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Abstract

The proof of the combinatorial Hard Lefschetz Theorem for the “virtual” in-
tersection cohomology of a not necessarily rational polytopal fan that has been
presented by Karu completely establishes Stanley’s conjectures for the generalized
h-vector of an arbitrary polytope. The main ingredients, namely, Poincaré Dual-
ity and the Hard Lefschetz Theorem, both rely on the intersection product. In
the original constructions given simultaneously by Bressler/Lunts and the authors
of this article, there remained an apparent ambiguity. The recent solution of this
problem by Bressler/Lunts uses the formalism of derived categories. The present
article gives a straightforward approach to combinatorial duality and a natural in-
tersection product, completely within the framework of elementary sheaf theory and
commutative algebra, thus avoiding derived categories.

1 Introduction

In [St], Stanley introduced the generalized h-vector for arbitrary polytopes. For rational

polytopes, this new combinatorial invariant agrees with the vector of even (middle perver-

sity) intersection cohomology Betti numbers of a projective toric variety associated with

the polytope and then, they enjoy the same properties. Stanley proved that the Dehn-

Sommerville equations (i.e., Poincaré duality) remain valid in the general case, and he

conjectured that non-negativity and unimodality up to the middle dimension also should
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continue to hold. In the rational case, the unimodality property follows from the “Hard

Lefschetz Theorem” for the intersection cohomology of a projective variety.

This conjecture motivated the search for a purely combinatorial approach to the inter-

section cohomology of toric varieties. Such an approach has been developed independently

in [BBFK2] and by Bressler and Lunts in [BreLu1]. The basic idea in both articles is to

view a (not necessarily rational) fan as a finite topological space, endowed with the topol-

ogy given by the subfans as non-trivial open sets, and to study the properties of a certain

sheaf on that “fan space” that agrees with the equivariant intersection cohomology sheaf

for the associated toric variety in the rational case. This approach then yields a “vir-

tual” intersection cohomology theory for the class of “quasi-convex” fans that includes all

complete and hence, in particular, all polytopal fans. In [BBFK2] , the working principle

was to present everything on a fairly elementary level, using geometry and commutative

algebra only and avoiding the use of derived categories.

At the time when these articles were written, a purely combinatorial version of the

Hard Lefschetz Theorem (HLT), as stated in the third section, was still lacking. This was

the only missing piece to prove that the vector of even “virtual” intersection cohomology

Betti numbers of a polytopal fan agrees with the generalized h-vector of the polytope, and

thus, to fully establish Stanley’s conjecture. As another problem, in the construction of the

intersection product on the virtual equivariant intersection cohomology sheaf, apparently

non-canonical choices entered.

In the meantime, a proof of the combinatorial Hard Lefschetz Theorem has been pre-

sented by Karu in [Ka]. The proof heavily relies on the study of the intersection product,

since what actually is shown are the Hodge-Riemann bilinear relations (HRR) for the

“primitive” (virtual) intersection cohomology, which imply HLT as an easy consequence.

The apparent ambiguity in the definition of the intersection product, however, makes the

argumentation quite involved, since one has to carefully keep track of the choices made.

A first simplified version has recently been presented by Bressler and Lunts in [BreLu2],

using the framework of derived categories. In particular, they verify by a detailed analysis

that none of the possible choices affects the definition of the pairing.

Our goal is to go one step further, namely, to give a short, direct, and elementary

approach to duality and the intersection product in the “geometrical” spirit of [BBFK2],

following ideas of [Bri], the only prerequisites being sheaf theory and commutative algebra.

While in [BreLu1,2] the duality functor is apriori only defined as an endofunctor of a big

derived category containing the ”pure sheaves” as invariant subcategory, we construct the

dual of a pure sheaf directly as a pure sheaf, avoiding the above detour. The crucial step

is the definition of the restriction homomorphisms from a cone to a facet; the image of a

section can be looked at as a kind of residue along the facet. The structure of the proof
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of Poincaré duality and the naturality of the intersection product is the classical one, as

in [BreLu2], with the single steps easily accessible. For the convenience of the reader we

give here a complete presentation, referring always to the corresponding statements in

[BreLu1,2].

An intersection product corresponds to a sheaf homomorphism ϑ : E → DE of degree

zero from the (graded) equivariant intersection cohomology sheaf E to its dual, and we

check that E is self-dual in a natural way.

Our main result, cf also [BreLu2], is stated below in such a way that it fits into the

inductive proof of the Hard Lefschetz Theorem as given in [Ka]: Assuming HLT for

polytopal fans in dimension d < n, the “Poincaré Duality Theorem” yields a natural

intersection product on every fan in dimension n. In [Ka] it is shown that HRR for

simplicial fans in any dimension – which is valid by [Mc] – together with HRR for arbitrary

fans in dimensions d < n imply HRR and thus, HLT in dimension n. In that induction

step, it is most useful to work with a canonical pairing.

To state our result, we use this notation, explained more systematically in section 2:

Let ∆ be a quasi-convex fan in a vector space V of real dimension n with a fixed vol-

ume form, and ∂∆ its boundary fan. The global sections of the equivariant intersection

cohomology sheaf E on ∆ and on (∆, ∂∆), respectively, are (graded) modules over the

(graded) symmetric algebra A := S(V ∗) of polynomial functions on V .

Theorem 1.1 Poincaré Duality Theorem. [BreLu2, 3.16] In the above situation, let

us assume that the Hard Lefschetz Theorem holds in all dimensions below n. Then there

is a natural intersection product

(1) E(∆)× E(∆, ∂∆) −→ A[−2n]

giving rise to a dual pairing of finitely generated free A-modules.

For the following supplement, let Ê be the equivariant intersection cohomology sheaf

of a refinement ∆̂ of ∆ with refinement map π : ∆̂ → ∆. The result is essential for a

simplified proof of the Hard Lefschetz Theorem, see also [BreLu2]:

Theorem 1.2 Compatibility Theorem [BreLu2, 7.2] Let E → π∗(Ê) be a homomor-

phism of graded sheaves extending the identity Eo = R = π∗(Ê)o at the zero cone o.

Then the “global” intersection products are compatible, i.e., the following diagram is

commutative:

(2)

E(∆)× E(∆, ∂∆) −→ Ê(∆̂)× Ê(∆̂, ∂∆̂)

↘ ↙

A[−2n] .
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The present article is a complete version of the results announced in [Fi]. – The authors

gratefully acknowledge the hospitality of the Institut de Mathématiques de Luminy at

Marseille, where part of this article has been written. For useful comments and remarks

our thanks go to Tom Braden.

2 Preliminaries

For the convenience of the reader, we recall some basic notions, notation and constructions

to be used in the sequel.

2.1 Basic Algebra

Let V be a real vector space of dimension n, and A := S(V ∗), the symmetric algebra on

the dual vector space V ∗, i.e., the algebra of real valued polynomial functions on V . We

endow A with the even grading given by A2 = V ∗, a convention motivated by equivariant

cohomology, and we let m := A>0 be the homogeneous maximal ideal of A. For a graded

A-module M , its reduction

M := (A/m)⊗AM ,

modulo m is a graded real vector space.

For a strictly convex polyhedral cone σ ⊂ V , we let Vσ ⊂ V denote its linear span. In

analogy to the definition of A, we consider the graded algebra

Aσ := S(V ∗σ ) .

We usually identify its elements with polynomial functions on the cone σ.

To avoid cumbersome notation, we admit graded homomorphisms even if they are not

of degree zero.

2.2 Fan topology and sheaves

Motivated by the coarse “toric topology” on a toric variety given by torus-invariant open

sets, we consider a fan ∆ (which need not be rational) in V as a finite topological space

with the subfans as open subsets. The “affine” fans

〈σ〉 := {σ} ∪ ∂σ � ∆ with boundary fan ∂σ := {τ ∈ ∆ ; τ � σ}

form a basis of the fan topology by open sets that cannot be covered by smaller ones.

Here � means that a cone is a face of another cone or that a set of cones is a subfan of

some other fan.
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Sheaf theory on that “fan space” is particularly simple since a presheaf given on the

basis already “is” a sheaf. In particular, for a sheaf F on ∆, the equality

F
(
〈σ〉

)
= Fσ

of the set of sections on the affine fan 〈σ〉 and the stalk at the point σ holds.

Furthermore, a sheaf F on ∆ is flabby if and only if each restriction homomorphism

%σ∂σ : F(〈σ〉)→ F(∂σ) is surjective.

In particular, we consider (sheaves of) A-modules, where A is the structure sheaf of ∆,

i.e., the graded sheaf of polynomial algebras determined by A(〈σ〉) := Aσ, the restriction

homomorphism %στ : Aσ → Aτ being the restriction of functions on σ to the face τ � σ.

The set of sectionsA(Λ) on a subfan Λ � ∆ constitutes the algebra of conewise polynomial

functions on the support |Λ| in a natural way.

Given a homomorphism ϕ : F → F ′ of sheaves on ∆ and a subfan Λ, we often write

FΛ := F(Λ) , Fσ := F(〈σ〉) and ϕΛ : FΛ → F ′Λ .

Similarly, for a pair of subfans (Λ,Λ0) with Λ0 � Λ, we define

F(Λ,Λ0) := ker(%Λ
Λ0

: FΛ → FΛ0) ,

the submodule of sections on Λ vanishing on Λ0. In particular, for a purely n-dimensional

subfan Λ (see 0.4 below), we consider the case where Λ0 is the boundary fan ∂Λ, i.e., the

subfan generated by those (n−1)-cones which are a facet of exactly one n-cone in Λ. The

sections vanishing on ∂Λ may be regarded as sections “with compact support”.

2.3 Sheaf and Fan Constructions

Let f : V → W be a linear map inducing a map of fans between a fan ∆ in V and a fan Λ

in W , i.e., it maps each cone of ∆ into a cone of Λ. Let A and B denote the corresponding

sheaves of conewise polynomial functions, and let F on ∆ and G on Λ be sheaves of graded

A- or B-modules, respectively. For cones σ ∈ ∆ and τ ∈ Λ with f(σ) ⊂ τ , there is an

induced homomorphism Bτ → Aσ and thus, the structure of a Bτ -module on Fσ.

2.3 i) The direct image f∗(F) on Λ is the B-module sheaf defined by

f∗(F)τ := Ff−1(τ) with f−1(τ) := {σ ∈ ∆; f(σ) ⊂ τ} � ∆ .

The direct image of a flabby sheaf is again flabby.

2.3 ii) The inverse image f ∗(G) on ∆ is the A-module sheaf determined by

f ∗(G)σ := Aσ ⊗Bτ Gτ for σ ∈ ∆ and the minimal τ ∈ Λ with f(σ) ⊂ τ .

We are especially interested in the following maps of fans:
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2.3 iii) For a subdivision ∆̂ of ∆, the mapping idV : (V, ∆̂) → (V,∆) is such a morphism

of fans. In particular, we will consider the case of an affine fan 〈σ〉 given by an

n-dimensional cone, and its stellar subdivision

σ̂ := ∂σ + λ := ∂σ ∪ {τ + λ; τ ∈ ∂σ}

with respect to a ray λ := `∩σ, where ` is a one-dimensional linear subspace passing

through the interior of σ.

2.3 iv) For a cone σ ∈ ∆, its closure in the fan topology is the star

∆�σ := {γ ∈ ∆ ; γ � σ} .

In general, it is not a fan. The collection

∆/σ := {π(γ) ; γ ∈ ∆�σ}

of the image cones with respect to the projection π : V → W := V/Vσ, however,

is a fan, called the transversal fan of σ with respect to ∆. The induced map

πσ : ∆�σ → ∆/σ is a homeomorphism.

2.3 v) Applying (ii) to the case of σ̂ from (i), the projection π : V → W := V/` maps the

boundary fan ∂σ homeomorphically onto the “flattened boundary fan”

Λσ := σ̂/λ ∼= ∂σ

in W . In that situation, choosing a linear form T ∈ A2 with T |λ > 0, we obtain

isomorphisms ker(T ) ∼= W and thus A ∼= B[T ], where we identify B := S(W ∗) with

the subalgebra π∗(B) ⊂ A. – Moreover, for a sheaf F on 〈σ〉 and G := π∗(F|∂σ),

there is a natural isomorphism of B-modules

(3) GΛσ
∼= F∂σ .

We use notation such as ∆d := {γ ∈ ∆ ; dim γ = d}, ∆≤d, etc. The fan ∆ in V is said to

be:

2.3 a) oriented if for each cone σ ∈ ∆, an orientation orσ of Vσ is fixed in such a way that

orientations for full-dimensional cones coincide,

2.3 b) purely n-dimensional if each maximal cone of ∆ lies in ∆n,

2.3 c) irreducible if it is not the union of two proper subfans with intersection included in

∆≤n−2,
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2.3 d) normal if it is purely n-dimensional and for each cone σ ∈ ∆, the transversal

subfan ∆/σ is irreducible in V/Vσ , or, equivalently, if the support |∆| is a normal

pseudomanifold,

2.3 e) quasi-convex if it is purely n-dimensional and the support |∂∆| of its boundary

subfan is a real homology manifold. Note that a quasi-convex fan is normal, but

not vice versa.

3 Pure Sheaves on a Fan

We recall the definition of the class of “pure” sheaves on a fan space that plays a key role

in the sequel.

Definition 3.1 A pure sheaf on a fan ∆ is a flabby sheaf F of graded A-modules such

that, for each cone σ ∈ ∆, the Aσ-module Fσ = F(〈σ〉) is finitely generated and free.

We collect some useful facts about these sheaves, proved in [BBFK2] and [BreLu1]:

Pure sheaves are built up from simple objects that correspond to the cones of the fan,

or, equivalently, to the stalks of the structure sheaf. Up to a shift, such a simple sheaf is

obtained from that stalk by a minimal extension process.

Simple Pure Sheaves: For each cone σ ∈ ∆, we construct a “minimal” pure sheaf

L =: σL supported on the star ∆�σ and with stalk Lσ = Aσ as follows: On the subfan

∆ \ ∆�σ, we set L := 0. By induction on the dimension, we extend it to the cones in

∆�σ, starting with

Lσ := Aσ .

For a cone γ � σ, we may assume that L∂γ has been defined, and then set

Lγ := Aγ ⊗R L∂γ .

The restriction homomorphism %γ∂γ is defined by the following commutative diagram

Lγ := Aγ ⊗R L∂γ −→ L∂γ

↓ % := id⊗ s ↙ ‖

L∂γ = Aγ ⊗Aγ L∂γ −→ L∂γ

where the diagonal arrow s : L∂γ → L∂γ is an R-linear section of the reduction map in

the bottom row.
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Remark 3.2 1. For each cone σ ∈ ∆, the corresponding simple sheaf L := σL is pure;

it is characterized by the following properties:

(a) Lσ ∼= R,

(b) for each cone τ 6= σ, the reduced restriction homomorphism Lτ → L∂τ is an

isomorphism.

In particular, the property b) implies the vanishing of L := σL outside of the star

of σ.

2. For the zero cone o, the “generic point” of ∆, the corresponding simple sheaf

E := ∆E := oL

is called the equivariant intersection cohomology sheaf (or the minimal extension

sheaf) of ∆. For a quasi-convex fan ∆, we may define its (virtual) intersection

cohomology as

(4) IH(∆) := E∆ .

3. By extending scalars, each “local” sheaf σL is derived from the “global” sheaf ∆/σE
of the corresponding transversal fan: As in 2.3 (ii), we let πσ := π|∆�σ

: ∆�σ → ∆/σ

denote the homeomorphism induced from the projection V → V/Vσ. The inverse

image π∗σ(∆/σE) is a flabby sheaf of graded A-modules on the closed subset ∆�σ

of ∆. Its trivial extension to the whole fan space ∆ then yields the sheaf σL.

The following elementary decomposition theorem has been proved in [BBFK2, 2.4]

and in [BreLu1, 5.3]:

Theorem 3.3 Decomposition Theorem. Every pure sheaf F on ∆ admits a (non-

canonical) direct sum decomposition of A-modules

F ∼=
⊕
σ∈∆

(
σL ⊗R Kσ

)
with Kσ := Kσ(F) := ker ( %σ∂σ : F σ → F ∂σ), a finite dimensional graded vector space.

For a proof of the following application, we refer to [BBFK2, 2.5].

Example. Let ϕ := idV : (V, ∆̂) → (V,∆) be a refinement. Then ϕ∗(Ê) is a pure sheaf.

Its decomposition is of the form

ϕ∗(Ê) ∼= E ⊕
⊕
σ∈∆≥2

(
σL ⊗R Kσ

)
,

where the Kσ now are (strictly) positively graded vector spaces and the “correction terms”

are supported on the closed subset ∆≥2.
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Remark 3.4 For a pure sheaf F on the boundary fan ∂σ of an n-dimensional cone and

the projection mapping π : (V, ∂σ)→ (W,Λσ) corresponding to a ray λ as in 2.3, (ii), the

direct image π∗(F|∂σ) is a pure sheaf on Λσ.

4 The Dual of a Pure Sheaf

In this section, the symbol F always denotes a pure sheaf on an oriented fan ∆. Fur-

thermore, unless otherwise stated, the symbol Hom is understood to mean HomA, and

⊗ means ⊗R. Moreover, for a cone σ ∈ ∆, we consider detV ∗σ :=
∧dimσ V ∗σ as a graded

vector space concentrated in degree 2 dimσ, with the convention detV ∗o = R.

To F , we associate its dual DF and show the following properties: The dual is again

a pure sheaf on ∆, and for each normal subfan Λ, the module of sections (DF)Λ is the

dual of the module F(Λ,∂Λ) of sections with compact supports of F .

4.1 Construction of the dual sheaf

To construct the dual DF of the pure sheaf F on ∆, we first define its sections over affine

fans in such a way that duality holds by definition.

Sections over a cone σ ∈ ∆. As Aσ-module, we define (DF)σ = DF(〈σ〉) by

(5) (DF)σ := Hom(F(σ,∂σ), Aσ)⊗ detV ∗σ .

Restriction homomorphisms. The homomorphism %στ for σ � τ is constructed in two

steps: In the first step, we deal with the case of a facet; in the second step, we extend

this recursively to the general situation of a face of arbitrary codimension.

To that end, we need transition coefficients εστ = ±1 for the facets τ of σ: For d :=

dimσ, there exists a natural map κ :
∧d−1 V ∗σ →

∧d−1 V ∗τ = detV ∗τ . We choose a linear

form h on V ∗σ with Vτ = ker(h) and h|σ ≥ 0. Every element of detV ∗σ decomposes in the

form h∧ η with unique image κ(η). We thus obtain a homomorphism

(6) ψh : detV ∗σ −→ detV ∗τ , h ∧ η 7−→ κ(η) .

If now ωσ ∈ detV ∗σ and ωτ ∈ detV ∗τ define the orientations of σ respectively τ , we set

(7) εστ :=

{
+1 if ψh(ωσ) ∈ R>0 ωτ ,

−1 otherwise.
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Step 1: Restriction homomorphism for a facet τ ≺1 σ.

Using again the linear form h ∈ V ∗σ , we are going to define another homomorphism

(8) ϕh : Hom(F(σ,∂σ), Aσ) −→ Hom(F(τ,∂τ), Aτ )

and see that

(9) ϕλh = λϕh and ψλh = λ−1ψh

for every non-zero scalar λ ∈ R. Thus the homomorphism

ϕh⊗ψh : Hom(F(σ,∂σ), Aσ)⊗ detV ∗σ −→ Hom(F(τ,∂τ), Aτ )⊗ detV ∗τ

does not depend on the special choice of h, and we may set

(10) %στ := εστ · ϕh⊗ψh .

The map ϕh associates to a homomorphism f : F(σ,∂σ) → Aσ the homomorphism ϕh(f) :

F(τ,∂τ) → Aτ , which acts in the following way: We first extend a section s ∈ F(τ,∂τ) trivially

to ∂σ and then to a section š ∈ Fσ; we thus have hš ∈ F(σ,∂σ) and may finally set

(11) ϕh(f)(s) := f(hš)|τ ∈ Aτ .

In order to see that this definition is independent of the particular choice of š, we present

an alternative description, following the argument of [BBFK2, p.36]: We use three exact

sequences, starting with

(12) 0 −→ F(σ,∂σ) −→ Fσ −→ F∂σ −→ 0 .

The second one is composed of the multiplication with h and the projection onto the

cokernel:

(13) 0 −→ Aσ
µh−→ Aσ −→ Aτ −→ 0 .

Eventually the subfan ∂τσ := ∂σ \ {τ} of ∂σ gives rise to the exact sequence

(14) 0 −→ F(τ,∂τ) −→ F∂σ −→ F∂τσ −→ 0 .

The associated Hom-sequences provide a diagram

(15)

Ext(F∂τσ, Aσ)

↓
Hom(Fσ, Aσ) −→ Hom(F(σ,∂σ), Aσ)

α−→ Ext(F∂σ, Aσ)

↓ β
Hom(F(τ,∂τ), Aσ) −→ Hom(F(τ,∂τ), Aτ )

γ−→ Ext(F(τ,∂τ), Aσ) −→ Ext(F(τ,∂τ), Aσ)
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with Ext = Ext1
A. We show that γ is an isomorphism; we then have

(16) ϕh := γ−1 ◦ β ◦ α .

In fact, the rightmost arrow in the bottom row is the zero homomorphism, since it is

induced by multiplication with h, which annihilates F(τ,∂τ). On the other hand, the Aτ -

module F(τ,∂τ) is a torsion module over Aσ, so that Hom(F(τ,∂τ), Aσ) vanishes.

Step 2: Restriction homomorphism for faces of higher codimension.

For a face τ ≺r σ of codimension r ≥ 2 (we write τ ≺r σ iff τ � σ and dimσ = dim τ +r),

we choose a “flag”

τ =: τ0 ≺1 τ1 ≺1 . . . ≺1 τr := σ

of relative facets joining τ and σ. Defining the restriction homomorphism %στ as the

composite of the %
τi+1
τi , we have to show that the result does not depend on the particular

choice of the flag. This is easy to see in the case r = 2: For two flags γ ≺1 τ ≺1 σ and

γ ≺1 τ
′ ≺1 σ and h, h′ ∈ V ∗σ as above, we set g := h|Vτ ′

and g′ := h′|Vτ , and then find

ϕg′ ◦ ϕh = ϕg ◦ ϕh′ and ψg′ ◦ ψh = −ψg ◦ ψh′ ,

whence

(17) %τγ ◦ %στ = %τ
′

γ ◦ %στ ′ .

Thus, for general r, it suffices to verify that every two such flags can be transformed into

each other in such a way that in each step, only one intermediate cone is replaced by

another one. We proceed by induction on the codimension r.

To prove that claim, we may assume τ = o (otherwise, we replace ∆ with ∆/τ) and

∆ = 〈σ〉. We want to compare the given flag with a second one, say o ≺1 τ̃1 ≺1 τ̃2 ≺1

. . . ≺1 τ̃r = σ. There is a chain of rays %1 := τ1, . . . , %s := τ̃1 such that the two-dimensional

cones %i+%i+1 belong to ∆. We now proceed by a second induction on s. For s = 1, we

may pass to the fan ∆/τ1 and use the first induction hypothesis for r−1. For the induction

step, it evidently suffices to consider the case s = 2. Choosing any auxiliary flag of the

form o ≺1 τ1 ≺1 τ1+τ̃1 ≺1 . . . ≺1 σ, the case s = 1 yields its equivalence with the start

flag. On the other hand, by Eq. 17, the auxiliary flag is equivalent to the one obtained

by interchanging τ1 and τ̃1, and this in turn is equivalent to the “twiddled” flag.

4.2 Global Sections

We now show that the formula 5 for cones extends even to normal subfans. To that end,

we need the following preparatory results:
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Lemma 4.1 1. For an arbitrary fan ∆, there is a natural isomorphism

(18) Θ :
⊕
σ∈∆n

(DF)σ
∼=−→ Hom(F(∆,∆≤n−1), A)⊗ detV ∗ .

2. If ∆ is purely n-dimensional, the A-modules

F(∆,∆≤n−1) ⊂ F(∆,∂∆) ⊂ F∆

are torsion-free and of the same rank. As a consequence, the restriction homomor-

phisms

Hom(F∆, A) −→ Hom(F(∆,∂∆), A) −→ Hom(F(∆,∆≤n−1), A)

for the dual modules are injective.

3. In the setup of cellular (“Čech”) cochains and cocycles as in section 3 of [BBFK2],

for an arbitrary sheaf G on ∆, there is an isomorphism

(19) Z0(∆;G) = G(∆,∂∆) ,

and for a normal fan, we also have an isomorphism

(20) Z0(∆, ∂∆;G) = G∆ .

Proof. (i) For each n-dimensional cone σ, the equality detV ∗σ = detV ∗ holds. Hence,

the isomorphism Θ is immediately obtained from the defining equality 5 by applying the

additive functor Hom( , A)⊗ V ∗ to the obvious direct sum decomposition

F(∆,∆≤n−1)
∼=

⊕
σ∈∆n

F(σ,∂σ) .

(ii) For the special case F = E , this has been proved in [BBFK2, 6.1, i)]. The proof clearly

carries over to arbitrary pure sheaves.

(iii) We recall that the submodule

(21) Z0(∆, ∂∆;G) ⊂ C0(∆, ∂∆;G) =
⊕
σ∈∆n

Gσ

of degree zero cocycles g = (gσ) relative to ∂∆ consists of those cochains that satisfy

gσ|τ = gσ′|τ whenever τ ∈ ∆n−1 is a common facet of two n-cones σ and σ′ , whereas for

the submodule

(22) Z0(∆;G) ⊂ Z0(∆, ∂∆;G)
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of absolute cocycles, we require in addition that the restriction of gσ to each “outer” facet

τ ∈ ∂∆n−1 vanishes.

For (19) and (20) we note that the right hand side is always contained in the left

hand side. In order to see the reverse inclusion, we have to show that gσ|γ = gσ′|γ holds

whenever γ ∈ ∆ is a common face of two n-cones σ and σ′. Since ∆ is normal, the cones

σ and σ′ can be joined by a chain of n-cones intersecting successively in common facets

containing γ. It thus suffices to consider the case that γ is a facet, where the statement

is obvious. qed

Theorem 4.2 For a normal oriented fan ∆, the natural isomorphism Θ of (18) induces

isomorphisms

(23) (DF)∆

∼=−→ Hom(F(∆,∂∆), A)⊗ detV ∗

and

(24) (DF)(∆,∂∆)

∼=−→ Hom(F∆, A)⊗ detV ∗ .

Proof. Using the formalism of Čech cochains as in (iii) of the Lemma, we restate the

assertion as follows: For any 0-cochain ψ = (ψσ) ∈
⊕

σ∈∆n DFσ and its image Θ(ψ) in

Hom(F(∆,∆≤n−1), A)⊗ detV ∗, the equivalences

(25) ψ ∈ Z0(∆, ∂∆;DF) ⇐⇒ χ := Θ(ψ) ∈ Hom(F(∆,∂∆), A)⊗ detV ∗

and

(26) ψ ∈ Z0(∆;DF) ⇐⇒ χ := Θ(ψ) ∈ Hom(F∆, A)⊗ detV ∗

hold.

To prove these equivalences, we choose an auxiliary function h =
∏r

i=1 hi ∈ A2r as the

lowest degree product of linear forms hi that vanishes on
⋃
τ∈∆n−1 Vτ ; so each Vτ is the

kernel Vi of some hi. After fixing a positive volume form on V and thus, an isomorphism

R
∼=−→ detV ∗, the homomorphisms ψhi

of (6) provide isomorphisms R ∼= detV ∗ ∼= detV ∗i .

We may thus drop the determinant factors on the right hand side, and for each cone

γ ∈ ∆≥n−1, we may replace (DF)γ with Hom(F(γ,∂γ), Aγ) and the restriction maps with

±ϕhi
. Using the obvious inclusions

hF(∆,∂∆) ⊂ hF∆ ⊂ F(∆,∆≤n−1)

of torsion-free A-modules, the right hand sides of (25) and (26) are equivalent to the

inclusions

χ(hF(∆,∂∆)) ⊂ hA and χ(hF∆) ⊂ hA, where χ := Θ(ϕ) .
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“=⇒”: In order to prove these implications, it suffices to show that for a pertinent 0-

cocycle ψ, the divisibility relation hi |χ(hf) holds for each index i and for an arbitrary

section f in F(∆,∂∆) or F∆, respectively.

With fσ := f |σ ∈ Fσ for an n-cone σ, we write

χ(hf) =
∑
σ∈∆n

ψσ(hfσ) ∈ A .

For each index i = 1, . . . , r, we introduce the monomial gi := h/hi ∈ A2r−2. For the

implication in (25), we consider a relative 0-cocycle ψ = (ψσ) ∈ Z0(∆, ∂∆;DF) and a

section f ∈ F(∆,∂∆) “with compact support”. If σ ∩Vi is not a facet or belongs to ∂∆,

then gifσ lies in F(σ,∂σ) and thus ψσ(hfσ) = hiψσ(gifσ) ∈ hiA holds. Otherwise, there is

precisely one n-cone σ′ 6= σ such that τ := σ ∩Vi is a common facet of both, σ and σ′.

We now verify that hi divides the sum ψσ(hfσ) + ψσ′(hfσ′) or, equivalently, that

(27) ψσ(hfσ) |Vi
= −ψσ′(hfσ′) |Vi

holds. Using the extension gifσ ∈ F(σ,∂τσ) of (gif)|τ ∈ F(τ,∂τ) in the formula (11), we

obtain

ψσ(hfσ)|Vi
=

(
ϕhi

(ψσ)
)(

(gifσ)|τ
)
.

By the relative cocycle condition, ψσ and ψσ′ restrict to the same section in (DF)τ .

According to the choice of the transition coefficients εστ in the definition of the restriction

homomorphism %στ in (10), that yields

ϕhi
(ψσ) = −ϕhi

(ψσ′) ,

which implies our claim. If ψ ∈ Z0(∆;DF) is an absolute cocycle and f ∈ F∆, the

argument is as above, only in the case where τ := σ ∩ Vi is an “outer” facet of σ (i.e.,

contained in ∂∆), one has to use the fact that ψσ|τ = 0.

”⇐=”: For this implication, we assume that χ = Θ(ψ) : F(∆,∆≤n−1) → A is a homomor-

phism which can be extended to the larger modules F(∆,∂∆) or F∆, respectively. We have

to show the pertinent cocycle condition for ψ = (ψσ), namely, the equality ψσ|τ = ψσ′|τ
whenever τ is a common “inner” facet of two n-cones σ, σ′ ∈ ∆, and in the second (“ab-

solute”) case, the vanishing ψσ|τ = 0 if τ is an “outer” facet of σ.

Let i be the index with ker(hi) = Vτ . We fix an arbitrary section f0 ∈ F(τ,∂τ) and,

as for 11, extend it to sections f ∈ Fσ, f ′ ∈ Fσ′ vanishing on all the remaining facets

of σ and of σ′, respectively. Patching them together and extending by 0 yields a section

f1 ∈ F(∆,∂∆). Then the equation

hiχ(f1) = χ(hif1) = χ(hif + hif
′) = ψσ(hif) + ψσ′(hif

′) ,
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after restriction to τ , yields

0 =
(
hiχ(f1)

)∣∣
τ

= ϕhi
(ψσ)(f0) + ϕhi

(ψσ′)(f0) = (ψσ|τ − ψσ′|τ )(f0) .

Finally, we leave it to the reader to consider the remaining case where χ ∈ Hom(F∆, A)

and τ ∈ ∂∆.

4.3 Purity

Theorem 4.3 The dual sheaf DF of a pure sheaf F is again pure.

Proof. As in Corollary 4.12 in [BBFK2], the Aσ-module F(σ,∂σ) is free and thus also its

dual (DF)σ; hence, we only have to prove that, for each cone σ ∈ ∆, the restriction

homomorphism

%σ∂σ : (DF)σ −→ (DF)∂σ

is surjective.

To that end, we first interpret (DF)∂σ. We may assume dimσ = n and use the setup

of 2.3 (iv). For G := π∗(F|∂σ), as in Eq. 3, there is a natural isomorphism

(2.4.1) (DG)Λσ
∼= (DF)∂σ

of B-modules, while for the complete fan Λσ in W , 4.2 yields

(DG)Λσ
∼= HomB(GΛσ , B)⊗ detW ∗ .

Using the isomorphism 3, we thus obtain a chain of isomorphisms

(28) (DF)∂σ ∼= (DG)Λσ
∼= HomB(GΛσ , B) ∼= HomB(F∂σ, B) .

Eventually, using these isomorphisms, a section β ∈ (DF)∂σ may be interpreted as an

element of HomB(F∂σ, B).

To proceed with the proof, we introduce the sheaf H := π∗(G) on σ̂. There are

isomorphisms

(29) Hσ̂
∼= A⊗B GΛσ

∼= A⊗B F∂σ and H∂σ̂
∼= F∂σ

and a “Thom isomorphism”

(30) µg : Hσ̂

∼=−→ gHσ̂ = H(σ̂,∂σ̂) , h 7→ gh

with a conewise linear function g ∈ A2
(σ̂,∂σ̂), unique up to a non-zero scalar multiple, that

is constructed conewise as follows: We fix a nontrivial linear form f ∈ A2
λ. For a facet
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τ ≺1 σ, let gτ ∈ A2 be the unique linear form with ker(gτ ) = Vτ and gτ |λ = f . Then we

set g|τ+λ := gτ .

For each facet τ of σ, the function gτ induces an isomorphism

detV ∗ ∼= detV ∗τ , gτ ∧ η 7→ η|Vτ .

Then the composed isomorphism detV ∗ ∼= detV ∗τ
∼= detW ∗ is independent of τ . We thus

may drop the determinant factors.

We want to show that an inverse image α ∈ (DF)σ = Hom(F(σ,∂σ), A) of β ∈ (DF)∂σ

with respect to %σ∂σ is given by the composite

F(σ,∂σ)
i−→ H(σ̂,∂σ̂)

µg−1

−→ Hσ̂
∼= A⊗B F∂σ

idA⊗β−→ A⊗B B = A

where µg−1 is the isomorphism “division by g” corresponding to 30, and the homomor-

phism i is constructed as follows: Since Fσ is a free A-module and the restriction ho-

momorphism Hσ̂ → H∂σ̂ is surjective, cf. 29, the operator %σ∂σ for the sheaf F admits a

factorization of the form

Fσ
j−→ Hσ̂ −→ H∂σ̂

∼= F∂σ .

Since j(F(σ,∂σ)) clearly is contained in H(σ̂,∂σ̂), we may choose i := j|F(σ,∂σ)
.

To prove the equality α|∂σ = β, it still remains to show that α|τ = β|τ for all facets

τ ≺1 σ. Here we identify the naturally isomorphic algebras B and Aτ .

We fix an arbitrary section s ∈ F(τ,∂τ) ⊂ F∂σ, where the inclusion is given by trivial

extension. Using the isomorphisms 29 and 30, any further extension š of s to a section

of F on the whole cone σ, regarded as section in Hσ̂ ⊃ Fσ, can be written in the form

š = 1⊗ s+ gd ∈ Hσ̂
∼= A⊗B F∂σ

with some correction term d ∈ Hσ̂. Recalling the formula 11 in the definition of the

homomorphism %στ for DF , we have to show that the restriction of the polynomial function

α(gτ · š) ∈ Aσ to τ coincides with β(s). To that end, we note that gτ · (1⊗ s) = g · (1⊗ s)
holds, since the support of 1 ⊗ s ∈ Hσ̂ is contained in τ + λ. So we eventually have the

equality

α(gτ · š)|τ = (idA ⊗ β)(1⊗ s+ gτd)|τ = (idA ⊗ β)(1⊗ s)|τ ,

and thus %στ (α) maps s to β(s). qed

4.4 Duality

In order to see that the dual sheaf DF of a simple pure sheaf again is simple, we need

biduality:
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Theorem 4.4 Biduality Theorem. [BreLu1, 6.23] Every pure sheaf on an oriented fan

is reflexive: For such a sheaf F , there exists a natural isomorphism

F
∼=−→ D(DF) .

Proof : Over a cone σ ∈ ∆, the biduality isomorphism Fσ → DDFσ is obtained by these

isomorphisms:

(31)

(DDF)σ = Hom
(
(DF)(σ,∂σ), Aσ

)
⊗ detV ∗σ

∼= Hom
(
Hom(Fσ, Aσ)⊗ detV ∗σ , Aσ

)
⊗ detV ∗σ

∼= Hom
(
Hom(Fσ, Aσ)⊗ detV ∗σ , Aσ ⊗ detV ∗σ

)
∼= Hom

(
Hom(Fσ, Aσ), Aσ

)
,

where the first isomorphism follows from 4.2 with the fan ∆ := 〈σ〉 in the vector space

Vσ. The free Aσ-module Fσ is reflexive, so it can be naturally identified with the fourth

module in 31. Since this conewise construction is natural, it carries over to the sheaves.

qed

Corollary 4.5 [BreLu1, 6.26] For each cone σ ∈ ∆, the simple pure sheaf σL satisfies

D(σL) ∼= σL ⊗ det V ∗σ .

In particular, the equivariant intersection cohomology sheaf E is self-dual with an isomor-

phism

(32) ϑ : E
∼=−→ DE

of degree zero.

Proof: Clearly, by biduality, DF = 0 implies F = 0. On the other hand, the duality

functor respects a direct sum decomposition of pure sheaves. Since the bidualD
(
D(σL)

) ∼=
σL is simple, 3.3 implies that the dual D(σL) must be a simple sheaf. For a pure sheaf F
and a cone σ ∈ ∆, the Aσ-module F∂σ is a torsion module, whence Fσ = 0 if and only

if F(σ,∂σ) = 0. Hence a pure sheaf and its dual have the same support, so D(σL) and σ  L

agree up to a shift. To determine it explicitly, we use the equality σL(σ,∂σ) = σLσ = Aσ,

which yields D(σL)σ ∼= Hom(Aσ, Aσ)⊗ det V ∗σ
∼= Aσ ⊗ det V ∗σ . qed
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5 The intersection product

In order to make precise the naturality of the intersection product we need this notion:

Definition 5.1 A duality correlation on ∆ is a sheaf homomorphism

ϕ : E −→ DE

of degree 0 from the equivariant intersection cohomology sheaf to its dual extending the

natural identification

Eo = R
1 7→1∗−→ R∗ = DEo .

After multiplication with an appropriate scalar factor if necessary, any isomorphism

E → DE is such a duality correlation. We aim at the following result:

Theorem 5.2 On every fan ∆, there is a unique duality correlation. It defines a self

duality E ∼= DE for the equivariant intersection cohomology sheaf E.

Existence has already been shown in 4.5. Before proving uniqueness, we first use the

correlation to introduce an intersection product.

Remark 5.3 and Definition. Let ∆ be a normal n-dimensional oriented fan. If we

fix a positive volume form ω ∈ detV ∗, then every duality correlation ϕ gives rise to an

intersection product on ∆, i.e., a pairing

(33) E∆ × E(∆,∂∆) −→ A[−2n]

as follows: The isomorphism Θ of 4.1 yields an isomorphism

(34) (DE)∆
ΘV−→ Hom

(
E(∆,∂∆), A)⊗ det V ∗

∼=−→ Hom(E(∆,∂∆), A[−2n]
)

;

its composite with the duality correlation ϕ∆ on the level of global sections provides a

homomorphism

(35) χ∆ := χω∆ : E∆ −→ Hom
(
E(∆,∂∆), A[−2n]

)
,

which is equivalent to 33.
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Theorem 5.4 [BBFK2, 6.3] and [BreLu1, 6.28] Let the oriented fan ∆ be normal, and fix

a positive volume form ω ∈ detV ∗. If a duality correlation ϕ : E → DE is an isomorphism,

then the induced pairing

(36) E∆ × E(∆,∂∆) −→ A[−2n]

is a duality pairing of reflexive A-modules. If ∆ is even quasi-convex, then the A-modules

E∆ and E(∆,∂∆) are free, and thus the associated reduced pairing

(37) E∆ × E(∆,∂∆) −→ A[−2n] ∼= R[−2n] .

is a duality pairing of graded real vector spaces.

Proof. Compose the isomorphisms ϕ∆ and ϕ(∆,∂∆) with the isomorphisms 23 and 24:

E∆

∼=−→ DE∆ ∼= Hom(E(∆,∂∆), A)

and

E(∆,∂∆)

∼=−→ DE(∆,∂∆)
∼= Hom(E∆, A) .

If ∆ is even quasi-convex, then the modules E∆ and E(∆,∂∆) are free, see [BBFK2, 4.8,

4.12].

Theorem 5.2 now follows from this proposition with F = DE :

Proposition 5.5 [BBFK2, 1.8 iii)] and [BreLu2, 3.14] For a fan ∆ and two copies E and

F of the equivariant intersection cohomology sheaf, every homomorphism

R = Eo → Fo = R

extends in a unique manner to a homomorphism E → F of degree 0.

For its proof, we need a Vanishing Lemma. This is the place where the Hard Lefschetz

Theorem enters:

Lemma 5.6 [BBFK2, 1.7, 1.8 ii)] and [BreLu2, 3.13] For the equivariant intersection

cohomology sheaf E on a non-zero cone σ, the following equivalent conditions hold:

1. E
q

σ = 0 for q ≥ dimσ,

2. E
q

(σ,∂σ) = 0 for q ≤ dimσ,

3. Eq
(σ,∂σ) = 0 for q ≤ dimσ.
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Proof: We may assume dimσ = n.

(1) We use the setup of 2.3 (v). First of all note that

B/mB ⊗B E∂σ ∼= (B/mB)[T ]⊗B[T ] E∂σ .

Now we tensor the exact sequence

0 −→ (B/mB)[T ]
µT−→ (B/mB)[T ] −→ A/mA −→ 0

with E∂σ and obtain the exact sequence

(B/mB)⊗B E∂σ
µT−→ (B/mB)⊗B E∂σ −→ (A/mA)⊗A E∂σ −→ 0

with µT := id(B/mB) ⊗ µT , where µT acts on the A-module E∂σ. Thus

E∂σ
∼= coker

(
µT : (B/mB)⊗B E∂σ −→ (B/mB)⊗B E∂σ

)
.

On the other hand, according to [BBFK2, (5.3.2)] together with Eq. 3 and using the

notation of 4, we have an isomorphism

E∂σ
∼= coker

(
µψ : IH(Λσ) −→ IH(Λσ)

)
,

where µψ : E(Λσ) −→ E(Λσ) is the multiplication with the strictly convex conewise linear

function

ψ := T ◦ (π|∂σ)−1 ∈ A2(Λσ) .

It now suffices to apply for m := n−1 the following theorem proved in [Ka]:

Theorem 5.7 (Hard Lefschetz Theorem.) Let Λ be a complete fan in the m-dimensional

vector space V and ψ ∈ A2(Λ) a conewise linear strictly convex function. Then the ho-

momorphism L := µψ induced by the multiplication µψ : EΛ −→ EΛ with ψ induces

isomorphisms

Lk : IHm−k(Λ) −→ IHm+k(Λ)

for each k ≥ 0. In particular L is injective in degrees q ≤ m− 1 and surjective in degrees

q ≥ m− 1.

Let us finish the proof of Lemma 5.6: The equivalence of (1) and (2) follows from 32 and

the dual pairing 37 in Theorem 5.4 in the particular case ∆ = 〈σ〉, while the equivalence

of (2) and (3) is a consequence of this fact: For a finitely generated graded A-module M ,

one has M q = 0 for q ≤ r if and only if M
q

= 0 for q ≤ r. qed

Proof of Proposition 5.5: For an inductive proof, we have to show that over each

non-zero cone σ, a homomorphism ϕ∂σ : E∂σ → F∂σ extends in a unique way to a
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homomorphism ϕσ : Eσ → Fσ. By lemma 5.6 (1), the A-modules Eσ and Fσ are generated

by homogeneous elements of degree below dimσ. On the other hand, 5.6, (3) yields

Eq
(σ,∂σ) = 0 = F q

(σ,∂σ) for q ≤ dimσ. Hence, the restriction maps Eq
σ → Eq

∂σ and F q
σ → F q

∂σ

are isomorphisms for q < dimσ, whence the uniqueness of ϕσ follows. The existence is a

consequence of the fact that Eσ is a free Aσ-module. qed

6 Comparison with previous definitions

Let π = idV : (V, ∆̂)→ (V,∆) be an oriented refinement , i.e., if a cone in ∆̂d is contained

in a cone in ∆d, then their orientations coincide.

Proposition 6.1 For every pure sheaf F on ∆̂, there exists a canonical isomorphism

D
(
π∗(F)

) ∼= π∗(DF) .

Proof: For a cone σ ∈ ∆d, let σ̂ � ∆̂ denote its refinement. Then the formula 23, applied

to σ̂, yields the isomorphism in the following chain

D
(
π∗(F)

)
σ

= Hom(π∗(F)(σ,∂σ), A)⊗ detV ∗σ = Hom(F(σ̂,∂σ̂), A)⊗ detV ∗σ
∼= DFσ̂ = π∗(DF)σ . qed

We now can prove the Compatibility Theorem:

Theorem 6.2 [BreLu2, 7.2] Let Ê be the equivariant intersection cohomology sheaf of the

oriented refinement ∆̂ of the normal n-dimensional fan ∆, and let ι : E → π∗(Ê) be a

homomorphism of graded sheaves extending the identity E(o) = R = π∗(Ê)(o). Then the

intersection products provide a commutative diagram

E(∆)× E(∆, ∂∆) −→ Ê(∆̂)× Ê(∆̂, ∂∆̂)

↘ ↙

A[−2n] .

Proof: The homomorphism ι provides a diagram

E ι−→ π∗(Ê)

↓ ↓

DE Dι←− Dπ∗(Ê) ∼= π∗(DÊ) ,
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where the vertical arrows are ϑ respectively π∗(ϑ̂) with the duality correlations ϑ : E −→
DE of 32 and ϑ̂ : Ê −→ DÊ . It is commutative at the zero cone and thus everywhere, see

Proposition 5.5. Passing to the level of global sections yields the claim. qed

Finally let us discuss the approach of [BBFK2, 6.1]. Here we use the notion of an evalu-

ation map:

Definition 6.3 Let ∆ be an oriented purely n-dimensional fan in the vector space V ,

endowed with a volume form ω ∈ detV ∗. Then, for 1 ∈ E0
∆ = E0

o = R, the homomorphism

eω∆ := χω∆(1) : E(∆,∂∆) −→ A[−2n] ,

see 35, is called the evaluation map associated to ω.

Theorem 6.4 Let ∆ be an oriented normal fan in a vector space V endowed with a

volume form ω ∈ detV ∗. Furthermore let

β : E × E −→ E

be a bilinear map of A-module sheaves extending the multiplication

Eo × Eo = R×R −→ R = Eo

of real numbers. Then the pairing

(38) eω∆ ◦ β∆ : E(∆)× E(∆, ∂∆) −→ E(∆, ∂∆) −→ A[−2n]

coincides with the intersection product.

Note that for a simplicial fan ∆, the equality E = A holds, so the bilinear map β necessarily

is the multiplication of functions and thus, symmetric. In the non-simplicial case, the

map β is not uniquely determined. Nevertheless, there always exists such a map β that

is symmetric. For a complete fan, the intersection product is thus symmetric, which also

follows from Theorem 6.2 with a simplicial subdivision ∆̂ of ∆.

Proof of 6.4: For each cone σ and a positive volume form ωσ ∈ det(V ∗σ ), we define

eωσ
σ : E(σ,∂σ) −→ Aσ[−2 dimσ] analogously to eω∆. Then eωσ

σ ⊗ ωσ does not depend on the

choice of ωσ, and the family of homomorphisms

ϕ̃σ : Eσ −→ DEσ , s 7−→
(
eωσ
σ ◦ β

)
(s, )⊗ ωσ

defines a duality correlation ϕ̃ : E → DE and thus, according to Theorem 5.2, is unique.

In particular the pairing 38 is the intersection product. qed
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