there are at
least 24 elements of order 5 (Take a 5-Sylow subgroup U ⊂ G: Since it is not
normal, it has at least 6 pairwise different conjugates which (pairwise) only
have the neutral element in common), but 1 + 45 + 24 > 60: Contradiction!

Finally, identifying G with its image π(G) ⊂ S5, we show G = A5: If not,
A5 ∩G ⊂ G is a proper normal subgroup of G, hence trivial: G∩A5 = {id}.
But then G necessarily contains a 4-cycle f , implying id 6= f 2 ∈ G ∩ A5, a
contradiction! So A5 ⊂ G resp. A5 = G because of |G| = 60.

This finishes the proof of Theorem 2.91.
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Problems 2.98. 1. R: Determine all Sylow-subgroups of S3, Dn,S4,A4!

2. R: Show: A group G of order |G| = 15 is cyclic.

3. Let G be a group of order |G| = 12. Show: There is a normal p-Sylow-subgroup in
G (p = 2 or p = 3). Then G is isomorphic with a semidirect product. Classify now
all groups of order 12.

4. R: Show: If all Sylow-subgroups of a finite group G are normal, then G is isomorphic
with the direct product of its Sylow-subgroups. Hint: If H,F ⊂ G are different
Sylow-subgroups, we have H ∩ F = {e}. Conclude ab = ba for all a ∈ H, b ∈ F
because of F 3 (aba−1)b−1 = a(ba−1b−1) ∈ H.
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3 Rings

3.1 Definitions and Examples

Definition 3.1. A ring is a triple (R,α, µ), with a set R together with two
maps,

α : R×R −→ R, (a, b) 7→ a+ b := α(a, b) ,

the “addition”, and

µ : R×R −→ R, (a, b) 7→ ab := µ(a, b) ,

the “multiplication”, such that

R1 : The pair (R,α) is an (additively written) abelian group.

R2 : The multiplication µ is associative:

(ab)c = a(bc), ∀a, b, c ∈ R .

R3 : The multiplication is “distributive” over the addition:

a(b+ c) = ab+ ac , (a+ b)c = ac+ bc , ∀a, b, c ∈ R .

R4 : There is an element 1 ∈ R \ {0}, such that

1a = a = a1 , ∀a ∈ R .

R5 : The multiplication is commutative

ab = ba , ∀a, b ∈ R .

Remark 3.2. 1. Usually only the conditions R1 - R3 are required for a
ring in the literature; if even R4, R5 hold, it is called a ”commutative
ring with unity”. Since we shall exclusively deal with commutative
rings with unity, we have chosen to follow the convention, that the
word “ring” should mean a commutative ring with unity.
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2. The above axioms ensure that the arithmetic in a ring R is “more
or less” the familiar one: To be on the safe side let us mention the
following rules:

0 · a = 0 = a · 0

holds, since a = 1 · a = (1 + 0)a = a+ 0 · a and

(−1)a = a(−1) = −a

follows from 0 = (1 + (−1))a = a+ (−1)a. But there is no cancellation
rule for the multiplication, since there may be nontrivial “zero divisors”,
i.e. elements a ∈ R \ {0}, such that

ab = 0

for some b 6= 0, and it can happen that

1 + ...+ 1 = 0 .

So we should actually derive all computation rules we use from the ring
axioms!

Example 3.3. 1. The sets R = Z,Q,R,C with the usual addition and
multiplication of integers resp. rational, real or complex numbers are
rings.

2. The factor groups Zn, cf. 2.26, constitute rings with their group law
as addition a + b = a+ b and the multiplication āb̄ := ab. We have
to check that the multiplication is well defined, since then the axioms
R1 − R5 carry over from Z to Zn. So let a1 = a, b1 = b, i.e. a1 =
a + kn, b1 = b + `n with integers k, ` ∈ Z. Then we obtain a1b1 =
(a+ kn)(b+ `n) = ab+ (a`+ bk + k`n)n resp. a1b1 = ab.

3. If R1, ..., Rn are rings, their direct product

n∏
i=1

Ri := R1 × ...×Rn

is the cartesian product of the sets R1, ..., Rn with the componentwise
ring operations. In particular for a ring R the n-fold cartesian product
Rn is again a ring.
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4. If M is any set and R a ring, so is the set

RM := {f : M −→ R}

of all R-valued maps on M with the argumentwise addition and multi-
plication of functions:

(f + g)(x) := f(x) + g(x), (fg)(x) := f(x)g(x).

5. Formal power series over a ring R : For a ring R we define

R[[T ]] := RN as additive group.

Hence, the elements in R[[T ]] can be thought of as sequences (aν)ν∈N,
where aν ∈ R, ∀ν ∈ N, by identifying a function f : N −→ R with the
sequence (f(ν))ν∈N, and the addition is componentwise. But we define
a new multiplication, sometimes also called Cauchy multiplication,
on R[[T ]]:

(aν) · (bν) := (cν),where cν :=
ν∑
k=0

akbν−k =
∑
k+`=ν

akb` .

Unity then is the sequence (1, 0, 0, ...), and, if we abbreviate T :=
(0, 1, 0, 0, ...), we find

T n = (0, ..., 0︸ ︷︷ ︸
n times

, 1, 0, 0, ...) .

So, if we identify an element a ∈ R with the sequence (a, 0, 0, ...), we
can write a sequence (aν), where almost all (i.e. with only finitely many
exceptions) elements aν = 0:

(a0, a1, ...., an, 0, 0, ...) = anT
n + an−1T

n−1 + ...+ a1T + a0 =
n∑
ν=0

aνT
ν .

The ring R[[T ]] is called the power series ring in one variable
over R, and the elements are usually, in analogy to the above equality
written as ”formal series”

∑∞
ν=0 aνT

ν corresponding to the sequences
(aν). But since we do not have the notion of an infinite sum, this is a
priori nothing but a notational convention, and only in the finite case
it can be interpreted as a sum in a ring.

72



6. The polynomial ring R[T ] in one variable over a ring R is the
subset:

R[T ] :=

{
n∑
ν=0

aνT
ν ;n ∈ N, a0, ..., an ∈ R

}
⊂ R[[T ]] ,

which is obviously closed with respect to the ring operations of R[[T ]]
and itself a ring. If one wants to avoid the above abstract definition,
one can introduce polynomials over a ring R in a more naive way: We
define them as ”finite formal sums”

f =
n∑
ν=0

aνT
ν ;n ∈ N, a0, ..., an ∈ R

meaning that
∑

ν aνT
ν =

∑
ν bνT

ν if and only if aν = bν for all ν ∈ N.
The addition and multiplication are then as follows∑

ν

aνT
ν +

∑
ν

bνT
ν =

∑
ν

(aν + bν)T
ν ,

(
∑
ν

aνT
ν)(
∑
ν

bνT
ν) =

∑
ν

(
ν∑
k=0

akbν−k)T
ν .

A polynomial f ∈ R[T ] is called monic if it has the form f = T n +∑
ν<n aνT

ν .

Definition 3.4. Let R ba a ring. The degree function

deg : R[T ] −→ N ∪ {−∞}

is defined for f ∈ R[T ] by

deg(f) :=

{
n , if f =

∑n
ν=0 aνT

ν , an 6= 0
−∞ , if f = 0

.

Remark 3.5. We have

deg(f + g) ≤ max(deg(f), deg(g)) , deg(fg) ≤ deg(f) + deg(g)

and
deg(fg) = deg(f) + deg(g)

if one of the polynomials f, g is monic.
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The division algorithm for polynomials plays a central role in the arithmetics
of a polynomial ring:

Theorem 3.6 (Division algorithm for polynomials). Let g ∈ R[T ] be a
monic polynomial. Then every polynomial f ∈ R[T ] can be written as

f = qg + r

with uniquely determined polynomials q, r ∈ R[T ], deg(r) < n = deg(g).

Proof. Uniqueness: Let f = qg + r = q̃g + r̃. Then we have:

(q − q̃)g = (r̃ − r) .

Now the polynomial on the right hand side has a degree < n, while for
q − q̃ 6= 0 the left hand side has at least degree n (since g is monic). Hence
q = q̃ and then of course also r = r̃.
Existence: We do induction on deg(f): For deg(f) < n we take q = 0 and
r = f .
If deg(f) =: m ≥ n, say f = bmT

m + ... + b0, we consider the polynomial
f̃ := f − bmTm−ng. Being of a degree < deg(f), the induction hypothesis
provides q̃, r̃ with

f̃ = q̃g + r̃

and deg(r̃) < n. Finally choose q := q̃ + bmT
m−n, r := r̃.

Definition 3.7. Let R be a ring.

1. An element a ∈ R is called a nonzero divisor, iff ab = 0 =⇒ b = 0.
If all elements in R \ {0} are nonzero divisors and 1 6= 0, the ring R is
called an integral domain (integritetsomr̊ade).

2. An element a ∈ R\{0} is called a unit iff there is an element a−1 ∈ R,
such that aa−1 = 1(= a−1a). We denote R∗ the set of all units in R:

R∗ := {a ∈ R;∃ a−1 ∈ R : aa−1 = 1} ,

and call R∗ the group of units of the ring R.

3. A ring R is called a field (kropp) iff R∗ = R \ {0}.
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Note that R∗ is a (multiplicatively written) abelian group.

Example 3.8. 1. Units are are nonzero divisors, in particular fields are
integral domains: If a ∈ R∗ and ab = 0, we find 0 = a−1(ab) =
(a−1a)b = 1b = b.

2. The rings Q,R,C are actually fields.

3. The ring Z of integers is an integral domain, but not a field: We have
Z∗ = C2 = {±1}.

4. In a finite ring R nonzero divisors are even units: For a nonzero divisor
a ∈ R the multiplication with a, the map µa : R −→ R, x 7→ ax, is
injective, hence also surjective, R being finite. Therefore there is an
element b ∈ R with ab = 1, i.e. a ∈ R∗.

5. A residue class ā ∈ Zn is a nonzero divisor iff gcd(a, n) = 1. Hence
according to the previous point, we obtain the equality2:

Z∗n = {ā ∈ Zn; gcd(a, n) = 1} .

The function ϕ : N>0 −→ N defined as

ϕ(n) :=

{
1 , if n = 1
|Z∗n| , if n ≥ 2

is called Eulers ϕ-function (Leonhard Euler, 1707-1783). For a prime
power n = pk we get: Zero divisors in Zpk are exactly the elements in
pZpk , and thus |Z∗

pk
| = |Zpk | − |pZpk | = pk − pk−1 = pk−1(p− 1). Hence

we have found
ϕ(pk) = pk−1(p− 1) for k ≥ 1.

6. The residue class ring Zn is a field iff it is an integral domain iff n = p
is prime.

7. Let R be an integral domain. Then also the polynomial ring R[T ] is
an integral domain with the same group of units as the original ring R,
i.e. R[T ]∗ = R∗, where we identify R with the “constant” polynomials,
i.e. of degree ≤ 0.

2In Problem 2.62.6 we took its RHS as a definition for the LHS.
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Proof. The ring R being an integral domain, we have

deg(fg) = deg(f) + deg(g) .

Since only the zero polynomial has degree −∞, this implies that R[T ]
is an integral domain. The inclusion R∗ ⊂ R[T ]∗ is obvious. On the
other hand the “constant” polynomial 1 has degree = 0, so the above
degree equality gives, that units have degree 0 and thus are units in R,
i.e. R[T ]∗ ⊂ R∗.

8. In the same way as one obtains from Z the rationals one can associate
to any integral domain R a field Q(R) containing R: More generally, a
subset S ⊂ R \ {0} is called multiplicative, if 1 ∈ S and s, t ∈ S =⇒
st ∈ S. On the cartesian product R × S we define an equivalence
relation ∼ as follows

(a, s) ∼ (b, t) :⇐⇒ at = bs .

The set S−1R := (R × S)/ ∼ of its equivalence classes can be made
a ring: Denote a

s
the equivalence class of the pair (a, s). Then the

addition and multiplication

a

s
+
b

t
:=

at+ bs

st
,
a

s
· b
t

:=
ab

st

provide well defined (check that!) ring operations; the resulting ring
S−1R is called the localization of R with respect to the multi-
plicative subset S. If S = R \ {0}, the localization S−1R is actually
a field, called the field of fractions

Q(R) := (R \ {0})−1R

of the integral domain R. The most important examples of this con-
struction are the rationals Q := Q(Z) and, with a field K, the field of
fractions

K(T ) := Q(K[T ])

of the polynomial ring K[T ], also called the field of rational func-
tions in one variable over K.
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9. If R is an integral domain, so is the formal power series ring R[[T ]] over
R, but in contrast to the polynomial ring R[T ] the group of units is
quite big:

R[[T ]]∗ = {f =
∞∑
ν=0

aνT
ν ; a0 ∈ R∗} .

Proof. We replace the degree function with the order function ω :
R[[T ]] −→ N ∪ {∞} defined as

ω(f) :=

{
n , if f =

∑∞
ν=n aνT

ν , an 6= 0
∞ , if f = 0

.

So ω(f) is the “order of f at 0”. We have ω(fg) ≥ ω(f) + ω(g), and
even ω(fg) = ω(f) + ω(g), if R is an integral domain. So, since only
f = 0 has order ∞, it follows, that there are no zero divisors in R[[T ]]
if there are none in R.

In order to investigate the group of units R[[T ]]∗, we have to define
certain infinite sums of power series: Let (fk)k∈N ⊂ R[[T ]] be a sequence
of formal series, say fk =

∑∞
ν=0 a

k
νT

ν , such that limk→∞ ω(fk) = ∞.
Then we can define

∞∑
k=0

fk :=
∞∑
ν=0

aνT
ν with aν =

∞∑
k=0

akν ,

where for each index ν only finitely many akν are 6= 0. So the sum
defining the coefficient aν is in fact finite!

We show now that a series f =
∑∞

ν=0 aνT
ν is a unit iff the coefficient

a0 is a unit in R. The condition is necessary, since (a0 + ...)(b0 + ...) =
(a0b0 + ....) = 1 implies a0b0 = 1. On the other hand, if a0 ∈ R∗ it of
course suffices to consider the series a−1

0 f , i.e. we may assume a0 = 1
and write then f = 1−g, where the series g has order ω(g) ≥ 1. Then it
follows ω(gk) ≥ k, such that the geometric series h :=

∑∞
k=0 g

k defines
a formal series, satisfying h(1− g) = 1.

Problems 3.9. 1. R: An element x ∈ R in a ring is called nilpotent if there is a
natural number n ∈ N with xn = 0. The set n =

√
{0} of all nilpotent element is

called the nilradical of R. Show: 1 + n ⊂ R∗. Hint: Geometric series!

2. R: Let K be a field. Show: R := K + T 2K[T ] := {f = 1 + T 2g ; g ∈ K[T ]} with
the from K[T ] induced ring operations is an integral domain with Q(R) = K(T ).
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3. R: For a subset P0 ⊂ P of the set P ⊂ N of all primes denote S(P0) the multiplicative
subset consisting of 1 and all natural numbers, which are a product of primes in
P0. Show: All rings R ⊂ Q (endowed with the induced ring operations) have the
form R = S(P0)−1Z with a suitable subset P0 ⊂ P .

4. For a ring R we define its affine linear group Aff(R) ⊂ S(R) by Aff(R) := {f ∈
S(R); ∃ a ∈ R∗, b ∈ R : f(x) = ax + b ∀x ∈ R}. Show: Aff(R) is a semidirect
product Aff(R) ∼= R+×σR∗ with some homomorphism σ : R∗ −→ Aut(R+), where
R+ denotes the ring R considered as additive group.

5. Let d ∈ N be not a square. Show that R := Z + Z
√
d ⊂ R is a ring. Furthermore

that the “norm” N : R −→ Z, x = a + b
√
d 7→ N(x) := a2 − b2d satisfies N(xy) =

N(x)N(y) and conclude x ∈ R∗ ⇐⇒ N(x) = ±1. Assuming that there is x ∈ R \Z
with N(x) = ±1 (that is always true, but non-trivial!) show R∗ ∼= Z×Z2 as groups.
Hint: The units x > 1 are of the form x = a + b

√
d with a, b > 0. Conclude that

there is a smallest unit x ∈ R∗, x > 1.

6. R: Let R ⊂ C be a ring with z ∈ R =⇒ |z|2 ∈ N, invariant under complex
conjugation, i.e. z ∈ R =⇒ z ∈ R. Determine R∗.

7. R: Let η ∈ C \R be a complex number with η2 ∈ Z + Zη := {a+ bη; a, b ∈ Z} ⊂ C.
Show, that Z+Zη endowed with the addition and multiplication of complex numbers
is a ring, satisfying the conditions of the ring R ⊂ C in the previous problem. (Hint:
If η2 = a + bη, then (T − η)(T − η) = T 2 − aT − b.) Show that R∗ is finite! For

η = i, η = ε := e
2πi
3 = 1

2 (−1 + i
√

3) determine the group of units explicitly! What
does hold for the remaining rings R = Z + Zη?

8. Let K be a field. Interpret KN as a subset of KZ by extending a function N −→ K,
such that it assigns the value 0 to negative numbers in Z ⊃ N. The set K((T )) of
all ”formal Laurent series with finite principal part” consists of all functions
∈ KZ which vanish for almost all n < 0. Show that the Cauchy multiplication for
K[[T ]] = KN can be extended to K((T )) ⊂ KZ and that K((T )) is a field, the field
of fractions of K[[T ]]. Indeed

K((T )) = Q(K[[T ]]) = T−NK[[T ]] = K[[T ]]⊕
∞⊕
n=1

KT−n,

where T−NK[[T ]] := S−1K[[T ]] denotes the localization of K[[T ]] with respect to
the multiplicative set S = TN of all T -powers.

9. Formal Laurent Series from a topological point of view: LetK be a field. We
extend the order function ω : K[[T ]] −→ Z ∪ {∞} to K((T )) by setting ω(Tnh) =
ω(h)−n for g ∈ K[[T ]] and define the absolute value |f | ∈ R≥0 of a series f ∈ K((T ))
by |f | := 2−ω(f) (with the convention 2−∞ = 0). Show: The absolute value satisfies

|f + g| ≤ max{|f |, |g|} , |fg| = |f | · |g|

for all f, g ∈ K((T )) (The first inequality is sometimes called the strong triangle
inequality). Then d(f, g) := |f−g| is a metric (distance function) on the set K((T ))
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and the resulting metric space is complete, i.e. every Cauchy sequence has a limit.
Indeed K[[T ]] = {f ∈ K((T )); |f | ≤ 1} then is nothing but the closed ball of radius
1 around 0, and any series

∑∞
ν=−` aνT

ν = limn→∞
∑n
ν=−` aνT

ν is the limit of its
partial sums - but note that this convergence is not a convergence of functions! In
K there is no notion of convergence!

3.2 Homomorphisms

Definition 3.10. Let R, S be rings. A map ϕ : R −→ S is called a ring
homomorphism iff

ϕ(a+ b) = ϕ(a) + ϕ(b) , ϕ(ab) = ϕ(a)ϕ(b) ,

for all a, b ∈ R and
ϕ(1) = 1 ,

where 1 denotes the unity in the respective ring R or S. It is called a ring
isomorphism iff it is in addition bijective, and R is isomorphic to S, in
symbols: R ∼= S, iff there is a ring isomorphism ϕ : R −→ S.

Remark 3.11. The condition ϕ(1) = 1 guarantees that ϕ ≡ 0 is not
admitted as a ring homomorphism. As an other consequence, the map
R −→ R2, a 7→ (a, 0), is not a ring homomorphism either, though it is
compatible with the ring operations.

Example 3.12. For every ring R there is exactly one ring homomorphism
ϕ : Z −→ R, mapping 0 ∈ Z to 0 ∈ R, n ∈ Z>0 to the n-fold sum 1 + ...+ 1
and −n ∈ Z<0 to (−1) + ... + (−1) (n times). Indeed, this is nothing but
the group homomorphism ϕa : Z −→ G of Example 2.9.3, with the additive
group R instead of a multiplicatively written G, and a = 1. Often one writes
simply n instead of ϕ(n); but note that ϕ need not be injective: n = 0 can
hold in R, though n > 0 i Z. For example take R = Zn!

Definition 3.13. Let R be a ring and ϕ : Z −→ R the natural ring homo-
morphism.

1. The characteristic char(R) of the ring R is defined as the natural
number n such that

ker(ϕ) = ϕ−1({0}) = Zn .

With other words: Either char(R) = 0 or

char(R) = min{k ∈ N>0; k = 0 in R} > 1.
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2. The prime field P (K) ⊂ K of a field K is defined as

P (K) := ϕ(Z),

if char(K) > 0 and as
P (K) := ϕ̂(Q),

if char(K) = 0 and ϕ̂ : Q = Q(Z) −→ K is the unique extension of the
natural ring homomorphism ϕ : Z −→ K.

Remark 3.14. 1. char(Zn) = n.

2. For an integral domain R, its characteristic satisfies char(R) = 0 or
char(R) = p is a prime. This is a consequence of the fact, that
Zchar(R)

∼= ϕ(Z) ⊂ R is an integral domain as well.

3. For a fieldK of characteristic 0 we have P (K) ∼= Q, while for char(K) =
p > 0 we find P (K) ∼= Zp.

4. Let n = pk11 · ... · pkrr be the prime factorization of the natural number
n ∈ N. The Chinese remainder theorem 2.85 provides even a ring
isomorphism

Zn
∼=−→ Z

p
k1
1
× ...× Zpkrr , ` = `+ Zn 7→ (`+ Zpk11 , ..., `+ Zpkrr ) ,

hence in particular a group isomorphism of the corresponding groups
of units

Z∗n
∼=−→ Z∗

p
k1
1

× ...× Z∗
pkrr

.

As a consequence, Eulers ϕ-function satisfies

ϕ(n) = ϕ(pk11 ) · ... · ϕ(pkrr ) .

The polynomial ring is, similarly as for example free groups, characterized
by a “universal mapping property”:

Proposition 3.15. Let ψ : R −→ S be a ring homomorphism and a ∈ S.
Then there is a unique ring homomorphism ψa : R[T ] −→ S with ψa|R = ψ
and ψa(T ) = a.

Proof. For f =
∑
aνT

ν set ψa(f) =
∑
ψ(aν)a

ν . Since f = 0 iff all coeffi-
cients aν = 0, the homomorphism ψa is well defined and obviously unique.
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Remark 3.16. If R ⊂ S and ψ : R ↪→ S is the inclusion, we also write f(a)
instead of ψa(f), i.e.

f(a) =
∑

aνa
ν ∈ R , if f =

∑
aνT

ν ,

and call the ring homomorphism ψa : R[T ] −→ R, f 7→ f(a), the evaluation
(homomorphism) at a ∈ S.
Thus a polynomial f ∈ R[T ] induces a function

f̂ : R −→ R , a 7→ f(a) ,

and the map R[T ] −→ RR, f 7→ f̂ is a not necessarily injective ring ho-
momorphism: For example consider R = Zp and f = T p − T : Obviously
f(0) = 0, while all elements a ∈ Z∗p have order p − 1, whence ap = a resp.
f(a) = 0. Indeed this can happen only for finite integral domains:

Calling an element a ∈ R with f(a) = 0 a zero of f , we have:

Proposition 3.17. A polynomial f ∈ R[T ] \ {0} over an integral domain R
has at most deg(f) distinct zeros in R.

Proof. We do induction on deg(f). We may assume that deg(f) > 0. If
a ∈ R is a zero of f , the division algorithm 3.6 yields f = q · (T − a) + r,
where deg(r) < 1, i.e. r = b ∈ R. Hence 0 = f(a) = q(a)(a − a) + b = b
resp. f = q · (T − a). Since deg(q) < deg(f), the induction hypothesis tells
us, that q has at most deg(q) distinct zeros in R. But R being an integral
domain, a zero of f is either a zero of q or of T − a, i.e. equals a. Hence we
are done.

Corollary 3.18. For an infinite integral domain R the homomorphism R[T ] −→
RR, f 7→ f̂ is injective, i.e. for a polynomial f ∈ R[T ] we have

f = 0⇐⇒ f(a) = 0 ,∀ a ∈ R .

Problems 3.19. 1. R: An element e ∈ R in a ring R is called idempotent iff e2 = e.
Show: If R is an integral domain, then 0, 1 are the only idempotent elements.
Furthermore: If 1 = e1 + ... + es with elements ei 6= 0 and eiej = 0 for i 6= j, the
elements ei are idempotent and

R ∼=
s∏
i=1

Ri

with the rings Ri := Rei.
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2. R: Show: There is a (unique) ring homomorphism Zn −→ Zm, iff m|n.

3. R: Show for q := pn with a prime number p that Zq[T ]∗ = Z∗q + pTZq[T ].

4. R: A universal mapping property: Let R be an integral domain and S ⊂ R \ {0} a
multiplicative subset. Show: Every ring homomorphism ψ : R −→ P to a ring P
with ψ(S) ⊂ P ∗ can uniquely be extended to a homomorphism ψ̂ : S−1R −→ P .

5. R: Let H ⊂ R∗ be a finite subgroup of the group of units R∗ of an integral domain
R. Show: H is a cyclic group. Hint: Show first: If all elements a ∈ H have an order
< |H|, there is an exponent q < |H| with aq = 1 for all a ∈ H. Then consider the
zeros of the polynomial T q−1 ∈ R[T ]! Show as well H = Cn(R) := {a ∈ R; an = 1}
with n := |H|.

6. R: Every ring homomorphism ψ : R[T ] −→ R[T ] with ψ|R = idR has the form
ψ = ψg with a polynomial g ∈ R[T ], i.e. it is a substitution homomorphism, where
ψ(f) is obtained by substituting T with g, i.e. ψg(f) = f(g). Furthermore: If R is
an integral domain: ψg is an isomorphism (or automorphism) iff g = aT + b with

a ∈ R∗, b ∈ R. Determine an isomorphism Aff(R)
∼=−→ AutR(R[T ]) between the

affine linear group Aff(R), and the group AutR(R[T ]) of all automorphisms of R[T ]
fixing the elements in the ring R.

7. A continuation of the previous problem: Show: Every ring homomorphism ψg :
R[T ] −→ R[[T ]] with a power series g ∈ TR[[T ]] extends uniquely to a ring ho-

momorphism ψ̂g : R[[T ]] −→ R[[T ]] (such that we may define substitutions even

for formal power series: f(g) := ψ̂g(f) in case g ∈ TR[[T ]]). It is an isomor-
phism iff g ∈ R∗T + R[[T ]]T 2. Hint: An equality in R[[T ]] holds iff it does in
R[[T ]]/(Tn) ∼= R[T ]/(Tn) for all n ∈ N.

8. R: Let K be a field, a1, ..., as, b1, ..., bs ∈ K, with the elements a1, ..., as pairwise
distinct. Show: There is a polynomial f ∈ K[T ] with f(ai) = bi for i = 1, ..., s.

9. Let K be a field and A ∈ Kn,n. For f =
∑
ν aνT

ν ∈ K[T ] let f(A) := a0E +∑
ν>0 aνA

ν ∈ Kn,n. Show:

K[A] := {B ∈ Kn,n;B = f(A) for some f ∈ K[T ]}

is a ring, in particular commutative. Furthermore: If A is diagonalizable, then
K[A] ∼= Kr with some r ∈ N.

3.3 Ideals and Factor Rings

Let K be a field and f ∈ K[T ] a polynomial without zeros in K. In this
section we explain how we can find a larger field E ⊃ K, where f has a zero.

To begin with, let us first assume that E ⊃ K together with a zero a ∈ E
of f are already given. Then the evaluation homomorphism

ψa : K[T ] −→ E, p 7→ p(a),
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induces an isomorphism

K[T ]/ kerψa
∼=−→ K[a] := {p(a) ∈ E; p ∈ K[T ]}

of abelian groups. Indeed it is an isomorphism of rings as well: First of all,
given any ring homomorphism

ψ : R −→ S

its kernel kerψ ⊂ R is

1. an additive subgroup
kerψ ≤ R

and

2. satisfies
R · kerψ ⊂ kerψ.

Thus we are led to the notion of an “ideal” of a ring R.

Definition 3.20. Let R be a ring. An ideal a ⊂ R is an additive subgroup
satisfying

a ∈ a, b ∈ R =⇒ ab ∈ a.

An ideal a ⊂ R is called a proper ideal iff a 6= R or equivalently, iff 1 6∈ a.

Proposition 3.21. Let a ⊂ R be a proper ideal. Then the (additive) factor
group R/a endowed with the multiplication

a · b := ab

is a ring.

Proof. We have to show that the multiplication is well defined. So let a1 =
a, b1 = b, i.e. a1 = a + c, b1 = b + d with elements c, d ∈ a. Then we have
a1b1 = (a + c)(b + d) = ab + (ad + bc + cd), where the expression in the
parenthesis belongs to a. Hence a1b1 = ab.

Example 3.22. 1. The most basic ideals are the entire ring R itself, also
called the unit ideal, and the zero ideal {0}.
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2. Given an element a ∈ R the set (a) := Ra := {ba, b ∈ R} of all
multiples of a is an ideal, the principal ideal generated by a.

3. A ring R is a field iff the unit and the zero ideal are the only ideals in
R.

Proof. ”=⇒”: If R is a field and a ⊂ R a non-zero ideal, there is an
element a ∈ a, a 6= 0. But then it follows 1 = a−1a ∈ a and thus a = R.

”⇐=”: We have to show R∗ = R \ {0} or rather ”⊃”: Let a ∈ R \ {0}.
Then Ra 6= {0}, hence Ra = R. So there is b ∈ R with 1 = ba, i.e.
a ∈ R∗.

4. In the ring Z additive subgroups and ideals coincide; indeed in 2.25
we have seen that they are all principal ideals a = Zn with a (unique)
n ∈ N.

5. Let a, b ⊂ R be ideals. Then also their intersection a ∩ b, their sum

a + b := {a+ b; a ∈ a, b ∈ b}

as well as their product

a · b := {a1b1 + ...+ arbr; r ∈ N, ai ∈ a, bi ∈ b, i = 1, ..., r}

are ideals. In fact

a · b ⊂ a ∩ b ⊂ a, b ⊂ a + b.

6. The elements a1, ..., ar ∈ R are said to generate the ideal a ⊂ R iff

a = Ra1 + ...+Rar.

7. Let ϕ : R −→ S be a ring homomorphism between the rings R and S,
a ⊂ R, b ⊂ S ideals. Then the inverse image ϕ−1(b) ⊂ R is an ideal in
R, while the image ϕ(a) ⊂ S is an ideal in the ring S, if ϕ is surjective.
In particular its kernel

ker(ϕ) = ϕ−1({0})

is an ideal in R.
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8. A ring homomorphism ϕ : K −→ S from a field to some ring S 6= {0}
is injective (since 1 6∈ ker(ϕ) we have ker(ϕ) = {0}) and therefore often
treated as an inclusion.

Let us return to our starting point: The ring

K[a] ∼= K[T ]/a

with a = kerψa is an integral domain. In general we define:

Definition 3.23. A proper ideal a ⊂ R of a ring R is called

1. prime or a prime ideal if the factor ring R/a is an integral domain
or equivalently if

ab ∈ a =⇒ a ∈ a ∨ b ∈ a .

2. maximal iff there is no proper ideal b ⊂ R in R containing a but a
itself:

a ⊂ b =⇒ b = a.

3. a principal ideal, if it has the form a = Ra with some element a ∈ R,
it is then called the principal ideal generated by a. A different notation
is (a) := Ra.

An integral domain R is called a principal ideal domain, a PID for short,
if every ideal in R is a principal ideal.

Example 3.24. 1. Since the ideals in Z are nothing but the additive
subgroups, Proposition 2.25 yields that Z is a principal ideal domain;
the maximal ideals are the ideals (p) = Zp with a prime number p ∈ N
and beside the maximal ideals there is only one prime ideal, the zero
ideal (0) = Z0.

2. If p ⊂ R is a prime ideal in the integral domain R, its complement
S := R \ p is a multiplicative set. The ring Rp := S−1R is called the
localization of R with respect to the prime ideal p.

Remark 3.25. One can show that every proper ideal a ⊂ R is contained in
a maximal ideal m ⊂ R, cf. 5.7.
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As with prime ideals, maximal ideals can be defined in terms of the cor-
responding factor ring:

Proposition 3.26. A proper ideal a ⊂ R is a maximal ideal iff the factor
ring R/a is a field. In particular a maximal ideal is a prime ideal.

Proof. Use Example 3.22.3 together with the fact that given an ideal a ⊂ R
in the ring R, there is a bijective correspondence between the set of all ideals
in the factor ring R/a and the set off all ideals in R, which contain a: To
an ideal b ⊃ a we associate the ideal %(b) ⊂ R/a, where % : R −→ R/a
denotes the quotient projection. On the other hand to c ⊂ R/a corresponds
the inverse image %−1(c) ⊂ R.

Back to our original situation: Since ψa(f) = f(a) = 0, the prime ideal
a = kerψa ⊂ K[T ] contains f . But, as we shall see later on, a nontrivial
prime ideal of K[T ] is maximal. Consequently the minimal solutions of our
problem are given by

E := K[T ]/m, a := T ,

where m ⊂ K[T ] is a maximal ideal containing f (we remark that the com-
position K ↪→ K[T ] −→ E is injective according to 3.22.8). By this we mean
that an arbitrary solution contains one of the above type.

On the other hand as a consequence of the next result, nontrivial ideals
in K[T ] are in one-to-one correspondence with monic polynomials:

Proposition 3.27. The polynomial ring K[T ] over a field K is a principal
ideal domain.

Proof. Let a ⊂ K[T ] be an ideal. If a 6= {0}, we can choose a polynomial
f ∈ a \ {0} of minimal degree, and since K is a field, we may assume that
f is monic. Then we have a = (f). The inclusion ”⊃” is obvious. ”⊂”:
Consider a polynomial h ∈ a. We apply the division algorithm 3.6 and write
h = qf + r, where deg(r) < deg(f). But then, since even r = h − qf ∈ a,
necessarily r = 0 by the choice of f . So h = qf ∈ (f).

Example 3.28. For the ring K[[T ]] of formal power series over a field K the
situation is strikingly different from that one for the polynomial ring: There
are only the following ideals: (T n), n ∈ N and the zero ideal; (T ) is the only
maximal ideal, and beside the zero ideal the only prime ideal. In particular
K[[T ]] is a principal ideal domain. The proof relies on the fact that its group
of units K[[T ]]∗ consists of all series with a nonzero constant term.
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In particular we obtain that a maximal ideal m 3 f is of the form

m = K[T ]g

with an irreducible polynomial g ∈ K[T ] dividing f (a polynomial is irre-
ducible if it does not admit a factorization as a product of polynomials of
lower degree): For a reducible polynomial g the factor ring K[T ]/m would
not be an integral domain.

We discuss the relevant notions in general for an arbitrary integral do-
main:

Definition 3.29. Let R be an integral domain.

1. An element u ∈ R\(R∗∪{0}) is called irreducible, iff u = ab =⇒ a ∈
R∗ ∨ b ∈ R∗, i.e. u can not be written as the product of two non-units.

2. Two elements u, u′ ∈ R \ {0} are called associated, iff (u) = (u′) iff
u′ = eu with a unit e ∈ R∗.

3. An element p ∈ R \ (R∗ ∪{0}) is called prime, iff (p) = Rp is a prime
ideal iff

p|ab =⇒ p|a ∨ p|b .

Obviously, (u) = (u′) holds for associated elements u, u′ ∈ R. If on the
other hand (u) = (u′), we can write u′ = eu and u = e′u′ with elements
e, e′ ∈ R, whence u = e′eu resp. 0 = (1− e′e)u. The ring R being an integral
domain, we conclude 1− e′e = 0 resp. e ∈ R∗.

Remark 3.30. 1. A prime element p ∈ R is irreducible. Show that!

2. Since K[T ]∗ = K∗, two polynomials f, g ∈ K[T ] are associated iff their
differ by a nonzero constant: g = λf with some λ ∈ K∗.

3. A polynomial f ∈ K[T ] is irreducible, if it can not be written f = gh
with polynomials g, h of lower degree.

Proposition 3.31. An irreducible element u ∈ R in a principal ideal domain
R is prime.
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Proof. We assume u|ab, and show that if u does not divide a, then it divides
b. Consider the ideal Ru+Ra := {ru+ sa; r, s ∈ R}, consisting of all linear
combinations of u and a with coefficients in R. Since R is a principal ideal
domain, there is an element d ∈ R with Ru + Ra = Rd. In particular d|u,
say u = cd. But u being irreducible either c or d is a unit. If c ∈ R∗, we
obtain, since d|a, that also u|a, a contradiction to our assumption. So d is
a unit, and therefore 1 ∈ Rd = Ru + Ra: As a consequence we may write
1 = ru + sa with elements r, s ∈ R. Now we multiply with b and find that
b = rub+ s(ab) is divisible by u.

As an immediate consequence we obtain:

Corollary 3.32. i) Let R be a principal ideal domain which is not a field.
An ideal (a) := Ra is

• prime, iff a = 0 or a is irreducible.

• maximal, iff a is irreducible.

ii) Let K be a field and f ∈ K[T ] an irreducible polynomial. Then
K[T ]/(f) is a field.

Proof. The zero ideal is prime, since R is an integral domain, but not max-
imal, R ∼= R/{0} being not a field. On the other hand, let (a) ⊂ R be a
prime ideal, a 6= 0. Then a is irreducible: Assume a = bc with non-units b, c.
So one of the factors, say b, is contained in (a), and thus (b) ⊂ (a) ⊂ (b), i.e.
b is associated to a respectively c ∈ R∗.
It remains to show, that (a) is maximal, if a is irreducible: Consider an ideal
b containing (a). Since R is a principal ideal domain, it is of the form b = (b),
hence a ∈ (b) or a = bc with some element c ∈ R. But a being irreducible,
either b or c is a unit, with other words either (b) = R or (b) = (a).
The second part follows now from the fact that K[T ] is a principal ideal
domain and the first part.

Irreducible polynomials being prime, we obtain a factorization of a poly-
nomial analogous to the prime factorization of a natural number:
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Proposition 3.33. Every monic polynomial f ∈ K[T ] can be written uniquely
(up to order) as a product

f = fk11 · ... · fkrr

with pairwise distinct irreducible monic polynomials fi ∈ K[T ] and exponents
ki ≥ 1.
In particular, for every polynomial f ∈ K[T ] there exists a field E containing
K, such that f has a zero in E, namely E := Ei := K[T ]/(fi) with some
i, 1 ≤ i ≤ r.

Proof. The existence of such a factorization follows by induction on deg(f):
If f is irreducible, nothing has to be shown; if not, we write f = gh with
polynomials of strictly lower degree, which according to the induction hy-
pothesis are products of irreducible polynomials, hence f itself as well. The
uniqueness follows from the fact that irreducible polynomials are prime: We
use induction on the number k := k1 + ...+ kr of factors in such a represen-
tation. For k = 1 the statement is clear, since then f = f1 is irreducible and
does not admit a nontrivial factorization. Assume now there is an other fac-
torization f = g1 · ... ·g` with irreducible monic polynomials gj ∈ K[T ]. Since
f1 is prime, we find that for some index j we have f1|gj or rather f1 = gj,
the polynomial gj being irreducible and both f1, gj monic. We may assume
j = 1 and then obtain fk1−1

1 fk22 · .... · fkrr = g2 · ... · g` and can apply the
induction hypothesis.

Integral domains admitting unique prime factorization get a name:

Definition 3.34. An integral domain R is called factorial (or a UFD=
Unique Factorization Domain), iff

1. every irreducible element u ∈ R is prime,

2. every non-unit is a finite product of irreducible elements.

Example 3.35. The ring Z as well as the ring K[T ] are UFDs.

For a factorial ring an analogue of Prop. 3.33 holds: Every non-unit can
be written as a product of irreducible elements, and the factors are unique
up to order and multiplication with units.

Here are more factorial rings:
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Proposition 3.36. A PID is a UFD.

Proof. Call a non-unit u ∈ R \ {0} nonfactorizable, if it is not a product
of (finitely many) irreducible elements. Because of Prop. 3.31 it suffices to
show that there are no nonfactorizable elements in a PID. Otherwise we can
construct a strictly increasing sequence of principal ideals ai = Rui generated
by nonfactorizable elements ui ∈ R, i.e. such that

a0 $ a1 $ ...... .

Start with any nonfactorizable element u0 ∈ R. The nonfactorizable element
ui being found, write it as a product of two non-units. At least one of the
two factors is again nonfactorizable, choose it as the element ui+1. Now

a :=
∞⋃
i=0

ai

is an ideal. But R is a PID; thus a = Ru. Then u ∈ an for some n ∈ N and
hence

ai = a = an

holds for i ≥ n, a contradiction.

Remark 3.37. 1. An example of an integral domain with nonfactorizable
elements is discussed in Problem 3.38.15.

2. The polynomial ring over a UFD is again a UFD, see Problem 3.46.8.
On the other hand: The polynomial ring over a PID, which is not a
field, is never a PID.

3.3.1 Digression: p-adic number fields

Let p be a prime number. The ring Ẑp of all p-adic integers is defined as a
subring

Ẑp ⊂
∞∏
n=1

Zpn

of the direct product of the residue class rings Zpn , n ∈ N>0, namely

Ẑp :=

{
(ξn)n≥1 ∈

∞∏
n=1

Zpn ;∀ n ≥ 2 : πn(ξn) = ξn−1

}
,
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where πn : Zpn −→ Zpn−1 is the natural ring homomorphism. Since the

sequence (ξn := 1+(pn))n≥1 has infinite order, it has characteristic char(Ẑp) =

0, in particular Z ⊂ Ẑp, and its group of units is

Ẑ∗p =
{
e = (εn) ∈ Ẑp; ε1 6= 0

}
.

Indeed any x = (ξn) ∈ Ẑp \ {0} can uniquely be written as a product

x = pre, r ∈ N≥0, e ∈ Ẑ∗p.

This is seen as follows: If ξn = 0 for n ≤ r and ξr+1 6= 0, then, writing
ξn = an + (pn), we have an = prbn for n ≥ r, and may take εn = bn+r + (pn).
As a consequence Ẑp is a PID with the (pr), r ∈ N, as the nonzero ideals.

The ring Ẑp ⊃ Z can be understood as a completion of Z: For a p-adic

integer x ∈ Ẑp its absolute value |x| ∈ R≥0 is defined as

|x| :=
{
p−r , if x ∈ pr · Ẑ∗p
0 , if x = 0

.

The absolute value satisfies

|x+ y| ≤ max{|x|, |y|} , |xy| = |x| · |y| , |x| ≤ 1

for all x, y ∈ Ẑp (The first inequality is sometimes called the strong triangle
inequality). Then d(x, y) := |x− y| is a metric (distance function) on the set
Ẑp and the resulting metric space is complete, i.e. every Cauchy sequence

has a limit, with Z ⊂ Ẑp as dense subset: For x = (ξn = an + (pn)), we have
x = limn→∞ an. Assuming 0 ≤ an < pn, the coefficients ck of the finite p-adic
expansions an =

∑
k<n ckp

k, 0 ≤ ck < p, do not depend on n and provide an
infinite unique p-adic expansion

x =
∞∑
k=0

ckp
k, 0 ≤ ck < p.

This suggests that there should be a relation between p-adic integers and
formal power series with integer coefficients: Since |p| < 1 and |c| ≤ 1 for all
c ∈ Ẑp, the series

∑
ckp

k converges for any choice of the coefficients ck ∈ Z;
in particular we may define an evaluation homomorphism

Z[[T ]] −→ Ẑp, f =
∞∑
k=0

ckT
k 7→ f(p) :=

∞∑
k=0

ckp
k;
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it is surjective and has kernel (T − p) ⊂ Z[[T ]]: If f(p) = 0, necessarily
c0 = −pb0 with some b0 ∈ Z, since otherwise |c0| = 1 and |f(p)| = |c0| = 1
(using |x + y| = max{|x|, |y|} for |x| 6= |y|). Now replace f0 := f with
f1 = T−1(f − (T − p)b0) and repeat the same argument to find b1 etc.; the
resulting series g =

∑
bkT

k satisfies f = (T − p)g. Altogether we have found
an alternative description of the ring of p-adic integers:

Ẑp ∼= Z[[T ]]/(T − p) .

The field of fractions Qp := Q(Ẑp) can be realized as

Qp = p−NẐp

with the multiplicative subset S = pN (writing (pN)−1 = p−N), and the abso-
lute value extends in an obvious way, indeed

Qp = {0} ∪
∞⋃

r=−∞

prẐ∗p ,

where prẐ∗p is the ”sphere” of radius p−r and center 0. Furthermore the
equality

Ẑ∗p ∩Q =
{a
b

; a, b ∈ Z, gcd(a, p) = 1 = gcd(b, p)
}

explains how to compute |x| for x ∈ Q ⊂ Qp.
The elements in Qp are called p-adic numbers and the field Qp the

p-adic number field, introduced by Kurt Hensel (1861-1941).
Since Q is dense in Qp, the p-adic numbers can, as the reals, be thought

of as a completion of the rationals, but note that Z ⊂ R is discrete:

R ⊃ Z = Z,

and unbounded, while Z ⊂ Qp is bounded, indeed its closure Z ⊂ Qp is the
closed unit ball:

Qp ⊃ Z = {x ∈ Qp; |x| ≤ 1} = Ẑp.

There are more strange features from the topological point of view: The
strong triangle inequality implies, that the open balls

Bε(0) := {x ∈ Ẑp; |x| < ε}, ε ≤ 1,
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form ideals in Ẑp; in particular two balls Bε(x) = x+Bε(0) and Bε(y) = y+
Bε(0) being ideal residue classes either coincide or are disjoint. Hence a ball
Bε(x) is both open and closed – its complement is the union of all Bε(y), y 6∈
Bε(x). As a consequence the metric space Ẑp is totally disconnected, i.e.

there are no non-empty connected open sets in Ẑp. Furthermore the natural
order relation on Z can not be extended continuously to the ring of p-adic
integers: E.g. the negative number 1 − p is a unit with the multiplicative
inverse

(1− p)−1 =
∞∑
n=0

pn ,

an infinite sum of positive numbers!

Problems 3.38. 1. R: Show that a ring R has exactly one maximal ideal iff the non-
units in R, i.e. the set R \ R∗, provide an ideal. In that case R is called a local
ring. Which local rings do you know?

2. R: The nilradical of a ring R is defined as

n :=
√
{0} := {x ∈ R; ∃ n ∈ N : xn = 0} .

Show: The nilradical is an ideal and the factor ring R/n is reduced, i.e., does not
contain non-zero nilpotent elements, or equivalently, its nilradical is the zero ideal.

3. R: Let K be a field and R := {f ∈ K[T ]; f = a0 + T 2g, g ∈ K[T ]}, cf. Problem
3.9.2. Show: The elements T 2, T 3 are irreducible in R, but not prime.

4. R: A ring is called euclidean if it is an integral domain and there is a function
R \ {0} −→ N, x 7→ ||x|| satisfying:

(a) If b|a, then ||b|| ≤ ||a||

(b) If a, b ∈ R, b 6= 0, we can write a = qb+ r, where the ”remainder” r satisfies
either r = 0 or ||r|| < ||b||.

Show: A euclidean ring is a principal ideal domain.

(In fact, the first condition is not needed in the proof, we have only added it
following the tradition!)

5. R: Show that a subring R ⊂ C is euclidean if z ∈ R =⇒ |z|2 ∈ N and for every
w ∈ C there is an element z ∈ R with |z − w| < 1. Hint: In order to check the
division algorithm for a, b ∈ R, regard w := a

b ∈ C!

6. R: Show that the ring Z[i] is euclidean and hence a principal ideal domain! (Its
elements are called gaussian integers.) Determine the units in Z[i]! Is the number
5 ∈ Z[i] irreducible? If not, factorize it!
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7. R: Let ε := e
2πi
3 . Regard the rings Z[ε] ⊃ Z[i

√
3]. Show: In the smaller ring the

elements 2, 2ε, 2ε2 are non-associated irreducible elements and 2 · 2 = 4 = 2ε · 2ε2,
while the bigger ring Z[ε] is even euclidean.

8. R: Let K be a field and h1, ..., hr ∈ K[T ] polynomials without a common divisor.
Show: There are polynomials g1, ..., gr ∈ K[T ] with g1h1 + ...+ grhr = 1.

9. Some linear algebra: Let K be a field, A ∈ Kn,n and f ∈ K[T ] the minimal
polynomial of A. Let f = fk11 · ... · fkrr be the factorization of f in irreducible monic
polynomials f1, ..., fr. Set

hi := fk11 · ... · f
ki−1

i−1 f
ki+1

i+1 · ... · f
kr
r

and choose gi ∈ K[T ] as in the previous problem with g1h1 + ...+ grhr = 1. Show:
The matrices Pi := gi(A)hi(A) satisfy E = P1 + ... + Pr with the unit matrix
E ∈ Kn,n and PiPj = δijPi, and

K[A] ∼=
r⊕
i=1

K[Ai]

withAi := APi. Furthermore thatAi has the minimal polynomial fkii . And that the
vector space V := Kn is the direct sum of the A-invariant subspaces Vi := Im(Pi)
(Hint: APi = PiA and Im(Pi) is the eigenspace of Pi for the eigenvalue 1!). What
does the polynomial fi look like for K = C? Show: C[Ai] ∼= C[T ]/[T ki ]. Is there a
relationship to the Jordan normal form? (Camille Jordan, 1838-1922)

10. If one replaces in the definition of the p-adic integers the rings Zpn with R[T ]/(Tn),
where R is an arbitrary ring, what does one obtain?

11. Show that the following conditions for a ring R are equivalent:

(a) Every ideal a ⊂ R is finitely generated, i.e., there are elements f1, ..., fr ∈ R,
such that

a = Rf1 + ...+Rfr = {
r∑
i=1

gifi; g1, ..., gr ∈ R}

(b) Every increasing sequence (chain) of ideals a1 ⊂ a2 ⊂ ... in the ring R becomes
stationary, i.e. there is n ∈ N such that am = an ∀ m ≥ n.

(c) Every subset A ⊂ Ideal(R) of the set Ideal(R) of all ideals in R, has a maximal
element b ∈ A, i.e. such that there is no ideal in A containing b as a proper
subset, i.e., ∀ a ∈ A : b ⊂ a =⇒ b = a.

A ring R is called noetherian (Emmy Noether, 1882-1935) if one (and thus all) of
the above conditions are satisfied.

12. Show ”Hilberts Basissatz” (David Hilbert, 1862-1943): The polynomial ring R[T ]
over a noetherian ring is again noetherian. Hint: For an ideal b ⊂ R[T ] regard the
chain an := {a ∈ R;∃f = aTn + ... ∈ b} ⊂ R of ideals in the ring R.
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13. Show: In a noetherian integral domain every element can be written as a product of
(finitely many) irreducible elements. Hint: Assuming the contrary construct with
the previous problem a strictly increasing infinite chain of ideals.

14. Show: The ideal a ⊂ CN consisting of all sequences (aν)ν∈N with only finitely many
aν 6= 0 is not finitely generated.

15. Let O(C) be the ring of all entire functions (i.e. holomorphic everywhere in the
complex plane C) and

a := {f ∈ O(C); ∃ n(f) ∈ N : ∀ n ∈ N, n ≥ n(f) : f(n) = 0}.

Show, that the ideal a is not finitely generated. (Do you see a connection with the
situation of the preceding theorem?) Show: An irreducible function is prime, but
not all functions can be written as a product of ”prime functions”. (Instead there is
an infinite factorization according to Weierstraß’ theorem! (Karl Theodor Wilhelm
Weierstraß, 1815-1897).

16. Let C(R) be the ring of all continuous real valued functions on R. Show: The ideal
m0 := {f ∈ C(R); f(0) = 0} is not finitely generated.

17. Let C∞(R) be the ring of all infinitely often differentiable real valued functions on
R. Show: p := {f ∈ C∞(R); f (n)(0) = 0 ∀ n ∈ N} is a prime ideal. Here f (n)

denotes the n-th derivative of the function f . (Indeed C∞(R)/p ∼= C[[T ]].)

3.4 Irreducibility Criteria

If a polynomial f ∈ K[T ] of degree deg(f) > 1 is irreducible, it has no zero
a ∈ K: Otherwise we could factorize f = (T − a)g with some polynomial
g ∈ K[T ]\K. On the other hand a polynomial f ∈ K[T ] of degree deg(f) ≤
3 without a zero in K is also irreducible: If we can write f = gh with
polynomials g, h of lower degree, one factor is linear, and thus provides a
zero of f .
But how to check whether f has zeros or not? If K is finite, then, at least
theoretically, we could simply check by computing all possible values. On
the other hand, if K = Q and f ∈ Z[T ] is monic, every rational zero a ∈ Q
already is an integer: a ∈ Z (Show that or cf. Corollary 3.41.2), dividing
a0 = f(0) (using the factorization f = (T − a)g with g ∈ Z[T ]). So there
are only finitely many candidates for possible zeros, if a0 6= 0 - and that can
always be assumed. But what does hold for deg(f) > 3? Again there is – at
least theoretically – no problem, if the field K is finite, since then there are
only finitely many candidates for the polynomials g, h.

If K = Q, we may assume that f ∈ Q[T ] even has integer coefficients:
f ∈ Z[T ] – if not, multiply f with some natural number. Indeed, we shall see,
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that if f ∈ Z[T ] is not irreducible in Q[T ], then there is even a factorization
in Z[T ]. Eventually, in order to exclude that possibility, we pass to the
polynomial ring Zm[T ] over some factor ring Zm: Fix a natural number
m ∈ N>1 and consider the following ring homomorphism

Z[T ] −→ Zm[T ], f =
n∑
ν=0

aνT
ν 7→ f̃ :=

n∑
ν=0

aνT
ν .

The polynomial f̃ ∈ Zm[T ] then is called the reduction of f mod m.

First we show that a factorization f = gh ∈ Z[T ] with polynomials g, h ∈
Q[T ] of lower degree always can be realized with polynomials g, h ∈ Z[T ].

Definition 3.39. The content cont(f) ∈ Q>0 of a polynomial f ∈ Q[T ]\{0}
is defined as the positive rational number satisfying

f = cont(f)f̂ with a polynomial f̂ =
n∑
ν=0

aνT
ν ∈ Z[T ] ,

whose coefficients have greatest common divisor gcd(a0, ..., an) = 1.

Proposition 3.40 (Gauß’ lemma). (Carl-Friedrich Gauß, 1777-1855) The
content is a multiplicative function, i.e. for two polynomials f, g ∈ Q[T ]\{0}
we have

cont(fg) = cont(f)cont(g) .

Proof. We may assume that cont(f) = 1 = cont(g), so in particular f, g ∈
Z[T ], and have to show cont(fg) = 1, or equivalently that in the ring Z[T ]
we have

p|fg =⇒ p|f or p|g

for all primes p ∈ Z, i.e. prime numbers p ∈ Z ⊂ Z[T ] are even prime in Z[T ]!
In order to see that we consider the corresponding ”reduced” polynomials
f̃ , g̃ ∈ Zp[T ]. Since that ring is an integral domain, we know that 0 = f̃ g = f̃ g̃
implies f̃ = 0 or g̃ = 0, and that is exactly what we need.

Corollary 3.41. 1. If f ∈ Z[T ] can not be written as a product f = gh of
polynomials g, h ∈ Z[T ] of lower degree, the polynomial f is irreducible
in Q[T ].
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2. If f = gh is a factorization of a monic polynomial f ∈ Z[T ] with monic
factors g, h ∈ Q[T ], then we have even g, h ∈ Z[T ]. In particular the
rational zeroes of such a polynomial f ∈ Z[T ] are integers.

Proof. 1) Assume f ∈ Z[T ] is reducible (not irreducible), i.e., can be written
f = pq with polynomials p, q ∈ Q[T ] of lower degree. Write p = cont(p)g, q =
cont(q)h with polynomials g, h ∈ Z[T ]. Then cont(p)cont(q) = cont(f) ∈ Z
and f = (cont(p)cont(q)g)h is a factorization of f in Z[T ] into polynomials
of lower degree. Contradiction!
2) The content of a monic polynomial in Q[T ] is of the form 1/m with a
natural number m ≥ 1. Hence, f having content 1 = cont(g) · cont(h),
so do g and h and thus g, h ∈ Z[T ]. Finally apply this to a factorization
f = (T − a)h, if a ∈ Q is a zero of f .

So it suffices to discuss irreducibility questions within the ring Z[T ]. Here
is a sufficient criterion:

Proposition 3.42. Let f ∈ Z[T ] \ {0} be a polynomial of degree ≥ 1 and
m ∈ N>1, such that deg(f̃) = deg(f) for f̃ ∈ Zm[T ]. If then f̃ does not
admit a factorization into polynomials of lower degree in Zm[T ], then f is
irreducible in Q[T ].

Proof. Assume f = gh in Q[T ]. According to 3.41 we may assume g, h ∈
Z[T ]. But then we have f̃ = g̃h̃ as well with polynomials g̃, h̃ ∈ Zm[T ] of
lower degree. Contradiction.

Example 3.43. Let f = T 5 − T 2 + 1. Take m = 2. We obtain f̃ =
T 5 + T 2 + 1 ∈ Z2[T ]. Assume f̃ is not irreducible. Since f̃ has no zeroes in
Z2, there is an irreducible (monic) polynomial of degree 2 dividing f̃ . But the
quadratic polynomials in Z2 are T 2, T 2 +T = T (T +1), T 2 +1 = (T +1)2 and
T 2 + T + 1. The last one has no zero in Z2 and thus is irreducible, jfr. 2.29,
while the others are reducible. Now the division algorithm for polynomials
3.6 gives

T 5 + T 2 + 1 = (T 3 + T 2)(T 2 + T + 1) + 1 ;

so f̃ is not divisible with T 2 + T + 1 and hence irreducible. It follows that
f ∈ Q[T ] indeed was irreducible.

Proposition 3.44 (Eisenstein’s criterion). (Ferdinand Gotthold Max Eisen-
stein, 1823-1852)): Let f = anT

n + ... + a1T + a0 ∈ Z[T ] and p be a prime
number such that

p 6 |an , p|aν ∀ ν < n , p2 6 |a0 .
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Then f ∈ Q[T ] is irreducible.

Proof. Assume f = gh with polynomials g, h ∈ Q[T ] of lower degree, g =∑k
ν=0 bνT

ν , h =
∑`

ν=0 cνT
ν with k + ` = n. According to 3.41 we may again

assume g, h ∈ Z[T ]. We reduce mod p and obtain then

anT
n = f̃ = g̃h̃ .

in the polynomial ring Zp[T ]. Hence g̃ = bkT
k and h̃ = c`T

`. But k, ` < n
resp. k, ` > 0, hence b0 = 0 = c0 resp. p divides both b0 and c0. Consequently
a0 = b0c0 is divisible with p2. Contradiction.

Example 3.45. Let p be a prime number. We consider the polynomial

f = T p−1 + T p−2 + ...+ T + 1 ∈ Z[T ] .

It looks like that Eisenstein’s criterion is not of much use here. But we can
transform the polynomial by substituting T + 1 for T : Every ring automor-
phism ϕ : Q[T ] −→ Q[T ] maps irreducible polynomials onto irreducible poly-
nomials, and according to 3.15 there is a ring homomorphism ϕ : Q[T ] −→
Q[T ], which is the identity on Q ⊂ Q[T ] and satisfies ϕ(T ) = T + 1. In-
deed, it is an isomorphism with inverse determined by ϕ−1|Q = idQ and
ϕ−1(T ) = T − 1. Hence it is sufficient to check that

ϕ(f) = f(T + 1) = (T + 1)p−1 + ...+ (T + 1) + 1

is irreducible. But

T p − 1 = (T − 1)f =⇒ (T + 1)p − 1 = ((T + 1)− 1)f(T + 1) = Tf(T + 1) ,

whence we obtain with the binomial formula

f(T + 1) = T p−1 + pT p−2 + ...+

(
p

i

)
T p−i−1 + ...+

(
p

p− 2

)
T + p

and Eisenstein’s criterion assures that f(T + 1) - and thus also f itself - is
irreducible.

Problems 3.46. 1. R: Check whether the following polynomials are irreducible: i)
T 4 + T + 1 ∈ Z2[T ], ii) T 3 − T − 1 ∈ Z3[T ], iii) 4T 3 + 81T 2 + 8T + 32 ∈ Q[T ], iv)
T 5 − 4T + 2.
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2. R: Show that the polynomial f := T 4 − 10T 2 + 1 is irreducible. Hint: Show that
f has no zeroes in Z resp. Q, and that it is not the product of two quadratic
polynomials. (We shall see in Problem 4.58.6 that f̃ ∈ Zp[T ] is reducible for all
prime numbers p.)

3. R: Factorize the polynomials T 4 + 1, T 4 − 4, T 4 + 4 over Q,R,C as a product of
irreducible polynomials.

4. R: The cyclotomic polynomials fd ∈ Z[T ], where d ∈ N>0, are defined by the
formula Tn − 1 =

∏
d|n fd for all n ∈ N>0. Compute fd for d ≤ 9 and a prime

number d and check whether they are irreducible.

5. R: Show that Z[T ] is not a principal ideal domain!

6. R: Show that Z[T ] is a factorial ring.

7. Show that Gauß’ lemma 3.40 holds for a factorial ring R instead of Z with an
appropriate(!) definition of the content. Hint: For an irreducible element u ∈ R in
a factorial ring R the factor ring R/(u) is an integral domain.

8. Show: The polynomial ring over a factorial ring R is again factorial. In particular
the polynomial ring K[Y, T ] := (K[Y ])[T ] is factorial.

9. Let K(Y ) := Q(K[Y ]) be the field of all rational functions in the variable Y and
g, h ∈ K[T ] two relatively prime polynomials. Show that g − Y h ∈ K(Y )[T ] is
irreducible. Hint: Since K[Y ] is factorial, it suffices to show, that it is irreducible
in (K[Y ])[T ] ∼= (K[T ])[Y ].
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4 Field Extensions and Galois Theory

4.1 Basic Definitions

Definition 4.1. A field extension of the field K is a pair (E,ϕ) with a
field E and a ring homomorphism ϕ : K −→ E.

Remark 4.2. 1. According to Example 3.22.8 ϕ is automatically injec-
tive, and therefore we may identify K with ϕ(K) ⊂ E, such that we
usually write K ⊂ E or E ⊃ K in order to denote a field extension.

2. The notion of a real or complex vector space can easily be generalized
to that of a vector space over a field K: In the axioms we have only
to replace R or C with K. In particular the following notions apply:
linearly dependent resp. independent, basis, dimension, linear map,
determinant of an endomorphism etc.

3. If E ⊃ K is a field extension, then E is a K-vector space - the scalar
multiplication is taken to be the field multiplication of elements in
K ⊂ E with elements in E.

As a consequence of 4.2.3 we obtain

Corollary 4.3. For any finite field F its order q := |F| is of the form q = pn

with p := char(F) > 0.

Proof. Since F is finite, it has positive characteristic p > 0, and thus we
obtain the field extension F ⊃ P (F) ∼= Zp. In particular F is a finite dimen-
sional Zp-vector space and hence, as vector spaces, F ∼= (Zp)n for n = dimF.
Consequently |F| = pn.

Indeed, in section 4.5 we shall see that for any q = pn there is, up to
isomorphy, exactly one finite field Fq of order |Fq| = q.

Let us now study some explicit examples:

Example 4.4. 1. Let f ∈ K[T ] be an irreducible polynomial. Then
(E := K[T ]/(f), ϕ) is a field extension, where the ring homomorphism
ϕ : K −→ E is the composite of the inclusion K ↪→ K[T ] and the
quotient map K[T ] −→ K[T ]/(f) = E.

In particular let us mention:

100



(a) The complex numbers as an extension of the real numbers: C ⊃ R.
Indeed C ∼= R[T ]/(T 2 + 1).

(b) Let d ∈ N>0 be not a square. Then Q[
√
d] := Q + Q

√
d ⊃ Q is a

field extension, and Q[
√
d ] ∼= Q[T ]/(T 2 − d).

(c) A finite counterpart to C: Let p be an odd prime number p 6≡
1 mod(4). Then the polynomial f = T 2 + 1 has no zeros in
K := Fp := Zp, since a zero would be an element of order 4 in F∗p,
but the order of that group is not divisible with 4.

So we obtain a new field Fp2 := Fp[T ]/(f), where the element
i := T satisfies i2 = −1 and every element can be written uniquely
in the form a+bi; a, b ∈ Fp. The arithmetic in Fp2 thus is the same
as that for complex numbers with the reals R replaced by Fp.

2. The real numbers as an extension of the rational numbers: R ⊃ Q.

3. The p-adic number field as an extension of the rationals: Qp ⊃ Q.

4. For a given field K we mention the extensions:

(a) K(T ) ⊃ K, where

K(T ) := Q(K[T ])

denotes the field of fractions of the polynomial ring K[T ], usually
called the field of rational functions in one variable over K;

(b) K((T )) ⊃ K, where

K((T )) = T−NK[[T ]] = Q(K[[T ]])

denotes the field of formal Laurent series with finite principal part
over K, see Problem 3.9.8, and

(c) K((T )) ⊃ K(T ): The inclusion K[T ] ⊂ K[[T ]] extends to an
injective homomorphism K[T ](T ) ↪→ K[[T ]], since K[T ] \ (T ) ⊂
K[[T ]]∗. Now localization with respect to the multiplicative set
S = T−N yields a homomorphism

K(T ) = T−NK[T ](T ) ↪→ K((T )) = T−NK[[T ]].
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Definition 4.5. Let E ⊃ K be a field extension. The degree [E : K] ∈
N>0 ∪ {∞} is defined as the dimension of E as K-vector space, i.e.

[E : K] := dimK E .

The field extension E ⊃ K is called finite iff [E : K] <∞.

Example 4.6. In Example 4.4.1 we have [E : K] = n := dim(f), since
according to ?? a basis of the K-vector space E is given by 1, ϑ := T , ..., ϑn−1.
In particular, the extensions C ⊃ R and Fp2 ⊃ Fp have degree 2, while the
remaining extensions in 4.4.2-4 are infinite.

Remark 4.7. Let E ⊃ K be a field extension. We take an element a ∈ E
and consider the ring homomorphism ψa : K[T ] ↪→ E[T ] −→ E, f 7→ f(a),
which is the restriction to K[T ] ⊂ E[T ] of the evaluation homomorphism
E[T ] −→ E, f 7→ f(a), cf. 3.15 with R = E. We denote

K[a] := ψa(K[T ]) = {f(a); f ∈ K[T ]} ⊂ E,

its image and

ma := ker(ψa) = {f ∈ K[T ]; f(a) = 0}

its kernel. As kernel of a ring homomorphism ma is an ideal, such that

K[a] ∼= K[T ]/ma .

In fact, Prop.2.45 provides an isomorphism of the underlying additive groups,
which even is a ring isomorphism.
If ma = {0}, then K[a] ∼= K[T ] is an infinite dimensional K-vector space.
Otherwise there is according to 3.27 a polynomial pa ∈ K[T ] \ {0} such
that ma = (pa), and we then have dimK K[a] = deg(pa) according to ??.
The polynomial pa ∈ K[T ] is determined up to a constant non-zero factor;
requiring it to be monic, it becomes unique. It is irreducible, since the factor
ring K[T ]/ma

∼= K[a] ⊂ E is an integral domain, indeed, even a field: Non-
trivial prime ideals in the principal ideal domain K[T ] are maximal. So we
have a field extension K[a] ⊃ K with [K[a] : K] = deg(pa).

Definition 4.8. Let E ⊃ K be a field extension. An element a ∈ E is called

1. transcendent over K, iff ψa is injective, i.e., iff ma = {0}.
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2. algebraic over K, iff ma 6= {0}. In that case ma = (pa) with a unique
monic (irreducible) polynomial pa ∈ K[T ], which is called the minimal
polynomial of a ∈ E over K.

Remark 4.9. 1. If f ∈ K[T ] is an irreducible monic polynomial and
a ∈ E ⊃ K a zero of f , then pa = f .

2. In order to compute the minimal polynomial of an element a ∈ E one
considers the powers a0 = 1, a, a2, ..., an for n ∈ N. If they are linearly
independent for all n ∈ N, the element a ∈ E is transcendent over
K, otherwise choose n ∈ N minimal with a0 = 1, a, a2, ..., an linearly
dependent. So there is a linear combination

λna
n + ...+ λ1a+ λ0 = 0

with λi ∈ K not all zero. If λn = 0, already 1, a, ..., an−1 are linearly
dependent, so necessarily λn 6= 0 according to the choice of n. Then

pa = T n +
n−1∑
i=0

λ−1
n λiT

i

is the minimal polynomial of a ∈ E over K. Hence if a ∈ E \ K is
the zero of a quadratic monic polynomial f ∈ K[T ], it is the minimal
polynomial: pa = f , e.g. the numbers

√
2, i ∈ C ⊃ Q have the minimal

polynomials p√2 = T 2 − 2 resp. pi = T 2 + 1. In Example 4.14. we
present an explicit calculation leading to n = 4.

3. Transcendent numbers: A complex number is called algebraic resp.
transcendent, if it is algebraic resp. transcendent over Q. The set Qa ⊂
C of all algebraic numbers is countable, since Q[T ] is countable, while
C itself is uncountable: So the vast majority of all complex numbers
numbers is transcendent, but nevertheless it is not easy to show that
a specific number is transcendent. For example one knows that each
number ea with an algebraic number a ∈ C is transcendent - conclude
that both e (Charles Hermite, 1822-1901) and π (cf. Problem 4.15.2)
(Carl Louis Ferdinand von Lindemann, 1852-1939) are transcendent!
- or that irrational numbers a ∈ R \ Q are transcendent, if they can
be approximated “very well” by rational numbers (if one compares the
error in relation to the size of the denominators of the approximating
rational numbers). It is even known that eπ is transcendent, but what
about e+ π, eπ, πe?

103



But here we are essentially interested in algebraic or even finite extensions:

Definition 4.10. A field extension E ⊃ K is called algebraic, if every ele-
ment a ∈ E is algebraic over K.

Proposition 4.11. A finite field extension is algebraic.

Proof. Let E ⊃ K be finite and a ∈ E. Since K[a] ⊂ E is a vector subspace,
we have dimK K[a] ≤ dimK E <∞. Now use 4.7!

Proposition 4.12. Let L ⊃ E and E ⊃ K be field extensions. If they are
algebraic resp. finite, the composite field extension L ⊃ K is as well.

Furthermore, in the finite case, the degree is multiplicative, i.e.

[L : K] = [L : E] · [E : K] .

Before we prove 4.12, we extend the notation K[a]:

Notation: Let E ⊃ K be a field extension, a1, ..., ar ∈ E. Then we define

K[a1, ..., ar] :=

 ∑
(ν1,...,νr)∈Nr

bν1,...,νra
ν1
1 · ... · aνrr ; bν1,...,νr ∈ K almost all = 0

 ⊂ E ,

where ”almost all” means ”all except finitely many”. With other words: All
our sums are finite.
For r = 1 this is our old definition, and furthermore for r > 1:

K[a1, ..., ar] = (K[a1, ..., ar−1])[ar] .

Proof of 4.12. The case of finite extensions together with the degree formula
follows from the following observation: If u1, ..., un is a basis of the K-vector
space E and v1, ..., vm a basis of the E-vector space L, then the products
uivj, 1 ≤ i ≤ n, 1 ≤ j ≤ m, form a basis of L as K-vector space - the details
are left to the reader.
Let us now consider the algebraic case. Given an element a ∈ L we construct
a finite extension L0 ⊃ K containing it, thus proving that it is algebraic
over K. First of all: If a1, ..., ar ∈ L are algebraic, then K[a1, ..., ar] ⊃ K
is a finite field extension. To see that use remark 4.7 and induction on r as
well as what we just have noticed. Consider now the minimal polynomial
pa = Tm + bm−1T

m−1 + ... + b1T + b0 ∈ E[T ] of a over E and take E0 :=
K[b0, ..., bm−1], L0 := E0[a]. Then E0 ⊃ K (since b0, ..., bm−1 are algebraic
over K) as well as L0 ⊃ E0 are finite extensions; so L0 ⊃ K is as well.
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Remark 4.13. If E ⊃ K is a field extension, the elements in E, which are
algebraic over K, constitute a subfield Ea ⊂ E, i.e. Ea endowed with E:s
field operations is itself a field. For that we have to show b, c ∈ Ea =⇒
b + c, bc, b−1 ∈ Ea, where b 6= 0 in the last case. But that is evident since
K[b, c] ⊃ K is a finite field extension and thus K[b, c] ⊂ Ea.

Example 4.14. We know already that
√

2, i ∈ C are algebraic over Q and
thus also a :=

√
2 + i. We compute its minimal polynomial pa ∈ Q[T ]: First

we consider the field E := Q[
√

2, i] 3 a. Since
√

2 has minimal polynomial
T 2 − 2 over Q and i has minimal polynomial T 2 + 1 over Q[

√
2], it folllows

that [E : Q] = [Q[
√

2][i] : Q[
√

2]] · [Q[
√

2] : Q] = 2 · 2 = 4 and that a basis of
the Q-vector space E is given by 1,

√
2, i, i

√
2.

Since deg(pa) = [Q[a] : Q] divides [E : Q] = 4, the minimal polynomial has
either degree 1, 2 or 4. But 1, a =

√
2 + i, a2 = 1 + 2 · i

√
2 are obviously

linearly independent, so we obtain the degree 4, in particular E = Q[
√

2 + i].
Furthermore a3 = −

√
2+5i and a4 = −7+4·i

√
2 = 2(1+2·i

√
2)−9 = 2a2−9.

Hence pa = T 4 − 2T 2 + 9.

Problems 4.15. 1. R: Let E ⊃ K be a finite field extension and a ∈ E. Show: The
K-vector space endomorphism µa : E −→ E, x 7→ ax, has characteristic polynomial
(pa)s with s := [E : K[a]].

2. R: Show: The number π ∈ R is transcendent, using the fact that ea is transcendent
for any algebraic number a ∈ C.

3. Let K(X) = Q(K[X]) be the field of all rational functions in one variable X over
K (the letter X replacing our usual T in order to reserve the latter for polynomials
over K(X)). Show that the extension K(X) ⊃ K is purely transcendent, i.e.
K(X)a = K. Hint: Take f = g/h ∈ K(X)a with relatively prime polynomials
g, h ∈ K[X] and consider the equation pf (gh−1)hn = 0, where n := deg(pf ) with
the minimal polynomial pf ∈ K[T ] of f over K.

4. Let K(Y ) = Q(K[Y ]) and K(X) = Q(K[X]) be two copies of the field of all
rational functions in one variable Y resp. X over K. If f := g/h ∈ K(X) \ K,
where g, h ∈ K[X] are relatively prime, the ring homomorphism σ : K[Y ] −→ K(X)
with σ|K = idK , σ(Y ) = f is injective and can therefore uniquely be extended to
a homomorphism σ̂ : K(Y ) −→ K(X). Show that the field extension (K(Y ), σ̂)
has degree max(deg(g),deg(h))! Hint: The minimal polynomial of X over K(Y ) ∼=
σ̂(K(Y )) is up to a constant factor ∈ K∗ ∪K∗Y ⊂ K(Y )∗ the polynomial g(T ) −
Y h(T ) ∈ K(Y )[T ]. Here g(T ), h(T ) ∈ K[T ] denote the polynomials obtained from
g, h ∈ K[X] by substituting T for X!

5. R: Let K be a field and f = fk11 ·...·fkrr the factorization of the polynomial f ∈ K[T ]
as product of irreducible polynomials. Show an analogue of the Chinese Remainder
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Theorem:

K[T ]/(f) ∼=
r∏
i=1

K[T ]/(fkii ) .

Show that the summands are local rings, with their nilradical as the maximal ideal.
Hint: Compare the dimensions of the underlying K-vector spaces!

6. Let K[ϑ] = K[T ]/(f) with ϑ := T . Determine the matrix of the K-linear map
µϑ : K[ϑ] −→ K[ϑ] given by µϑ(x) := ϑx with respect to the basis 1, ϑ, ..., ϑn−1,
where n = deg(f). Show: K[A] ∼= K[ϑ].

7. Algebraic integers: A complex number λ ∈ C is called an algebraic integer if
it is the zero of a monic polynomial f ∈ Z[T ]. Show:

(a) A rational algebraic integer (sometimes simply called a “rational integer”) is
a usual integer.

(b) A complex number λ ∈ C is an algebraic integer iff there is an n ∈ N and a
square matrix A ∈ Zn,n, i.e. with integer entries, having λ as an eigenvalue.

(c) The algebraic integers form a subring of C. (For this part you need to know
the notion of the tensor product V ⊗W of two K-vector spaces V and W .)

(PS: We shall see in Problam 4.46.6 that we also could have required for λ ∈ Qa
to be an algebraic integer that pλ ∈ Z[T ] holds for the minimal polynomial pλ of λ
over Q.)

4.2 Automorphism Groups

The modern formulation of Galois theory has been created in the 1920-ies by
Emil Artin (1898-1962). The central notion is that of a field automorphism.

Definition 4.16. Let E ⊃ K and L ⊃ K be field extensions of the same
field K. A K-morphism (or simply morphism, if it is clear, which field
K has to be taken) between the field extensions E ⊃ K and L ⊃ K is a ring
homomorphism

σ : E −→ L ,

such that σ|K = idK.
Two extensions E ⊃ K and L ⊃ K of a given field are called isomorphic,

if there is a K-morphism σ : E −→ L, which is a (ring) isomorphism.
If L = E such a σ is called a K-automorphism (or simply an automor-
phism) of the field extension E ⊃ K.

The set

AutK(E) := {σ : E −→ E K−automorphism}
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constitutes a subgroup of the permutation group S(E) and is called the au-
tomorphism group of the extension E ⊃ K.

Example 4.17. 1. The identity idE is in any case an automorphism of
the field extension E ⊃ K.

2. Complex conjugation σ : C −→ C, z 7→ z̄, is an automorphism of the
extension C ⊃ R.

3. Let d ∈ N>0 not be a square. Then Q[
√
d ] ⊃ Q is a field, and beside

idQ we have the automorphism σ : a+ b
√
d 7→ a− b

√
d, where a, b ∈ Q.

A “non-algebraic” observation: The automorphism σ is not continuous
(with respect to the topology on Q[

√
d ] ⊂ R as subset of the reals):

Take a sequence (xν) ⊂ Q converging to
√
d ∈ R. Then xν −

√
d tends

to 0, but σ(xν −
√
d) = xν +

√
d does not converge to σ(0) = 0, but to

2
√
d.

4. We have AutQ(R) = {idR} according to 4.20.3.

5. In striking contrast the automorphism group AutQ(C) is quite large:
Every automorphism σ : K −→ K of some subfield K ⊂ C can be
extended to an automorphism σ̂ : C −→ C, cf. Problem 5.11.3. But
the only continuous ones are the identity or complex conjugation, cf.
Problem 4.20.4.

6. Let E be a field with char(E) = p > 0. Then E ⊃ P (E) ∼= Zp is a
field extension, and σ : E −→ E, x 7→ xp, is a Zp-morphism: Obviously
σ(xy) = σ(x)σ(y), while

σ(x+y) = (x+y)p = xp+

p−1∑
ν=1

(
p

ν

)
xνyp−ν+yp = xp+yp = σ(x)+σ(y) ,

since for 1 ≤ ν ≤ p − 1 the binomial coefficients
(
p
ν

)
= p!

ν!(p−ν)!
are

divisible by p (p being a prime) and therefore = 0 in the field E. Fur-
thermore xp = xp−1x = x for x ∈ Zp according to Lagrange’s theorem
2.38 applied to Z∗p. It is even surjective and thus an automorphism,
if E is a finite field, an injective map from a finite set to itself being
surjective as well. It is called Frobenius homomorphism resp. - if
it is even surjective - Frobenius automorphism (Georg Frobenius,
1849-1917).
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The next proposition describes AutK(E) for E = K[a] as a set. But
for technical reasons the formulation is slightly more general: We consider a
(ring) isomorphism ϕ : K −→ K ′ between two fields K and K ′. It induces
an isomorphism of the corresponding polynomial rings

K[T ] −→ K ′[T ], f =
∑

aνT
ν 7→ fϕ :=

∑
ϕ(aν)T

ν .

Then we have:

Proposition 4.18. 1. Let ϕ : K −→ K ′ be a ring isomorphism between
the fields K and K ′, E = K[a] ⊃ K and E ′ ⊃ K ′ field extensions,
[E : K] <∞ and pa ∈ K[T ] the minimal polynomial of a over K. Then
there is a bijective correspondence between the ring homomorphisms

σ : E = K[a] −→ E ′

extending ϕ, and the zeroes of the polynomial pϕa in the field E ′, given
by

σ 7→ σ(a) .

2. If E ′ = E = K[a], then

AutK(E) −→ NE(pa), σ 7→ σ(a)

is a bijection. Here for a polynomial f ∈ K[T ] we denote

NE(f) := {b ∈ E; f(b) = 0}

the set of all zeroes of f in E.

Proof. i) Let σ : E −→ E ′ be an extension of ϕ : K −→ K ′. Then for any
polynomial f ∈ K[T ] we have

σ(f(a)) = fϕ(σ(a)) .

Now every element in K[a] is of the form f(a), hence the above formula
shows that σ is uniquely determined by σ(a).
On the other hand, taking f = pa we see that pϕa (σ(a)) = σ(pa(a)) = σ(0) =
0. It remains to show that every zero of pϕa can be realized as σ(a): The ring
isomorphism

K[T ] −→ E, f 7→ f(a)
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induces an isomorphism K[T ]/(pa) ∼= K[a] = E, while according to 3.15,
there is for every b ∈ E ′ a ring homomorphism

ϕb : K[T ] −→ E ′

with ϕb|K = ϕ and ϕb(T ) = b – here we regard ϕ as a ring homomorphism
K −→ E ′. If now b is a zero of pϕa , we have ϕb(pa) = pϕa (b) = 0. Hence
(pa) ⊂ ker(ϕb), and therefore ϕb factors through K[T ]/(pa) ∼= K[a] = E, the
second factor being the looked for map σ with σ(a) = b.
ii) Apply i) with K ′ = K and ϕ = idK , using the fact that a K-morphism of
a finite field extension E ⊃ K to itself automatically is an automorphism, as
an injective endomorphism of the finite dimensional K-vector space E.

Let us now compute some automorphism groups:

Example 4.19. 1. AutR(C) = {idC, σ} ∼= Z2 with the complex conjuga-
tion σ : z 7→ z̄. Apply 4.18.ii) to C = R[i], pi = T 2 + 1.

2. Let d ∈ N>0 be not a square. Then AutQ(Q[
√
d]) = {idC, σ} ∼= Z2 with

σ : a+ b
√
d 7→ a− b

√
d. Apply 4.18.ii) to Q[

√
d ] ⊃ Q, p√d = T 2 − d.

3. Consider a monic polynomial f ∈ Q[T ] of degree deg(f) = 3 without
zero in Q. (So it is irreducible over Q). Then f has at least one real zero
a ∈ R, since the polynomial function R −→ R, x 7→ f(x), is continuous
and limx→∞ f(x) = ∞, limx→−∞ f(x) = −∞ (apply the theorem on
intermediate values). We investigate the extension E := Q[a] ⊃ Q:

First of all write f = (T −a)g with a quadratic polynomial g ∈ E[T ] ⊂
R[T ]. Since any quadratic polynomial g ∈ R[T ] has complex zeroes,
we may write g = (T − b)(T − c) with complex numbers b, c ∈ C. Now
there are two possibilities:

1.) Either b 6∈ E (and then c 6∈ E as well), e.g. if b, c ∈ C \R as in the
case f = T 3 − 2, where we have a = 3

√
2, b = aε, c = aε2 with the third

root of unity ε = 1
2
(−1 + i

√
3). Then obviously AutQ(E) = {idE}. Or

2.) b ∈ E (and then c ∈ E as well). The real zeroes a, b, c are pairwise
different: Regard f as function f : R −→ R. Since f is the minimal
polynomial of its zeroes, its derivative f ′ as a polynomial of degree
2 < 3 = deg(f) has none of them as a zero, i.e. f has only simple and
hence 3 pairwise different zeroes.
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Then there are unique automorphisms σ, τ ∈ AutQ(E) with σ(a) =
b, τ(a) = c, and AutQ(E) = {idE, σ, τ}. Hence |AutQ(E)| = 3, and
since a group of prime order is cyclic, it is generated by σ or τ and
τ = σ2, σ = τ 2.

As an example of such a polynomial f we can take f = T 3 − 3T + 1.
Indeed, the identity

f(T 2−2) = T 6−6T 4+9T 2−1 = (T 3−3T−1)(T 3−3T+1) = (T 3−3T−1)·f

implies that b := a2 − 2 6= a (the elements 1, a, a2 constitute a basis of
the Q-vector space E) is another zero of f . In fact, we can give a zero of
f explicitly, namely the real number a := 2 cos(2π/9) = ζ+ζ = ζ+ζ−1

with ζ := e2πi/9: Since ζ3 is a third root of unity, we get (ζ3)2 +ζ3 +1 =
0, whence:

f(a) = (ζ+ζ−1)3−3(ζ+ζ−1)+1 = ζ3 +3ζ+3ζ−1 +ζ−3−3(ζ+ζ−1)+1

= ζ3 + 3ζ + 3ζ−1 + ζ−3 − 3(ζ + ζ−1) + 1 = ζ3 + ζ6 + 1 = 0 .

4. Finally we consider the extension E = Q[
√

2, i] ⊃ Q. We know already
that E = Q[

√
2 + i] and

p√2+i = T 4−2T 2+9 = (T−(
√

2+i))(T−(
√

2−i))(T+(
√

2+i))(T+(
√

2−i)) .

In particular p√2+i has 4 pairwise distinct zeroes in E, so there are 4
automorphisms as well. It remains to determine the group structure:
There are exactly two non-isomorphic groups of order 4, namely Z4 and
Z2 × Z2, cf. Problem 2.6.4.

Now for every automorphism σ ∈ AutQ(E) we have σ(
√

2)2 = σ(
√

2
2
) =

σ(2) = 2 and σ(i)2 = σ(i2) = σ(−1) = −1. Hence σ(
√

2) = ±
√

2, σ(i) =
±i, and any distribution of signs can be realized, since there really are
4 automorphisms and each of them is uniquely determined by its values
σ(
√

2), σ(i). In particular σ2 = idE for all automorphisms, i.e. there is
no element of order 4, whence AutQ(E) ∼= Z2 × Z2.

Problems 4.20. 1. R: For a field K and n ∈ N set Cn(K) := {a ∈ K; an = 1} ⊂ K∗,
the subgroup of K∗ of all n-th roots of unity in K (so Cn = Cn(C)). An element
ζ ∈ Cn(K) of order n is called a primitive n-th root of unity. Let F := K[ζ] ⊃ K
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with a primitive n-th root of unity ζ ∈ Cn(F ). Show: AutK(F ) is isomorphic with
a subgroup of the group of units Z∗n of the ring Zn. Hint: Every automorphism
σ ∈ AutK(F ) induces a group automorphism σ|Cn(F ) : Cn(F ) −→ Cn(F ), and
Problem 2.39.6.

2. Let K be a field containing all n-th roots of unity, i.e. the polynomial Tn−1 ∈ K[T ]
can be factorized as a product of linear polynomials, and E := K[b] ⊃ K a field
extension, where bn = a ∈ K. Show that AutK(E) is isomorphic with a subgroup
of the group Cn(K) ⊂ K∗ of all n-th roots of unity in K, hence in particular a
cyclic group. Furthermore: If n = p is a prime number, either E = K or T p − a is
the minimal polynomial pb ∈ K[T ] of b ∈ E over K.

3. R: Show: AutQ(R) = {idR}. Hint: R≥0 = {x2;x ∈ R}.

4. R: Show: Any continuous automorphism σ : C −→ C is the identity or complex
conjugation.

5. Let E ⊃ K be a field extension. Show: A family of pairwise distinct automorphisms
σ1, ..., σn ∈ AutK(E) ⊂ EndK(E) is linearly independent over K, where EndK(E)
denotes the K-vector space of all endomorphisms of the K-vector space E. Hint:
Induction on n; if λ1σ1 + ... + λnσn = 0 is a non-trivial relation, we may assume
λ1 6= 0 and choose y ∈ E with σ1(y) 6= σn(y). Let x ∈ E be arbitrary. Replace x
with yx in the above relation and get a new relation λ1σ1(y)σ1+....+λnσn(y)σn = 0,
multiply the old one with σn(y) and subtract them. One obtains a non-trivial
relation for σ1, ..., σn−1.

6. Show: AutK(K(X)) ∼= GL2(K)/K∗E, where K∗E denotes the subgroup of all
matrices λE, λ ∈ K∗, i.e. being scalar multiples of the unit matrix E ∈ K2,2.
Hint: Every K-morphism σ : K(X) −→ K(X) is uniquely determined by its value
f := σ(X) ∈ K(X). It is surjective and thus an automorphism iff f = g/h with
non-proportional linear polynomials g, h ∈ K[X] – to see that use Problem 4.15.4.
Then one defines a homomorphism

GL2(K) −→ AutK(K(X)), A −→ σA−1 ,

where the automorphism σA : K(X) −→ K(X) for a matrix

A =

(
a b
c d

)
∈ GL2(K)

is determined by

σA(X) =
aX + b

cX + d
.

Check first that σAB = σB ◦ σA! (The group PGLn(K) := GLn(K)/K∗E is called
the projective linear group (of size n) over K.). Cf. Problem 3.19.6, where we
saw that AutK(K[X]) ∼= Aff(K).
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4.3 Formal Derivatives and Multiplicities

In Prop. 4.18 we have seen that in order to determine the order |AutK(E)|
of the automorphism group of an extension E ⊃ K, it is important to know
how many zeros an irreducible polynomial f ∈ K[T ] may have. An upper
bound is its degree deg(f). But is there always an extension E ⊃ K with
|NE(f)| = deg(f)? In that case every zero of f in E has multiplicity 1:

Definition 4.21. The multiplicity of a zero a ∈ K of a polynomial f ∈
K[T ] \ {0} is the unique number ` ∈ N, such that

f = (T − a)`h with some h ∈ K[T ], h(a) 6= 0 .

Remark 4.22. Let f ∈ K[T ] be an irreducible polynomial and a ∈ E ⊃
K and b ∈ L ⊃ K be zeros of f . Then the multiplicities of f ∈ E[T ]
at a and f ∈ L[T ] at b ∈ L coincide: The factorizations f = (T − a)`h
resp. f = (T − b)kg as in Def. 4.21 are in fact already over the isomorphic
subfields K[a ] ⊂ E resp. K[b ] ⊂ L: We have ma = (f) = mb and thus
K[a ] ∼= K[T ]/(f) ∼= K[b ]. Consequently k = `.

For a more detailed investigation the notion of the formal derivative of a
polynomial f ∈ K[T ] plays an important rôle:

Definition 4.23. The formal derivative of a polynomial f ∈ K[T ], f =∑n
ν=0 aνT

ν, is defined as the polynomial

f ′ :=
n∑
ν=1

νaνT
ν−1 ∈ K[T ] .

Proposition 4.24. The formal derivative

K[T ] −→ K[T ], f 7→ f ′ ,

is a K-linear map, satisfying the ”Leibniz rule”, (Gottfried Wilhelm Leibniz,
1646-1716):

(fg)′ = f ′g + fg′ ,

as well as the chain rule:

g(f)′ = g′(f) · f ′.
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Furthermore for char(K) = 0:

f ′ = 0⇐⇒ f = a0 ∈ K ,

while for char(K) = p > 0:

f ′ = 0⇐⇒ f ∈ K[T p] .

Proof. We comment on the Leibniz rule and the chain rule: Both the left
and the right hand side of the Leibniz rule define bilinear maps K[T ] ×
K[T ] −→ K[T ], so it suffices to check it for the polynomials 1, T, T 2, ....
(which constitute a base of the K-vector space K[T ]). But for f = Tm, g =
T n it holds obviously. The chain rule is linear in g, hence we may assume
g = T n - and then it follows from a repeated application of the Leibniz
rule.

Corollary 4.25. A zero a ∈ K of the polynomial f ∈ K[T ] is simple iff
f ′(a) 6= 0.

Proof. We may assume f 6= 0 and write f = (T − a)`h with a polynomial
h ∈ K[T ], h(a) 6= 0. Then we have f ′ = `(T − a)`−1h+ (T − a)`h′ and hence
f ′(a) = 0 iff ` > 1.

Now we are able to show:

Proposition 4.26. Let f ∈ K[T ] be an irreducible polynomial. Then

1. If f ′ 6= 0, so in particular if char(K) = 0, every zero of f in some
extension E ⊃ K is simple.

2. If char(K) = p > 0, we may write

f = g(T p
n

)

with an irreducible polynomial g ∈ K[T ] with g′ 6= 0 and hence only
simple zeros in any extension E ⊃ K. In particular all zeros of f in
any extension E ⊃ K have multiplicity pn.

Proof. We may assume that f is monic.
i) We show, that f(a) = 0 implies f ′(a) 6= 0. Otherwise f ′ ∈ ma = (f) –
since f as a monic irreducible polynomial is the minimal polynomial pa of
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its zero a ∈ E – hence f |f ′. Since deg(f) > deg(f ′) that implies f ′ = 0.
Contradiction!
ii) Choose n ∈ N maximal, such that all the exponents of the monomials
in the polynomial f are divisible with pn. Then f = g(T p

n
), where g ∈

K[T ], g′ 6= 0. Since f is irreducible, g is as well. Let now a ∈ E be a
zero of f . Then b = ap

n
is a simple zero of g according to the first part, i.e.

g = (T −b)h, where h(b) 6= 0. Finally f = (T p
n−b)h(T p

n
) = (T −a)p

n
h(T p

n
)

with h(ap
n
) 6= 0, i.e., a has multiplicity pn.

The fields K where all irreducible polynomials have automatically only
simple zeros get a name:

Definition 4.27. A field K is called perfect if either char(K) = 0 or
char(K) = p > 0 and the Frobenius homomorphism σ : K −→ K, x 7→ xp, is
surjective.

Example 4.28. 1. A finite field F is perfect: The Frobenius homomor-
phism F −→ F being an injective map from a finite set to itself is also
surjective.

2. Let char(K) = p > 0. Then K(T ) = Q(K[T ]) is not perfect, since the
indeterminate T is not a p-th power.

Remark 4.29. 1. An irreducible polynomial over a perfect field K has
only simple zeros: Write f = g(T p

n
) as in 4.26, with g =

∑
ν aνT

ν .
Since K is perfect there are (unique) pn-th roots cν ∈ K of the coeffi-
cients aν , i.e. (cν)

pn = aν . Then for h =
∑

ν cνT
ν we obtain f = hp

n
,

and thus, f being irreducible, we find n = 0 and f = g.

2. On the other hand, ifK is not perfect, there is an irreducible polynomial
with multiple roots: Choose an element a ∈ K, which is not a p-th
power: Then f := T p−a ∈ K[T ] is an irreducible polynomial. Assume
h|f with an irreducible polynomial h ∈ K[T ]. Take an extension E ⊃
K, such that f(b) = 0 for some b ∈ E. Then f = (T − b)p and
h = (T − b)` with 2 ≤ ` ≤ p, the ring E[T ] being factorial. But
according to Prop. 4.26 the multiplicity ` is a p-power. Since on the
other hand b 6∈ K, we have ` = p, and f = h is irreducible.

For later use we mention the following consequence:
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Corollary 4.30. Let char(K) = p > 0 and E ⊃ K be a finite purely insep-
arable extension, i.e., such that for every x ∈ E there is some s ∈ N with
xp

s ∈ K . Then [E : K] = p` for some ` ∈ N.

Proof. We do induction on the extension degree [E : K]. Take some b ∈ E\K
with a = bp ∈ K. Then according to remark 4.29 we have pb = T p − a and
thus [K[b ] : K] = p. Since on the other hand [E : K[b ]] is a p-power by
induction hypothesis, we obtain that [E : K] is as well.

Problems 4.31. 1. Show Hensels lemma: Let f ∈ Ẑp[T ] be a monic polynomial

over the ring Ẑp of p-adic integers, denote f̃ ∈ Zp[T ] ∼= (Ẑp/(p))[T ] the induced

polynomial. Show: A simple zero ξ ∈ Zp of f̃ has a unique lift a = (ξ, ξ2, ξ3, ...) ∈ Ẑp
to a zero of f in Ẑp. Hint: Construct inductively the components ξn ∈ Zpn ! If
ξn = c + (pn), then ξn+1 = c + tpn + (pn+1), where 0 ≤ t < p. Consider the
expansion f(T + c) = f(c) + f ′(c)T + ....

2. Let r ∈ N>0, relatively prime to both p and p− 1. Show for the “sphere”

Ẑ∗p = {x ∈ Qp; |x| = 1} ⊂ Qp

the following characterization

Ẑ∗p = {x ∈ Q∗p;x is an rn-th power in Qp for all n ∈ N}.

Hint: For the inclusion “⊂” it is sufficient to see that any x ∈ Ẑ∗p is an r-th power
(why?), then use the previous problem with the polynomial f = T r − x.

3. Show AutQ(Qp) = {idQp}. Hint: Use the previous problem in order to see that

σ(Ẑ∗p) ⊂ Ẑ∗p for any automorphism σ : Qp −→ Qp. As a consequence, σ is an
isometry, and thus, Q being dense in Qp, the identity.

4. For the ring K[[X]] of formal power series over a field K and the factor ring
K[[T ]]/(T ) ∼= K formulate and show Hensels lemma, cf. the first problem of this
section 4.31 as well as Problem 3.38.10.

5. Let K be a field and

K((X)) = Q(K[[X]]) = K[[X]]⊕
∞⊕
n=1

KX−n

the field of fractions of the ring K[[X]] of formal power series over K, furthermore
r 6= char(K) a prime number. Show:

K[[X]]∗ = K∗ +XK[[X]]

= K∗ · {f ∈ K((X))∗; f is an rn-th power in K((X)) for all n ∈ N}.
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6. Show that for σ ∈ AutK(K((X))) we have σ(K[[X]]) ⊂ K[[X]]. (Hint: Use the
previous problem in order to see σ(K[[X]]∗) ⊂ K[[X]]∗.) Hence σ : K((X)) −→
K((X)) is the unique extension of a substitution automorphism ψ̂g : K[[X]] −→
K[[X]], f 7→ f(g), with a series g ∈ K∗X +K[[X]]X2, cf. Problem 3.19.7.

7. Show AutK(X)(K((X))) = {idK((X))}.

4.4 Splitting Fields

The example 4.19.3 suggests that a field extension E ⊃ K has a big auto-
morphism group, if it has the following form:

Definition 4.32. 1. A finite field extension E ⊃ K is called normal iff
there is a polynomial f ∈ K[T ], such that

f = (T − a1) · ... · (T − ar)

with elements a1, ..., ar ∈ E and

E = K[a1, ..., ar] .

In that case E is called a splitting field (rotkropp) of the polynomial
f ∈ K[T ].

2. A normal extension E ⊃ K is called a Galois extension or galois
(Évariste Galois, 1811-1832) if we can choose the elements a1, ..., ar ∈ E
pairwise distinct, i.e. such that f only has simple zeroes (or “roots”)
in E, and the automorphism group AutK(E) then also is called the
Galois group of the extension E ⊃ K.

Example 4.33. 1. All field extensions E ⊃ K with [E : K] = 2 are
normal. Why?

2. E = Q[
√

2, i] ⊃ Q is normal, in fact even a Galois extension, since E is
the splitting field of the polynomial T 4 − 2T 2 + 9 or (T 2 − 2)(T 2 + 1),
both having 4 distinct zeros.

Proposition 4.34. For every polynomial f ∈ K[T ] there is an extension
E ⊃ K, such that E is a splitting field of f . If F ⊃ K is another splitting
field of f ∈ K[T ], then the extensions E ⊃ K and F ⊃ K are isomorphic,

but note that there are in general several isomorphisms E
∼=−→ F .
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Proof. Existence: Induction on deg(f). For deg(f) = 1 take E := K. Now
we assume the existence of a splitting field E ⊃ K for any polynomial f ∈
K[T ] with deg(f) < n and any field K. Consider then a polynomial f ∈ K[T ]
with deg(f) = n. According to 3.33 there is an extension E ⊃ K, such that
f has a zero a ∈ E. We may even assume E = K[a] - the element a ∈ E is
algebraic over K and K[a] thus a field.
Now write f = (T − a)g with a polynomial g ∈ E[T ]. Since deg(g) = n− 1
there is an extension L ⊃ E = K[a], such that L is a splitting field of
g ∈ E[T ]. But then L is also a splitting field of f = (T − a)g ∈ K[T ].
Uniqueness: Apply the below proposition.

Proposition 4.35. Let ϕ : K −→ F be a ring homomorphism between the
fields K and F , and let E ⊃ K be a splitting field of f ∈ K[T ]. Assume that
fϕ ∈ F [T ] is “split”, i.e., can be factorized as a product of linear polynomials.

1. There is an extension of ϕ : K −→ F to a ring homomorphism σ :
E −→ F . The number of such extensions equals [E : K], if f has only
simple zeros or if K is perfect, while for a non-perfect field K it is of
the form p−`[E : K] with p := char(K) and some ` ∈ N.

2. If g ∈ K[T ] is an irreducible polynomial dividing f and a ∈ NE(g), b ∈
NF (gϕ), we can even require σ(a) = b.

3. If F ⊃ L := ϕ(K) is a splitting field of fϕ all extensions σ : E −→ F
are isomorphisms.

Proof. 1.) We do induction on [E : K]: For [E : K] = 1 we have E = K and
σ = ϕ.
Now assume that for every extension E ⊃ K as above with [E : K] < n and
any ϕ : K −→ F the statement 1.) holds.
Let now [E : K] = n. Take an element a ∈ NE(f)\K and let g := pa ∈ K[T ].
According to 4.18.ii) with E ′ = F,K ′ := ϕ(K) there is for every b ∈ NF (gϕ)
precisely one extension ψ : K[a] −→ F with ψ(a) = b, and NF (gϕ) 6= ∅, since
gϕ divides fϕ. Because of [E : K[a]] < n we know according to the induction
hypothesis that every ψ can be extended to some σ : E −→ F . If f has only
simple zeros, so does g as well as gϕ and thus there are deg(gϕ) = deg(g) =
[K[a] : K] different choices for ψ. On the other hand, by induction hypothesis
every ψ admits [E : K[a ]] different extensions σ : E −→ F . Altogether
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ϕ : K −→ F can be extended exactly in [E : K[a ]][K[a ] : K] = [E : K]
different ways.

If K is perfect we may replace f with a polynomial f̃ with only simple zeros:
Denote f1, ..., fr the (pairwise distinct) monic irreducible divisors of f , then
set f̃ = f1 · ... · fr.
Finally if K is not perfect and char(K) = p > 0, write fi = gi(T

psi ) with
an irreducible polynomial gi 6∈ K[T p] as in Prop. 4.26 and denote E0 ⊂ E
the splitting field of g1 · ... · gr. Then we have x ∈ E0 =⇒ xp

s ∈ E0 with
s = max(s1, ..., sr), since that holds for all x ∈ NE(f). Now there are [E0 : K]
different extensions σ0 : E0 −→ F of ϕ, while for every σ0 there is only one
σ : E −→ F extending σ0, the Frobenius homomorphism being injective.
Since on the other hand [E : E0] = p` with some ` ∈ N according to Cor.
4.30, we are done.

2.) is an immediate consequence of the above argument, if a 6∈ K, while the
case a ∈ K is trivial.

3.) Applying i) with the ring homomorphism ϕ−1 : L := ϕ(K) −→ K
we obtain an extension τ : F −→ E. The homomorphisms τ ◦ σ : E −→
E and σ ◦ τ : F −→ F then are necessarily automorphisms as injective
endomorphisms of finite dimensional K- resp. L-vector spaces. In particular
σ is an isomorphism.

Remark 4.36. 1. For every finite extension E ⊃ K there is an extension
L ⊃ E such that L ⊃ K is normal: Write E = K[a1, ..., ar] and set
f := pa1 · ... ·par ∈ K[T ], where pai ∈ K[T ] is the minimal polynomial of
ai over K. Let L ⊃ E be the splitting field of the polynomial f ∈ E[T ].
Obviously it is also the splitting field of f ∈ K[T ].

2. If L ⊃ E ⊃ K is a field extension and L ⊃ K is normal, so is L ⊃ E.
Furthermore if both L ⊃ E and E ⊃ K are normal, then L ⊃ K is
normal, if L ⊃ E is the splitting field of a polynomial ∈ K[T ] ⊂ E[T ],
but otherwise it may happen that L ⊃ K is not normal any longer, cf.
Example 4.41.2.

A natural question now arises: Is it possible to find a (not necessarily finite)
algebraic extension E ⊃ K, such that every polynomial f ∈ K[T ] can be
written as a product of linear polynomials in E[T ]? A possible construction
could be like this:
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We assume that the irreducible monic polynomials in K[T ] of degree > 1 can
be arranged in a sequence (fn)n∈N+ – for K = Q this applies since Q[T ] =⋃∞
n=1 Q[T ]≤n itself is countable (where K[T ]≤n := K ⊕ KT ⊕ ... ⊕ KT n).

Then we define inductively an increasing sequence of extensions (En)n∈N:
Set E0 := K and for n ≥ 1 define En ⊃ En−1 to be a splitting field of
fn ∈ K[T ] ⊂ En−1[T ] and take E :=

⋃∞
n=1En as their union.

In the general case we have to apply Zorns lemma, cf. 5.4 and 5.8. In
any case the field E deserves a name:

Definition 4.37. 1. Let E ⊃ K be an algebraic extension, such that every
polynomial f ∈ K[T ] can be written as a product of linear polynomials
in E[T ]. Then E is called an algebraic closure of the field K.

2. A field K is called algebraically closed, iff it is its own algebraic
closure, i.e., iff every polynomial in K[T ] can be written in K[T ] as a
product of linear polynomials.

In fact two algebraic closures E ⊃ K and L ⊃ K of a given field K are
isomorphic, cf. 5.8. Algebraically closed fields are characterized in:

Proposition 4.38. For a field K the following statements are equivalent:

1. K is algebraically closed.

2. There are no non-trivial finite extensions E ⊃ K (i.e., such that E 6=
K).

3. Every irreducible polynomial ∈ K[T ] is a linear polynomial.

We leave the easy proof as an exercise to the reader.

Example 4.39. 1. The field C of all complex numbers is algebraically
closed, cf. 4.66.

2. The algebraic closure E ⊃ K of a field K is algebraically closed: Oth-
erwise there is a non-trivial finite extension L ⊃ E. The composite
extension L ⊃ K is algebraic; take an element a ∈ L \ E and consider
its minimal polynomial pa ∈ K[T ] over K. It can be factorized into
linear polynomials over E and hence a ∈ E. Contradiction!
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3. The set
Qa := {z ∈ C; z algebraic over Q} ⊂ C ,

of all algebraic complex numbers constitutes a field, cf. 4.13, the alge-
braic closure of Q. Note that it is much smaller than C, more precisely:
Qa is countable, but C is not.

Let us return to finite extensions! The next proposition characterizes
splitting fields:

Proposition 4.40. For a finite field extension E ⊃ K the following condi-
tions are equivalent:

1. The extension E ⊃ K is normal.

2. If an irreducible polynomial g ∈ K[T ] has a zero in E, then it can
already be factorized into linear polynomials in E[T ].

3. If L ⊃ E is another finite field extension, then σ(E) = E for all
automorphisms σ ∈ AutK(L).

Before we prove 4.40, let us discuss some examples:

Example 4.41. 1. The extension Q[ 3
√

2] ⊃ Q is not normal, since the
irreducible polynomial f = T 3− 2 has a zero in Q[ 3

√
2], but can not be

written as a product of linear polynomials in (Q[ 3
√

2])[T ].

2. A warning: If L ⊃ E and E ⊃ K are normal extensions, the composite
extension L ⊃ K need not be normal: Consider L = Q[ 4

√
2], E =

Q[
√

2], K = Q: The extensions L ⊃ E and E ⊃ K have degree 2
and hence are normal, but L ⊃ K is not: The irreducible polynomial
T 4− 2 ∈ Q[T ] has the zeros ± 4

√
2 ∈ E, but is not the product of linear

polynomials ∈ L[T ], since L ⊂ R, while T 4 − 2 has the non-real zeros
±i 4
√

2 ∈ C.

Proof. ”i) =⇒ iii)”: Assume that E is the splitting field of the polynomial
f ∈ K[T ] and σ : L −→ L is a K-automorphism. Let N(f) = NL(f) =
{a1, ..., ar}. Since f(σ(ai)) = σ(f(ai)) = σ(0) = 0, we have σ(N(f)) ⊂ N(f)
resp. σ(N(f)) = N(f) (N(f) is finite and σ injective) and thus σ(E) = E
for E = K[a1, ..., ar].
”iii) =⇒ ii)”: Assume that the irreducible polynomial g ∈ K[T ] has the zero
a ∈ E. According to 4.35 there is an extension F ⊃ E such that F is the
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splitting field of some polynomial h ∈ K[T ]. Now let L ⊃ F be the splitting
field of g ∈ K[T ]; then L ⊃ K is the splitting field of f = gh ∈ K[T ].
We have to show that NL(g) ⊂ E. Take b ∈ NL(g). According to 4.18 with
the inclusion K ↪→ E as ϕ there is an automorphism σ ∈ AutK(L) with
b = σ(a). But then b ∈ σ(E) = E.
”ii) =⇒ i)” : Write E = K[a1, ..., ar]. Then E is the splitting field of the
polynomial pa1 · ... · par ∈ K[T ].

Let us briefly recall the facts we know about the automorphism group AutK(E)
of a normal extension E ⊃ K:

Theorem 4.42. Let E ⊃ K be a normal extension, the splitting field of the
polynomial f ∈ K[T ]. Then

1. If g ∈ K[T ] is irreducible, the automorphism group AutK(E) acts tran-
sitively on the (possibly empty) set NE(g) := {a ∈ E; g(a) = 0} of
zeros of g, i.e., for arbitrary a, b ∈ NE(g) there is an automorphism
σ ∈ AutK(E) with σ(a) = b.

2. We have

|AutK(E)| = [E : K],

if E ⊃ K is galois, e.g. if K is perfect. In the general case we have

[E : K] = p` · |AutK(E)|

for p = char(K) and some ` ∈ N.

3. The map σ 7→ σ|NE(f) defines an injective group homomorphism

AutK(E) ↪→ S(NE(f))

from the automorphism group of the extension E ⊃ K to the group of
permutations of the set NE(f) of zeros of the polynomial f in E. If
f1, ..., fr ∈ K[T ] are the pairwise distinct irreducible monic divisors of
f , then the above homomorphism can be factorized:

AutK(E) ↪→ S(NE(f1))× ...× S(NE(fr)) ⊂ S(NE(f)).
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Proof. i) According to 4.40 we have either NE(g) = ∅ or g can be written
as a product of linear polynomials in E[T ]. In the first case there is nothing
to be shown, while in the second case we may assume that g divides the
polynomial giving rise to E as its splitting field - if not, we may multiply it
with g - the splitting field remains the same. Now apply 4.35.2.

ii) is nothing but 4.35.i) with F = E and the inclusion ϕ : K ↪→ E.

iii) follows from the fact that E = K[a1, ..., ar], where NE(f) = {a1, ..., ar},
and that a K-automorphism is uniquely determined by its values σ(ai) ∈
NE(f), 1 ≤ i ≤ r.

Remark 4.43. Let us briefly recall the explicit construction of automor-
phisms σ : E = K[a1, ..., ar] −→ E for a normal extension E ⊃ K: Ev-
ery automorphism σ ∈ AutK(E) is obtained in the following way: Let
Ei := K[a1, ..., ai]. We have in any case σ|E0 = idE0 . If σ|Ei already is
given, we may choose σ(ai+1) freely in the (non-empty) zero set NE(gσ),
where g ∈ Ei[T ] is the minimal polynomial of ai+1 ∈ E over Ei. Indeed, the
minimal polynomial h := pai+1

∈ K[T ] of ai+1 over K is split over E, and
g|h implies gσ|hσ = h.

Example 4.44. 1. Take the polynomial f = T 3 − 2 ∈ Q[T ], cf. 4.19 3.1.
Its splitting field is E := Q[ 3

√
2, 3
√

2ε, 3
√

2ε2] = Q[ 3
√

2, ε] with the third
root of unity ε := 1

2
(−1 + i

√
3). We have E1 = Q[ 3

√
2] and there are

three different Q-morphisms ψν : E1 −→ E; 0 ≤ ν ≤ 2, with ψν(
3
√

2) =
3
√

2εν . Each ψν : E1 −→ E in turn may be extended in two ways: The
minimal polynomial g ∈ E1[T ] of ε is g = (T−ε)(T−ε−1) = T 2 +T+1,
lying even in Q[T ]; hence gψν = g for ν = 0, 1, 2, and ψν extends to
the automorphisms σ±ν : E −→ E with σ±ν (ε) = ε±1. Note that any
permutation of NE(f) is realized by some automorphism.

2. The situation is more interesting for the polynomial f = T 4 − 2 ∈
Q[T ]. The splitting field is E := Q[ 4

√
2, i] with the fourth root of unity

i, and we could argue as in the first case. Instead we consider the
representation E = Q[

√
2, i, 4
√

2] and discuss the step from E2 =: L to
E3 = E. The intermediate field L = Q[

√
2, i] is the splitting field of

(T 2−2)(T 2 +1), cf. 4.19 iv). Since L ⊃ Q is normal, we have σ(L) = L
for every σ ∈ AutQ(E). The minimal polynomial g ∈ L[T ] of 4

√
2 is

T 2 −
√

2 and gσ = T 2 ∓
√

2. Depending on the sign ±1 necessarily
σ( 4
√

2) = ± 4
√

2 or σ( 4
√

2) = ± 4
√

2i. In contrast to the situation in i) not
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every permutation of NE(f) is the restriction of some automorphism,
cf. Problem 4.46.2.

The case where the splitting field E ⊃ K is of maximal size is character-
ized by:

Proposition 4.45. Let E ⊃ K be the splitting field of f ∈ K[T ], n :=
deg(f). Then we have [E : K] ≤ n!. Furthermore for n ≥ 3, equality
[E : K] = n! holds if and only if |NE(f)| = n and the homomorphism
AutK(E) ↪→ S(NE(f)), σ 7→ σ|NE(f), is an isomorphism.

Proof. The degree estimate is shown by induction on n.
” =⇒ ”: If r := |NE(f)| < n, there is a multiple root a of f , i.e. such that
f = (T − a)2g. But then we obtain E ⊃ L := K[a] as splitting field of
g ∈ L[T ] and [E : K] = [E : L][L : K] ≤ (n − 2)! · n < n!. Contradiction!.
So f has n pairwise distinct zeros and the extension E ⊃ K is galois, hence
|AutK(E)| = [E : K] = n! and the injective homomorphism AutK(E) ↪→
S(NE(f)) is even an isomorphism.
” ⇐= ”: Because of |NE(f)| = n the polynomial f has no multiple roots;
thus E ⊃ K is galois. We have then [E : K] = |AutK(E)| = n!.

Problems 4.46. 1. R: Let K be a field of characteristic p > 0 and E ⊃ K a splitting
field of T p − T − c ∈ K[T ]. Show, that either E = K or E ⊃ K is Galois with
[E : K] = p and cyclic Galois group AutK(E)! What can be said, if K = Zp? Hint:
If a ∈ E ⊃ K is a zero of f , compute f(a+ n)!

2. R: Let E ⊃ Q be the splitting field of the polynomial T 4−2. Show that AutQ(E) ∼=
D4, where D4 denotes the dihedral group. Hint: Consider the square with vertices
± 4
√

2,± 4
√

2i!

3. R: Compute the splitting field E ⊃ Q of f := T 4 − 10T 2 + 1. Determine AutQ(E)!
Hint: Consider the splitting field F of the polynomial T 2 − 10T + 1? Then try
to compute the square roots of its zeros in F - that is not possible since there is
missing what in F?

4. Let f ∈ Q[T ] be an irreducible polynomial whose degree is a prime p and which has
exactly two (simple) non-real roots. Show that its splitting field E ⊃ Q satisfies
AutQ(E) ∼= Sp. Hint: Apply Problem 2.39.5.

5. Show that the polynomial f := T 5−4T +2 satisfies the conditions in the preceding
problem. Hint: Apply real analysis: Determine the real zeros of its derivative f ′

and the sign of the corresponding value of f . Then one can apply which theorem?

6. Show: An algebraic number λ ∈ Qa is an algebraic integer iff its minimal polynomial
pλ ∈ Q[T ] has integer coefficients: pλ ∈ Z[T ]. Hint: Consider a splitting field E ⊃ Q
containing λ; if λ is an algebraic integers its “conjugates” σ(λ) ∈ E, σ ∈ AutQ(E),
are algebraic integers as well. Cf. also Problem 4.15.7.
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4.5 Finite Fields

The aim of this section is the complete classification of all finite fields. We
start our investigations with the following general result about finite sub-
groups of the multiplicative group K∗ of any field K:

Proposition 4.47. Any finite subgroup of the multiplicative group K∗ of a
field K is cyclic. In particular, the multiplicative group F∗ of a finite field F
is cyclic

Proof. Denote G ⊂ K∗ a finite subgroup of the multiplicative group K∗ of
our field K. Since G is abelian, there is according to 2.84 an isomorphism
G ∼= Zn1

q1
× ...× Znrqr - (with the right hand side additively written!) - where

q1, ..., qr are pairwise distinct prime powers and ni ∈ N>0. Then the least
common multiple q := lcm(q1, ..., qr) satisfies aq = 1 for all a ∈ G, i.e., the
zero set of the polynomial T q − 1 ∈ K[T ] contains the entire group G. A
polynomial of degree q over an integral domain has at most q zeros, cf. 3.17,
hence qn1

1 · ... · qnrr = |G| ≤ q.
But that is possible only if the numbers q1, ..., qr are pairwise relatively prime
and n1 = ... = nr = 1. In that case (1̄, ..., 1̄) has order q1 · ... · qr = q =
|Zq1 × ...× Zqr |, so G is a cyclic group.

To every prime power q = pn we associate a finite field Fq:

Definition 4.48. Let q = pn with a prime number p and n ∈ N>0. We
denote Fq ⊃ Zp a splitting field of the polynomial T q − T ∈ Zp[T ].

Remark 4.49. 1. For n = 1 we have Fp = Zp, while Fpn 6∼= Zpn for n > 1,
since the ring Zpn , containing non-zero nilpotent elements, neither is a
field nor an integral domain.

2. There is a further difference between the definition of Zq and that of Fq:
While the first one is well defined even as a set, the latter has as a set no
natural realization, though all constructions lead to isomorphic fields,
cf. 4.34. Hence from the point of view of algebra, the choices entering
in a concrete realization are not really interesting, and one usually
refers to the field Fq. For example given a generator a ∈ F∗q of its
multiplicative group, we find Fq ∼= Zp[T ]/(pa), where pa is the minimal
polynomial of the generator a, but unfortunately the polynomial pa in
general really depends on the choice of that generator.
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The main result of this section is

Theorem 4.50. 1. We have |Fpn| = pn resp. [Fpn : Fp] = n.

2. Every finite field is isomorphic to a field Fpn.

3. The field Fpm is isomorphic to a subfield of Fpn, iff m is a divisor of n.
(But note that for m > 1 there are then several ring homomorphisms
Fpm ↪→ Fpn, two such homomorphisms differing by an automorphism
∈ AutFp(Fpm)!)

4. The extension Fpn ⊃ Fp is a Galois extension, and AutFp(Fpn) is a
cyclic group of order n, generated by the Frobenius automorphism σ :
Fpn −→ Fpn , x 7→ xp.

Remark 4.51. The field Fpn is also called the field with pn elements. A
more old fashioned notation for it is GF (pn), where GF is the abbreviation
for “Galois field”. This is also the reason why in English the word “field” is
used in general, while in most other languages the corresponding translation
of “kropp” applies, as introduced by Bourbaki, a group of french mathe-
maticians which beginning in the 1930ies tried to modernize and systematize
mathematics.

Proof. i) The polynomial f := T p
n − T has derivative f ′ = −1 and hence

only simple zeros, and thus |NFpn (f)| = pn. But on the other side we may
interpret that zero set as the fixed point set of the n-th iterate σn of the
Frobenius automorphism σ : Fpn −→ Fpn , x 7→ xp, i.e.:

NFpn (f) = Fix(σn) := {x ∈ Fpn ;x = σn(x) = xp
n}

and hence is in particular itself a field! Since Fpn is the smallest extension of
Fp, over which f is split, it follows Fpn = Fix(σn).
ii) According to Corollary 4.3 we already know |F| = pn with some n ∈ N>0.
On the other hand Corollary 2.38 tells us that xp

n−1 = x|F
∗| = 1 holds for all

x ∈ F∗ resp. xp
n

= x for all x ∈ F. So the polynomial f := T p
n − T has the

entire field F as its zero set, in particular

T p
n − T =

∏
a∈F

(T − a),

both sides being monic polynomials with the same (simple) zeroes. With
other words, the field F is a splitting field of f ∈ Zp[T ] = Fp[T ].
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iii) “=⇒”: Assume ϕ : Fpm ↪→ Fpn is a ring homomorphism (it is not unique
for m > 1). Then Fpn is a Fpm-vector space, whence Fpn ∼= (Fpm)r with
r = dimFpm Fpn resp. pn = (pm)r = pmr resp. n = mr.
“⇐=”: Let n = mr. Since Fpm is the splitting field of T p

m−1−1, it is sufficient
to show:

(T p
m−1 − 1) divides (T p

n−1 − 1) .

In any case T − 1 divides T r − 1, and after substitution of T by Tm we see
that Tm − 1 divides T n − 1. In particular the number pm − 1 divides pn − 1,
and finally, with pm−1 and pn−1 instead of m and n we arrive at our claim.
iv) The extension Fpn ⊃ Fp = Zp is galois, since T p

n − T only has simple
zeros. If we can show, that the Frobenius automorphism σ : Fpn −→ Fpn has
order n, we are done, since the automorphism group AutFp(Fpn) has order n

according to 4.42. But σk = idFpn is equivalent to xp
k−1 = 1 for all x ∈ F∗pn .

Since F∗pn is cyclic and thus there is an element x ∈ F∗pn of order pn − 1, we
see that σk 6= idFpn för k < n.

Remark 4.52. Let us give here an explicit description of an algebraic closure
Fp ⊃ Fp of the finite field Fp. Take En := Fpn! and choose ring homomor-
phisms ϕn : En ↪→ En+1. Then, interpreting ϕn as an inclusion En ⊂ En+1

we may define

Fp :=
∞⋃
n=1

En.

4.5.1 Digression 1: Quadratic reciprocity

As an application of finite fields we shall give a proof of the law of quadratic
reciprocity. In order to formulate it we need the Legendre symbol (André
Marie Legendre, 1752 - 1833):

Definition 4.53. Denote P>2 the set of all odd primes. The Legendre symbol
is the map ( )

: Z× P>2 −→ {0,±1}, (a, p) 7→
(
a

p

)
,

where (
a

p

)
:=


1 , if a ∈ F∗p is a square
−1 , if a ∈ F∗p is not a square
0 , if a = 0 ∈ Fp

.
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Remark 4.54. 1. The Legendre symbol depends only on a ∈ Fp, so for
convenience we define (

a

p

)
:=

(
a

p

)
for a ∈ Fp.

2. If c ∈ F∗p is a generator of the (cyclic) multiplicative group F∗p, i.e.,
F∗p = cZ, we have (

cν

p

)
= (−1)ν .

3. {0,±1} ⊂ K for any field K with char(K) 6= 2.

4. With that convention we have(
a

p

)
= a

p−1
2 ∈ Fp

for all a ∈ Fp.

5. The Legendre symbol is multiplicative in the upper variable:(
ab

p

)
=

(
a

p

)(
b

p

)
for a, b ∈ Z as well as a, b ∈ Zp. In particular it is sufficient to compute
the Legendre symbol for a being a prime as well.

Theorem 4.55. Let p ∈ P>2 be an odd prime.

1. We have (
2

p

)
=

{
1 , if p ≡ ±1 mod (8)
−1 , if p ≡ ±3 mod (8)

,

or, more briefly (
2

p

)
= (−1)

p2−1
8 .

2. The law of quadratic reciprocity: For a prime q ∈ P>2 different from p
we have (

p

q

)
= (−1)

p−1
2

q−1
2

(
q

p

)
.
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Proof. 1.) The field Fp2 ⊃ Fp contains an element ζ of order 8, since the
order p2 − 1 of the cyclic group (Fp2)∗ is divisible by 8.

Now for β := ζ + ζ−1 we have

β2 = ζ2 + 2 + ζ−2 = ζ2 + 2− ζ2 = 2,

since ζ4 = −1. As a consequence 2 is a square in Fp iff β ∈ Fp ⊂ Fp2 iff
β = βp. Now

βp = ζp + ζ−p = ζs + ζ−s,

where p = 8d + r. Thus for r = ±1 we find βp = β, while r = ±3 yields
βp = −β.

2.) We do computations in the splitting field E ⊃ Fp of the polynomial
T q − 1 ∈ Fp[T ], denote η ∈ E \ {1} a root of it and use the notation

χ(a) :=

(
a

q

)
∈ {0,±1} ⊂ E.

We need the following auxiliary lemma:

Lemma 4.56. The square of the Gauß’ sum

γ :=

q−1∑
i=0

χ(i)ηi

satisfies

γ2 = χ(−1)q ∈ F∗p ⊂ E.

Let us first finish the proof of the theorem: We apply the Frobenius map
E −→ E, x 7→ xp, to our Gauß’ sum:

γp =

q−1∑
i=0

χ(i)pηip =

q−1∑
i=0

χ(i)ηip

=

q−1∑
i=0

χ(p2i)ηip = χ(p)

q−1∑
i=0

χ(ip)ηip = χ(p)γ,
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using χ(i)p = χ(i) = χ(p2i) and the fact that Zq −→ Zq, i 7→ ip, is a bijection.
Since γ 6= 0, we may conclude(

p

q

)
= γp−1 = (γ2)

p−1
2 = (χ(−1)q)

p−1
2

= ((−1)
q−1
2 )

p−1
2 q

p−1
2 = (−1)

q−1
2

p−1
2

(
q

p

)
,

where we have used Remark 4.54.4 with respect to a = −1 and the prime q
as well as a = q and the prime p.

Proof of the lemma. First of all we may understand the exponents of η as
well as the argument of χ as elements in Zq. Using that convention we
remark the following identities:∑

i∈Zq

χ(i) = 0,
∑
i∈Zq

ηi = 0.

The first one follows from the fact that χ(0) = 0 and there are q−1
2

quadratic

residues as well as q−1
2

quadratic non-residues in Zq, for the second one notes
that the sum not changing when multiplied by η has to be = 0.

Now

γ2 =
∑

(i,j)∈(Zq)2
χ(i)χ(j)ηi+j

=
∑
`∈Zq

( ∑
i+j=`

χ(i)χ(j)

)
η`.

Let us now compute the inner sums. The case ` = 0 yields∑
i+j=0

χ(i)χ(j) =
∑
i∈Zq

χ(i)χ(−i) =
∑
i∈Zq

χ(−i2) = χ(−1)(q − 1),

since χ(−i2) = χ(i2)χ(−1) = χ(−1) for i 6= 0, while χ(−02) = 0.
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Finally we treat the case ` 6= 0 and get∑
i+j=`

χ(i)χ(j) =
∑
i∈Z∗

q

χ(i)χ(`− i)

=
∑
i∈Z∗

q

χ(i−1)χ(`− i)

=
∑
i∈Z∗

q

χ(`i−1 − 1)

=
∑

i∈Zq\{−1}

χ(i) = −χ(−1),

since χ(0) = 0, χ(i−1) = χ(i) and {`i−1 − 1; i ∈ Z∗q} = Zq \ {−1}. Hence

γ2 = χ(−1)(q − 1)− χ(−1)
∑
`∈Z∗

q

η`

= χ(−1)(q − 1)− χ(−1) · (−1) = χ(−1)q.

4.5.2 Digression 2: Further Simple Groups

Finite fields may be used to give further examples of simple groups. First of
all note that we may define the general linear group GLn(K) and the special
linear group SLn(K) of 2.4.5 and 2.24.2 for any field K, in particular for
finite fields K = F.

The general linear group acts in a natural way on the projective space
Pn−1(K), the set of all lines (:= one dimensional subspaces) in Kn, cf. Prob-
lems 2.18.11 and 4.20.6. The kernel of the corresponding group homomor-
phism GLn(K) −→ S(Pn−1(K)) is K∗E, the subgroup of all non-zero multi-
ples of the unit matrix E = (δij). So the projective (general) linear group

PGLn(K) := GLn(K)/K∗E

can be understood as a group of projective transformations, i.e. permutations
of Pn−1(K), usually called projective linear transformations.

Restricting everything to SLn(K) � GLn(K) we obtain the projective
special linear group

PSLn(K) := SLn(K)/Cn(K)E
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with the group

Cn(K) := {a ∈ K∗; an = 1}

of n-th roots of unity in the field K. We note that K∗E � GLn(K) and
Cn(K) ·E � SLn(K) are nothing but the centers of the general resp. special
linear group of size n. Obviously

PSLn(K) � PGLn(K),

with factor group

PGLn(K)/PSLn(K) ∼= GLn(K)/K∗SLn(K)

∼= K∗/ det(K∗E) = K∗/pn(K∗)

with the n-th power map pn : K∗ −→ K∗, x 7→ xn.

The central result of this digression is:

Theorem 4.57. Let K be a field. The group PSLn(K) is simple for n > 2
and for n = 2, |K| > 3.

Proof. Since the inverse image of a normal subgroup with respect to a group
homomorphism itself is normal, it suffices to show the following: Any normal
subgroup N � SLn(K) containing the center Cn(K)E as a proper subgroup
coincides with SLn(K).

The strategy is as follows: We show

1. The group G := SLn(K) is generated by “elementary matrices”.

2. If N�G is a normal subgroup containing the center Cn(K)E as proper
subgroup, then the factor group G/N is abelian.

3. If n > 2 or n = 2 and |K| > 3 any elementary matrix can be written
as a “commutator” ABA−1B−1 with matrices A,B ∈ G.

By 2) every commutator ABA−1B−1 belongs to the subgroup N ⊂ G, and
then 1) and 3) tell us that N = G.

Generators for SLn(K): We identify a matrix A ∈ GLn(K) freely with
the corresponding linear map Kn −→ Kn, x 7→ Ax, and denote e1, ..., en the
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standard base of the vector space Kn. Denote E = (δij) the unit matrix and
Ek` = (δikδj`), i.e.

Ek` ei =

{
ek , if i = `
0 , otherwise

,

whence Ek`Ers = δ`rEks. An elementary matrix now is a matrix

Qij(λ) := E + λEij, i 6= j, λ ∈ K∗.

Note that K −→ SLn(K), λ 7→ Qij(λ) is a group homomorphism:

Qij(λ+ µ) = Qij(λ)Qij(µ),

and that for n > 2 all Qij(λ) for fixed λ ∈ K∗ belong to the same conjugacy
class in SLn(K): There is some P ∈ SLn(K) with Pe1 = ei, P e2 = ej,
whence

PQ12(λ)P−1 = Qij(λ).

For n = 2 we take P with Pe1 = e2, P e2 = −e1 and find

PQ12(λ)P−1 = Q21(−λ).

¿From linear algebra it is well known that GLn(K) is generated by the
following three groups of matrices:

• The elementary matrices Qij(λ), i 6= j, λ ∈ K∗,

• the “transposition matrices” Tk`, k < `, satisfying

Tk` ei =


ek , if i = `
e` , if i = k
ei , otherwise

,

and

• the diagonal matrices.

More precisely, any matrix A ∈ GLn(K) is of the form A = A0TD, where
A0 is a product of elementary matrices, T a product of transposition matrices
and D a diagonal matrix (the matrix TD having in every row and column
exactly one nonzero entry). In order to get generators of SLn(K) we have
to modify the matrices of the second and third kind: We claim that
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• the elementary matrices Qij(λ), i 6= j, λ ∈ K∗,

• the special transposition matrices Pk`, k < `, with

Pk` ei =


ek , if i = `
−e` , if i = k
ei , otherwise

,

and

• the special diagonal matrices, i.e. the diagonal matrices

D1(λ1)D2(λ2) · ... ·Dn−1(λn−1)

with (unique) λ1, ..., λn−1 ∈ K∗, where Dk(λ), k < n, is defined by

Dk(λ) ei =


λek , if i = k
λ−1ek+1 , if i = k + 1
ei , otherwise

,

together generate SLn(K): Let A ∈ SLn(K), A = A0TD as above. If we
replace T , a product of matrices Tk` with P , the corresponding product of the
matrices Pk`, we have A = A0PD̃ with a diagonal matrix D̃, whose entries
coincide with those of D up to sign. Since A0, P are special matrices, D̃ is
special as well.

1.) The elementary matrices generate SLn(K): We show that the ma-
trices Pk`, k < ` ≤ n, and Dk(λ), k = 1, ..., n− 1, are products of elementary
matrices. In fact

Pk` = Q`k(−1)Qk`(1)Q`k(−1),

and for the Dk(λ) we may assume n = 2 and find for D(λ) := D1(λ) that

D(λ) = Q12(−λ)Q21(λ−1)Q12(−λ)P12,

which yields the desired result, since we already know that P12 is a product
of elementary matrices.

2.) Abelian Factor group: The stabilizer

U := SLn(K)L = {A ∈ SLn(K);A(L) = L}
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of the line L := Ke1 ∈ Pn−1(K) satisfies

A ∈ U ⇐⇒ A =

(
λ b
0 C

)
with λ ∈ K∗, bT , 0 ∈ Kn−1, C ∈ Kn−1.n−1, λ detC = 1.

Consider the kernel U0 � U of the natural group homomorphism

U −→ GL(L)×GL(Kn/L), A 7→ (A|L, A),

where A : Kn/L −→ Kn/L is the linear map x+ L 7→ Ax+ L. In fact,

A ∈ U0 ⇐⇒ A =

(
1 b
0 E

)
with bT , 0 ∈ Kn−1, E = (δij) ∈ Kn−1.n−1,

and

Kn−1 −→ U0, y 7→
(

1 yT

0 E

)
is a group isomorphism; in particular, U0 is abelian. –

We have

SLn(K) = NU,

since U = SLn(K)L is the stabilizer of L ∈ Pn−1(K) in SLn(K) and the
subgroup N � SLn(K) acts transitively on Pn−1(K): Take a line Ky 6= L.
Since N % Cn(K)·E, there is some B ∈ N \K∗E. Hence we can find x ∈ Kn,
such that x,Bx ∈ Kn are linearly independent and choose C ∈ SLn(K) with
Cx = e1, CBx = λy for some λ ∈ K∗. Then A := CBC−1 ∈ N satisfies
Ae1 = λy, in particular Ky = A(L).

Now we show that even

SLn(K) = NU0.

First of all, NU0 � NU = SLn(K) is a normal subgroup. To see that we
have to show CNU0 = NU0C for all C ∈ SLn(K) = NU . We may assume
C ∈ N or C ∈ U . For C ∈ U that is obvious since both U0 � U and N �G
are normal subgroups. For C ∈ N we find CN = N = NC and NU0 = U0N ,
hence CNU0 = NU0 = U0N = U0NC.

Now Q12(±λ) ∈ U0 ≤ NU0 � SLn(K) for any λ ∈ K∗. Since Qij(λ) is
conjugate to Q12(λ) or Q12(−λ), all the generators Qij(λ) of SLn(K) are
contained in NU0, hence NU0 coincides with SLn(K).
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Finally we see that

SLn(K)/N = (NU0)/N = (U0N)/N ∼= U0/(U0 ∩N)

is isomorphic to a factor group of the abelian group U0 and hence itself
abelian.

3.) Commutators: For n ≥ 3, given two distinct indices i, j choose a third
index ` 6= i, j. Then

Qij(λ) = Qi`(−λ)Q`j(−1)Qi`(λ)Q`j(1)

is a commutator because of Qrs(µ)−1 = Qrs(−µ). For n = 2 and |K| > 3
choose µ ∈ K \ {0,±1} 6= ∅. Then with the diagonal matrix

D(µ) :=

(
µ 0
0 µ−1

)
we get

D(µ)Q12(λ)D(µ−1)Q12(−λ) = Q12((µ2 − 1)λ).

Hence because of µ2 − 1 6= 0, any elementary matrix is again a commutator.

Problems 4.58. 1. R: Show that Z∗pn is a cyclic group for any prime p > 2. Fur-
thermore the residue class of an integer k ∈ Z \ Zp generates Z∗p2 if and only if it
generates Z∗pn for all n ∈ N>0. Hint: According to Problem 2.62.7 the subgroup
U(pn) ⊂ Z∗pn is cyclic.

2. R: Let char(K) = p > 0. Assume a ∈ E ⊃ K with b := ap
r ∈ K, apr−1 6∈ K. Show:

T p
r − b is the minimal polynomial pa of a over K. Hint: Consider first the case

r = 1 and show then by induction [K[a] : K] = pr.

3. R: Determine all generators of the cyclic group F∗9 and their minimal polynomials
over F3! Hint: Example 4.4 c).

4. R: Find a concrete realization of the field Fpp , i.e. an isomorphism Fpp ∼= Zp[T ]/(f),
where f = .... ? Same question for F16, cf. Problems 4.46.1 and 3.46.1.

5. R: Let K be an algebraically closed field. Determine the order |Cn(K)| of the group
Cn(K) ⊂ K∗ of n-th roots of unity in K.

6. Show the converse of 4.47: If K is a field and K∗ cyclic, then K is finite. Hint:
Assume K∗ =< a > and |K| =∞. Then K has characteristic char(K) = 2 - why?
- and a is transcendent over F2

∼= P (K) ⊂ K resp. K = Q(F2[a]) ∼= F2(T ).
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7. Let F be a finite field. Show for a, b ∈ F: If ab is not a square in F, one of the
factors is a square in F and the other is not. Assume now that p is an odd prime
and 6 not a square in Fp. Then Fp2 = Fp[β] with an element β ∈ Fp2 , β2 = 6. Show
that the number 5 + 2β ∈ Fp2 is a square in Fp2 .

8. Let f := T 4−10T 2+1 ∈ Z[T ]. Show that the reduced polynomial f̃ ∈ Zp[T ] = Fp[T ]
is reducible for all primes p. Hint: The case p = 2 is easy. Otherwise write
f = (T 2− 5)2− 24. If 6 is a square in Fp, we are done. Otherwise Fp2 = Fp[β] with
an element β ∈ Fp2 , β2 = 6. Then f = ((T 2− 5)− 2β)((T 2− 5) + 2β). Use now the
preceding problem 4.58.5 in order to factorize f as product of linear polynomials
over Fp2 . They can be paired together to quadratic polynomials ∈ Fp[T ].

9. R: Let F := Fq be the finite field with q = pr element. Show: The ring homomor-

phism F[T ] −→ FF, f 7→ f̂ , cf. Remark 3.16, is surjective with kernel (T q − T ).

10. Compute the orders of the groups GLn(Fq), SLn(Fq), PGLn(Fq), PSLn(Fq)!

11. Show PSL2(F2) = PGL2(F2) ∼= S3. Hint: |P2(F2)| = 3, Problem 2.18.12.

12. Show PGL2(F3) ∼= S4 and PSL2(F3) ∼= A4. Hint: |P2(F3)| = 4.

4.6 Galois Theory

The fundamental theorem of Galois theory explains the “structure” of a
Galois extension E ⊃ K in terms of its automorphism group (Galois group)
AutK(E).

Definition 4.59. An intermediate field L of an extension E ⊃ K is a
subfield L ⊂ E containing K, i.e. K ⊂ L ⊂ E.

Theorem 4.60 (Fundamental Theorem of Galois Theory). Let E ⊃ K
be a Galois extension and let G := AutK(E) be its Galois group. Then there
is a bijection

{L intermediate fields of the extension E ⊃ K} −→ {H ⊂ G subgroup}

between the set of all intermediate fields of the extension E ⊃ K and the set
of all subgroups of G = AutK(E), defined as follows

E ⊃ L 7→ H := AutL(E) ⊂ G

resp. in the reverse direction:

G ⊃ H 7→ L := Fix(H) := {a ∈ E;σ(a) = a , ∀ σ ∈ H} .
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It satisfies
|AutL(E)| = [E : L] , |H| = [E : Fix(H)] ,

and H = AutL(E) is a normal subgroup of G = AutK(E), iff the extension
L ⊃ K is normal. In that case the restriction

G = AutK(E) −→ AutK(L) , σ 7→ σ|L ,

induces an isomorphism
G/H ∼= AutK(L) .

Example 4.61. The splitting field of f := T 3 − 2 ∈ Q[T ] is E = Q[ 3
√

2, ε]
with the third root of unity ε := 1

2
(−1+i

√
3), cf. Example 4.44.1. We already

know the automorphisms σ, τ ∈ G := AutQ(E) with σ( 3
√

2) = 3
√

2ε, σ(ε) =
ε, τ( 3
√

2) = 3
√

2, τ(ε) = ε2. In fact AutQ(E) ∼= S(NE(f)) ∼= S3
∼= D3.

The automorphism σ has order 3 and τ order 2 and idE, σ, σ
2, τ, τ ◦ σ, τ ◦ σ2

constitute the entire Galois group; they have order 1,3,3,2,2,2.
Let us now determine the non-trivial subgroups: The possible orders being
2 and 3, such a subgroup is cyclic. Hence we find < σ >=< σ2 >,< τ >,
< τ ◦ σ >,< τ ◦ σ2 >. If we use that always

|H| = [E : Fix(H)] = 6/[Fix(H) : Q]

we obtain the following table of subgroups and corresponding fixed fields:

H Fix(H)

G Q[ 3
√

2, ε]
< σ > Q[ε]

< τ > Q[ 3
√

2]

< τ ◦ σ > Q[ 3
√

2ε]

< τ ◦ σ2 > Q[ 3
√

2ε2]
< idE > E

Proof. We have to show that the given maps are inverse one to another, i.e.:

Fix(AutL(E)) = L , AutFix(H)(E) = H

for every intermediate field L of E ⊃ K and every subgroup H ⊂ G. Since
E ⊃ L resp. E ⊃ Fix(H) are again Galois extensions, we may assume
L = K resp. Fix(H) = K and show then for a Galois extension E ⊃ K the
propositions 4.62 and 4.64.
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Proposition 4.62. For a Galois extension E ⊃ K we have

Fix(AutK(E)) = K .

Proof. The inclusion K ⊂ F := Fix(AutK(E)) is obvious. On the other side
we have AutF (E) = AutK(E) and therefore (see 4.42):

[E : F ] = |AutF (E)| = |AutK(E)| = [E : K] ,

whence F = K.

Before we come to the second proposition, we need an auxiliary result
telling us when an extension is of the form K[a] ⊃ K:

Theorem 4.63. (Primitive Element Theorem) A finite field extension
E ⊃ K admits a primitive element a ∈ E, i.e., such that E = K[a], iff
there are only finitely many intermediate fields for the extension E ⊃ K.
That condition is satisfied, if E ⊃ K can be extended to a Galois extension,
in particular if char(K) = 0 or more generally, if K is perfect.

Proof. Since both conditions are satisfied if K (and with K also E) are finite
(according to 4.47 we have E∗ =< a >, whence E = K[a]), we may assume
that K is infinite.
”⇐=”: We do induction on n := [E : K], the case n = 1 being trivial.
Let now n > 1. Choose an element b 6∈ K. Then E ⊃ K[b ] satisfies
[E : K[b ]] < n and has as well only finitely many intermediate fields, hence
admits according to the induction hypothesis a primitive element c ∈ E,
i.e., E = (K[b ])[c ] = K[b, c ]. Now we consider the intermediate fields
K[b+ λc ], λ ∈ K. Since there are only finitely many intermediate fields and
|K| =∞, we find two elements λ1, λ2 ∈ K with K[b+λ1c] = K[b+λ2c] =: L.
But then we have even b, c ∈ L resp. E = K[b, c] ⊂ L resp. E = L = K[a]
with a := b+ λ1c.
”=⇒”: Assume now E = K[a]. To every intermediate field L we can as-
sociate the minimal polynomial pL ∈ L[T ] of our primitive element a over
L. The map L 7→ pL ∈ L[T ] ⊂ E[T ] is injective: If n = [E : L] and
pL = T n +

∑n−1
ν=0 λνT

ν , we have L = K[λ0, ..., λn−1], i.e. we may reconstruct
L from pL. Let F := K[λ0, ..., λn−1]. In any case we have F ⊂ L, but on the
other hand [F : K] = [L : K] because of

n[F : K] = [E : F ][F : K] = [E : K] = [E : L][L : K] = n[L : K] .
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Consequently L = F .
Now every polynomial pL is a divisor of the minimal polynomial pK in the
ring E[T ]. Write then pK as a product of (finitely many) monic irreducible
polynomials ∈ E[T ], cf. 3.33. Any polynomial pL is then a product of certain
of these polynomials (here we use again the unique factorization property
3.33!), and there are of course only finitely many possibilities.
It remains to show that a Galois extension E ⊃ K satisfies the given con-
dition, but Prop. 4.62 with a subfield L instead of K means that L 7→
AutL(E) ⊂ G is injective, and G has of course only finitely many sub-
groups.

Proposition 4.64. Let E ⊃ K be a Galois extension and H ⊂ AutK(E) a
subgroup with Fix(H) = K. Then we have

H = AutK(E) = AutFix(H)(E).

Proof. Let G := AutK(E). It suffices to show |G| = [E : K] ≤ |H|. Ac-
cording to 4.63 we may write E = K[a] with a primitive element a ∈ E. We
consider the polynomial

f :=
∏
b∈Ha

(T − b) ∈ E[T ] .

Here Ha denotes the H-orbit of a ∈ E, i.e.

Ha = {σ(a);σ ∈ H} ⊂ E.

Every automorphism σ ∈ H induces a permutation σ|Ha ∈ S(Ha), therefore
we obtain fσ = f for all automorphisms σ ∈ H, with other words f ∈
Fix(H)[T ] = K[T ] and thus, since the minimal polynomial pa ∈ K[T ] of a
over K is a divisor of f because of f(a) = 0, we have
[E : K] = [K[a] : K] = deg(pa) ≤ deg(f) = |H|.

We continue the proof of 4.60: The Galois group acts on the set of inter-
mediate field of [E : K] by (σ, L) 7→ σ(L), and on the set of subgroups of G
by conjugation (σ,H) 7→ σHσ−1, such that

Autσ(L)(E) = σAutL(E)σ−1 .

Hence we can conclude that H = AutL(E) ⊂ G is a normal subgroup iff
σ(L) = L for all automorphisms σ ∈ G. But that is equivalent to L ⊃ K
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being normal: For ”⇐=” we may refer to 4.40, while ”=⇒” is not difficult
either: Again according to 4.40 it is sufficient to show that every irreducible
polynomial g ∈ K[T ] with a zero a ∈ L is split over L. Since E ⊃ K is
normal, that is true over E and we have to show NE(g) ⊂ NL(g). So let
b ∈ NE(g). From 4.42.i) we know that there is an automorphism σ ∈ G =
AutK(E) with σ(a) = b. Consequently b ∈ σ(L) = L.
In particular we see that in this situation the group homomorphism

G = AutK(E) −→ AutK(L) , σ 7→ σ|L ,

is well defined, since σ(L) = L for all automorphisms σ ∈ AutK(E). Its
kernel is H := AutL(E), and being surjective according to 4.35, it induces
an isomorphism G/H ∼= AutK(L).

This finishes the proof of Theorem 4.60.

Problems 4.65. 1. R: Determine all intermediate fields of the extension Q[ 4
√

2, i] ⊃
Q. Which of them are normal? Cf. Problem 4.46.2.

2. Let char(F ) = p and F [X,Y ] := (F [X])[Y ] be the polynomial ring over F in the
variables X,Y and F (X,Y ) := Q(F [X,Y ]). Compute the degree [E : K] of the field
extension E := F (X,Y ) ⊃ K := F (Xp, Y p) and show that there is no primitive
element a ∈ E, i.e. such that E = K[a] holds.

3. R: Let E ⊃ K be a finite field extension and p := char(K) > 0. An element
a ∈ E is called separable over K, if pa ∈ K[T ] has only simple zeros and purely
inseparable over K, if there is an r ∈ N with ap

r ∈ K. We denote Es ⊂ E resp.
Ein ⊂ E the set of all separable resp. purely inseparable elements. The extension
E ⊃ K is called separable resp. purely inseparable iff E = Es resp. E = Ein.

(a) Show: A finite extension E ⊃ K is galois, if |AutK(E)| = [E : K]. Hint:
If the latter is satisfied, we have Ein = K (why?) and E can be written
E = K[a].

(b) Show: The sets Es, Ein ⊂ E äre intermediate fields. (Hint: Assume first
that E ⊃ K is normal and use the fact that Ein = K for a Galois extension
E ⊃ K). The intermediate field Es ⊃ K is also called the separable hull of K
in E. Show that E ⊃ Es is purely inseparable, and that E ⊃ Ein separable
for a normal extension E ⊃ K.

4. Let E ⊃ K be a Galois extension with Galois group G := AutK(E). Show that the
trace Tr : E −→ K,Tr(x) :=

∑
σ∈G σ(x) and the norm N : E∗ −→ K∗, N(x) :=∏

σ∈G σ(x) define homomorphisms between the additive resp. multiplicative groups
of E and K. Let a ∈ E and n := [E : K], s := [E : K[a]]. Show that (pa)s =
Tn + Tr(a)Tn−1 + ...+ (−1)nN(a). Indeed (pa)s is the characteristic polynomial of
the multiplication µa ∈ EndK(E).
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(a) Let p be a prime and K a field with char(K) 6= p. Show: If a 6∈ Kp, then the
polynomial f = T p − a ∈ K[T ] is irreducible. Hint: We may assume p > 2.
Let E ⊃ K be the splitting field of f . It is a Galois extension because of
char(K) 6= p. If f would be reducible, then n := [E : K] is not divisible with
p. Take b ∈ E with bp = a. Then N(b)p = N(bp) = N(a) = an. Consequently
an ∈ Kp resp. a ∈ Kp (why?), a contradiction.

(b) Let p be an odd prime and fr := T p
r−a ∈ K[T ] with a fieldK of characteristic

char(K) 6= p. Show: fr is irreducible iff a 6∈ Kp. Hint for the non-trivial
implication: According to a) the polynomial f := T p−a ∈ K[T ] is irreducible,
hence [K[b] : K] = p, where bp = a. If b is not a p-th power in K[b] we may use

the induction hypothesis and obtain that T p
r−1 − b ∈ K[b][T ] is irreducible,

resp. that [K[c] : K[b]] = pr−1, if b = cp
r−1

. Altogether [K[c] : K] = pr, i.e.
T p

r − a ∈ K[T ] is irreducible. Otherwise take c ∈ K[b] with cp = b and let
E ⊃ K[b] be the splitting field of f with corresponding norm N : E∗ −→ K∗.
As in a) we get the Galois extension E ⊃ K, where s := [E : K[b]] is not
divisible with p. Then with n := [E : K] we find (−1)sas = (−1)nN(b) =
(−1)nN(cp) = (−1)nN(c)p, and since p is odd and relatively prime to s, that
implies a ∈ Kp, a contradiction!

(c) Take now p = 2 in b). Show: fr := T 2r −a ∈ K[T ] is irreducible iff a 6∈ K2, 6∈
−4K4. Hint: Reason as before and exclude the possibility b = c2 with some
c ∈ K[b].

(d) Show that the polynomial f := Tn − a ∈ K[T ], where the exponent n is not
divisible with char(K), is irreducible, iff a 6∈ Kp for all primes p dividing n,
and if a 6∈ −4K4 in case 4|n.

5. In the two last problems we investigate Galois extensions E ⊃ K, whose Galois
group AutK(E) =< σ > is cyclic of prime order and look for a primitive element
a ∈ E, i.e. E = K[a], with a minimal polynomial of “standard form”. The element
a ∈ E is characterized by the fact that σ(a) should be of a special form, either
σ(a) = ζa with a primitive p-th root of unity or σ(a) = a+ 1.

(a) Let E ⊃ K be a Galois extension, with its degree [E : K] = p being a prime
number. Show: If K contains a primitive p-th root of unity ζ ∈ K (this
implies char(K) 6= p), we can write E = K[a] with an element a ∈ E, such
that b := ap ∈ K, or, with other words, the minimal polynomial pa ∈ K[T ]
of a over K is pa = T p − b. In that case E ⊃ K is also called a simple
radical extension. Hint: The Galois group is cyclic and generated by any
automorphism σ 6= idE . The element a ∈ E can be found as an eigenvector of
the K-linear map σ : E −→ E belonging to the eigenvalue ζ ∈ K: In fact, it
has characteristic polynomial χσ = pσ = f := T p − 1 ∈ K[T ], since f(σ) = 0
because of σp =idE , while idE , σ, ..., σ

p−1 are linearly independent according
to Problem 4.20.5.

(b) Let E ⊃ K be a Galois extension with cyclic Galois group AutK(E) =< σ >
and [E : K] = p = char(K). Show:There is an element a ∈ E with minimal
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polynomial pa = T p − T − c ∈ K[T ], cf. problems 4.46.1 and 4.58.2. Hint:
Consider τ := σ − idE ∈ EndK(E) (τ is not an automorphism!). Show:
τp = 0 6= τp−1 - if already τp−1 = 0 choose integers r, s with rp+s(p−1) = 1
and conclude τ = 0. Hence dim ker(τ) = 1 resp. ker(τ) = K ⊂ E. But τ
being nilpotent, we have ker(τ) ∩ τ(E) 6= {0} resp. K ⊂ τ(E). Take now
a ∈ E with τ(a) = 1 resp. σ(a) = a+ 1. Finally σ(ap − a) = ap − a and thus
c := ap − a ∈ K.

4.7 The Fundamental Theorem of Algebra

As an application of the Fundamental Theorem of Galois Theory 4.60 we
show

Theorem 4.66. (Fundamental Theorem of Algebra) The field C of all
complex numbers is algebraically closed.

Proof. According to Proposition 4.38 it suffices to prove that there are no
non-trivial finite extensions E ⊃ C. In any case the degree [E : C] of such
an extension is a 2-power: It is a divisor of [E : R] and there we have:

Proposition 4.67. The degree of a finite extension E ⊃ R is a power of 2,
i.e., [E : R] = 2r with some r ∈ N.

Proof. We may assume that E ⊃ R is normal: Otherwise there is an exten-
sion L ⊃ E, such that L ⊃ R is normal, see 4.36.1. But [E : R] is a divisor
of [L : R] by 4.12. So let us consider a normal extension E ⊃ R. It is then
automatically galois, and we choose a 2-Sylow subgroup H ⊂ G := AutR(E).
Now it suffices to show: F := Fix(H) = R, since that implies according to
4.60 H = G and [E : R] = |G| = |H| = 2r with some r ∈ N.
Because of [E : F ] = |H| and |G| = [E : R] = [E : F ][F : R], the extension
degree [F : R] is odd; in particular every element a ∈ F has a minimal
polynomial pa ∈ R[T ] of odd degree, but on the other hand every polynomial
∈ R[T ] of odd degree has a real zero.
Thus the irreducible polynomial pa has degree 1 and a ∈ R. So we have seen
F ⊂ R resp. F = R and are done.

Let us now go on with the proof of 4.66: The extension E ⊃ C has degree [E :
C] = 2s with some s ∈ N. We show that for s ≥ 1 there is a subgroup H ⊂
G := AutC(E) of index (G : H) = 2. Taking that for granted, Fix(H) ⊃ C is
an extension of degree 2 and thus Fix(H) = C[a] with some element a whose

142



minimal polynomial pa ∈ C[T ] has degree 2. But every quadratic polynomial
∈ C[T ] has a zero in C, in particular it is reducible. Contradiction!
Existence of the subgroup H ⊂ G: We show that every p-group G has a
subgroup H of index (G : H) = p. If |G| = p, take H := {e}. Let % : G −→
G/Z(G) be the quotient projection. According to 2.32 we have |G/Z(G)| <
|G|, and now may assume, that we already have found a subgroup H0 ⊂
G/Z(G) of index p. Finally take H := %−1(H0).

Problems 4.68. 1. Show: If K has characteristic char(K) = 0 and E ⊃ K is a finite
extension with an algebraically closed field E, then either E = K or E = K[i] with
an element i ∈ E, i2 = −1. Hint: Since i ∈ E, we may replace K with K[i] resp.
assume i ∈ K and have to show E = K. In any case E ⊃ K is galois. Take a
prime number p dividing [E : K] = |AutK(E)| and an automorphism σ ∈ AutK(E)
of order p and let F ⊂ E be its fixed field. We then have [E : F ] = p and all
non-linear irreducible polynomials ∈ F [T ] have degree p. In particular the p-th
roots of unity belong to F - their minimal polynomial being of degree < p, while
all element ∈ F \E have a minimal polynomial of degree p. According to Problem
4.65.5 c) we may write E = F [a], where b := ap ∈ F . In particular b 6∈ F p and,
for p = 2, nor b ∈ −4F 4 - otherwise a would be a square in F because of i ∈ F .
So the polynomial T p

2 − b ∈ F [T ] is irreducible according to Problem 4.65.4 c).
Contradiction!

4.8 Cyclotomic Extensions

The finite field Fpn is the splitting field of the polynomial T p
n−1 − 1 ∈ Fp[T ]

and has cyclic Galois group. In this section we investigate the splitting field
En ⊃ Q of f = T n−1 ∈ Q[T ]. Indeed, En = Q[ζn] with ζn := e

2πi
n , it is called

the n-th cyclotomic field, since the n-th roots of unity 1, ζn, ..., ζ
n−1
n divide

the unit circle into n sectors of the same size. (κυκλoς = circle, τεµνειν =
to cut).
We determine first the minimal polynomial pζn ∈ Q[T ] of ζn. Recall that
ζkn, k ∈ Z, only depends on the residue class k̄ ∈ Zn of k modulo n.

Definition 4.69. The n-th cyclotomic polynomial fn ∈ C[T ] is the poly-
nomial

fn :=
∏
k̄∈Z∗

n

(T − ζkn) , n ≥ 2,

while f1 := T − 1.

Remark 4.70. 1. We have deg(fn) = ϕ(n) with Euler’s ϕ-function, cf.
Example 3.8.5.
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2. Let S1 := {z ∈ C; |z| = 1} be the unit circle. Then

fn =
∏

a∈S1,ord(a)=n

(T − a)

and thus:

T n − 1 =
∏
a∈Cn

(T − a) =
∏
d|n

( ∏
a∈S1,ord(a)=d

(T − a)
)

=
∏
d|n

fd .

Using that formula we can compute the cyclotomic polynomials in-
ductively, cf. Problem 3.46.4. For example for a prime p we obtain
T p − 1 = (T − 1)fp, and the division algorithm for polynomials yields

fp = T p−1 + T p−2 + ...+ T + 1 ,

while T 4 − 1 = f1f2f4 = (T − 1)(T + 1)f4, whence f4 = T 2 + 1 (of
course f4 = (T − i)(T + i) as well), and

T 6 − 1 = f1f2f3f6 = (T − 1)(T + 1)(T 2 + T + 1)f6

leads to f6 = T 2−T +1. Eventually T 8−1 = (T −1)(T +1)(T 2 +1)f8,
such that f8 = T 4 + 1 etc..

In any case we see that the cyclotomic polynomials have integral coef-
ficients:

fn ∈ Z[T ] .

The n-th root of unity ζn being a zero of fn, its minimal polynomial pζn
is a divisor of fn. In fact

Proposition 4.71. The n-th cyclotomic polynomial fn ∈ Z[T ] is irreducible.
In particular, it agrees with the minimal polynomial pζn ∈ Q[T ] of ζn = e2πi/n,
i.e.

pζn = fn .

Proof. Denote f := pζn ∈ Q[T ] the minimal polynomial of ζn over Q. Since
f |fn and fn only has simple zeros, it is sufficient to show that f := pζn ∈ Q[T ]
and fn have the same zeros, i.e., we have to see that f(ζkn) = 0 for all k ∈ N
relatively prime to n.
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Writing a given k as a product of primes, we see that we are done if for
all a ∈ Cn and primes p not dividing n, we can prove the implication:

(3) f(a) = 0 =⇒ f(ap) = 0 .

The polynomial f is a divisor of T n − 1, say T n − 1 = fh. Gauß’ lemma
3.40 tells us 1 = cont(f)cont(h), but with f also h is a monic polynomial, and
the content of a monic polynomial is a number of the form 1/m,m ∈ N>0.
Hence necessarily cont(f) = cont(h) = 1, in particular f, h ∈ Z[T ].

So let us fix a prime p with p 6 |n. Assume f(a) = 0 and f(ap) 6= 0.
Since a ∈ Cn, we see 0 = (an)p − 1 = (ap)n − 1 = f(ap)h(ap). Thus, if not
f(ap) = 0, we must have h(ap) = 0. That can also be formulated in a more
sophisticated way, by saying: The polynomial h(T p) has a as a zero. But then
f , being the minimal polynomial of a, divides h(T p) in Q[T ] resp. Z[T ]. For
the modulo p reduced polynomials f̃ , h̃(T p) = h̃p ∈ Zp[T ] we have the same
divisibility relation f̃ |h̃(T p) = h̃p. But that implies that every zero b ∈ NF(f̃)
of f̃ ∈ Zp[T ] in some extension F ⊃ Zp is also a zero of h̃p resp. of h̃ itself.
We choose F as splitting field of the polynomial g := T n − 1 = f̃ h̃ ∈ Zp[T ].
In F there is of course such a zero b, which then is at least a double zero of
g. But since g′ = nT n−1 and p 6 |n, we have g′(b) 6= 0. Contradiction.

Let us now determine the Galois group of Q[ζn] ⊃ Q:

Theorem 4.72. For the cyclotomic extension Q[ζn] ⊃ Q we have

1. Its degree satisfies [Q[ζn] : Q] = ϕ(n) with Eulers’ ϕ-function ϕ :
N>0 −→ N.

2. Let Cn ⊂ Q[ζn] denote the group of all n-th roots of unity. Then the
restriction map

AutQ(Q[ζn]) −→ Aut(Cn), σ 7→ σ|Cn

is an isomorphism. Here Aut(Cn) ∼= Z∗n is the automorphism group of
the group Cn. So altogether

AutQ(Q[ζn]) ∼= Z∗n.
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Proof. The degree equality is an immediate consequence of 4.71, while the
restriction map in the second part is injective, an automorphism σ being
determined by its value σ(ζn), and surjective, since the Galois group acts
transitively on the roots of the irreducible polynomial fn. Finally remember
the isomorphism

Z∗n
∼=−→ Aut(Cn), k 7→ pk

with the k-th power map pk : Cn −→ Cn, a 7→ ak.

Remark 4.73. Since the automorphism group of a cyclotomic extension is
abelian, every intermediate field L of Q[ζn] ⊃ Q provides a Galois extension
L ⊃ Q with abelian Galois group. A deep result of Leopold Kronecker
(1823-1891) assures that (up to isomorphy) every Galois extension E ⊃ Q
with abelian Galois group AutQ(E) is obtained in that way. We only discuss
an example:

Example 4.74. We consider the real part of the n-th cyclotomic field:

Ln := Q[ζn] ∩ R = Fix(τ) = Q[a]

with the complex conjugation τ : z 7→ z and a := ζn + ζn = 2 cos(2π
n

). (Note
that τ |Cn = p−1.)

We find [Q[ζn] : Ln] = 2, since ζn is a root of the quadratic polynomial
T 2− aT + 1 ∈ Ln[T ], and thus [Ln : Q] = ϕ(n)/2 for n > 2. Obviously Ln ⊃
Q[a], while equality follows from the fact, that even T 2−aT + 1 ∈ (Q[a])[T ].
The case n = 9 has already been discussed, see Example 4.19.2).

Problems 4.75. 1. Let E ⊃ Q be the splitting field of the polynomial Tn− a, where
a ∈ Q∗. Show that Q[ζn] ⊂ E and Aut(E) := AutQ(E) is isomorphic to a sub-
group of the semidirect product Cn ×σ Z∗n with the homomorphism σ : Z∗n −→
Aut(Cn), k 7→ pk. Let now n = p be a prime number and a ∈ Z not a p-th power.
Show that in this case Aut(E) ∼= Cn ×σ Z∗n. Hint: The polynomial T p − a is irre-
ducible over Q, cf. Problem 4.65.4. Conclude that p divides [E : Q] = ϕ(n)k and
thus p|k because of gcd(p, ϕ(p)) = 1 resp. even p = k.

2. Show that, with the notation of the previous problem: Cn ×σ Z∗n ∼= Aff(Zn), cf.
Problem 3.9.8.
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4.9 Solvability by Radicals

In the final section we explain how Galois theory leads to a solution of our
problem to decide when a polynomial equation over a field K of characteristic
char(K) = 0 can be “solved by radicals”. First of all we have to make precise
that notion. We begin with

Definition 4.76. An extension E ⊃ K is called a simple radical exten-
sion, if it can be written E = K[a] with a primitive element a ∈ E, such
that am ∈ K for some exponent m > 0.

Remark 4.77. Given a simple radical extension, the polynomial Tm − b ∈
K[T ] with b = am is not necessarily the minimal polynomial pa ∈ K[T ] of a
over K (even if m > 0 is minimal with am ∈ K). But in any case pa is of
course a divisor of Tm − b.

Example 4.78. Let ζm ∈ C be the m-th root of unity ζm := exp(2πi
m

). Then

Q[ζm] ⊃ Q is a simple radical extension. Another example is Q[ 3
√

2] ⊃ Q.

Let us now discuss the automorphism group AutK(E) for a simple radical
extension E = K[a] ⊃ K with b = am ∈ K.

Proposition 4.79. The automorphism group AutK(E) of a simple radical
extension E = K[a] ⊃ K (with, say, am ∈ K) is solvable.

Proof. Consider the group Cm(E) ⊂ E∗ of m-th roots of unity in E, a cyclic
group (cf. Prop. 4.47) whose order ` := |Cm(E)| divides m (with ` = m
for char(K) = 0) and the intermediate field L = K[Cm(E)], obtained from
K by adjoining the elements in Cm(E), the splitting field of the polynomial
Tm − 1. Then the normal series

{idE}� AutL(E) � AutK(E)

has abelian factors: The automorphism group AutL(E) is isomorphic to a
subgroup of Cm(E), the group homomorphism

AutL(E) −→ Cm(E), σ 7→ σ(a)a−1

being injective. On the other hand

AutK(E)/AutL(E) ∼= AutK(L) ↪→ Aut(Cm(E)), σ 7→ σ|Cm(E),

with the abelian group Aut(Cm(E)) ∼= Z∗` , where a residue class k corre-
sponds to the k-th power map pk : Cm(E) −→ Cm(E), a 7→ ak.
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Definition 4.80. An extension E ⊃ K is called a radical extension, if
it is the composite of finitely many simple radical extensions Ei ⊃ Ei−1, i =
1, ..., r, (often also called a “tower”):

K = E0 ⊂ E1 ⊂ ... ⊂ Er = E .

Eventually we can define “solvability by radicals”:

Definition 4.81. Let f ∈ K[T ] be an irreducible polynomial. We say that
the equation f(x) = 0 is solvable with radicals, if there is a radical extension
L ⊃ K, such that f has a zero in L.

Example 4.82. As we shall see later on the radical extension L ⊃ K can
always be taken as an extension L ⊃ E of the splitting field E ⊃ K of
f ∈ K[T ], but it may happen that we can not actually choose L = E. For
example consider f = T 3 − 3T + 1 ∈ Q[T ]. Its splitting field is E := Q[a]
with a := ζ9 + ζ−1

9 = 2 cos(2π
9

) and we choose L := Q[ζ9] ⊃ E; so the
equation f(x) = 0 is solvable with radicals. Now the extension E ⊃ Q has
degree [E : Q] = 3 and hence no proper intermediate fields, and it is itself
not a simple radical extension: We have E ⊂ R and thus |Cm(E)| ≤ 2 and
Aut(Cm(E)) = {id}; so, if E ⊃ Q would be a simple radical extension, its
automorphism group had at most two elements. But we have already seen
that it is cyclic of order 3.

Here is the central result characterizing polynomials solvable by radicals:

Theorem 4.83. Let char(K) = 0 and f ∈ K[T ] be an irreducible polynomial.
Then the equation f(x) = 0 is solvable with radicals, iff its Galois group, i.e.
the automorphism group AutK(E) of its splitting field E ⊃ K, is solvable.

Proof. “⇐=”: Let n := [E : K] and L ⊃ E be the splitting field of the
polynomial T n!− 1 ∈ E[T ]. Then L ⊃ K is the splitting field of (T n!− 1)f ∈
K[T ] and thus a Galois extension because of char(K) = 0. Furthermore
its Galois group AutK(L) is solvable, since both, AutE(L) ⊂ AutK(L) and
AutK(L)/AutE(L) ∼= AutK(E) are solvable: The extension L ⊃ E is a
simple radical extension: L = E[ζ] with a primitive n!-th root of unity ζ,
and AutK(E) is solvable by assumption. We take now L0 := K,L1 := K[ζ].
The Galois group AutL1(L) ⊂ AutK(L) is also solvable. We have now
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[L : L1] ≤ [E : K], since we may write E = K[a] with some primitive
element a ∈ E. Then L = L1[a], and the minimal polynomial pa ∈ K[T ] of
a over K is divisible with the minimal polynomial qa ∈ L1[T ] of a over L1.
And [E : K] = deg(pa) as well as [L : L1] = deg(qa).

It remains to show that L ⊃ L1 is a radical extension. In order to simplify
notation we replace L1 with K and L with E, where we may assume that
Cn(K) with n := [E : K] has order n, i.e. all n-th roots of unity lie already
in the base field K. Take now a normal series

G0 = G := AutK(E) �G1 � ...�Gr := AutE(E) = {idE}

with cyclic factors Gi/Gi+1 of prime order and consider the corresponding
tower of intermediate fields

K = L0 ⊂ L1 ⊂ .... ⊂ Lr = E .

Then Li+1 ⊃ Li is a Galois extension with cyclic Galois group AutLi(Li+1) ∼=
Gi/Gi+1 of prime order. The extension degree p := [Li+1 : Li] divides n =
[E : K] and hence Cp(Li) ⊂ Cn(Li) = Cn(K) has order p, i.e., all p-th roots
of unity belong to Li. Problem 4.65.5 a) with K = Li and E = Li+1 gives
us, that we really have a simple radical extension.

“=⇒”: We take a radical extension L ⊃ K, such that f has a zero in L and
construct an extension F ⊃ L, such that F ⊃ K is a Galois extension with
solvable Galois group AutK(F ). This yields the result, since the splitting
field E ⊃ K of f then is isomorphic to an intermediate field of F ⊃ K. Take
a tower

L0 := K ⊂ L1 ⊂ ... ⊂ Lr = L

of simple radical extensions Li+1 ⊃ Li, say Li = Li−1[ai], where bi := amii ∈
Li−1. Let m := m1 · ... · mr. Then we take F ⊃ K as splitting field of
(Tm − 1)g ∈ K[T ], where g = pa is the minimal polynomial over K of some
primitive element a ∈ L for the field extension L ⊃ K, i.e., L = K[a]. Hence
we may regard L as intermediate field of the extension F ⊃ K. On the other
hand

F = K[ζ, σ(a);σ ∈ AutK(F )] = K[ζ, σ(ai); i = 1, ...., r, σ ∈ AutK(F )]

with a primitive m-th root of unity ζ ∈ F . Let

AutK(F ) = {σ1 := idF , σ2, ..., σn} .
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Now consider the tower

F0 := K ⊂ F1 := K[ζ] ⊂ F2 := F1[a2] ⊂ ... ⊂ F1+nr

with

F1+(j−1)r+i := K[ζ, a1, ..., ar, σ2(a1), ...., σj−1(ar), σj(a1), ..., σj(ai)] ,

where j = 1, ..., n and i = 1, ..., r. Then it is sufficient to show that F` ⊃
F`−1 is a Galois extension with abelian Galois group: That extension is the
splitting field of Tm−1 ∈ F0[T ] = K[T ] for ` = 1 and of Tmi−σj(bi) ∈ F`−1[T ]
for ` = 1 + (j− 1)r+ i, since F`−1 contains all mi-th roots of unity. As above
we see that AutF`−1

(F`) ⊂ Cmi(F`−1) is cyclic.

5 Annex: Zorns Lemma

If in algebra infinite or even uncountable sets are involved, it can be useful to
know about the existence of certain objects even if there is no constructive
method to create them: A generally accepted tool in this context is “Zorns
lemma”, which we shall discuss in this annex.

Definition 5.1. A partial order on a set M is a relation “�”, which is
reflexive, antisymmetric and transitive, i.e.

1. ∀ x ∈M : x � x ,

2. ∀ x, y ∈M : x � y ∧ y � x =⇒ x = y and

3. ∀ x, y, z ∈M : x � y ∧ y � z =⇒ x � z.

Such a relation is sometimes simply called an order (relation) on M . A
total or linear order is a partial order, where any two elements x, y ∈ M
are related:

∀ x, y ∈M : x � y ∨ y � x .

A well ordering on M is a linear order, such that every non-empty subset
M0 ⊂M has a first element (with respect to �), i.e.,

∀ M0 ⊂M ∃ a ∈M0 : ∀ x ∈M0 : a � x .

An element a ∈M is called maximal (w.r.t. the order �), iff

∀ x ∈M : a � x =⇒ a = x,

i.e., there are no elements bigger than a.
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Example 5.2. In many applications the set M is realized as a subset M ⊂
P(U) of the power set of some set U (the “universe”) with the inclusion as
order relation

A � B ⇐⇒ A ⊂ B.

Remark 5.3. 1. If x � a for all x ∈ M , the element a is obviously
maximal, but in general that need not hold for a maximal element: It
is allowed for a maximal element a ∈M , that there are elements in M
not related to a.

2. The set N = {0, 1, 2, ...} of all natural numbers, endowed with the
natural order, is well ordered, but Z,Q and R are not. The set N2,
endowed with the lexicographic order

(x, y) � (x′, y′)⇐⇒ x < x′ ∨ (x = x′ and y ≤ y′) .

is well ordered. A subset of a well ordered set has by definition a unique
first element, but in general no last element, and every element has an
immediate successor - the first element of the set of all elements after
the given one, but not necessarily an immediate predecessor. An initial
segment M0 of a linearly ordered set M is a subset M0 ⊂M satisfying
M 3 y � x ∈M0 =⇒ y ∈M0, i.e., with an element x ∈M0 all elements
y � x before x belong to M0. If M is well ordered, such an initial
segment satisfies either M0 = M or M0 = M≺a := {x ∈ M ;x ≺ a}.
Namely, given an initial segment M0 6= M , choose a as the first element
in the complement M \M0.

Theorem 5.4. (Zorns lemma) (Max August Zorn, 1906-1993): Let M be
a set with the partial order �. If for every (w.r.t. �) linearly ordered subset
T ⊂ M there is an upper bound b ∈ M , i.e. such that t � b for all t ∈ T
(written briefly as T � b), then there are maximal elements in M .

Example 5.5. If M ⊂ P(U) as in Example 5.2, the upper bound B of
a linearly ordered subset T ⊂ M ⊂ P(U) usually is taken as the union
B :=

⋃
A∈T A of all sets A ∈ T , and it remains to check that in fact B ∈M .

Before we prove Zorns lemma we present the most important applications.
The first one is basic for Linear Algebra:

Theorem 5.6. Every K-vector space V has a basis.
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Proof. Take M ⊂ P(V ) as the set of all linearly independent subsets of V .
We can apply Zorns lemma as in Example 5.5. So there is a maximal linearly
independent set B ∈M , indeed B is a basis: We have to show that any vector
v ∈ V is a finite linear combination of vectors in B. So let v ∈ V . If v ∈ B,
we are done, otherwise B ∪ {v} 6∈ M – the set B ∈ M being maximal in M
– and hence there is a non-trivial relation

0 = λv + λ1v1 + ...+ λrvr

with v1, ..., vr ∈ B and λ, λ1, ..., λr ∈ K. But λ 6= 0, since the vectors v1, ..., vr
are linearly independent, i.e., we may solve for v ∈ V .

Theorem 5.7. Every proper ideal a ⊂ R in a (commutative) ring (with 1)
is contained in a maximal ideal m ⊂ R.

Proof. Take M ⊂ P(R) as the subset of all proper ideals in R containing a.
Since an ideal a is proper iff 1 6∈ a, it is obvious that the union of a linearly
ordered set of proper ideals again is a proper ideal.

As a corollary of Theorem 5.7 we obtain:

Theorem 5.8. Every field K has an algebraic closure E ⊃ K, and any two
algebraic closures are isomorphic as K-extensions.

Proof. Existence: First we make the field K perfect, if char(K) = p > 0:
The pair (E := K, σ) with the Frobenius homomorphism σ : K −→ E = K
defines a field extension p

√
K ⊃ K, where every element x ∈ K has a p-

th root. We may iterate that procedure and obtain after n steps the field
pn
√
K ⊃ K. Since for m ≥ n there is a unique (injective) morphism pn

√
K ↪→

pm
√
K of K-extensions, we may treat it is an inclusion and define

K∞ :=
∞⋃
n=0

pn
√
K ,

which obviously is a perfect field.
A more explicit construction of K∞ is as follows:

K∞ :=

(
∞⋃
n=0

K × {n}

)
/ ∼ ,

152



where for m ≥ n, we have (x, n) ∼ (y,m) iff y = σm−n(x), and K ↪→ K∞
is given by x 7→ [(x, 0)] :=the equivalence class of (x, 0). We leave it to the
reader to define the addition and multiplication of equivalence classes. Thus
it remains to find an algebraic closure of K∞.

So, from now on we may assume that K is perfect. Then we construct a
field E ⊃ K, such that every irreducible polynomial f ∈ K[T ] has a zero in
E and use

Proposition 5.9. Let E ⊃ K be an algebraic extension of the perfect field
K, such that every irreducible polynomial f ∈ K[T ] has a zero in E. Then
E ⊃ K is an algebraic closure of K.

Proof. We have to show that every irreducible polynomial f ∈ K[T ] is split
over E. Consider a splitting field L ⊃ K of f . Since K is perfect, we can
write L = K[a] according to the Primitive Element Theorem 4.63. But the
minimal polynomial pa ∈ K[T ] is irreducible and thus has a zero b ∈ E.
Therefore f is split over E ⊃ K[b ] ∼= L.

The extension E ⊃ K satisfying the assumptions of Proposition 5.9 is
obtained as follows: Index the irreducible monic polynomials ∈ K[T ] as
fα, α ∈ A, with some index set A, and consider the polynomial ring K[TA] of
all polynomials in the variables Tα, α ∈ A, every individual polynomial de-
pending only on finitely many variables. To be more precise: The polynomial
ring K[T1, ..., Tn] may be defined inductively:

K[T1, ..., Tn+1] := (K[T1, ..., Tn])[Tn+1].

Now for a finite subset A0 ⊂ A, say A0 = {α1, ..., αn}, we set

K[TA0 ] := K[Tα1 , ..., Tαn ] ,

and finally

K[TA] :=
⋃

A0⊂A, |A0|<∞

K[TA0 ] .

Now let
gα := fα(Tα) ∈ K[Tα] ⊂ K[TA],

i.e. every polynomial fα gets its own variable Tα! Let now a ⊂ K[TA] be the
ideal generated by the gα, i.e.,

a =

{
r∑
i=1

hαigαi ;hαi ∈ K[TA], r ∈ N, α1, ..., αr ∈ A

}
.
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Indeed a is a proper ideal: Otherwise we can write

1 =
n∑
i=1

hαigαi .

Now take a finite set A0 ⊂ A with hαi , gαi ∈ K[TA0 ] for i = 1, ..., n. In order
to simplify notation write hi, gi instead of hαi , gαi and A0 = {1, ...,m} with
some m ≥ n. So we have the equality

1 =
n∑
i=1

higi

in the ringK[T1, ..., Tm]. Now consider a splitting field F ⊃ K of f := f1·...·fn
and substitute x = (x1, ..., xn, 0, ..., 0) ∈ Fm, where xi ∈ F is a zero of fi:
Since gi(x) = fi(xi) = 0 for i = 1, ..., n, we obtain that 1 = 0 holds in F .
Contradiction!

Eventually Theorem 5.7 provides a maximal ideal m ⊃ a, and we may
set E := K[TA]/m. Obviously K −→ K[TA]/m is a field extension, where
fα ∈ K[T ] has the zero xα := Tα + m. In particular E ⊃ K is algebraic.
Uniqueness: Let E ⊃ K and F ⊃ K be two algebraic closures. Consider
the set M of all pairs (L, σ), where L is an intermediate field of E ⊃ K and
σ : L −→ F a morphism of K-extensions; furthermore we define

(L, σ) � (L′, σ′)⇐⇒ L ⊂ L′ and σ = σ′|L .

Let now {(Li, σi), i ∈ I} be a linearly ordered subset. The upper bound we
are looking for can be taken as (L∞, σ), where

L∞ :=
⋃
i∈I

Li , σ|Li := σi .

According to Zorns lemma there is a maximal element (L, σ) and it remains
to show L = E and σ(E) = F . If L 6= E, take an element a ∈ E \ L, denote
pa ∈ L[T ] its minimal polynomial over L. Since F is algebraically closed, the
polynomial pσa ∈ σ(L)[T ] has a zero b ∈ F . Then we have (L[a], σ̂) � (L, σ),
if σ̂|L = σ, σ̂(a) = b. So necessarily L = E. But E being algebraically closed,
σ(E) is algebraically closed as well, in particular σ(E) has no non-trivial
finite or algebraic extensions, i.e. F = σ(E).
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Proof of Th.5.4. We assume that there is no maximal element in M , but
that every linearly ordered subset T ⊂ M has an upper bound γ(T ) ∈ M .
So there is a function

γ : Lin(M) −→M

from the set Lin(M) ⊂ P(M) of all subsets linearly ordered with respect to
�, such that T � γ(T ). We may even assume that γ(T ) is a strict upper
bound: T ≺ γ(T ) or, equivalently γ(T ) 6∈ T . If only γ(T ) ∈ T is possible,
the element γ(T ) would be a maximal element for the entire set M .

Then we use the function γ in order to produce recursively a linearly
ordered, indeed even well ordered, subset not admitting an upper bound,
contrary to our hypothesis. We take x1 := γ(∅) as its first element. If
x1, ..., xn are found one defines xn+1 := γ({x1, ..., xn}). In this way we obtain
a sequence (xn)n∈N with x1 ≺ x2 ≺ ..., but the chain {xn;n ∈ N} can be
extended further: Take y1 := γ({xn;n ∈ N}), y2 := γ({y1, xn;n ∈ N}).

In order to make sure that this idea really works, we introduce the concept
of a “γ-chain”: We shall call a subset K ⊂ M a γ-chain, if (K,�) is well
ordered and for any y ∈ K the initial segment K≺y := {x ∈ K; x ≺ y}
satisfies

y = γ(K≺y) .

We shall see that given two γ-chains K,L one of them is an initial segment
of the other. Taking this for granted the set

T :=
⋃

K γ-chain

K

is obviously a maximal γ-chain. On the other hand T̂ := T ∪ {γ(T )} is
γ-chain as well, so T̂ ⊂ T resp. γ(T ) ∈ T – a contradiction!

It remains to show that of two γ-chains K,L one is an initial segment of
the other: Denote K0 = L0 the union of all sets which are initial segments
of both K and L. Obviously it is an initial segment of both K and L. If
K0 = K or L0 = L, we are done; otherwise K0 = K≺a and L0 = L≺b. In that
case we have

a = γ(K≺a) = γ(L≺b) = b ∈ L ,

i.e., K�a = L�b is an initial segment of both K and L, a contradiction!
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Remark 5.10. The above proof of Zorns lemma is a naive one. The most
problematic part is the existence of the function

γ : Lin(M) −→M,

since in general there is no recipe for an explicit construction, the set Lin(M)
being quite big. Instead one has to derive it from the

Axiom of Choice: Given a family (Ai)i∈I of pairwise disjoint subsets Ai ⊂
M of a set M , there is a set A ⊂M containing precisely one element out of
each set Ai, i ∈ I, i.e., it has the form A = {xi; i ∈ I} with xi ∈ Ai for all
i ∈ I.

The axiom of choice, though looking quite harmless, has striking conse-
quences, as for example the fact, that every set admits a well ordering, cf.
Problem 5.11.4. Indeed, no human being has up to now succeeded in well
ordering the set of all real numbers.

Problems 5.11. 1. Let S ⊂ R \ {0} be a multiplicative subset in the ring R. Show:
There is a maximal ideal a ⊂ R in the set of all ideals not intersecting S. If S = {1},
it is a maximal ideal in the sense of Def. 3.23, but otherwise not necessarily. But
in any case it is a prime ideal!

2. Show that ⋂
p⊂R prime ideal

p =
√
{0} .

Hint: Use Problem 4.75.1! Here we denote
√
{0} := {x ∈ R;∃ n ∈ N : xn = 0} the

nilradical of the ring R.

3. Let K ⊂ C be a subfield. Show: Every automorphism σ : K −→ K can be extended
to an automorphism σ̂ : C −→ C! Note that the corresponding statement for R
instead of C is wrong! (Cf. Problem 4.20.3)

4. Show: Every set M admits a well ordering. Hint: Choose a map γ : P(M)\{M} −→
M with γ(A) ∈M \A for all proper subsets A ⊂M . Then argue as in the proof of
Zorns lemma!
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