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1 Dual space

Definition 1.1. A linear form or linear functional on a vector space V is a
linear map o : V' — K. They form a vector space

V*i=L(V,K)
called the dual space of V.

Remark 1.2. If we, following the tradition, identify £(K™, K™) with the
space K™"™ of m X n-matrices, we may write linear forms in the dual space
(K™)* of K™ as row vectors

Kl’n & (Kn)*vy = (yla ,yn) = CYy
with
15

ay :V — K, x = : ny:Zyl,a:,,.
v=1

Ty
Definition 1.3. If B = (v, ..., v,,) is a basis of V', we define the linear forms
vi:V—Kj=1,..n,
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by

V;(Vi> = (SU,Z = 1, ., n.

They form a basis B* = (v7,...,v}) of V*, it is called the dual basis for the
basis vy, ..., V.

Remark 1.4. The notation v; may be a bit confusing: The definition of
v} involves the entire basis vy, ..., v, — not just v; € V. Indeed, there is no
"natural” linear map V' — V*, v — v* — though of course there is a linear
isomorphism

ep:V—V"v,—=v i i=1..n,

but it depends on the choice of the basis:
Example 1.5. If B = (vy,...,v,) is a basis of K", then

op: K" — (K")*,x —x'CTC,
with the matrix C' € K™" satisfying Cv; = e;,i = 1,....n, i.e.
C=(vi,.y V) "
To see that we simply check that
(viCTC)yv; = (Cv;)"Cv; = el e; = ;.

Remark 1.6. A linear map F' : V — W induces a linear map in the reverse
direction, the pull back of linear functionals:

F* W' —=Via—aoF: V- wW-%K.

Choose bases B and C' of V resp. W. If F' has matrix A w.r.t. B and C,
then F* has matrix AT w.r.t. C* and B*.
For the proof it suffices to consider V = K" W = K™ and

F=T,: K"— K" x— Ax.

Now
F(ay)(x) = y(Ax) = (yA) (%),
thus using the isomorphism (K™)* = K" (K™)* & K'™ we find

F*: K'Y — KMy yA.
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In order to obtain the matrix of F* with respect to the respective dual stan-
dard bases we have to transpose: The map

K' — (K9, x — xT,
is nothing but the coordinate map

L1
X = : »—>m1e1T+...+eg

Tn
w.r.t. the dual basis. Hence we finally arrive at

K" — K'visvi s viA— viA)T = Alv.

2 Direct sums and quotient spaces

Definition 2.1. Given vector spaces Vi,...,V,, we define their direct sum
Vie.. eV, or @::1 V; as the cartesian product

Vix..xV,

endowed with the componentwise addition and scalar multiplication.

Remark 2.2. If V; — Vi =1, .., r, are subspaces of a given vector space V,
there is a natural linear map

o: @V} — V(v .., V) = Vi LV

i=1
If it is injective, we identify €B;_, V; with
o(V)=> ViV
i=1

and express that by writing

> -y
i=1 i=1



Example 2.3. For subspaces U,W C V we have
ker(o) = {(v,—v);ve UNnW}

and thus
U+W=Us W= UnW = {0}.

Definition 2.4. Let U C V be a subspace. A subspace W C V is called a
complementary subspace for U C V if

V=U+W=UoW.

Any subspace U admits complementary subspaces, but there is in gen-
eral no distinguished choice. Sometimes it can be helpful to replace the
complementary subspace with an abstract construction not depending on
any choices.

Definition 2.5. Let U C V be a subspace. Then
vewiss=v-welU
defines an equivalence relation on V. The equivalence classes are the sets
v+U:={v+uwuelU},
also called cosets of U. We denote
VU =V/~={v+U;veV}

the set of all equivalence classes and call it the quotient space of V mod U.
The set V/U is made a vector space with the addition

v+U)+(w+U)=(v+w)+U
and the scalar multiplication
Av+U):=Av+U,
and the quotient projection
0:V—V/U

then becomes a linear map.



Example 2.6. If V = R? and U = Rx is a line, then all lines W = Ry # U
are complementary subspaces. Cosets v + U = v 4+ Rx are lines parallel to
Rx. Such a coset intersects any complementary subspace W in exactly one
point.

Remark 2.7. If V = U & W, then the composition
W—V-—V/U

of the inclusion of W into V' and the quotient projection g : V. — V/U is
an isomorphism.

Proposition 2.8. IfF:V—Wisa linear map and U C ker(F), there is
a unique map F : V/U — W with F = F o g, i.e. the diagram

v Dow
o L
V/U

is commutative. If, furthermore U = ker(F) and F is surjective, then F :
V/U =5 W is an isomorphism.

Proof. Indeed, uniqueness follows from the surjectivity of o, while existence
follows from the fact that F|y,y = F(v), i.e. we may define

F(v+U):=F(v).
[l

Example 2.9. For a subspace U C V we describe U* as a quotient of V*:
The restriction
R:V* —U" aw— a|y,

has kernel
ker(R) :=U* :={a € V*aly =0}

and is surjective, hence induces an isomorphism
R:V* U+ = U~

Recall that R = j* with the inclusion j : U — V.



3 Bilinear forms

We have emphasized that there is no natural isomorphism V' = V*. Neverthe-
less there are often situations, where there is such an isomorphism, namely,
when one considers vector spaces with an additional datum, a bilinear form

B:VxV—K.

Definition 3.1. A bilinear form on a vector space V is a map
B: VXV —K

such that for any u € V' the maps

f(u,..):V— Kand B(..,u): V — K

are linear.

Example 3.2. Take V' = K" and a matrix A € K™". Then
B(u,v) :=u’ Av

defines a linear form on V. In particular

1. the matrix A = I,, defines the standard

Remark 3.3. One might wonder why we here write V' x V' instead of V& V:
The point is, that we want to avoid confusion. A bilinear form on V' is not
a linear form on V @ V:

Bi(V) 2 (Ve V) 2V eV

indeed
dim Bi(V) = (dim V)?, while dim(V @ V)* =2dim V.

Instead there are natural isomorphisms

Bi(V) = L(V,V*),B— Fz:V — V",

where
V* 3 Fa(v) = B(v,..)
and
Bi(V) = L(V,V*),8+— Gg.V — V7,
where

V'3 Gs(v) = B, v).



4 Jordan normal form

Given an endomorphism 7" : V' — V of a finite dimensional vector space V,
we want to find a basis B = {vy, ..., v, }, s.th. the matrix of T" with respect
to B is "simple”.

We try to decompose V' into smaller subspaces, which are T-invariant.

Definition 4.1. A subspace U C V is called T-invariant, if T'(U) C U.

Example 4.2. 1. The entire space V' and the zero space {0} are invariant
subspaces for any operator T' € L(V).

_ (0 —1 2,2
2.LetA—(1 O)GK.

(a) The linear map
T:=T4:R* — R? x — Ax,

is a counterclockwise rotation with an angle of 90 degrees, hence
{0} and R? are its only invariant subspaces.

(b) The linear map
T:=Ty:C*— C% 2z Az,

has the invariant subspaces

we(})e( L)

the two lines being the eigenspaces for the eigenvalues —i resp. 1.

11

3. LetA:(O 1

) € K?2. The linear map

T::TA:K2—>K2

has the invariant subspaces

{O},K< (1) ) K2



4. Aline U = Kv,v # 0, is a T-invariant subspace iff v is an eigenvector
of T.

5. The A-eigenspaces of T', the subspaces
Vi={veV;T(v)=Av} €K,
are T-invariant.

Remark 4.3. 1. If U C V is T-invariant, and B = B; U B a basis, s.th.
By spans U, the matrix of T" w.r.t. B looks as follows

A C
0 D)
2. If there is even a T-invariant complementary subspace W and Bs a
basis of W, the matrix becomes

A 0
0 D )
3. Lat A € K. A subspace U C V is T-invariant if it is (7" — Aidy)-
invariant.
Definition 4.4. A T-invariant subspace U is called

1. wrreducible if it does not admit proper nontrivial invariant subspaces,

2. indecomposable if it can not be written U = U; & U, with nontrivial
T-invariant subspaces.

Remark 4.5. 1. Irreducible T-invariant subspaces are indecomposable,
but not the other way around: Take T'= T/ | |\ : K? — K2
0 1)

Then U = K? is not irreducible, but indecomposable.

2. Now, since dim V' < oo, it is clear, that V is a direct sum of indecom-
posable subspaces, and it remains to study, what they look like.
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We are now looking for invariant subspaces U C V admitting an invariant
complementary subspace W, i.e.

V=UaoW

Assume T admits an eigenvalue A € K. Since we may replace T" with
(T — Aidy ), we may even assume ker(7T") # {0}. Obviously U = ker(T") and
W =T(V) are invariant subspaces, satisfying

dimU +dimW = dimV,

since T(V) = V/ker(T'). But in general U N W = {0} does not hold: Take
for example T : K? — K?,e; + 0, e, — e;. Nevertheless we succeed under
an additional assumption:

Proposition 4.6. Assume S € L(V),S*(V) = S(V). Then we have
V = ker(S) @ S(V).
Proof. Take v € V and write
S(v) = S*(w),weV.
Then we have
v=(v—-S(w))+S(w) € ker(S)+ S(V).

Hence
V =ker(5) + S(V),

while ker(S) + S(V) = ker(S) @ S(V) because of dimker(S) + dim S(V') =
dim V. [l

Corollary 4.7. Let A € K be an eigenvalue of T'. Then we have
V =ker((T — X -idy)") @ (T — X -idy ) (V)
for k> 1.

Proof. Let F' := (T — Xidy)*. The sequence of subspaces F¥(V), k € N, is
decreasing, hence becomes stationary after a while, i.e. there is k € N, such
that FF(V) = F¥(V) for all £ € N. Now take S = F* and apply Prop.
4.6. [
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The above reasoning motivates the introduction of generalized eigenspaces
Vy D Vi = ker(T — Midy).

Definition 4.8. Let T' € L(V'). The generalized eigenspace V, for the eigen-
value A € K of T is defined as

V= [ ker((T = Aidy)).
v=1

Remark 4.9. V, = ker((T' — Xidy)¥) for k> 0.
Proposition 4.10. Let A € K be an eigenvalue of T € L(V'), Then

V=V,aU,

holds with the invariant subspace

e}

Uy := [ (T = Xidy)" (V).

v=1
Indeed Uy = (T — \idy )*(V). for k> 0.

In order that our inductive approach works we have to assure that our
operator T € L(V') has "sufficiently many” eigenvalues:

Definition 4.11. The endomorphism 7" : V. — V is called split, if its
characteristic polynomial is the product of linear polynomials:

r

xr(X) = [J(x =)k

i=1
with Ay, ..., A\, € K and exponents ki, ..., k. > 0.

0 —1

Example 4.12. 1. Let A= ( 1 0

) € K*2. The endomorphism

T:=T4: K> — K*
has the characteristic polynomial
XT = T2 + 17

11



it is not split for K = R, but for K = C, since
T? +1= (T —i)(T +1)
We have A\ =1, Ay = —7 and

Vl=v1=©(_1i>,%=v2=6(1>.

11

2. LetA:(O 1

) € K*2. The linear map

T:=Ty: K> — K?
has the characteristic polynomial
XT = (T - 1)27

it is obviously split, there is one eigenvalue \; = 1 and

%:Wa%:K(é)

Remark 4.13. For K = C all linear operators are split.

Theorem 4.14. Let T' € L(V') be a split operator with the pairwise different
eigenvalues Ay, ..., \. € K. Then we have

vzéﬁx
=1

Proof. Induction on dim V. Take an eigenvalue A € K of the operator T, use
the decomposition

V=V,aU,
and the fact that
XT = XF " XG
with
F =Tl ,G:=Tly,.
Indeed

while x5 (A) # 0, since G does not have A as one of its eigenvalues: V\NU, =
{0} and F has no eigenvalue # \, since F'— Aidy, is nilpotent. The statement
holds for G € L(U,) by induction hypothesis. O]
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Re{nark 4.15. If we choose a basis B = By U...U B,, such that B; is a basis
of Vj,, the matrix A of T" with respect to B looks as follows:

A0 L
0 Ay, O . 0
A=1 0
0o o0 . A O
0 0 . 0 A

The next step is to investigate the generalized eigenspaces separately. So
let us assume V = V). Then we have

T =MXidy + N
with the nilpotent operator
N =T — \idy.
Proposition 4.16. For a nilpotent operator N € L(V') we have
NAmV =,

Proof. By induction on dimV. For dimV = 1 we have N = 0. Since a
nilpotent operator is not an isomorphism, we have N(V) & V and find

(Nlx)* = 0,k = dim N(V).

Hence
N*=0, s>k+1,

in particular for s = dim V. ]

Definition 4.17. Let N € £(V') be a nilpotent operator. A subspace U C V/
is called N-cyclic, if there is an ” N-cyclic” vector u € U, i.e. s.th.

U = span(T"(u),i > 0).
Lemma 4.18. If U is N-cyclic with cyclic vector u # 0, then
U=Ku® KT(u)®...® KT%(u),

if T¢(u) # 0 = T (u).
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Proof. Obviously
U=Ku+ KT(u)+ ...+ KT*(u),

so we have to prove that the given vectors are linearly independent. Use
induction on dim U. If

Xou+MT(a)+ ... + A\T%(u) =0

we have
)\QT(U) + )\1T2(U) + ...+ )\S_lTS(ll) =0

and the induction hypothesis for the T-cyclic subspace T'(U) 3 T'(u) yields

Since T%(u) # 0 that implies A\; = 0 as well. O

Theorem 4.19. Let N € L(V) be a nilpotent linear operator. Then
V=U&..8U

with N-cyclic nonzero subspaces U;. The number t is uniquely determined by
N as well as, up to order, the dimensions dimU;,1 =1, ..., t.

Proof. Induction on dim V. We have N(V) & V - otherwise N would be an
isomorphism. Hence by induction hypothesis for N|n) € L(N(V)) we nay
write

NV)=W& .0 W,

with N-cyclic nonzero subspaces W;,i =1, ..., q. Choose uy,...,u, € V, s.th.
N(u;) is a cyclic vector for W;, take

Uz‘ = Kui + WZ,Z = 1, .. q.
and note that ker(N|y,) C W;. We have
U1++Uq:Ul@@Uq

Assume that
vit+..+v,=0
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holds for the vectors v; € U;,2 =1, ...,q. Then
N(vi)+ ...+ N(vy) =0.

By induction hypothesis we obtain N(v;) = ... = N(v,) = 0, in particular
v, € W;, hence vi = ... = v, = 0, once again by induction hypothesis.
Finally, since

N:U=U®..0U, — NV)

is onto, we may write

V=Ua&YV,

with Vo C ker(N). Take any subspace Vi C V with V = U & V} and
choose a basis v i1,...,v¢ of Vi. Choose uyiq,...,u; € U with N(u;) =
N(w;),i=q+1,....,t. Then the vectors w; :=v; —w;,i =q+1,...,t, span a
complementary subspace Vy C ker(/N). Now choose

U =Kw;,i1=q+1,..,t.
Finally, we have ¢ = dimker(N) and for & > 0 the numbers
dim ker(N*™') — dim ker(N*) = [{i; 1 <4 < ¢, dim U; > k}|
determine the dimensions dim Uj;. O

Theorem 4.20. Let T' € L(V') be split. Then we may write

V= é V;
i=1
with T-invariant subspaces V;, such that
T|y, = \idy, + N;
with an eigenvalue \; € K of T and V; is N;-cyclic.

Remark 4.21. It is well known that given a polynomial f € K[X] there is a
field L O K, such that f € L[X] is split. E.g. for K = R and any polynomial
f € K[X] the choice L = C is possible.

Now, if V = K™ and

T=T4: K" — K" x — Ax,
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we have a natural extension
T:L" — L", z — Az.
Hence we may write
.
L"=gw;
i=1

as in Th.4.20, but that decomposition does not descend to K™ C L". Indeed,
the subspaces V; := W; N K™ will be in general too small.

Finally we indicate how to find a real Jordan form for
T:=Ty:R" — R".
We consider its extension _
T:C"— C".
Consider an eigenvalue A € C of T'. There are two cases:

1. If X € R, then A is an eigenvalue of T' and we may decompose ‘7/\ NR
as in the split case as a direct sum of (7" — Aidy )-cyclic subspaces.

2. If A € C,3(\) > 0, then X is an eigenvalue of T as well. We choose
a decomposition of V) and take for V5 the complex conjugates of the
subspaces in the decomposition of V.

Hence we have to deal with the following situation: We have a T-invariant
subspace

vV cC",

such that
Tly =XMdy + N, A=a+if3

and V is N-cyclic. Now consider a basis N%(z), N°"!(z),..,N(z),z of V.
Write z = x 4 1y - note that x,y € R” are linearly independent, since
N#(x), N*(y) are as real and imaginary part of an eigenvector belonging to
an eigenvalue A\ € R. Then we obtain a basis for

(VeV)nR"

as follows:
N*(y),N°(x),..., N(y), N(x),y,x.
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Since x = 3(z +Z),y = 2.(z + Z), we obtain
T(x) = ax = fy + N(x), T(y) = fx +ay + N(y)

as well as the analogous statements for N7(x), N?(y). Hence with respect to
that basis 7" has the matrix

AL 0 .. 0
0 A I, .. 0
0 O A L
0 O 0 A

with ;
o —
().

5 Minimal and characteristic polynomial

Polynomials f € K[X]| may be evaluated not only at elements of the base
field K, but even at linear operators 7' € L(V') as follows: Given

f=aX"+.  +auX+aq € K[X]

we define
f(T) = CLTTT + ...+ (llT + Cboidv € E(V)

Proposition 5.1. Given T € L(V) there is a unique monic polynomial
pr € K[X]
of minimal degree satisfying
pur(T) = 0.
We have then for a polynomial f € KI[T] the following equivalence:
(1) =0 <= prlf.
We call pr the minimal polynomial of the operator T' and obtain

K[T] = Kidy ® KT & .. ® KT"™, r = deg(ur).
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Proof. Since dim £L(V) = (dimV)? < oo, we may choose 7 € N minimal
such that idy,T,..., 7" € L(V) are linearly independent. Then there is a
nontrivial relation

a,T" + ...+ a;T + apidy =0

with a, # 0, since 7", ..., T,idy are linearly independent. We may even
assume a, = 1. Take

pro=X"+a, 1 X" 4+ .+ X +ag.
Obviously
Kidy + KT+ ..+ KT ' =Kidy ® KT & ... KT,
in order to see that the sum is K[77, take some f(7T') € K[T| and write
f = gur+ h,degh < deg ur =r.
Then it follows
f(T)=h(T) € Kidy + KT + ...+ KT"".
[

Here is an explicit description of the minimal polynomial of a split oper-
ator:

Theorem 5.2. Let T € L(V) be a split operator and

V= @ VA,
i=1

the decomposition of V' as the direct sum of the generalized eigenspaces of T.

Then we have §

Hr = H(X - )‘i>mi7

i=1

where m; is the mazximal dimension of a (T — N\idy)-cyclic subspace of ‘7&
in some direct sum decomposition.

For the proof we need:
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Remark 5.3. 1. Since T*T* = T*T* we see that the subspace
K[T]:={f(T); f € K[X]}
forms a commutative subring
K[T) c L(V)
of the endomorphism ring £(V') of the vector space V.

2. If T'= Aidy + N with a nilpotent operator we have
K[T| = Kidy & NK|N],

where N K [N] consists of the nilpotent operators in K[T] and the com-

plement
K[TT\ NK[N]

consists of isomorphims only. For the proof we have to invert Aidy + N
with A # 0 and N € NK[N]. We may even assume A = 1 and check
that

(idy + N) ' =idy — N+ N2 — . 4 (=1)" "INt

with n :=dim V.
3. For f € K[X] we have:
F(T) = f(N)idy + N

with some N € NK[N].

In particular:
1. If f(A) =0, then f(T) € NK[N] is nilpotent.
2. If f(A\) #0, then f(T):V — V is an isomorphism.

Proof of 5.2. Let

T

i=1
We show that
f(T)=0<=vp|f
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holds for f € K[X]. First of all we have
f(I) =0« f(T;)=0,i=1,..,r
with the restrictions
T, = T"?Ai'

Let us now show that f(7') = 0 implies vz|f. According to Rem.5.3 we then
have f(\;) =0,7=1,...,r, and may write

f=nhg, h= ﬁ(X — )"

i=1

where ki, ..., k. > 0 and g()\;) # 0 for ¢ = 1,...,7. Then we see once again
with Rem.5.3, that all g(7;) are isomorphisms, hence so is ¢(7") and thus
h(T) = 0. Furthermore writing

h = hipi, hi = (X — \)™,

we see with the same argument that p;(7;) is an isomorphism, hence h;(7;) =
0 and then necessarily k; > m; resp. vp|f. For the reverse implication it
suffices to show vp(T) = 0. But that follows immediately from vy (T;) = 0
fori=1,..r. O

Theorem 5.4 (Cayley-Hamilton). For T' € L(V') we have
xr(T)=0¢€ L(V).

Proof. We may assume V' = K", and furthermore, by Rem.4.21, even that
T is split - the operators T" and T have the same matrices and thus the same
characteristic polynomials. Now we look at the decomposition

V= @ A,
=1

of V' as the direct sum of the generalized eigenspaces of T'. For the charac-
teristic polynomial yr we have

r

xr(X) =[x = x)™

=1

with n; := dim XA/AZ. > my;, where m; > 0 is as in Th.5.2. O
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Definition 5.5. A split operator ' € L(V) is called diagonalizable or semisim-
ple, iff V' admits a basis consisting of eigenvectors of T

Proposition 5.6. For a split operator T € L(V') the following statements
are equivalent:

1. T € L(V) is diagonalizable.
2. The minimal polynomial pr has only simple roots.

3. \7,\ = V) for all eigenvalues \ of T

6 Spectral Theorem

An essential point in the proof of the Jordan normal form was to find, given
an operator 1" : V. — V| a decomposition of V' as a direct sum of invariant
subspaces: V = U & W. For K = R,C vector spaces come often with
some additional structure, which allows to measure lengths and angles and
to define canonical complementary subspaces U~ for a given subspace U.

Definition 6.1. An inner product on a real or complex vector space V' is a
real bilinear map
oc:VxV-—K

such that

1.
o(.,w)eV*", VweV,

ie. o(..,w) is C-linear for all w € V|

o(w,v) =0c(v,w)

3. and
o(v,v) € Ry, Vv e V\{0}.

An inner product space is a pair (V, o) with a real or complex vector space
V and an inner product ¢ : V x V — K.
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Example 6.2. 1. An inner product o : K" x K™ — K can be written
o(v,w): v Sw
with a matrix S € K™", such that S" = S and
vISv >0
holds for all v € V' \ {0}.
2. V = K[X] with .

o(f9) = | f@alarde,

where a < b.

Remark 6.3. 1. An R-linear homomorphism 7" : V — W between com-
plex vector spaces is called antilinear iff T'(Av) = A\T'(v).

2. We have an (antilinear) isomorphism
O,V —V" wro(.,w).

Definition 6.4. The adjoint of an operator T': V' — V is the is the linear
map
P, 0T 0 (®,) 1V —V  —V*—V,

indeed, we shall identify V* with V using the isomorphism ®, and denote it
T as well.

Remark 6.5. 1. The adjoint T™ of T is the unique linear map 1™ satis-
fying
o(T(v),w)=o(v,T"(w)).
2. Conjugating that equality we obtain

o(T"(v),w) = o(v,T(w)),

3. so in particular
T =T.

4. id* =id, (R+ T)* = R* + T*,(RT)* = T*R*, (\T)* = \T*.
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5. If o(v,w) = vISw and T' = T4 € L(K"), we have T* = T4, where
ATS = SA* ie.
A =5 'A's,
in particular, for S = I, we find

—T

A=A

Definition 6.6. A linear operator 7" € L(V') on an inner product space is
called

1. normal if it commutes with its adjoint
™T=TT",

2. self adjoint (symmetric for K =R) if 7% =T
Example 6.7. 1. T = \Xidy is self adjoint iff A € R.
2. If T* = £T or T* = T!, the operator T is normal.

3. With T is also AT normal, but the sum of normal operators need not
be normal: Indeed, any operator is the sum of a self adjoint and a skew
adjoint (T* = —T') operator.

4. The self adjoint operators form a real subspace of L(V).

5. The composition of two self adjoint operators is again self adjoint, if
they commute, otherwise in general not.

Proposition 6.8. Let T' € L(V) be a normal operator. If X € K is an eigen-
value of T', then X\ is an eigenvalue of T*, and the corresponding eigenspaces
coincide.

Proof. Since T" and T™ commute, the eigenspace V) of 1" is T*-invariant, and
then
T*’V,\ = (T‘VA)* = ()\ idVA)* = Aidy, .

Corollary 6.9. 1. The eigenvalues of a self adjoint operator are real.
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2. A symmetric operator on a real inner product space has a real eigen-
value.

Proof. The first part is obvious with the preceding proposition, and for the
second part we may assume V' = R"™. Both T and o extend to a self adjoint
operator resp. an inner product on C". The extended operator has an
eigenvalue, which is a real number - but the extended operator and 1" have
the same characteristic polynomial, hence it is an eigenvalue of T" as well. [

Proposition 6.10. For a normal operator T € L(V) we have
ViLV,
for eigenvalues p # \.
Proof. For u € Vy,v € V,, we have
A =p)o(u,v) =c(Au,v) —o(u,iv)
(o(T(w),v) — o(u, T*(v))) = 0,
hence \ # p implies o(u,v) = 0. O

Indeed, in the complex case V' is the orthogonal sum of the eigenspaces
i\, A e C.

Theorem 6.11 (Spectral Theorem). 1. A normal operator T € L(V) on
a complex inner product space is diagonalizable. Indeed, there is an
ON-basis of V' consisting of eigenvectors of T.

2. A symmetric operator T € L(V') on a real inner product space is diag-
onalizable. Indeed, there is an ON-basis of V' consisting of eigenvectors

of T.

Proof. Induction on dim V. In both cases there is an eigenvalue A € K of T'.
We show that
U:= Vi

is both T- and T*-invariant and then may apply the induction hypothesis to
T|y. Indeed for v € Vy,u € U we have:

o(T(n),v) =o(u, T*(v)) = o(u, \v) = Ao(u,v) =0
as well as

o(T*(u),v) = o(u,T(v)) = o(u, A\v) = Ao(u,v) = 0.
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Corollary 6.12. For a normal operator T' € L(V') we have:
TV = [T (W)l

Proof. We may assume V' = C" and apply the complex spectral theorem, i.e.
the first part of Th.6.11. But there is a straight forward argument as well:

O0=oc((TT"—=T"T)(v),v) =0(TT*(v),v)) —o(T*T(v), V)

o(T*(v), T*(v)) = o(T(v), T(v)) = IT*(V)[I* = [IT(v)[*

Definition 6.13. A linear operator 7' € L(V) is called an isometry iff
o(T(u), T(v)) =0c(u,v)
holds for all u,v € V. Such an isometry is also called
1. an orthogonal transformation if K = R,

2. a unitary transformation if K = C.
Remark 6.14. 1. T is an isometry iff T* = T,

2. A linear operator is an isometry iff it preserves lengths, i.e.
T ()] = [lul].
The proof follows from the fact that
AR(o(u,v)) = [[u+ v|* = [[u - v[]*
and
4S(o(u,v)) = 2R(o(u,iv)) = |[u +iv|]* — [Ju —iv]||*.
3. An isometry is normal.

4. An isometry T : R? — R? with det(T") = 1 is a rotation.

Definition 6.15. A rotation on a two dimensional real inner product space
is an isometry T' € L(V') with det(7") = 1.
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Theorem 6.16. Let T' € L(V) be an isometry of the inner product space V.
1. If K = C there is an ON-basis vy, ..., v, of V, such that
T(v;))=N\Nvi,i=1,..,n
with \; € C,|\| = 1.

2. If K =R there is an orthogonal decomposition

vzéyq
i=1

with T-invariant subspaces of dimension 1 or 2, such that Ty, is mul-
tiplication with +1 (dimV; = 1) or a rotation with an angle between

7,0 < Y] <7 (dimV; = 2).

Definition 6.17. A self adjoint linear operator is called positive if all its
eigenvalues are non-negative real numbers.

Remark 6.18. A self adjoint linear operator is positive iff
o(T(v),v) >0

holds for all v € V. The condition is obviously necessary, but it is sufficient
as well: If v.= """  v; with pairwise orthogonal eigenvectors v; € V of T,
we have

o(T(v),v) =Y Allvill*
i=1
A positive operator T' € L(V') can uniquely be written
T = F?
with a positive operator F' € L(V). We write
VT :=F.

Example 6.19. For an isomorphism S € L(V') the operator T' = S*S is
positive. Indeed
"= (S*S) =5"5"=5"9=T
and
o(T(u),u) = (5(u), 5(u)) >0
for u # 0.
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Theorem 6.20 (Polar decomposition). Any T' € L(V') can be decomposed
T=SF

with an isometry S and a positive operator F. If T is an isomorphism, the
decomposition 1s unique.

Proof. Uniqueness: If T' is an isomorphism, so is F'. We obtain
T*T = (SF)*SF = F*S*SF = F*F = F?,
i.e. F=+/T*T. Sedan foljer
S=TF"

Existence: We set

F :=VT*T

and show
T[] = [[F V)]

in particular U := ker(T") = ker(F'). Indeed
ITW)|* = o(T(v), T(v)) = o(T"T(v),V)

=o(F*(v),v) = o(F(v), F(v)) = |[F(v)]".

We obtain a commutative triangle

L R(V) 2 1)
F 1t
VU T

with isomorphisms F : V/U — F(V),T : V/U — T(V) and an isometry
So: F(V) — T(V). Now take any isometry

S F(V): — T(V)*

and set
S =5 DS5;.

27



7 Determinants and exterior algebra

Definition 7.1. Let V be a vector space, dimV = n.
1. A k-linear form (or simply k-form) on V' is a map

a:VF=Vx..xV—K,

k times

such that
V— K, v a(Vi, .., Vi 1,V,Vii1, ..., Vy)

is a linear form for all © = 1,...,n and vy, ..., v;_1,Viy1, ..., v, € V. We
denote M (V') (multilinear) the vector space of all k-forms on V.

2. An alternating k-form on V is a k-form «, such that
=) #] 1V =V, — Oé(Vl,...,Vk) = 0.

We denote Ax (V) C My(V) the vector space of all alternating k-forms
on V.

Remark 7.2. Let (ey,...,e,) be a basis of the vector space V.

1. A k-form a: V¥ — K is determined by the values

ale;,....e;,), 1 <i, <n,

and they can be prescribed arbitrarily. In particular dim My (V) = nk.

2. For an alternating k-form and a permutation 7 : {1, ...k} — {1, ..., k}
we have
Vi (s s Vi) = (M) Vig, oo, Vi ).
This follows from the fact that permutations can be factorized into

transpositions and a transposition 7 has sign ¢(7) = —1.

3. A k-form is alternating iff the above condition is satisfied for basis
vectors v, ..., vi € {er,...,e, }.

4. An alternating k-form « is is determined by the values
oz(eil, ...,eik), 1 <..<1i

and they can be prescribed arbitrarily. In particular dim A, (V) = (}).
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5. An alternating n-form a € A, (V) is trivial iff a(ey,...,e,) = 0.
6. A linear operator F': V' — W induces pull back homomorphisms
T : Mpy(W) — Mp(V), Ag(W) — Ap(V),
not to confused with the adjoint of T'.

Since for an n-dimensional vector space V' we have dim A, (V) = 1, we
may define the determinant of a linear operator T' € L(V) as follows:

Definition 7.3. The determinant det(7) € K of an operator T' € L(V) is
defined by

T = figet(r),
where T* : A, (V) — A,(V) denotes the pull back of n-forms and g, :
An (V) — A, (V) scalar multiplication with a € K.

There are some immediate remarks:

Proposition 7.4. 1. det(ST) = det(S) det(T).
2. det(Aidy) = A"
3. det(T') # 0 iff T is an isomorphism.

Proof. Exercise! ]

We want to define a product for alternating forms. First of all there is a
bilinear map, the tensor product of multilinear forms:

My (V) X My(V) — Mype, (o, B) = a @ 3,

with

AR BV, oy Vierg) = (V1 oo, Vi) B(Vit1, oy Viae)-
Next we define a projection operator My (V) — A(V) as follows:
Definition 7.5. Let char(K) = 0. We define
by

1
Altg (@) (V1 ooy Vi) 1= ] Z (M) P(Vr(1)s s V(i)

TESE
where S; denotes the set (group) of all permutations = : {1,...,.k} —
{1,...,k}. In order to see that the resulting form is alternating use the fact
that e(m o ) = e(m)e(p).
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Remark 7.6. 1. The map Alty is a projection:

Definition 7.7. 1. The exterior product of the alternating forms a €
Ak<V),ﬁ S Ag(V) is

k+10)!
a N B = ﬁAltkH(a & B) € AkJrg(V)

A(V) =P A(V)
k=0

is an associative algebra with the linear extension of the above wedge
product. Furthermore it satisfies the ”graded commutativity rule”

aAf=(-)"BAa
for o € Ap(V), B € Ay(V).

Proof. We comment on the associativity: For convenience of notation let us
write

[a] .= Altg(a), a € Ap(V),

such that (k + 0)
+ /7)!
alpB= T l[a® f]

First of all one proves
la® f] = [[o] ® []].
Then one obtains for o € A(V), 3 € Ay(V), vy € A, (V) the following:
(k+¢+m)!

(@Aﬁ)AVIW[(Oﬂ\B)@W]

kAl m)! [(k+0)!
:ik+@Lnﬂ o leesler

k+/¢+m)
:(M%Lm3m®6®%

using [y] = . The same reasoning works for a A (8 A 7).
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In order to show the above ”graded commutativity” of the wedge product
one checks immediately that 5 A o« = —a A 8 holds for 1-forms. Then we
may assume « = a3 A ... Aag and 8 = [; A ... A By, see the below Prop.7.8.
We move the factors «; successively:

AAB=ay A A ABLA A Be=(=Dfar Ao Aag_y ABLA . A B A oy
and obtain our formula after having done that k& times. ]

Proposition 7.8. Letej,...,e € V* = Ay (V) be the dual basis of ey, ..., e, €
V. Assume 1 < i1 < ... <y <nand1l<j; <..<jp<n. Then

. X 1, ifj=i,v=1..k
e, N A (e, ) :{ 0 , otherwz'se7 o

and
A(V) = @ K-e N..Nej.

1<i1<...<ip<n
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