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Projective toric varieties and lattice polytopes may be considered as two faces of the same coin.
Accordingly, in the last 25 years, investigations related with toric varieties and their cohomology
have played an increasingly important role in studying the combinatorics of convex polytopes.
This started around 1980 with Stanley’s spectacular proof of the necessity of McMullen’s condi-
tions (characterizing the face numbers of simple polytopes) using the cohomology of “rationally
smooth” projective toric varieties. It continued with his introduction of a generalized h-vector for
non-simple polytopes, modeled on the properties of the intersection cohomology Betti numbers
of general projective toric varieties. In the last five years, attempts to prove the conjectured
properties of this generalized h-vector led to the introduction of a purely combinatorial “virtual”
intersection cohomology for polytopes, inspired by equivariant intersection cohomology of projec-
tive toric varieties. This work culminated in the recent proof of a “combinatorial Hard Lefschetz”
theorem, which provides the keystone to proving Stanley’s conjectures. – The aim of the present
talk is to survey these developments.

The most basic combinatorial data of a convex polytope in Rn are the numbers fi of
i-dimensional faces, collected in the f(ace)-vector (f0, . . . , fn) or, equivalently, encoded in
the f(ace)-polynomial f(t) :=

∑n
i=0 fiti. For simple polytopes, i.e., where each vertex lies

on exactly n edges, the possible f -polynomials are characterized by McMullen’s conditions.
These are most conveniently stated in terms of the h-vector (h0, . . . , hn), i.e., the coefficient
vector of the “h-polynomial” h(t) := f(t−1) =:

∑n
i=0 hiti: The integers hi are strictly

positive, they satisfy the symmetry relation hi = hn−i, the “unimodality property” hi ≤ hi+1

holds for i ≤ n/2 − 1, and there are specific estimates for the growth of the differences
hi+1 − hi. By duality, there is a corresponding characterization for the class of simplicial
polytopes.

The h-polynomial occurs in quite a different context if a simple polytope P is rational :
The outer normal fan ∆(P ) determines a projective toric variety X∆(P ). Since the fan
is simplicial, this variety is a rational homology manifold. It turns out that its Poincaré
polynomial agrees with h(t2). This yields Stanley’s “topological” proof for the neces-
sity of McMullen’s conditions: Symmetry corresponds to Poincaré duality, positivity and
unimodality come from the Hard Lefschetz theorem, and the growth conditions follow
from the fact that the cohomology algebra H∗(X∆(P )) – and hence also its factor algebra
H∗(X∆(P ))/(ω) with the hyperplane class ω – is generated by elements of degree 2.

On the other hand, if the simple polytope P is non-rational, then there is no longer an
associated toric variety and thus, no cohomology algebra. Nevertheless, the above argument
for the h-vector still can be used: Regarding P as an intersection of half-spaces, any
nearby rational polytope has the same combinatorial type. But there is a more systematic
approach, namely, to associate to P itself – or rather to the simplicial fan ∆(P ) – a “virtual”
cohomology algebra H∗(∆(P )) with Hilbert polynomial h(t2) as follows: Let V denote the
ambient vector space of ∆(P ), so P “lives” in V ∗. Let us consider A := S(V ∗), the algebra
of polynomial functions on V , graded by V ∗ =: A(2), and the homogeneous maximal ideal
m of all polynomials vanishing at 0. For a graded A-module M , we denote with M :=
(A/m)⊗A M the graded real vector space obtained by reduction modulo m. In this setting,
we associate to ∆(P ) the graded A-module A∆(P ) of all cone-wise polynomial functions,
and then define H∗(∆(P )) := A∆(P ). This approach is motivated by the equivariant
cohomology of the toric variety X∆(P ) associated to P in the rational case: There is a
natural action of an algebraic torus T . If P is simple, the variety X∆(P ) is T -equivariantly
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formal, i.e., the ordinary cohomology H∗(X∆(P )) is obtained from H∗
T (X∆(P )) ∼= A∆(P ) by

reduction modulo the homogeneous maximal ideal m in H∗(BT ) ∼= A.
We now consider polytopes that are not simple, so their outer normal fan fails to be

simplicial. If such a polytope P is rational, the associated projective toric variety X∆(P ) is
never a rational homology manifold. Neither its Betti numbers nor the h-vector of P in gen-
eral enjoy the properties mentioned above. Considering intersection cohomology instead of
the “usual” theory, however, yields an even Poincaré polynomial Q with “good” properties
since both, Poincaré duality and the Hard Lefschetz theorem, hold for IH∗(X∆(P )). One
may thus assign the polynomial h with Q(t) = h(t2) to the polytope P as generalized
h-polynomial. The corresponding generalized h-vector then enjoys three of the properties
that hold for simple polytopes, namely, positivity, symmetry, and unimodality. In contrast
to the simple case, however, there is no natural algebra structure on IH∗(X∆(P )), so the
proof of the growth estimates does not carry over; furthermore, there is no immediate con-
nection between this new h-polynomial and the face polynomial. On the other hand, there
is a recursion method to compute h from combinatorial data of P , so the same recursion
allows to assign a generalized h-polynomial also to non-rational polytopes, cf. [St].

In contrast to the situation for simple polytopes, nearby polytopes now do not necessarily
have the same combinatorial type. So the following question is natural: In the non-rational
case, does the new h-vector still have the same three properties: positivity, symmetry,
and unimodality? It motivated the search for a “virtual” intersection cohomology theory
IH∗(∆(P )), as in the case of simple polytopes. In fact, the investigation of the “sheafified”
equivariant intersection cohomology of toric varieties leads to the following construction
entirely in terms of the fan ∆: To apply sheaf theory, the fan is endowed with the “fan
topology”, where the subfans Λ ⊂ ∆ are the open subsets. On that fan space, there is a
natural structure sheaf A of graded rings given by the assignment Λ 7→ AΛ, so in particular
Aσ := A(σ) = S(V ∗

σ ) with Vσ := span(σ). A sheaf F of graded A-modules is called pure if
it is flabby and satisfies the following condition:

(*) For each σ ∈ ∆, the Aσ-module Fσ := F(σ) is finitely generated and free.

A sheaf F on ∆ is flabby iff for each cone σ, the restriction map Fσ → F∂σ is surjective;
if F even satisfies (*), then this surjectivity is equivalent to that of F σ → F ∂σ. The
structure sheaf A clearly satisfies condition (*); it is flabby iff ∆ is simplicial, which holds
for a polytopal fan ∆(P ) iff P is simple. Up to isomorphism, among the pure sheaves F
on ∆ with Fo = R, there is a unique minimal object E determined by the condition
that Eσ

∼=−→ E∂σ even is an isomorphism for each σ 6= o. It is called the “equivariant
intersection cohomology sheaf” of ∆, and IH∗(∆) := E∆ is the “virtual” intersection
cohomology sought after, cf. [BBFK2, BreLu1].

We now have to analyse how far Poincaré duality and, in the case of polytopal fans
∆ = ∆(P ), the Hard Lefschetz theorem continue to hold. As to Poincaré duality, we note
that for any oriented fan ∆, the category of pure sheaves admits an involutive duality
functor F 7→ DF . After fixing a volume form on V , that provides a natural isomorphism
DE ∼= E . In fact, the naturality is not immediate since it relies on the Hard Lefschetz
theorem for polytopal fans of lower dimensions. This duality isomorphism provides a
natural intersection product “∩” on IH∗(∆). In particular, this yields Poincaré duality
between homogeneous subspaces of complementary dimensions, cf. [BBFK3, BreLu2].

As to the Hard Lefschetz Theorem, one assigns to a polytope P a natural strictly convex
conewise linear function ψ on its outer normal fan ∆ := ∆(P ) as follows: For each n-
dimensional cone σ, the restriction ψ|σ ∈ V ∗ is precisely the corresponding vertex of the
polytope P ⊂ V ∗. The multiplication endomorphism µψ : E∆ → E∆ induces the “Lefschetz
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operator” L := µψ : IH∗(∆) → IH∗+2(∆), and the Hard Lefschetz Theorem states that
each Lk : IHn−k(∆) → IHn+k(∆) is an isomorphism for k ≥ 0. Its proof follows easily
from the “Hodge-Riemann bilinear relations” (HRR), according to which the pairing

IHn−k(∆)× IHn−k(∆) −→ R , (ξ, η) 7→ ξ ∩ Lk(η)

is (−1)(n−k)/2-definite on the “primitive” subspace IP n−k(∆) := ker(Lk+1). For a simple
polytope P , these relations have been proved in [Mc], to which the general case can be
reduced according to [Ka].

Let us sketch a geometric idea for such a reduction: We successively cut off “bad” faces
from the polytope P , lowering their number in each step. Since a polytope without bad
faces is simple, this procedure eventually yields the starting point for an induction. We
describe the typical step: We call a face F ⊂ P “bad” if its link is not a cone C(Q) over
some polytope Q. A bad face F of minimal dimension is itself a simple polytope and admits
a “tubular neighbourhood” in P . To cut off F , we write F = P ∩H with a hyperplane H
and move H slightly towards the interior of P . Intersecting P with the two corresponding
half-spaces yields a decomposition P = P1 ∪ P2 into polytopes, with P2 containing F and
P1 on the other side of the hyperplane. By induction hypothesis, HRR holds for P1 since
it has less bad faces than P . The fact that HRR also holds for P2 can be derived from the
lower-dimensional case: The polytope P2 is “hip-roofed” with ridge F , and a transversal
cross-section is a cone C(Q) over a polytope Q of dimension n−1−dim F . Now HRR for Q
implies HRR for C(Q), and for dimF > 0 the polytope P2 is “trivialized” by moving the
ridge to infinity. Patching together the HRR for P1 and P2 by a Mayer-Vietoris argument
yields the result for P .

Hence, even for non-rational polytopes, the generalized h-vector satisfies the three prop-
erties: positivity, symmetry, and unimodality.
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