
Counting the faces of a polytope

1 Basic Definitions

Definition 1.1. 1. By a closed half space H ⊂ V of a (finite dimensional)
real vector space V we mean a set of the form

H := {v ∈ V ; α(v) ≤ c},

where α : V −→ R is a nonzero linear form and c ∈ R.

2. A polytope P ⊂ V is any non-empty compact subset which is the
intersection

P =
r⋂

i=1

Hi

of finitely many closed half spaces Hi ⊂ V .

Remark 1.2. 1. A polytope P ⊂ V is convex as intersection of convex
sets.

2. The dimension dim P of a polytope P ⊂ V is defined as the dimension
of the subspace generated by the differences v−w of vectors v, w ∈ P .

Definition 1.3. A polytope Q is a called a face of P , if either Q = P or we
can write

Q = P ∩ ∂H

with a closed half space H ⊃ P . In that case we write Q ¹ P . If dim Q = i,
we simply call Q an i-face, and the notation Q ¹k P means that Q ¹ P is a
face of codimension k = n− dim Q.

In particular, if n = dim P , its

1. (n− 1)-faces are called facets,
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2. 1-faces are called edges, and

3. its 0-faces are called vertices.

There is an alternative description of polytopes: They are exactly the
sets

P = CH(v1, ..., vr) := {t1v1 + ... + trvr; t1, ..., tr ≥ 0, t1 + ... + tr = 1}

obtained as the convex hull of finitely many points v1, ..., vr ∈ V . The mini-
mal choice of vectors v1, ..., vr for a fixed polytope P is given by the vertices
of P .

Remark 1.4. Given an n-polytope P ⊂ V (dim V = n) the set

P ∗ := {v∗ ∈ V ∗; v∗|P ≤ 1}

is a polytope in the dual vector space V ∗, called the polar polytope of P .
Note that there is a bijection P º F 7→ F ∗ ¹ P ∗ between the set of faces of P
and that of faces of P ∗, which is inclusion reversing with dim F ∗+dim F = n.

Definition 1.5. The f-vector of the n-polytope P is the sequence

(f0(P ), ..., fn(P )),

where fi(P ) := number of i-faces of the polytope P.

In these notes we consider the following

Question: Which sequences (f0, ..., fn) can be realized as f -vectors of an
n-polytope?

For n = 2 a necessary and sufficient condition obviously is f2 = 1, f1 = f0,
while for n = 3 there is the theorem of Steinitz:
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Theorem 1.6 (Steinitz). The quadruple (f0, f1, f2, f3) is the f -vector of a
3-polytope P iff the following conditions are satisfied:

1. f3 = 1 and f0 − f1 + f2 = 2 (Euler’s relation).

2. 4 ≤ f0 ≤ 2f2 − 4.

3. 4 ≤ f2 ≤ 2f0 − 4.

The above conditions are of a purely topological nature. Even better, the
following result holds:

Theorem 1.7 (Steinitz). Given any cell decomposition of the 2-sphere S2

(where we require that the intersection of two closed cells is again a closed
cell), there is a 3-polytope P , such that the face decomposition of ∂P ∼= S2 is
combinatorially equivalent to the given cell decomposition of the 2-sphere S2.

Indeed, the statement fails to hold for n-polytopes in dimensions n > 3.

Remark 1.8. For an arbitrary dimension n we have apart from fn = 1
Euler’s relation:

n∑
i=0

(−1)ifi = 1.

Furthermore, an n-polytpe has at least n + 1 vertices:

f0 ≥ n + 1,

and since at a vertex at least n edges meet (see below), we obtain

2f1 ≥ nf0

as a necessary condition.

But up to now there is no complete answer to our question for dimensions
n > 3. We have to restrict to ”simple polytopes”. Note first that a vertex
v ∈ P of an n-polytope P is contained in at least n edges: If one takes a half
space H0 ⊂ V with H0 ∩ P = {v} and denotes H ⊂ V a nearby half space
with H ) H0 (so the boundaries ∂H and ∂H0 are parallel affine hyperplanes),
then the ”stub” H ∩ P is a pyramid over the (n− 1)-polytope ∂H ∩ P , and
an (n− 1)-polytope has at least n vertices.
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Definition 1.9. An n-polytope P is called simple if each vertex is contained
in exactly n edges (and hence 2f1(P ) = nf0(P )).

So for a vertex v ∈ P of a simple polytope P the basis ∂H ∩ P of the
pyramid H ∩ P is an (n− 1)-simplex. In particular, it follows that a vertex
of a simple n-polytope belongs to exactly n facets.

Remark 1.10. A polytope P ⊂ V is simple iff its polar polytope P ∗ ⊂ V ∗

is ”simplicial”, i.e. all its faces are simplices.

2 Algebraic Constructions

The Stanley Reisner ring: In order to attack our problem we attach to
a simple polytope P a graded ring SR(P ), its Stanley Reisner ring: Denote
F1, ..., Fr ≺1 P the facets of P . Then

SR(P ) := R[F1, ..., Fr]/a,

where the facets Fi ≺1 P are considered as indeterminates and the (homo-
geneous) ideal a ⊂ R[F1, ..., Fr] is generated by the monomials

∏
i∈A

Fi, where A ⊂ {1, ..., r},
⋂
i∈A

Fi = ∅.

The graded ring SR(P ) has another quite useful realization as an algebra of
certain real valued functions on the dual space V ∗:

Piecewise Polynomials: The polytope P gives rise to a fan1, also called
the ”outer normal fan” of the polytope P ,

∆ := ∆(P ) := {σQ; Q ≺ P}
in the dual vector space V ∗: For a facet F ≺1 P denote nF ∈ V ∗ a ”normal
vector” for P at F , i.e. such that nF |F ≡ c ≥ nF |P . For any face Q ≺ P
now set

σQ :=
∑

Q¹F≺1P

R≥0nF .

1A collection ∆ of strictly convex polyhedral cones σ = Rw1 + ... + Rwr ⊂ W in a
vector space W (a strictly convex cone σ does not contain a line) is called a fan, if with a
cone all its faces belong to ∆ and the intersection of two cones in ∆ is a face of both.
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Note that the map Q 7→ σQ is inclusion reversing and that

dim σQ + dim Q = n,

where dim σQ := dim(σQ + (−σQ)). The fan ∆(P ) is complete, i.e. its cones
cover the entire dual space:

V ∗ =
⋃

Q≺P

σQ =
⋃

Q≺nP

σQ.

Now for a cone σ ∈ ∆ we set

A∗
σ := {all polynomial functions f : σ −→ R} ,

so A∗
σ is a polynomial ring in dim σ indeterminates, the symmetric algebra

S∗(V/span(σ)⊥). Then the algebra of all ∆-piecewise polynomial functions

A∗
∆ := {f : V ∗ −→ R; f |σ ∈ A∗

σ, ∀σ ∈ ∆}
is, for ∆ = ∆(P ), isomorphic to the Stanley-Reisner ring SR(P ): Since
every vertex of P is contained in exactly n facets, the n-dimensional cones
σ ∈ ∆(P ) are simplicial, i.e., spanned by bases of V ∗. Hence, in order to
determine a piecewise linear function χ ∈ A1

∆, we can prescribe its values on
the rays ρi := R≥0ni, i = 1, ..., r. Now χi ∈ A1

∆ is taken to be a function
positive on ρi \ {0} and vanishing on all remaining rays ρj, j 6= i, and our
isomorphism takes the form

R[F1, ..., Fr]/a −→ A∗
∆(P ), Fi + a 7→ χi.

The algebra A∗
∆ is in a natural way a (graded) module over the (graded)

algebra of ”global polynomials”

A∗ := S(V )

on V ∗, (using biduality (V ∗)∗ ∼= V ). Denote m ⊂ A∗ the maximal ideal
m := A>0 of all polynomials vanishing at the origin. Now we define the
”algebraic object” H∗(P ), by means of which we can encode the f -vector in
a more accessible way. We define it as

H∗(P ) := A/m⊗A∗ A∗
∆(P ),

a graded commutative R-algebra (R ∼= A∗/m).
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Remark 2.1 (Toric Varieties). Assume that Λ ⊂ V is a lattice of max-
imal rank and the vertices of P are lattice points (We say: ”P is a lat-
tice polytope”). Identify Λ ∼= Zn with the (complex) character group of an
n-dimensional torus T ∼= (S1)n. Now let us construct a topological space
X = X(P ) := (P × T)/ ∼ with the following equivalence relation ∼: We
associate to any face F ¹ P a closed subtorus T(F ) ⊂ T, the common kernel
of the characters in Λ∩V (F ), where V (F ) ⊂ V denotes the subspace parallel
to the affine span of F ⊂ V . Then two points in F×T ⊂ P×T are equivalent
if their second components differ only by a factor in T(F ). The torus action
on P × T induces an action on X(P ) and we have

H∗(P ) ∼= H2∗(X(P );R)

as well as
SR(P ) ∼= H2∗

T (X(P );R),

while Hodd(X(P );R) = 0 = Hodd
T (X(P );R). Indeed, it turns out that X(P )

even is ”almost” a complex projective manifold (a complex projective variety
with quite mild singularities, a rational homology manifold), and that fact
gives us interesting information about the commutative R-algebra H∗(P ),
as for example Poincaré duality and the Hard Lefschetz theorem. But we
shall try below to indicate how the corresponding properties can be proved
completely in the framework of convex geometry.

Definition 2.2. The h-vector of the n-polytope P is the sequence

(h0(P ), ..., hn(P )),

where hi(P ) := dim H i(P ).

Indeed, the f -vector of a simple n-polytope determines its h-vector com-
pletely and vice versa:

Proposition 2.3. For a simple n-polytope P ⊂ V its h-polynomial

hP (T ) :=
n∑

i=0

hi(P ) · T i
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and its face polynomial

fP (T ) :=
n∑

i=0

fi(P ) · T i

are related as follows
hP (T ) = fP (T − 1),

in particular hP (T ) is a polynomial of degree n.

As a consequence we may reformulate our original problem in terms of
the h-vector:

Problem: Which sequences (h0, ..., hn) can be realized as h-vectors of a
simple n-polytope?

Before we formulate the answer, we indicate the proof of Propositon 2.3.
It is based on the following result (see also [BBFK2]):

Theorem 2.4. Let ∆ = ∆(P ) be the outer normal fan of the polytope P .
The A∗-module A∗

∆ is a finitely generated free A∗-module

A∗
∆
∼=

n⊕
i=0

(A∗[−i])hi(P ),

where A∗[−i] denotes the graded module A∗ shifted i steps upward, and there
is an exact sequence

0 −→ A∗
∆ −→ Cn(∆) −→ ... −→ C0(∆) −→ 0

of graded A∗-modules with

Cj(∆) :=
⊕

σ∈∆j

A∗
σ

with ∆j ⊂ ∆ being the subset of all j-dimensional cones in ∆. The dif-
ferential Cj(∆) −→ Cj−1(∆) is the natural one obtained after having chosen
orientations for V ∗ and all the subspaces span(σ) for lower dimensional cones
σ ∈ ∆.
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Proof of 2.3. For a graded real vector space W ∗ with finite dimensional
weight subspaces W i, i ≥ 0, denote

PW ∗(T ) :=
∞∑
i=0

dim W i · T i ∈ Z[[T ]]

its Poincaré series, e.g.

PA∗(T ) = (1− T )−n, PA∗σ(T ) = (1− T )− dim σ.

Furthermore for a graded A∗-module M∗ set

M
∗

:= M∗/mM∗.

Then the above theorem 2.4 implies

PA∗∆(T ) =
n∑

j=0

(−1)n−jPCj(∆)(T ) =
n∑

j=0

(−1)n−jfn−j · (1− T )−j.

Finally, with
PA∗∆(T ) = PA

∗
∆
(T )(1− T )−n

we obtain

hP (T ) =
n∑

j=0

fj · (T − 1)j.

3 The Main Theorem

Theorem 3.1 (Conjectured by McMullen 1971, proved 1980/81 by Billera,
Lee and Stanley). The sequence (h0, ..., hn) of natural numbers is the h-vector
of a simple n-polytope if and only if the following conditions are satisfied

1. Eulers relation: h0 = 1

2. The ”Dehn-Sommerville equation” hn−i = hi holds for all i.

3. hi ≥ hi−1 för 1 ≤ i ≤ n/2.
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4. hi − hi−1 ≤ (hi−1 − hi−2)
〈i−1〉 for 2 ≤ i ≤ n/2, where a〈i〉 denotes the

i-th pseudopower of a ∈ N, see Def. 3.2 below.

Definition 3.2. The pseudopower map

N× N>0 −→ N, (a, i) 7→ a<i>

is defined as follows: First of all

0<i> := 0,

while for a > 0 writing

a =
i∑

k=j

(
nk

k

)

with (unique!) natural numbers ni > ni−1 > ... > nj ≥ j ≥ 1 one sets

a<i> :=
i∑

k=j

(
nk + 1

k + 1

)
.

4 The Proof of the Main Theorem

Dehn-Sommerville equations: There is a natural nondegenerate pairing

A∗
∆ × A∗

∆ −→ A∗[−n]

of graded free A∗-modules, obtained as the composite of the multiplication
of functions

A∗
∆ × A∗

∆ −→ A∗
∆

and an evaluation map
ε : A∗

∆ −→ A∗[−n],

see Def. 4.1. It descends to a dual pairing, called the ”intersection pairing”

H∗(P )×H∗(P ) −→ R[−n], (a, b) 7→ a ∩ b

resp. to dual pairings

H i(P )×Hn−i(P ) −→ R.

So in particular hi(P ) = hn−i(P ).
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Definition 4.1. The ”evaluation map”

ε : A∗
∆ −→ A∗[−n]

is defined as follows: Fix an orientation ω ∈ ∧n V . For each n-cone σ, we
denote gσ ∈ An

σ = An the unique non-trivial function ≥ 0 vanishing on its
boundary ∂σ, which is the product of linear forms in A1 ∼= V , whose wedge
product agrees, up to sign, with ω. Then the map ε is the composite

A∗
∆ ⊂

⊕
σ∈∆n

Aσ −→ A∗ , f = (fσ)σ∈∆n 7−→
∑

σ∈∆n

fσ

gσ

,

the sum lying not only in Q(A∗), but even in A∗, since the singularities along
the facets of n-cones cancel.

The function i 7→ hi(P ) is nondecreasing in the range 0 ≤ i ≤ n
2
:

The vertices v1, ..., vs ∈ V of our polytope P combine to a function ψ ∈ A1
∆

as follows: If σi = σvi
denotes the n-cone associated to the vertex vi, then

ψ|σi
= vi ∈ V ∼= (V ∗)∗ = A1. The multiplication

A∗
∆ −→ A∗

∆[2], f 7→ ψf

induces a degree 2 map, the Lefschetz operator,

L : H∗(P ) −→ H∗(P ).

Theorem 4.2 (Hard Lefschetz). The iterated Lefschetz operator Ln−2i in-
duces an isomorphism

Ln−2i : H i(P ) −→ Hn−i(P )

for i < n/2.

Since Ln−2i factorizes over H i+1(P ), it follows that hi+1(P ) ≥ hi(P ) for
i < n/2.

Growth estimates for the ”Betti numbers” hi(P ):
We apply the following result to the algebra B∗ := H∗(P )/(ψ), where ψ ∈
H1(P ) denotes the residue class of ψ ∈ A1

∆.
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Theorem 4.3 (Macaulay). A sequence (d0, d1, d2, ...) of natural numbers is
the Hilbert sequence of a commutative graded R-algebra B∗ =

⊕∞
i=0 Bi gen-

erated by the elements of degree 1 (B∗ = R[B1]), i.e. we have di = dim Bi,
if and only if

1. d0 = 1,

2. di+1 ≤ (di)
<i> for all i > 0.

Hard Lefschetz: Nearby polytopes of a simple polytope P (i.e. nearby,
when P is represented as intersection of half spaces) are simple and of the
same combinatorial type as P , so we may assume that P is a lattice polytope
for some lattice Λ ⊂ V and then apply the Hard Lefschetz Theorem for
projective algebraic varieties. This is the argument of Stanley in [St1]. A
convex geometry proof of Th.4.4 is due to McMullen (1993), see [Mc].

It is by far the most sophisticated part of the proof, and here we can only
indicate a very rough outline. First of all there is a more detailed version of
Th. 4.2, the ”Hodge Riemann relations”:

Theorem 4.4. For i ≤ n/2 the pairing

σi : H i(P )×H i(P ) −→ R, (a, b) 7→ a ∩ Ln−2ib

restricts to a (−1)i-definite pairing

Ki(P )×K i(P ) −→ R

on the i-th ”primitive subspace”

K i(P ) := ker(Ln−2i+1 : H i(P ) −→ Hn−i+1(P )).

Remark 4.5. The Hodge Riemann relations imply the Hard Lefschetz theo-
rem: Indeed, using the fact that L is self-adjoint for the intersection pairing,
we obtain a σi-orthogonal decomposition

H i(P ) =
⊕

0≤q≤i

Lq(Ki−q(P )).
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To begin with, for P = Sn, an n-simplex, we have (with deg(T ) = 1)

H∗(Sn) = R[ψ] ∼= R[T ]/(T n+1),

and one checks easily that σ0(1, 1) > 0 holds for P = Sn.
Now consider a simple (n + 1)-polytope Q ⊂ V × R, such that the pro-

jection f := prR : V × R −→ R separates the vertices of Q. We study the
behaviour of the level polytopes

Qs := prV (Q ∩ f−1(s)) ⊂ V.

A value s ∈ R is then called a regular value for f |Q if Qs does not contain a
vertex of Q. Then any simple n-polytope P ⊂ V can be realized as a level
set Qs of a regular value s for a suitable choice of the simple (n+1)-polytope
Q ⊂ V × R. For regular s a little bit above min f |Q the polytope Qs is a
simplex, so Th. 4.4 holds; hence we have to check what happens if s passes
through a critical value of f |Q, i.e. a vertex v ∈ Q:

The index Iv(f) of f |Q in such a critical point v then is defined to be the
number of edges of Q approaching v from below (with respect to the height
function f |Q : Q −→ R), so 0 ≤ Iv(f) ≤ n + 1. Then the fan ∆(Qs) as
well as A∗

∆(Qs)
and H∗(Qs) are independent from s ∈ [a.b] for any interval

[a.b] containing only regular values of f |Q, but the corresponding function
ψs ∈ A1

∆ (with, say, ∆ := ∆(Pa)) is not.
Let us now investigate the situation that there is exactly one critical value

c = f(v) (with the vertex v ∈ Q) between the regular values a and b, denote
d := Iv(f) its index: The passage from Qa to Qb is called a d-flip: Denote
Fs ≺ Qs the face spanned by the vertices of Qs lying on the edges of Q
meeting at v: For s < c the face Fs is an (d − 1)-simplex and for s > c an
(n− d)-simplex, while Fc ≺ Qc is a vertex. In order to compare the f - resp.
h-polynomials we may, for symmetry reasons, assume d ≤ n+1

2
.

During a 1-flip a new facet is created, while for d > 1 there is a bijection
between the faces of Qa not contained in Fa and the faces of Qb not contained
in Fb. Denoting f s resp. hs the f - resp. h-polynomial of Qs we thus obtain

f b(T ) = fa(T ) + T−1((T + 1)n−d+1 − (T + 1)d) ,

the f -polynomial of an m-simplex Sm being

fSm(T ) = T−1((T + 1)m+1 − 1).
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Replacing T with T − 1 yields then

hb(T ) = ha(T ) + T d + ... + T n−d .

So dim Kd(Qb) = dim Kd(Qa) + 1. At the same time we have reproved the
Dehn-Sommerville equations. But to show that the Hodge Riemann relations
are preserved when passing from Qa to Qb as well as in the opposite direction
requires a much more detailed and sophisticated argument; here we have to
refer to [Mc] and [Ti].

5 General Polytopes

For nonsimple polytopes one can of course again define an h-vector as the
transformed f -vector, but it turns out that it does not have the same nice
properties as in the case of simple polytopes. Another idea is to look for
lattice polytopes P only, and then to define

hi(P ) := dim H2i(X(P );R),

but then, X(P ) being singular, the cohomology algebra has as well ”patho-
logical” features, e.g. it is not any longer a combinatorial invariant of the
face lattice nor does it live only in even degrees.

On the other hand there is a cohomology theory specially adapted to
singular varieties, the intersection cohomology IH∗(..) of M. Goresky and R.
MacPherson. So one could think of setting

hi(P ) := dim IH2i(X(P );R).

It turns out that the intersection cohomology Betti numbers are again com-
binatorial invariants and can be computed recursively. Indeed, Stanley used
the computation algorithm in order to define his generalized h-vector, see
[St2]. Intersection cohomology satisfies both Poincaré duality and Hard Lef-
schetz, but does this imply that hn−i(P ) = hi(P ) and hi+1(P ) ≥ hi(P ) for
i < n/2 holds even for non-lattice polytopes? For a simple polytope there
is always a lattice polytope of the same combinatorial type, but for general
polytopes that is definitely false. So in order to answer our question it was
necessary to construct a ”combinatorial intersection cohomology” in terms of
polytopes or rather fans, extending the approach via piecewise polynomials,
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see [BBFK2] and [BreLu1]. The proof of the combinatorial hard Lefschetz
theorem was - in accordance with the name - the most difficult part: Its
proof was given in [Ka], and there are now even some simplified versions
available, see [BreLu2] and [BBFK4]. In any case, one derives it from the
Hard Lefschetz theorem for simple polytopes via desingularisation or rather
”simplification” of a general polytope.
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