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Preface

As promised by the title, this book has two themes, convexity and optimiza-
tion, and convex optimization is the common denominator. Convexity plays
a very important role in many areas of mathematics, and the book’s first part,
which deals with finite dimensional convexity theory, therefore contains sig-
nificantly more of convexity than is then used in the subsequent three parts
on optimization, where Part II provides the basic classical theory for linear
and convex optimization, Part III is devoted to the simplex algorithm, and
Part IV describes Newton’s algorithm and an interior point method with
self-concordant barriers.

We present a number of algorithms, but the emphasis is always on the
mathematical theory, so we do not describe how the algorithms should be
implemented numerically. Anyone who is interested in this important aspect
should consult specialized literature in the field.

Mathematical optimization methods are today used routinely as a tool
for economic and industrial planning, in production control and product
design, in civil and military logistics, in medical image analysis, etc., and the
development in the field of optimization has been tremendous since World
War II. In 1945, George Stigler studied a diet problem with 77 foods and 9
constraints without being able to determine the optimal diet − today it is
possible to solve optimization problems containing hundreds of thousands of
variables and constraints. There are two factors that have made this possible
− computers and efficient algorithms. Of course it is the rapid development
in the computer area that has been most visible to the common man, but the
algorithm development has also been tremendous during the past 70 years,
and computers would be of little use without efficient algorithms.

Maximization and minimization problems have of course been studied and
solved since the beginning of the mathematical analysis, but optimization
theory in the modern sense started around 1948 with George Dantzig, who
introduced and popularized the concept of linear programming (LP) and
proposed an efficient solution algorithm, the simplex algorithm, for such
problems. The simplex algorithm is an iterative algorithm, where the number
of iterations empirically is roughly proportional to the number of variables
for normal real world LP problems. Its worst-case behavior, however, is bad;
an example of Victor Klee and George Minty 1972 shows that there are LP
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problems in n variables, which for their solution require 2n iterations. A
natural question in this context is therefore how difficult it is to solve general
LP problems.

An algorithm for solving a class K of problems is called polynomial if
there is a polynomial P , such that the algorithm solves every problem of size
s in K with a maximum of P (s) arithmetic operations; here the size of a
problem is defined as the number of binary bits needed to represent it. The
class K is called tractable if there is a polynomial algorithm that solves all
the problems in the class, and intractable if there is no such algorithm.

Klee–Minty’s example demonstrates that (their variant of) the simplex
algorithm is not polynomial. Whether LP problems are tractable or in-
tractable, however, was an open question until 1979, when Leonid Khachiyan
showed that LP problems can be solved by a polynomial algorithm, the el-
lipsoid method. LP problems are thus, in a technical sense, easy to solve.

The ellipsoid method, however, did not have any practical significance
because it behaves worse than the simplex algorithm on normal LP problems.
The simplex algorithm was therefore unchallenged as practicable solution
tool for LP problems until 1984, when Narendra Karmarkar introduced a
polynomial interior-point algorithm with equally good performance as the
simplex algorithm, when applied to LP problems from the real world.

Karmarkar’s discovery became the starting point for an intensive devel-
opment of various interior-point methods, and a new breakthrough occurred
in the late 1980’s, when Yurii Nesterov and Arkadi Nemirovski introduced a
special type of convex barrier functions, the so-called self-concordant func-
tions. Such barriers will cause a classical interior-point method to conver-
gence polynomially, not only for LP problems but also for a large class of
convex optimization problems. This makes it possible today to solve opti-
mization problems that were previously out of reach.

The embryo of this book is a compendium written by Christer Borell and
myself 1978–79, but various additions, deletions and revisions over the years,
have led to a completely different text. The most significant addition is Part
IV which contains a description of self-concordant functions based on the
works of Nesterov and Nemirovski,

The presentation in this book is complete in the sense that all theorems
are proved. Some of the proofs are quite technical, but none of them re-
quires more previous knowledge than a good knowledge of linear algebra and
calculus of several variables.

Uppsala, April 2016
Lars-Åke Lindahl
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Chapter 1

Preliminaries

The purpose of this chapter is twofold − to explain certain notations and
terminologies used throughout the book and to recall some fundamental con-
cepts and results from calculus and linear algebra.

Real numbers

We use the standard notation R for the set of real numbers, and we let

R+ = {x ∈ R | x ≥ 0},
R− = {x ∈ R | x ≤ 0},

R++ = {x ∈ R | x > 0}.

In other words, R+ consists of all nonnegative real numbers, and R++ de-
notes the set of all positive real numbers.

The extended real line

Each nonempty set A of real numbers that is bounded above has a least
upper bound, denoted by supA, and each nonempty set A that is bounded
below has a greatest lower bound, denoted by inf A. In order to have these
two objects defined for arbitrary subsets of R (and also for other reasons)
we extend the set of real numbers with the two symbols −∞ and ∞ and
introduce the notation

R = R ∪ {∞}, R = R ∪ {−∞} and R = R ∪ {−∞,∞}.

We furthermore extend the order relation < on R to the extended real
line R by defining, for each real number x,

−∞ < x <∞.

3



4 Preliminaries

The arithmetic operations on R are partially extended by the following
”natural” definitions, where x denotes an arbitrary real number:

x+∞ =∞+ x =∞+∞ =∞
x+ (−∞) = −∞+ x = −∞+ (−∞) = −∞

x · ∞ =∞ · x =


∞ if x > 0

0 if x = 0

−∞ if x < 0

x · (−∞) = −∞ · x =


−∞ if x > 0

0 if x = 0

∞ if x < 0

∞ ·∞ = (−∞) · (−∞) =∞
∞ · (−∞) = (−∞) · ∞ = −∞.

It is now possible to define in a consistent way the least upper bound
and the greatest lower bound of an arbitrary subset of the extended real line.
For nonempty sets A which are not bounded above by any real number, we
define supA = ∞, and for nonempty sets A which are not bounded below
by any real number we define inf A = −∞. Finally, for the empty set ∅ we
define inf ∅ =∞ and sup ∅ = −∞.

Sets and functions

We use standard notation for sets and set operations that are certainly well
known to all readers, but the intersection and the union of an arbitrary family
of sets may be new concepts for some readers.

So let {Xi | i ∈ I} be an arbitrary family of sets Xi, indexed by the set
I; their intersection, denoted by⋂

{Xi | i ∈ I} or
⋂
i∈I

Xi,

is by definition the set of elements that belong to all the sets Xi. The union⋃
{Xi | i ∈ I} or

⋃
i∈I

Xi

consists of the elements that belong to Xi for at least one i ∈ I.

We write f : X → Y to indicate that the function f is defined on the set
X and takes its values in the set Y . The set X is then called the domain
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of the function and Y is called the codomain. Most functions in this book
have domain equal to Rn or to some subset of Rn, and their codomain is
usually R or more generally Rm for some integer m ≥ 1, but sometimes we
also consider functions whose codomain equals R, R or R.

Let A be a subset of the domain X of the function f . The set

f(A) = {f(x) | x ∈ A}

is called the image of A under the function f . If B is a subset of the codomain
of f , then

f−1(B) = {x ∈ X | f(x) ∈ B}

is called the inverse image of B under f . There is no implication in the
notation f−1(B) that the inverse f−1 exists.

For functions f : X → R we use the notation dom f for the inverse image
of R, i.e.

dom f = {x ∈ X | −∞ < f(x) <∞}.

The set dom f thus consists of all x ∈ X with finite function values f(x),
and it is called the effective domain of f .

The vector space Rn

The reader is assumed to have a solid knowledge of elementary linear algebra
and thus, in particular, to be familiar with basic vector space concepts such
as linear subspace, linear independence, basis and dimension.

As usual, Rn denotes the vector space of all n-tuples (x1, x2, . . . , xn) of
real numbers. The elements of Rn, interchangeably called points and vec-
tors, are denoted by lowercase letters from the beginning or the end of the
alphabet, and if the letters are not numerous enough, we provide them with
sub- or superindices. Subindices are also used to specify the coordinates of
a vector, but there is no risk of confusion, because it will always be clear
from the context whether for instance x1 is a vector of its own or the first
coordinate of the vector x.

Vectors in Rn will interchangeably be identified with column matrices.
Thus, to us

(x1, x2, . . . , xn) and


x1

x2
...
xn


denote the same object.



6 Preliminaries

The vectors e1, e2, . . . , en in Rn, defined as

e1 = (1, 0, . . . , 0), e2 = (0, 1, 0, . . . , 0), . . . , en = (0, 0, . . . , 0, 1),

are called the natural basis vectors in Rn, and 1 denotes the vector whose
coordinates are all equal to one, so that

1 = (1, 1, . . . , 1).

The standard scalar product 〈· , ·〉 on Rn is defined by the formula

〈x, y〉 = x1y1 + x2y2 + · · ·+ xnyn,

and, using matrix multiplication, we can write this as

〈x, y〉 = xTy = yTx,

where T denotes transposition. In general, AT denotes the transpose of the
matrix A.

The solution set to a homogeneous system of linear equations in n un-
knowns is a linear subspace of Rn. Conversely, every linear subspace of Rn

can be presented as the solution set to some homogeneous system of linear
equations: 

a11x1 + a12x2 + · · · + a1nxn = 0
a21x1 + a22x2 + · · · + a2nxn = 0

...
am1x1 + am2x2 + · · · + amnxn = 0

Using matrices we can of course write the system above in a more compact
form as

Ax = 0,

where the matrix A is called the coefficient matrix of the system.
The dimension of the solution set of the above system is given by the

number n− r, where r equals the rank of the matrix A. Thus in particular,
for each linear subspace X of Rn of dimension n − 1 there exists a nonzero
vector c = (c1, c2, . . . , cn) such that

X = {x ∈ Rn | c1x1 + c2x2 + · · ·+ cnxn = 0}.

Sum of sets

If X and Y are nonempty subsets of Rn and α is a real number, we let

X + Y = {x+ y | x ∈ X, y ∈ Y },
X − Y = {x− y | x ∈ X, y ∈ Y },

αX = {αx | x ∈ X}.
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The set X + Y is called the (vector) sum of X and Y , X − Y is the (vector)
difference and αX is the product of the number α and the set X.

It is convenient to have sums, differences and products defined for the
empty set ∅, too. Therefore, we extend the above definitions by defining

X ± ∅ = ∅ ±X = ∅
for all sets X, and

α∅ = ∅.
For singleton sets {a} we write a + X instead of {a} + X, and the set

a+X is called a translation of X.

It is now easy to verify that the following rules hold for arbitrary sets X,
Y and Z and arbitrary real numbers α and β:

X + Y = Y +X

(X + Y ) + Z = X + (Y + Z)

αX + αY = α(X + Y )

(α + β)X ⊆ αX + βX .

In connection with the last inclusion one should note that the converse
inclusion αX + βX ⊆ (α + β)X does not hold for general sets X.

Inequalites in Rn

For vectors x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) in Rn we write x ≥ y
if xj ≥ yj for all indices j, and we write x > y if xj > yj for all j. In
particular, x ≥ 0 means that all coordinates of x are nonnegative.

The set

Rn
+ = R+ × R+ × · · · × R+ = {x ∈ Rn | x ≥ 0}

is called the nonnegative orthant of Rn.
The order relation ≥ is a partial order on Rn. It is thus, in other words,

reflexive (x ≥ x for all x), transitive (x ≥ y & y ≥ z ⇒ x ≥ z) and
antisymmetric (x ≥ y & y ≥ x ⇒ x = y). However, the order is not a
complete order when n > 1, since two vectors x and y may be unrelated.

Two important properties, which will be used now and then, are given
by the following two trivial implications:

x ≥ 0 & y ≥ 0 ⇒ 〈x, y〉 ≥ 0

x ≥ 0 & y ≥ 0 & 〈x, y〉 = 0 ⇒ x = y = 0.
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Line segments

Let x and y be points in Rn. We define

[x, y] = {(1− λ)x+ λy | 0 ≤ λ ≤ 1}
and

]x, y[ = {(1− λ)x+ λy | 0 < λ < 1},

and we call the set [x, y] the line segment and the set ]x, y[ the open line
segment between x and y, if the two points are distinct. If the two points
coincide, i.e. if y = x, then obviously [x, x] =]x, x[= {x}.

Linear maps and linear forms

Let us recall that a map S : Rn → Rm is called linear if

S(αx+ βy) = αSx+ βSy

for all vectors x, y ∈ Rn and all scalars (i.e. real numbers) α, β. A linear
map S : Rn → Rn is also called a linear operator on Rn.

Each linear map S : Rn → Rm gives rise to a unique m × n-matrix S̃
such that

Sx = S̃x,

which means that the function value Sx of the map S at x is given by
the matrixproduct S̃x. (Remember that vectors are identified with column
matrices!) For this reason, the same letter will be used to denote a map and
its matrix. We thus interchangeably consider Sx as the value of a map and
as a matrix product.

By computing the scalar product 〈x, Sy〉 as a matrix product we obtain
the following relation

〈x, Sy〉 = xTSy = (STx)Ty = 〈STx, y〉

between a linear map S : Rn → Rm (or m× n-matrix S) and its transposed
map ST : Rm → Rn (or transposed matrix ST).

An n × n-matrix A = [aij], and the corresponding linear map, is called
symmetric if AT = A, i.e. if aij = aji for all indices i, j.

A linear map f : Rn → R with codomain R is called a linear form. A
linear form on Rn is thus of the form

f(x) = c1x1 + c2x2 + · · ·+ cnxn,
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where c = (c1, c2, . . . , cn) is a vector in Rn. Using the standard scalar product
we can write this more simply as

f(x) = 〈c, x〉,

and in matrix notation this becomes

f(x) = cTx.

Let f(x) = 〈c, y〉 be a linear form on Rm and let S : Rn → Rm be a
linear map with codomain Rm. The composition f ◦ S is then a linear form
on Rn, and we conclude that there exists a unique vector d ∈ Rn such that
(f ◦ S)(x) = 〈d, x〉 for all x ∈ Rn. Since f(Sx) = 〈c, Sx〉 = 〈STc, x〉, it
follows that d = STc.

Quadratic forms

A function q : Rn → R is called a quadratic form if there exists a symmetric
n× n-matrix Q = [qij] such that

q(x) =
n∑

i,j=1

qijxixj,

or equivalently
q(x) = 〈x,Qx〉 = xTQx.

The quadratic form q determines the symmetric matrix Q uniquely, and this
allows us to identify the form q with its matrix (or operator) Q.

An arbitrary quadratic polynomial p(x) in n variables can now be written
in the form

p(x) = 〈x,Ax〉+ 〈b, x〉+ c,

where x 7→ 〈x,Ax〉 is a quadratic form determined by a symmetric operator
(or matrix) A, x 7→ 〈b, x〉 is a linear form determined by a vector b, and c is
a real number.

Example. In order to write the quadratic polynomial

p(x1, x2, x3) = x2
1 + 4x1x2 − 2x1x3 + 5x2

2 + 6x2x3 + 3x1 + 2x3 + 2

in this form we first replace the terms dxixj for i < j with 1
2
dxixj + 1

2
dxjxi.

This yields

p(x1, x2, x3) = (x2
1 + 2x1x2 − x1x3 + 2x2x1 + 5x2

2 + 3x2x3 − x3x1 + 3x3x2)

+ (3x1 + 2x3) + 2 = 〈x,Ax〉+ 〈b, x〉+ c
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with A =

 1 2 −1
2 5 3
−1 3 0

, b =

3
0
2

 and c = 2.

A quadratic form q on Rn (and the corresponding symmetric operator
and matrix) is called positive semidefinite if q(x) ≥ 0 and positive definite if
q(x) > 0 for all vectors x 6= 0 in Rn.

Norms and balls

A norm ‖·‖ on Rn is a function Rn → R+ that satisfies the following three
conditions:

‖x+ y‖ ≤ ‖x‖+ ‖y‖ for all x, y(i)

‖λx‖ = |λ| ‖x‖ for all x ∈ Rn, λ ∈ R(ii)

‖x‖ = 0⇔ x = 0.(iii)

The most important norm to us is the Euclidean norm, defined via the
standard scalar product as

‖x‖ =
√
〈x, x〉 =

√
x2

1 + x2
2 + · · ·+ x2

n.

This is the norm that we use unless the contrary is stated explicitely. We
use the notation ‖·‖2 for the Euclidean norm whenever we for some reason
have to emphasize that the norm in question is the Euclidean one.

Other norms, that will occur now and then, are the maximum norm

‖x‖∞ = max
1≤i≤n

|xi|,

and the `1-norm

‖x‖1 =
n∑
i=1

|xi|.

It is easily verified that these really are norms, that is that conditions (i)–(iii)
are satisfied.

All norms on Rn are equivalent in the following sense: If ‖·‖ and ‖·‖′ are
two norms, then there exist two positive constants c and C such that

c‖x‖′ ≤ ‖x‖ ≤ C‖x‖′

for all x ∈ Rn.
For example, ‖x‖∞ ≤ ‖x‖2 ≤

√
n ‖x‖∞.
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Given an arbitrary norm ‖·‖ we define the corresponding distance between
two points x and a in Rn as ‖x− a‖. The set

B(a; r) = {x ∈ Rn | ‖x− a‖ < r},

consisting of all points x whose distance to a is less than r, is called the open
ball centered at the point a and with radius r. Of course, we have to have
r > 0 in order to get a nonempty ball. The set

B(a; r) = {x ∈ Rn | ‖x− a‖ ≤ r}

is the corresponding closed ball.
The geometric shape of the balls depends on the underlying norm. The

ball B(0; 1) in R2 is a square with corners at the points (±1,±1) when the
norm is the maximum norm, it is a square with corners at the points (±1, 0)
and (0,±1) when the norm is the `1-norm, and it is the unit disc when the
norm is the Euclidean one.

If B denotes balls defined by one norm and B′ denotes balls defined by a
second norm, then there are positive constants c and C such that

(1.1) B′(a; cr) ⊆ B(a; r) ⊆ B′(a;Cr)

for all a ∈ Rn and all r > 0. This follows easily from the equivalence of the
two norms.

All balls that occur in the sequel are assumed to be Euclidean, i.e. defined
with respect to the Euclidean norm, unless otherwise stated.

Topological concepts

We now use balls to define a number of topological concepts. Let X be an
arbitrary subset of Rn. A point a ∈ Rn is called

• an interior point of X if there exists an r > 0 such that B(a; r) ⊆ X;

• a boundary point of X if X ∩ B(a; r) 6= ∅ and {X ∩ B(a; r) 6= ∅ for all
r > 0;

• an exterior point of X if there exists an r > 0 such that X∩B(a; r) = ∅.
Observe that because of property (1.1), the above concepts do not depend

on the kind of balls that we use.

A point is obviously either an interior point, a boundary point or an
exterior point of X. Interior points belong to X, exterior points belong to
the complement of X, while boundary points may belong to X but must not
do so. Exterior points of X are interior points of the complement {X, and
vice versa, and the two sets X and {X have the same boundary points.
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The set of all interior points of X is called the interior of X and is denoted
by intX. The set of all boundary points is called the boundary of X and is
denoted by bdryX.

A set X is called open if all points in X are interior points, i.e. if intX =
X.

It is easy to verify that the union of an arbitrary family of open sets is
an open set and that the intersection of finitely many open sets is an open
set. The empty set ∅ and Rn are open sets

The interior intX is a (possibly empty) open set for each set X, and
intX is the biggest open set that is included in X.

A set X is called closed if its complement {X is an open set. It follows
that X is closed if and only if X contains all its boundary points, i.e. if and
only if bdryX ⊆ X.

The intersection of an arbitrary family of closed sets is closed, the union
of finitely many closed sets is closed, and Rn and ∅ are closed sets.

For arbitrary sets X we set

clX = X ∪ bdryX.

The set clX is then a closed set that contains X, and it is called the closure
(or closed hull) of X. The closure clX is the smallest closed set that contains
X as a subset.

For example, if r > 0 then

clB(a; r) = {x ∈ Rn | ‖x− a‖ ≤ r} = B(a; r),

which makes it consistent to call the set B(a; r) a closed ball.

For nonempty subsets X of Rn and numbers r > 0 we define

X(r) = {y ∈ Rn | ∃x ∈ X : ‖y − x‖ < r}.

The set X(r) thus consists of all points whose distance to X is less than r.
A point x is an exterior point of X if and only if the distance from x to

X is positive, i.e. if and only if there is an r > 0 such that x /∈ X(r). This
means that a point x belongs to the closure clX, i.e. x is an interior point
or a boundary point of X, if and only if x belongs to the sets X(r) for all
r > 0. In other words,

clX =
⋂
r>0

X(r).

A set X is said to be bounded if it is contained in some ball centered at
0, i.e. if there is a number R > 0 such that X ⊆ B(0;R).
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A set X that is both closed and bounded is called compact.

An important property of compact subsets X of Rn is given by the
Bolzano–Weierstrass theorem: Every infinite sequence (xn)∞n=1 of points xn
in a compact set X has a subsequence (xnk)

∞
k=1 that converges to a point in

X.

The cartesian product X×Y of a compact subset X of Rm and a compact
subset Y of Rn is a compact subset of Rm × Rn (= Rm+n).

Continuity

A function f : X → Rm, whose domain X is a subset of Rn, is defined to be
continuous at the point a ∈ X if for each ε > 0 there exists an r > 0 such
that

f(X ∩B(a; r)) ⊆ B(f(a); ε).

(Here, of course, the left B stands for balls in Rn and the right B stands
for balls in Rm.) The function is said to be continuous on X, or simply
continuous, if it is continuous at all points a ∈ X.

The inverse image f−1(I) of an open interval under a continuous function
f : Rn → R is an open set in Rn. In particular, the sets {x | f(x) < a} and
{x | f(x) > a}, i.e. the sets f−1(]−∞, a[) and f−1(]a,∞[), are open for all
a ∈ R. Their complements, the sets {x | f(x) ≥ a} and {x | f(x) ≤ a}, are
thus closed.

Sums and (scalar) products of continuous functions are continuous, and
quotients of real-valued continuous functions are continuous at all points
where the quotients are well-defined. Compositions of continuous functions
are continuous.

Compactness is preserved under continuous functions, that is the image
f(X) is compact if X is a compact subset of the domain of the continuous
function f . For continuous functions f with codomain R this means that
f is bounded on X and has a maximum and a minimum, i.e. there are two
points x1, x2 ∈ X such that f(x1) ≤ f(x) ≤ f(x2) for all x ∈ X.

Lipschitz continuity

A function f : X → Rm that is defined on a subset X of Rn, is called
Lipschitz continuous with Lipschitz constant L if

‖f(y)− f(x)‖ ≤ L‖y − x‖ for all x, y ∈ X.
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Note that the definition of Lipschitz continuity is norm independent, since
all norms on Rn are equivalent, but the value of the Lipschitz constant L is
obviously norm dependent.

Operator norms

Let ‖·‖ be a given norm on Rn. Since the closed unit ball is compact and
linear operators S on Rn are continuous, we get a finite number ‖S‖, called
the operator norm, by the definition

‖S‖ = sup
‖x‖≤1

‖Sx‖.

That the operator norm really is a norm on the space of linear opera-
tors, i.e. that it satisfies conditions (i)–(iii) in the norm definition, follows
immediately from the corresponding properties of the underlying norm on
Rn.

By definition, S(x/‖x‖) ≤ ‖S‖ for all x 6= 0, and consequently

‖Sx‖ ≤ ‖S‖‖x‖

for all x ∈ Rn.
From this inequality follows immediately that

‖STx‖ ≤ ‖S‖‖Tx‖ ≤ ‖S‖‖T‖‖x‖,

which gives us the important inequality

‖ST‖ ≤ ‖S‖‖T‖

for the norm of a product of two operators.
The identity operator I on Rn clearly has norm equal to 1. Therefore,

if the operator S is invertible, then, by choosing T = S−1 in the above
inequality, we obtain the inequality

‖S−1‖ ≥ 1/‖S‖.

The operator norm obviously depends on the underlying norm on Rn,
but again, different norms on Rn give rise to equivalent norms on the space
of operators. However, when speaking about the operator norm we shall in
this book always assume that the underlying norm is the Euclidean norm
even if this is not stated explicitely.
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Symmetric operators, eigenvalues and norms

Every symmetric operator S on Rn is diagonizable according to the spectral
theorem. This means that there is an ON-basis e1, e2, . . . , en consisting of
eigenvectors of S. Let λ1, λ2, . . . , λn denote the corresponding eigenvalues.

The largest and the smallest eigenvalue λmax and λmin are obtained as
maximum and minimum values, respectively, of the quadratic form 〈x, Sx〉
on the unit sphere ‖x‖ = 1:

λmax = max
‖x‖=1

〈x, Sx〉 and λmin = min
‖x‖=1

〈x, Sx〉.

For, by using the expansion x =
∑n

i=1 ξiei of x in the ON-basis of eigenvec-
tors, we obtan the inequality

〈x, Sx〉 =
n∑
i=1

λiξ
2
i ≤ λmax

n∑
i=1

ξ2
i = λmax‖x‖2,

and equality prevails when x is equal to the eigenvector ei that corresponds
to the eigenvalue λmax. An analogous inequality in the other direction holds
for λmin, of course.

The operator norm (with respect to the Euclidean norm) moreover satis-
fies the equality

‖S‖ = max
1≤i≤n

|λi| = max{|λmax|, |λmin|}.

For, by using the above expansion of x, we have Sx =
∑n

i=1 λiξiei, and
consequently

‖Sx‖2 =
n∑
i=1

λ2
i ξ

2
i ≤ max

1≤i≤n
|λi|2

n∑
i=1

ξ2
i = ( max

1≤i≤n
|λi|)2 ‖x‖2,

with equality when x is the eigenvector that corresponds to maxi |λi|.
If all eigenvalues of the symmetric operator S are nonzero, then S is in-

vertible, and the inverse S−1 is symmetric with eigenvalues λ−1
1 , λ−1

2 , . . . , λ−1
n .

The norm of the inverse is given by

‖S−1‖ = 1/ min
1≤i≤n

|λi|.

A symmetric operator S is positive semidefinite if all its eigenvalues are
nonnegative, and it is positive definite if all eigenvalues are positive. Hence,
if S is positive definite, then

‖S‖ = λmax and ‖S−1‖ = 1/λmin.
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It follows easily from the diagonizability of symmetric operators on Rn

that every positive semidefinite symmetric operator S has a unique positive
semidefinite symmetric square root S1/2. Moreover, since

〈x, Sx〉 = 〈x, S1/2(S1/2x)〉 = 〈S1/2x, S1/2x〉 = ‖S1/2x‖

we conclude that the two operators S and S1/2 have the same null space
N (S) and that

N (S) = {x ∈ Rn | Sx = 0} = {x ∈ Rn | 〈x, Sx〉 = 0}.

Differentiability

A function f : U → R, which is defined on an open subset U of Rn, is called
differentiable at the point a ∈ U if the partial derivatives ∂f

∂xi
exist at the

point x and the equality

(1.2) f(a+ v) = f(a) +
n∑
i=1

∂f

∂xi
(a) vi + r(v)

holds for all v in some neighborhood of the origin with a remainder term r(v)
that satisfies the condition

lim
v→0

r(v)

‖v‖
= 0.

The linear form Df(a)[v], defined by

Df(a)[v] =
n∑
i=1

∂f

∂xi
(a) vi,

is called the differential of the function f at the point a. The coefficient
vector ( ∂f

∂x1

(a),
∂f

∂x2

(a), . . . ,
∂f

∂xn
(a)
)

of the differential is called the derivative or the gradient of f at the point a
and is denoted by f ′(a) or ∇f(a). We shall mostly use the first mentioned
notation.

The equation (1.2) can now be written in a compact form as

f(a+ v) = f(a) +Df(a)[v] + r(v),

with
Df(a)[v] = 〈f ′(a), v〉.
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A function f : U → R is called differentiable (on U) if it is differentiable
at each point in U . In particular, this implies that U is an open set.

For functions of one variable, differentiability is clearly equivalent to the
existence of the derivative, but for functions of several variables, the mere
existence of the partial derivatives is no longer a guarantee for differentiabil-
ity. However, if a function f has partial derivatives and these are continous
on an open set U , then f is differentiable on U .

The Mean Value Theorem

Suppose f : U → R is a differentiable function and that the line segment
[a, a+ v] lies in U . Let φ(t) = f(a+ tv). The function φ is then defined and
differentiable on the interval [0, 1] with derivative

φ′(t) = Df(a+ tv)[v] = 〈f ′(a+ tv), v〉.
This is a special case of the chain rule but also follows easily from the defini-
tion of the derivative. By the usual mean value theorem for functions of one
variable, there is a number s ∈ ]0, 1[ such that φ(1) − φ(0) = φ′(s)(1 − 0).
Since φ(1) = f(a + v), φ(0) = f(a) and a + sv is a point on the open line
segment ]a, a + v[, we have now deduced the following mean value theorem
for functions of several variables.

Theorem 1.1.1. Suppose the function f : U → R is differentiable and that
the line segment [a, a+ v] lies in U . Then there is a point c ∈ ]a, a+ v[ such
that

f(a+ v) = f(a) +Df(c)[v].

Functions with Lipschitz continuous derivative

We shall sometimes need more precise information about the remainder term
r(v) in equation (1.2) than what follows from the definition of differentiabil-
ity. We have the following result for functions with a Lipschitz continuous
derivative.

Theorem 1.1.2. Suppose the function f : U → R is differentiable, that its
derivative is Lipschitz continuous, i.e. that ‖f ′(y) − f ′(x)‖ ≤ L‖y − x‖ for
all x, y ∈ U , and that the line segment [a, a+ v] lies in U . Then

|f(a+ v)− f(a)−Df(a)[v]| ≤ L

2
‖v‖2.

Proof. Define the function Φ on the interval [0, 1] by

Φ(t) = f(a+ tv)− tDf(a)[v].
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Then Φ is differentiable with derivative

Φ′(t) = Df(a+ tv)[v]−Df(a)[v] = 〈f ′(a+ tv)− f ′(a), v〉,

and by using the Cauchy–Schwarz inequality and the Lipschitz continuity,
we obtain the inequality

|Φ′(t)| ≤ ‖f ′(a+ tv)− f ′(a)‖ · ‖v‖ ≤ Lt ‖v‖2.

Since f(a+ v)− f(a)−Df(a)[v] = Φ(1)−Φ(0) =
∫ 1

0
Φ′(t) dt, it now follows

that

|f(a+ v)− f(a)−Df(a)[v]| ≤
∫ 1

0

|Φ′(t)| dt ≤ L‖v‖2

∫ 1

0

t dt =
L

2
‖v‖2.

Two times differentiable functions

If the function f together with all its partial derivatives ∂f
∂xi

are differentiable
on U , then f is said to be two times differentiable on U . The mixed partial
second derivatives are then automatically equal, i.e.

∂2f

∂xi∂xj
(a) =

∂2f

∂xj∂xi
(a)

for all i, j and all a ∈ U .

A sufficient condition for the function f to be two times differentiable on
U is that all partial derivatives of order up to two exist and are continuous
on U .

If f : U → R is a two times differentiable function and a is a point in U ,
we define a symmetric bilinear form D2f(a)[u, v] on Rn by

D2f(a)[u, v] =
n∑

i,j=1

∂2f

∂xi∂xj
(a)uivj, u, v ∈ Rn.

The corresponding symmetric linear operator is called the second derivative
of f at the point a and it is denoted by f ′′(a). The matrix of the second
derivative, i.e. the matrix [ ∂2f

∂xi∂xj
(a)
]n
i,j=1

,

is called the hessian of f (at the point a). Since we do not distinguish between
matrices and operators, we also denote the hessian by f ′′(a).
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The above symmetric bilinear form can now be expressed in the form

D2f(a)[u, v] = 〈u, f ′′(a)v〉 = uTf ′′(a)v,

depending on whether we interpret the second derivative as an operator or
as a matrix.

Let us recall Taylor’s formula, which reads as follows for two times dif-
ferentiable functions.

Theorem 1.1.3. Suppose the function f is two times differentiable in a neigh-
borhood of the point a. Then

f(a+ v) = f(a) +Df(a)[v] + 1
2
D2f(a)[v, v] + r(v)

with a remainder term that satisfies lim
v→0

r(v)/‖v‖2 = 0.

Three times differentiable functions

To define self-concordance we also need to consider functions that are three
times differentiable on some open subset U of Rn. For such functions f
and points a ∈ U we define a trilinear form D3f(a)[u, v, w] in the vectors
u, v, w ∈ Rn by

D3f(a)[u, v, w] =
n∑

i,j,k=1

∂3f

∂xi∂xj∂xk
(a)uivjwk.

We leave to the reader to formulate Taylor’s formula for functions that
are three times differentiable. We have the following differentiation rules,
which follow from the chain rule and will be used several times in the final
chapters:

d

dt
f(x+ tv) = Df(x+ tv)[v]

d

dt

(
Df(x+ tv)[u]

)
= D2f(x+ tv)[u, v],

d

dt

(
D2f(x+ tw)[u, v]

)
= D3f(x+ tw)[u, v, w].

As a consequence we get the following expressions for the derivatives of
the restriction φ of the function f to the line through the point x with the
direction given by v:

φ(t) = f(x+ tv),

φ′(t) = Df(x+ tv)[v],

φ′′(t) = D2f(x+ tv)[v, v],

φ′′′(t) = D3f(x+ tv)[v, v, v].





Chapter 2

Convex sets

2.1 Affine sets and affine maps

Affine sets

Definition. A subset of Rn is called affine if for each pair of distinct points
in the set it contains the entire line through the points.

Thus, a set X is affine if and only if

x, y ∈ X, λ ∈ R ⇒ λx+ (1− λ)y ∈ X.

The empty set ∅, the entire space Rn, linear subspaces of Rn, singleton
sets {x} and lines are examples of affine sets.

Definition. A linear combination y =
∑m

j=1 αjxj of vectors x1, x2, . . . , xm is
called an affine combination if

∑m
j=1 αj = 1.

Theorem 2.1.1. An affine set contains all affine combination of its elements.

Proof. We prove the theorem by induction on the number of elements in the
affine combination. So let X be an affine set. An affine combination of one
element is the element itself. Hence, X contains all affine combinations that
can be formed by one element in the set.

Now assume inductively that X contains all affine combinations that can
be formed out of m − 1 elements from X, where m ≥ 2, and consider an
arbitrary affine combination x =

∑m
j=1 αjxj of m elements x1, x2, . . . , xm in

X. Since
∑m

j=1 αj = 1, at least one coefficient αj must be different from 1;

assume without loss of generality that αm 6= 1, and let s = 1−αm =
∑m−1

j=1 αj.

21
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Then s 6= 0 and
∑m−1

j=1 αj/s = 1, which means that the element

y =
m−1∑
j=1

αj
s
xj

is an affine combination of m− 1 elements in X. Therefore, y belongs to X,
by the induction assumption. But x = sy+(1−s)xm, and it now follows from
the definition of affine sets that x lies in X. This completes the induction
step, and the theorem is proved.

Definition. LetA be an arbitrary nonempty subset of Rn. The set of all affine
combinations λ1a1 + λ2a2 + · · · + λmam that can be formed of an arbitrary
number of elements a1, a2, . . . , am from A, is called the affine hull of A and
is denoted by aff A .

In order to have the affine hull defined also for the empty set, we put
aff ∅ = ∅.

Theorem 2.1.2. The affine hull aff A is an affine set containing A as a
subset, and it is the smallest affine subset with this property, i.e. if the set X
is affine and A ⊆ X, then aff A ⊆ X.

Proof. The set aff A is an affine set, because any affine combination of two
elements in aff A is obviously an affine combination of elements from A,
and the set A is a subset of its affine hull, since any element is an affine
combination of itself.

If X is an affine set, then aff X ⊆ X, by Theorem 2.1.1, and if A ⊆ X,
then obviously aff A ⊆ aff X. Thus, aff A ⊆ X whenever X is an affine set
and A is a subset of X.

Characterisation of affine sets

Nonempty affine sets are translations of linear subspaces. More precisely, we
have the following theorem.

Theorem 2.1.3. If X is an affine subset of Rn and a ∈ X, then −a+X is a
linear subspace of Rn. Moreover, for each b ∈ X we have −b+X = −a+X.

Thus, to each nonempty affine set X there corresponds a uniquely defined
linear subspace U such that X = a+ U .

Proof. Let U = −a+X. If u1 = −a+x1 and u2 = −a+x2 are two elements
in U and α1, α2 are arbitrary real numbers, then the linear combination

α1u1 + α2u2 = −a+ (1− α1 − α2)a+ α1x1 + α2x2
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a

X0

U = −a+X

Figure 2.1. Illustration for Theorem 2.1.3: An affine
set X and the corresponding linear subspace U .

is an element in U , because (1−α1−α2)a+α1x1+α2x2 is an affine combination
of elements in X and hence belongs to X, according to Theorem 2.1.1. This
proves that U is a linear subspace.

Now assume that b ∈ X, and let v = −b + x be an arbitrary element in
−b + X. By writing v as v = −a + (a − b + x) we see that v belongs to
−a + X, too, because a − b + x is an affine combination of elements in X.
This proves the inclusion −b+X ⊆ −a+X. The converse inclusion follows
by symmetry. Thus, −a+X = −b+X.

Dimension

The following definition is justified by Theorem 2.1.3.

Definition. The dimension dimX of a nonempty affine set X is defined as
the dimension of the linear subspace −a+X, where a is an arbitrary element
in X.

Since every nonempty affine set has a well-defined dimension, we can
extend the dimension concept to arbitrary nonempty sets as follows.

Definition. The (affine) dimension dimA of a nonempty subset A of Rn is
defined to be the dimension of its affine hull aff A.

The dimension of an open ball B(a; r) in Rn is n, and the dimension of
a line segment [x, y] is 1.

The dimension is invariant under translation i.e. if A is a nonempty subset
of Rn and a ∈ Rn then

dim(a+ A) = dimA,

and it is increasing in the following sense:

A ⊆ B ⇒ dimA ≤ dimB.
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Affine sets as solutions to systems of linear equations

Our next theorem gives a complete description of the affine subsets of Rn.

Theorem 2.1.4. Every affine subset of Rn is the solution set of a system of
linear equations 

c11x1 + c12x2 + · · · + c1nxn = b1

c21x1 + c22x2 + · · · + c2nxn = b2
...

cm1x1 + cm2x2 + · · · + cmnxn = bm

and conversely. The dimension of a nonempty solution set equals n−r, where
r is the rank of the coefficient matrix C.

Proof. The empty affine set is obtained as the solution set of an inconsistent
system. Therefore, we only have to consider nonempty affine sets X, and
these are of the form X = x0 + U , where x0 belongs to X and U is a linear
subspace of Rn. But each linear subspace is the solution set of a homogeneous
system of linear equations. Hence there exists a matrix C such that

U = {x | Cx = 0},

and dimU = n − rankC. With b = Cx0 it follows that x ∈ X if and only
if Cx− Cx0 = C(x− x0) = 0, i.e. if and only if x is a solution to the linear
system Cx = b.

Conversely, if x0 is a solution to the above linear system so that Cx0 = b,
then x is a solution to the same system if and only if the vector z = x− x0

belongs to the solution set U of the homogeneous equation system Cz = 0.
It follows that the solution set of the equation system Cx = b is of the form
x0 + U , i.e. it is an affine set.

Hyperplanes

Definition. Affine subsets of Rn of dimension n− 1 are called hyperplanes.

Theorem 2.1.4 has the following corollary:

Corollary 2.1.5. A subset X of Rn is a hyperplane if and only if there exist
a nonzero vector c = (c1, c2, . . . , cn) and a real number b so that

X = {x ∈ Rn | 〈c, x〉 = b}.

It follows from Theorem 2.1.4 that every affine proper subset of Rn can
be expressed as an intersection of hyperplanes.



2.1 Affine sets and affine maps 25

Affine maps

Definition. Let X be an affine subset of Rn. A map T : X → Rm is called
affine if

T (λx+ (1− λ)y) = λTx+ (1− λ)Ty

for all x, y ∈ X and all λ ∈ R.

Using induction, it is easy to prove that if T : X → Rm is an affine map
and x = α1x1 + α2x2 + · · · + αmxm is an affine combination of elements in
X, then

Tx = α1Tx1 + α2Tx2 + · · ·+ αmTxm.

Moreover, the image T (Y ) of an affine subset Y of X is an affine subset of
Rm, and the inverse image T−1(Z) of an affine subset Z of Rm is an affine
subset of X.

The composition of two affine maps is affine. In particular, a linear map
followed by a translation is an affine map, and our next theorem shows that
each affine map can be written as such a composition.

Theorem 2.1.6. Let X be an affine subset of Rn, and suppose the map
T : X → Rm is affine. Then there exist a linear map C : Rn → Rm and
a vector v in Rm so that

Tx = Cx+ v

for all x ∈ X.

Proof. Write the domain of T in the form X = x0 + U with x0 ∈ X and U
as a linear subspace of Rn, and define the map C on the subspace U by

Cu = T (x0 + u)− Tx0.

Then, for each u1, u2 ∈ U and α1, α2 ∈ R we have

C(α1u1 + α2u2) = T (x0 + α1u1 + α2u2)− Tx0

= T
(
α1(x0 + u1) + α2(x0 + u2) + (1− α1 − α2)x0

)
− Tx0

= α1T (x0 + u1) + α2T (x0 + u2) + (1− α1 − α2)Tx0 − Tx0

= α1

(
T (x0 + u1)− Tx0

)
+ α2

(
T (x0 + u2)− Tx0

)
= α1Cu1 + α2Cu2.

So the map C is linear on U and it can, of course, be extended to a linear
map on all of Rn.

For x ∈ X we now obtain, since x− x0 belongs to U ,

Tx = T (x0 + (x− x0)) = C(x− x0) + Tx0 = Cx− Cx0 + Tx0,

which proves the theorem with v equal to Tx0 − Cx0.
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2.2 Convex sets

Basic definitions and properties

Definition. A subset X of Rn is called convex if [x, y] ⊆ X for all x, y ∈ X.

In other words, a set X is convex if and only if it contains the line segment
between each pair of its points.

x
y

x y

Figure 2.2. A convex set and a non-convex set

Example 2.2.1. Affine sets are obviously convex. In particular, the empty
set ∅, the entire space Rn and linear subspaces are convex sets. Open line
segments and closed line segments are clearly convex.

Example 2.2.2. Open balls B(a; r) (with respect to arbitrary norms ‖·‖) are
convex sets. This follows from the triangle inequality and homogenouity, for
if x, y ∈ B(a; r) and 0 ≤ λ ≤ 1, then

‖λx+ (1− λ)y − a‖ = ‖λ(x− a) + (1− λ)(y − a)‖
≤ λ‖x− a‖+ (1− λ)‖y − a‖ < λr + (1− λ)r = r,

which means that each point λx+(1−λ)y on the segment [x, y] lies in B(a; r).

The corresponding closed balls B(a; r) = {x ∈ Rn | ‖x − a‖ ≤ r} are of
course convex, too.

Definition. A linear combination y =
∑m

j=1 αjxj of vectors x1, x2, . . . , xm is
called a convex combination if

∑m
j=1 αj = 1 and αj ≥ 0 for all j.

Theorem 2.2.1. A convex set contains all convex combinations of its ele-
ments.

Proof. Let X be an arbitrary convex set. A convex combination of one
element is the element itself, and hence X contains all convex combinations
formed by just one element of the set. Now assume inductively that X
contains all convex combinations that can be formed by m − 1 elements of
X, and consider an arbitrary convex combination x =

∑m
j=1 αjxj of m ≥ 2
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elements x1, x2, . . . , xm in X. Since
∑m

j=1 αj = 1, some coefficient αj must
be strictly less than 1, and assume without loss of generality that αm < 1,
and let s = 1 − αm =

∑m−1
j=1 αj. Then s > 0 and

∑m−1
j=1 αj/s = 1, which

means that

y =
m−1∑
j=1

αj
s
xj

is a convex combination of m−1 elements in X. By the induction hypothesis,
y belongs to X. But x = sy+(1−s)xm, and it now follows from the convexity
definition that x belongs to X. This completes the induction step and the
proof of the theorem.

2.3 Convexity preserving operations

We now describe a number of ways to construct new convex sets from given
ones.

Image and inverse image under affine maps

Theorem 2.3.1. Let T : V → Rm be an affine map.

(i) The image T (X) of a convex subset X of V is convex.

(ii) The inverse image T−1(Y ) of a convex subset Y of Rm is convex.

Proof. (i) Suppose y1, y2 ∈ T (X) and 0 ≤ λ ≤ 1. Let x1, x2 be points in X
such that yi = T (xi). Since

λy1 + (1− λ)y2 = λTx1 + (1− λ)Tx2 = T (λx1 + (1− λ)x2)

and λx1 + (1−λ)x2 lies X, it follows that λy1 + (1−λ)y2 lies in T (X). This
proves that the image set T (X) is convex.

(ii) To prove the convexity of the inverse image T−1(Y ) we instead assume
that x1, x2 ∈ T−1(Y ), i.e. that Tx1, Tx2 ∈ Y , and that 0 ≤ λ ≤ 1. Since Y
is a convex set,

T (λx1 + (1− λ)x2) = λTx1 + (1− λ)Tx2

is an element of Y , and this means that λx1 + (1− λ)x2 lies in T−1(Y ).

As a special case of the preceding theorem it follows that translations
a+X of a convex set X are convex.
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Example 2.3.1. The sets

{x ∈ Rn | 〈c, x〉 ≥ b} and {x ∈ Rn | 〈c, x〉 ≤ b},

where b is an arbitrary real number and c = (c1, c2, . . . , cn) is an arbirary
nonzero vector, are called opposite closed halfspaces. Their complements, i.e.

{x ∈ Rn | 〈c, x〉 < b} and {x ∈ Rn | 〈c, x〉 > b},

are called open halfspaces.

The halfspaces {x ∈ Rn | 〈c, x〉 ≥ b} and {x ∈ Rn | 〈c, x〉 > b} are inverse
images of the real intervals [b,∞[ and ]b,∞[, respectively, under the linear
map x 7→ 〈c, x〉. It therefore follows from Theorem 2.3.1 that halfspaces are
convex sets.

Intersection and union

Theorem 2.3.2. Let {Xi | i ∈ I} be a family of convex subsets of Rn. The
intersection

⋂
{Xi | i ∈ I} is a convex set.

Proof. Suppose x, y are points in the intersection Y . The definition of an
intersection implies that x and y lie in Xi for all indices i ∈ I, and convexity
implies that [x, y] ⊆ Xi for all i ∈ I. Therefore, [x, y] ⊆ Y , again by the
definition of set intersection. This proves that the intersection is a convex
set.

A union of convex sets is, of course, in general not convex. However, there
is a trivial case when convexity is preserved, namely when the sets can be
ordered in such a way as to form an ”increasing chain”.

Theorem 2.3.3. Suppose {Xi | i ∈ I} is a family of convex sets Xi and that
for each pair i, j ∈ I either Xi ⊆ Xj or Xj ⊆ Xi. The union

⋃
{Xi | i ∈ I}

is then a convex set.

Proof. The assumptions imply that, for each pair of points x, y in the union
there is an index i ∈ I such that both points belong to Xi. By convexity, the
entire segment [x, y] lies in Xi, and thereby also in the union.

Example 2.3.2. The convexity of closed balls follows from the convexity of
open balls, because B(a; r0) =

⋂
{B(a; r) | r > r0}.

Conversely, the convexity of open balls follows from the convexity of closed
balls, since B(a; r0) =

⋃
{B(a; r) | r < r0} and the sets B(a; r) form an

increasing chain.
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Definition. A subset X of Rn is called a polyhedron if X can be written as
an intersection of finitely many closed halfspaces or if X = Rn.†

Figure 2.3. A polyhedron in R2

Polyhedra are convex sets because of Theorem 2.3.2, and they can be
represented as solution sets to systems of linear inequalities. By multiplying
some of the inequalities by −1, if necessary, we may without loss of generality
assume that all inequalities are of the form c1x1 + c2x2 + · · ·+ cnxn ≥ d. This
means that every polyedron is the solution set to a system of the following
form 

c11x1 + c12x2 + · · · + c1nxn ≥ b1

c21x1 + c22x2 + · · · + c2nxn ≥ b2
...

cm1x1 + cm2x2 + · · · + cmnxn ≥ bm,

or in matrix notation
Cx ≥ b.

The intersection of finitely many polyhedra is clearly a polyhedron. Since
each hyperplane is the intersection of two opposite closed halfspaces, and
each affine set (except the entire space) is the intersection of finitely many
hyperplanes, it follows especially that affine sets are polyhedra. In particular,
the empty set is a polyhedron.

Cartesian product

Theorem 2.3.4. The Cartesian product X × Y of two convex sets X and Y
is a convex set.

Proof. Suppose X lies in Rn and Y lies in Rm. The projections

P1 : Rn × Rm → Rn and P2 : Rn × Rm → Rm,

†The intersection of an empty family of sets is usually defined as the entire space,
and using this convention the polyhedron Rn can also be viewed as an intersection of
halfspaces.
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defined by P1(x, y) = x and P2(x, y) = y, are linear maps, and

X × Y = (X × Rm) ∩ (Rn × Y ) = P−1
1 (X) ∩ P−1

2 (Y ).

The assertion of the theorem is therefore a consequence of Theorem 2.3.1
and Theorem 2.3.2.

Sum

Theorem 2.3.5. The sum X + Y of two convex subsets X and Y of Rn is
convex, and the product αX of a number α and a convex set X is convex.

Proof. The maps S : Rn×Rn → Rn and T : Rn → Rn, defined by S(x, y) =
x+ y and Tx = αx, are linear. Since X + Y = S(X × Y ) and αX = T (X),
our assertions follow from Theorems 2.3.1 and 2.3.4.

Example 2.3.3. The set X(r) of all points whose distance to a given set X
is less than the positive number r, can be written as a sum, namely

X(r) = X +B(0; r).

Since open balls are convex, we conclude from Theorem 2.3.5 that the set
X(r) is convex if X is a convex set.

Image and inverse image under the perspective map

Definition. The perspective map P : Rn × R++ → Rn is defined by

P (x, t) = t−1x

for x ∈ Rn and t > 0.

The perspective map thus first rescales points in Rn×R++ so that the last
coordinate becomes 1 and then throws the last coordinate away. Figure 2.4
illustrates the process.

Theorem 2.3.6. Let X be a convex subset of Rn × R++ and Y be a convex
subset of Rn. The image P (X) of X and the inverse image P−1(Y ) of Y
under the perspective map P : Rn × R++ → Rn are convex sets.

Proof. To prove that the image P (X) is convex we assume that y, y′ ∈ P (X)
and have to prove that the point λy + (1 − λ)y′ lies in P (X) if 0 < λ < 1.
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R++

1

Rn

(x, t)

P (x, t)

( 1
t
x, 1)

y

P−1({y})

Figure 2.4. The perspective map P . The
inverse image of a point y ∈ Rn is a halfline.

To achieve this we first note that there exist numbers t, t′ > 0 such that the
points (ty, t) and (t′y′, t′) belong to X, and then define

α =
λt′

λt′ + (1− λ)t
.

Clearly 0 < α < 1, and it now follows from the convexity of X that the point

z = α(ty, t) + (1− α)(t′y′, t′) =
(tt′(λy + (1− λ)y′)

λt′ + (1− λ)t
,

tt′

λt′ + (1− λ)t

)
lies X. Thus, P (z) ∈ P (X), and since P (z) = λy + (1− λ)y′, we are done.

To prove that the inverse image P−1(Y ) is convex, we instead assume
that (x, t) and (x′, t′) are points in P−1(Y ) and that 0 < λ < 1. We will
prove that the point λ(x, t) + (1− λ)(x′, t′) lies in P−1(Y ).

To this end we note that the the points 1
t
x and 1

t′
x′ belong to Y and that

α =
λt

λt+ (1− λ)t′

is a number between 0 and 1. Thus,

z = α
1

t
x+ (1− α)

1

t′
x′ =

λx+ (1− λ)x′

λt+ (1− λ)t′

is a point in Y by convexity, and consequently
(
(λt+(1−λ)t′)z, λt+(1−λ)t′

)
is a point in P−1(Y ). But(

(λt+ (1− λ)t′)z, λt+ (1− λ)t′
)

= λ(x, t) + (1− λ)(x′, t′)

and this completes the proof.
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Example 2.3.4. The set {(x, xn+1) ∈ Rn × R | ‖x‖ < xn+1} is the inverse
image of the unit ball B(0; 1) under the perspective map, and it is therefore
a convex set in Rn+1 for each particular choice of norm ‖·‖. The following
convex sets are obtained by choosing the `1-norm, the Euclidean norm and
the maximum norm, respectively, as norm:

{x ∈ Rn+1 | xn+1 > |x1|+ |x2|+ · · ·+ |xn| },
{x ∈ Rn+1 | xn+1 > (x2

1 + x2
2 + · · ·+ x2

n)1/2 } and

{x ∈ Rn+1 | xn+1 > max
1≤i≤n

|xi| }.

2.4 Convex hull

Definition. Let A be a nonempty set in Rn. The set of all convex combina-
tions λ1a1+λ2a2+· · ·+λmam of an arbitrary number of elements a1, a2, . . . , am
in A is called the convex hull of A and is denoted by cvxA.

Moreover, to have the convex hull defined for the empty set, we define
cvx ∅ = ∅.

A cvxA

Figure 2.5. A set and its convex hull

Theorem 2.4.1. The convex hull cvxA is a convex set containing A, and it
is the smallest set with this property, i.e. if X is a convex set and A ⊆ X,
then cvxA ⊆ X.

Proof. cvxA is a convex set, because convex combinations of two elements
of the type

∑m
j=1 λjaj, where m ≥ 1, λ1, λ2, . . . , λm ≥ 0,

∑m
j=1 λj = 1 and

a1, a2, . . . , am ∈ A, is obviously an element of the same type. Moreover,
A ⊆ cvxA, because each element in A is a convex combination of itself
(a = 1a).

A convex set X contains all convex combinations of its elements, accord-
ing to Theorem 2.2.1. If A ⊆ X, then in particular X contains all convex
combinations of elements in A, which means that cvxA ⊆ X.
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The convex hull of a set in Rn consists of all convex combinations of
an arbitrary number of elements in the set, but each element of the hull is
actually a convex combination of at most n+ 1 elements.

Theorem 2.4.2. Let A ⊆ Rn and suppose that x ∈ cvxA. Then A contains
a subset B with at most n+ 1 elements such that x ∈ cvxB.

Proof. According to the definition of convex hull there exists a finite subset
B of A such that x ∈ cvxB. Choose such a subset B = {b1, b2, . . . , bm} with
as few elements as possible. By the minimality assumption, x =

∑m
j=1 λjbj

with
∑m

j=1 λj = 1 and λj > 0 for all j.
Let cj = bj − bm for j = 1, 2, . . . , m − 1. We will show that the

set C = {c1, c2, . . . , cm−1} is a linearly independent subset of Rn, and this
obviously implies that m ≤ n+ 1.

Suppose on the contrary that the set C is linearly dependent. Then there
exist real numbers µj, not all of them equal to 0, such that

∑m−1
j=1 µjcj = 0.

Now let µm = −
∑m−1

j=1 µj; then
∑m

j=1 µj = 0 and
∑m

j=1 µjbj = 0. Moreover,
at least one of the m numbers µ1, µ2, . . . , µm is positive.

Consider the numbers νj = λj − tµj for t > 0. We note that

m∑
j=1

νj =
m∑
j=1

λj − t
m∑
j=1

µj = 1 and
m∑
j=1

νjbj =
m∑
j=1

λjbj − t
m∑
j=1

µjbj = x.

Moreover, νj ≥ λj > 0 if µj ≤ 0, and νj ≥ 0 if µj > 0 and t ≤ λj/µj.
Therefore, by choosing t as the smallest number of the numbers λj/µj with
positive denominator µj, we obtain numbers νj such that νj ≥ 0 for all j and
νj0 = 0 for at least one index j0. This means that x is a convex combination
of elements in the set B \ {bj0}, which consists of m − 1 elements. This
contradicts the minimality assumption concerning the set B, and our proof
by contradiction is finished.

2.5 Topological properties

Closure

Theorem 2.5.1. The closure clX of a convex set X is convex.

Proof. We recall that clX =
⋂
r>0X(r), where X(r) denotes the set of all

points whose distance from X is less than r. The sets X(r) are convex when
the set X is convex (see Example 2.3.3), and an intersection of convex sets
is convex.
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Interior and relative interior

The interior of a convex set may be empty. For example, line segments in
Rn have no interior points when n ≥ 2. A necessary and sufficient condition
for nonempty interior is given by the following theorem.

Theorem 2.5.2. A convex subset X of Rn has interior points if and only if
dimX = n.

Proof. If X has an interior point a, then there exists an open ball B = B(a; r)
around a such that B ⊆ X, which implies that dimX ≥ dimB = n, i.e.
dimX = n.

To prove the converse, let us assume that dimX = n; we will prove that
intX 6= ∅. Since the dimension of a set is invariant under translations and
int (a+X) = a+ intX, we may assume that 0 ∈ X.

Let {a1, a2, . . . , am} be a maximal set of linearly independent vectors inX;
then X is a subset of the linear subspace of dimension m which is spanned by
these vectors, and it follows from the dimensionality assumption that m = n.
The set X contains the convex hull of the vectors 0, a1, a2, . . . , an as a subset,
and, in particular, it thus contains the nonempty open set

{λ1a1 + λ2a2 + · · ·+ λnan | 0 < λ1 + · · ·+ λn < 1, λ1 > 0, . . . , λn > 0}.

All points in this latter set are interior points of X, so intX 6= ∅.

A closed line segment [a, b] in the two-dimensional space R2 has no in-
terior points, but if we consider the line segment as a subset of a line and
identify the line with the space R, then it has interior points and its interior
is equal to the corresponding open line segment ]a, b[. A similar remark holds
for the convex hull T = cvx{a, b, c} of three noncolinear points in three-space;
the triangle T has interior points when viewed as a subset of R2, but it lacks
interior points as a subset of R3. This conflict is unsatisfactory if we want a
concept that is independent of the dimension of the surrounding space, but
the dilemma disappears if we use the relative topology that the affine hull of
the set inherits from the surrounding space Rn.

Definition. Let X be an m-dimensional subset of Rn, and let V denote the
affine hull of X, i.e. V is the m-dimensional affine set that contains X.

A point x ∈ X is called a relative interior point of X if there exists an
r > 0 such that B(x; r) ∩ V ⊆ X, and the set of all relative interior points
of X is called the relative interior of X and is denoted by rintX.

A point x ∈ Rn is called a relative boundary point of X if, for every r > 0,
the intersection B(x; r) ∩ V contains at least one point from X and at least
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one point from V \ X. The set of all relative boundary points is called the
relative boundary of X and is denoted by rbdryX.

The relative interior of X is obviously a subset of X, and the relative
boundary of X is a subset of the boundary of X. It follows that

rintX ∪ rbdryX ⊆ X ∪ bdryX = clX.

Conversely, if x is a point in the closure clX, then for each r > 0

B(x, r) ∩ V ∩X = B(x, r) ∩X 6= ∅.

Thus, x is either a relative boundary point or a relative interior point of X.
This proves the converse inclusion, and we conclude that

rintX ∪ rbdryX = clX,

or equivalently, that

rbdryX = clX \ rintX.

It follows from Theorem 2.5.2, with Rn replaced by aff X, that every
nonempty convex set has a nonempty relative interior.

Note that the relative interior of a line segment [a, b] is the corresponding
open line segment ]a, b[, which is consistent with calling ]a, b[ an open seg-
ment. The relative interior of a set {a} consisting of just one point is the set
itself.

Theorem 2.5.3. The relative interior rintX of a convex set X is convex.

Proof. The theorem follows as a corollary of the following theorem, since
rintX ⊆ clX.

Theorem 2.5.4. Suppose that X is a convex set, that a ∈ rintX and that
b ∈ clX. The entire open line segment ]a, b[ is then a subset of rintX.

Proof. Let V = aff X denote the affine set of least dimension that includes
X, and let c = λa+ (1− λ)b, where 0 < λ < 1, be an arbitrary point on the
open segment ]a, b[. We will prove that c is a relative interior point of X by
constructing an open ball B which contains c and whose intersection with V
is contained in X.

To this end, we choose r > 0 such that B(a; r) ∩ V ⊆ X and a point
b′ ∈ X such that ‖b′ − b‖ < λr/(1 − λ); this is possible since a is a relative
interior point of X and b is a point in the closure of X. Let

B = λB(a; r) + (1− λ)b′,
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a

b

b′
c

X

B(a; r) B

Figure 2.6. Illustration of the proof of Theorem 2.5.4.
The convex hull of the ball B(a; r) and the point b′ forms
a ”cone” with nonempty interior that contains the point c.

and observe that B = B(λa + (1 − λ)b′;λr). The open ball B contains the
point c because

‖c− (λa+ (1− λ)b′)‖ = ‖(1− λ)(b− b′)‖ = (1− λ)‖b− b′‖ < λr.

Moreover, B ∩ V = λ(B(a; r) ∩ V ) + (1 − λ)b′ ⊆ λX + (1 − λ)X ⊆ X, due
to convexity. This completes the proof.

Theorem 2.5.5. Let X be a convex set. Then

(i) cl (rintX) = clX;

(ii) rint (clX) = rintX;

(iii) rbdry (clX) = rbdry (rintX) = rbdryX.

Proof. The equalities in (iii) for the relative boundaries follow from the other
two and the definition of the relative boundary.

The inclusions cl (rintX) ⊆ clX and rintX ⊆ rint (clX) are both trivial,
because it follows, for arbitrary sets A and B, that A ⊆ B implies clA ⊆ clB
and rintA ⊆ rintB.

It thus only remains to prove the two inclusions

clX ⊆ cl (rintX) and rint (clX) ⊆ rintX.

So fix a point x0 ∈ rintX.
If x ∈ clX, then every point on the open segment ]x0, x[ lies in rintX, by

Theorem 2.5.4, and it follows from this that the point x is either an interior
point or a boundary point of rintX, i.e. a point in the closure cl (rintX).
This proves the inclusion clX ⊆ cl (rintX).

To prove the remaining inclusion rint (clX) ⊆ rintX we instead assume
that x ∈ rint (clX) and define yt = (1 − t)x0 + tx for t > 1. Since yt → x
as t→ 1, the points yt belong to clX for all t sufficiently close to 1. Choose
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a number t0 > 1 such that yt0 belongs to clX. According to Theorem 2.5.4,
all points on the open segment ]x0, yt0 [ are relative interior points in X, and
x is such a point since x = 1

t0
yt0 + (1 − 1

t0
)x0. This proves the implication

x ∈ rint (clX)⇒ x ∈ rintX, and the proof is now complete.

Compactness

Theorem 2.5.6. The convex hull cvxA of a compact subset A in Rn is com-
pact.

Proof. Let S = {λ ∈ Rn+1 | λ1, λ2, . . . , λn+1 ≥ 0,
∑n+1

j=1 λj = 1}, and let
f : S × Rn × Rn × · · · × Rn → Rn be the function

f(λ, x1, x2, . . . , xn+1) =
n+1∑
j=1

λjxj.

The function f is of course continuous, and the set S is compact, since it is
closed and bounded. According to Theorem 2.4.2, every element x ∈ cvxA
can be written as a convex combination x =

∑n+1
j=1 λjaj of at most n + 1

elements a1, a2, . . . , an+1 from the set A. This means that the convex hull
cvxA coincides with the image f(S×A×A×· · ·×A) under f of the compact
set S × A × A × · · · × A. Since compactness is preserved by continuous
functions, we conclude that the convex hull cvxA is compact.

2.6 Cones

Definition. Let x be a point in Rn different from 0. The set

−→x = {λx | λ ≥ 0}

is called the ray through x, or the halfline from the origin through x.
A cone X in Rn is a non-empty set which contains the ray through each

of its points.

A cone X is in other words a non-empty set which is closed under multi-
plication by nonnegative numbers, i.e. which satisfies the implication

x ∈ X,λ ≥ 0⇒ λx ∈ X.

In particular, all cones contain the point 0.
We shall study convex cones. Rays and linear subspaces of Rn are convex

cones, of course. In particular, the entire space Rn and the trivial subspace
{0} are convex cones. Other simple examples of convex cones are provided
by the following examples.
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0 0

Figure 2.7. A plane cut through two proper convex cones in R3

Example 2.6.1. A closed halfspace {x ∈ Rn | 〈c, x〉 ≥ 0}, which is bounded
by a hyperplane through the origin, is a convex cone and is called a conic
halfspace.

The union {x ∈ Rn | 〈c, x〉 > 0} ∪ {0} of the corresponding open half-
space and the origin is also a convex cone.

Example 2.6.2. The nonnegative orthant

Rn
+ = {x = (x1, . . . , xn) ∈ Rn | x1 ≥ 0, . . . , xn ≥ 0}

in Rn is a convex cone.

Definition. A cone that does not contain any line through 0, is called a proper
cone.‡

That a cone X does not contain any line through 0 is equivalent to the
condition

x,−x ∈ X ⇒ x = 0.

In other words, a cone X is a proper cone if and only if X ∩ (−X) = {0}.
Closed conic halfspaces in Rn are non-proper cones if n ≥ 2. The non-

negative orthant Rn
+ is a proper cone. The cones {x ∈ Rn | 〈c, x〉 > 0}∪{0}

are also proper cones.

We now give two alternative ways to express that a set is a convex cone.

Theorem 2.6.1. The following three conditions are equivalent for a nonempty
subset X of Rn:

(i) X is a convex cone.

(ii) X is a cone and x+ y ∈ X for all x, y ∈ X.

(iii) λx+ µy ∈ X for alla x, y ∈ X and all λ, µ ∈ R+.

‡The terminology is not universal. A proper cone is usually called a salient cone, while
the term proper cone is sometimes reserved for cones that are closed, have a nonempty
interior and do not contain any lines through the origin.
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Proof. (i) ⇒ (ii): If X is a convex cone and x, y ∈ X, then z = 1
2
x + 1

2
y

belongs to X because of convexity, and x + y (= 2z) belongs to X since X
is cone.

(ii)⇒ (iii): If (ii) holds, x, y ∈ X and λ, µ ∈ R+, then λx and µy belong to
X by the cone condition, and λx+ µy ∈ X by additivity.

(iii)⇒ (i): If (iii) holds, then we conclude that X is a cone by choosing y = x
and µ = 0, and that the cone is convex by choosing λ+ µ = 1.

Definition. A linear combination
∑m

j=1 λjxj of vectors x1, x2, . . . , xm in Rn

is called a conic combination if all coefficients λ1, λ2, . . . , λm are nonnegative.

Theorem 2.6.2. A convex cone contains all conic combinations of its ele-
ments.

Proof. Follows immediately by induction from the characterization of convex
cones in Theorem 2.6.1 (iii).

Cone preserving operations

The proofs of the four theorems below are analogous to the proofs of the cor-
responding theorems on convex sets, and they are therefore left as exercises.

Theorem 2.6.3. Let T : Rn → Rm be a linear map.

(i) The image T (X) of a convex cone X in Rn is a convex cone.

(ii) The inverse image T−1(Y ) of a convex cone in Rm is a convex cone.

Theorem 2.6.4. The intersection
⋂
i∈I Xi of an arbitrary family of convex

cones Xi in Rn is a convex cone.

Theorem 2.6.5. The Cartesian product X × Y of two convex cones X and
Y is a convex cone.

Theorem 2.6.6. The sum X + Y of two convex cones X and Y in Rn is a
convex cone, and −X is a convex cone if X is a convex cone.

Example 2.6.3. An intersection

X =
m⋂
i=1

{x ∈ Rn | 〈ci, x〉 ≥ 0}

of finitely many closed conic halfspaces is called a polyhedral cone or a conic
polyhedron.
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By defining C as the m× n-matrix with rows cTi , i = 1, 2, . . . ,m, we can
write the above polyhedral cone X in a more compact way as

X = {x ∈ Rn | Cx ≥ 0}.

A polyhedral cone is in other words the solution set of a system of homoge-
neous linear inequalities.

Conic hull

Definition. Let A be an arbitrary nonempty subset of Rn. The set of all
conic combinations of elements of A is called the conic hull of A, and it is
denoted by conA. The elements of A are called generators of conA.

We extend the concept to the empty set by defining con ∅ = {0}.

Theorem 2.6.7. The set conA is a convex cone that contains A as a subset,
and it is the smallest convex cone with this property, i.e. if X is a convex
cone and A ⊆ X, then conA ⊆ X.

Proof. A conic combination of two conic combinations of elements from A
is clearly a new conic combination of elements from A, and hence conA
is a convex cone. The inclusion A ⊆ conA is obvious. Since a convex cone
contains all conic combinations of its elements, a convex cone X that contains
A as a subset must in particular contain all conic combinations of elements
from A, which means that conA is a subset of X.

Theorem 2.6.8. Let X = conA be a cone in Rn, Y = conB be a cone in
Rm and T : Rn → Rm be a linear map. Then

(i) T (X) = conT (A);

(ii) X × Y = con
(
(A× {0}) ∪ ({0} ×B)

)
;

(iii) X+Y = con(A∪B), provided that m = n so that the sum X+Y
is well-defined.

Proof. (i) The cone X consists of all conic combinations x =
∑p

j=1 λjaj of
elements aj in A. For such a conic combination Tx =

∑p
j=1 λjTaj. The

image cone T (X) thus consists of all conic combinations of the elements
Taj ∈ T (A), which means that T (X) = conT (A).

(ii) The cone X×Y consists of all pairs (x, y) =
(∑p

j=1 λjaj,
∑q

k=1 µkbk
)

of conic combinations of elements in A and B, respectively. But

(x, y) =

p∑
j=1

λj(aj, 0) +

q∑
k=1

µk(0, bk),
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and hence (x, y) is a conic combination of elements in (A×{0}) ∪ ({0}×B),
that is (x, y) is an element of the cone Z = con

(
(A×{0})∪ ({0}×B)

)
. This

proves the inclusion X × Y ⊆ Z.

The converse inclusion Z ⊆ X × Y follows at once from the trivial in-
clusion (A × {0}) ∪ ({0} × B) ⊆ X × Y , and the fact that X × Y is a
cone.

(iii) A typical element of X + Y has the form
∑p

j=1 λjaj +
∑q

k=1 µkbk,
which is a conic combination of elements in A∪B. This proves the assertion.

Finitely generated cones

Definition. A convex cone X is called finitely generated if X = conA for
some finite set A.

Example 2.6.4. The nonnegative orthant Rn
+ is finitely generated by the

standard basis e1, e2, . . . , en of Rn.

Theorem 2.6.8 has the following immediate corollary.

Corollary 2.6.9. Cartesian products X × Y , sums X + Y and images T(X)
under linear maps T of finitely generated cones X and Y , are themselves
finitely generated cones.

Intersections X∩Y and inverse images T−1(Y ) of finitely generated cones
are finitely generated, too, but the proof of this fact has to wait until we
have shown that finitely generated cones are polyhedral, and vice versa. See
Chapter 5.

Theorem 2.6.10. Suppose that x ∈ conA, where A is a subset of Rn. Then
x ∈ conB for some linearly independent subset B of A. The number of
elements in B is thus at most equal to n.

Proof. Since x is a conic combination of elements of A, x is per definition a
conic combination of finitely many elements chosen from A. Now choose a
subset B of A with as few elements as possible and such that x ∈ conB. We
will prove that the set B is linearly independent.

If B = ∅ (i.e. if x = 0), then we are done, because the empty set is
linearly independent. So assume that B = {b1, b2, . . . , bm}, where m ≥ 1.
Then x =

∑m
j=1 λjbj, where each λj > 0 due to the minimality assumption.

We will prove our assertion by contradiction. So, suppose that the set
B is linearly dependent. Then there exist scalars µ1, µ2, . . . , µm, at least
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one of them being positive, such that
∑m

j=1 µjbj = 0, and it follows that
x =

∑m
j=1(λj − tµj)bj for all t ∈ R.

Now let t0 = minλj/µj, where the minimum is taken over all indices such
that µj > 0, and let j0 be an index where the minimum is achieved. Then
λj− t0µj ≥ 0 for all indices j, and λj0− t0µj0 = 0. This means that x belongs
to the cone generated by the set B \ {bj0}, which contradicts the minimality
assumption about B. Thus, B is linearly independent.

Theorem 2.6.11. Every finitely generated cone is closed.

Proof. Let X be a finitely generated cone in Rn so that X = conA for some
finite set A.

We first treat the case when A = {a1, a2, . . . , am} is a linearly independent
set. Then m ≤ n, and it is possible to extend the set A, if necessary, with
vectors am+1, . . . , an to a basis for Rn. Let (c1(x), c2(x), . . . , cn(x)) denote
the coordinates of the vector x with respect to the basis a1, a2, . . . , an, so
that x =

∑n
j=1 cj(x) aj. The coordinate functions cj(x) are linear forms on

Rn.
A vector x belongs to X if and only if x is a conic combination of the

first m basis vectors, and this means that

X = {x ∈ Rn | c1(x) ≥ 0, . . . , cm(x) ≥ 0, cm+1(x) = · · · = cn(x) = 0}.

We conclude that X is equal to the intersection of the closed halfspaces
{x ∈ Rn | cj(x) ≥ 0}, 1 ≤ j ≤ m, and the hyperplanes {x ∈ Rn | cj(x) = 0},
m+ 1 ≤ j ≤ n. This proves that X is a closed cone in the present case and
indeed a polyhedral cone.

Let us now turn to the general case. Let A be an arbitrary finite set.
By the previous theorem, there corresponds to each x ∈ conA a linearly
independent subset B of A such that x ∈ conB, and this fact implies that
conA =

⋃
conB, where the union is to be taken over all linearly independent

subsets B of A. Of course, there are only finitely many such subsets, and
hence conA is a union of finitely many cones conB, each of them being
closed, by the first part of the proof. A union of finitely many closed sets is
closed. Hence, conA is a closed cone.

2.7 The recession cone

The recession cone of a set consists of the directions in which the set is
unbounded and in this way provides information about the behavior of the
set at infinity. Here is the formal definition of the concept.
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Definition. Let X be a subset of Rn and let v be a nonzero vector in Rn.
We say that the set X recedes in the direction of v and that v is a recession
vector of X if X contains all halflines with direction vector v that start from
an arbitrary point of X.

The set consisting of all recession vectors of X and the zero vector is called
the recession cone and is denoted by reccX. Hence, if X is a nonempty set
then

reccX = {v ∈ Rn | x+ tv ∈ X for all x ∈ X and all t > 0},

whereas recc ∅ = {0}.

X X X

a

a a

Figure 2.8. Three convex sets X and the corresponding translated
recession cones a+ reccX.

Theorem 2.7.1. The recession cone of an arbitrary set X is a convex cone
and

X = X + reccX.

Proof. That reccX is a cone follows immediately from the very definition of
recession cones, and the same holds for the inclusion X + reccX ⊆ X. The
converse inclusion X ⊆ X+Y is trivially true for all sets Y containing 0 and
thus in particular for the cone reccX.

If v and w are two recession vectors of X, x is an arbitrary point in X and
t is an arbitrary positive number, then first x+ tv belongs to X by definition,
and then x + t(v + w) = (x + tv) + tw belongs to X. This means that the
sum v+w is also a recession vector. So the recession cone has the additivity
property v, w ∈ reccX ⇒ v + w ∈ reccX, which implies that the cone is
convex according to Theorem 2.6.1.

Example 2.7.1. Here are some simple examples of recession cones:

recc(R+ × [0, 1]) = recc(R+× ]0, 1[) = R+ × {0},
recc(R+× ]0, 1[∪{(0, 0)}) = {(0, 0)},
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recc{x ∈ R2 | x2
1 + x2

2 ≤ 1} = {(0, 0)},
recc{x ∈ R2 | x2 ≥ x2

1} = {0} × R+,

recc{x ∈ R2 | x2 ≥ 1/x1, x1 > 0} = R2
+.

The computation of the recession cone of a convex set is simplified by the
following theorem.

Theorem 2.7.2. A vector v is a recession vector of a nonempty convex set
X if and only if x+ v ∈ X for all x ∈ X.

Proof. If v is a recession vector, then obviously x+ v ∈ X for all x ∈ X.
To prove the converse, assume that x + v ∈ X for all x ∈ X, and let x

be an arbitrary point in X. Then, x + nv ∈ X for all natural numbers n,
by induction, and since X is a convex set, we conclude that the closed line
segment [x, x+nv] lies in X for all n. Of course, this implies that x+ tv ∈ X
for all positive numbers t, and hence v is a recession vector of X.

Corollary 2.7.3. If X is a convex cone, then reccX = X.

Proof. The inclusion reccX ⊆ X holds for all sets X containing 0 and thus
in particular for cones X. The converse inclusion X ⊆ reccX is according to
Theorem 2.7.2 a consequence of the additivity property x, v ∈ X ⇒ x+v ∈ X
for convex cones.

Example 2.7.2. recc R2
+ = R2

+, recc(R2
++∪{(0, 0)}) = R2

++∪{(0, 0)}.

The recession vectors of a closed convex set are characterized by the
following theorem.

Theorem 2.7.4. Let X be a nonempty closed convex set. The following three
conditions are equivalent for a vector v.

(i) v is a recession vector of X.

(ii) There exists a point x ∈ X such that x+ nv ∈ X for all n ∈ Z+.

(iii) There exist a sequence (xn)∞1 of points xn in X and a sequence (λn)∞1
of positive numbers such that λn → 0 and λnxn → v as n→∞.

Proof. (i)⇒ (ii): Trivial, since x+ tv ∈ X for all x ∈ X and all t ∈ R+, if v
is a recession vector of X.

(ii) ⇒ (iii): If (ii) holds, then condition (iii) is satisfied by the points xn =
x+ nv and the numbers λn = 1/n.

(iii)⇒ (i): Assume that (xn)∞1 and (λn)∞1 are sequences of points in X and
positive numbers such that λn → 0 and λnxn → v as n → ∞, and let x be
an arbitrary point in X. The points zn = (1− λn)x+ λnxn then lie in X for
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all sufficiently large n, and since zn → x + v as n → ∞ and X is a closed
set, it follows that x+ v ∈ X. Hence, v is a recession vector of X according
to Theorem 2.7.2.

Theorem 2.7.5. The recession cone reccX of a closed convex set X is a
closed convex cone.

Proof. The case X = ∅ is trivial, so assume that X is a nonempty closed
convex set. To prove that the recession cone reccX is closed, we assume that
v is a boundary point of the cone and choose a sequence (vn)∞1 of recession
vectors that converges to v as n → ∞. If x is an arbitrary point in X,
then the points x + vn lie in X for each natural number n, and this implies
that their limit point x + v lies in X, since X is a closed set. Hence, v is a
recession vector, i.e. v belongs to the recession cone reccX. This proves that
the recession cone contains all its boundary points.

Theorem 2.7.6. Let {Xi | i ∈ I} be a family of closed convex sets, and as-
sume that their intersection is nonempty. Then recc(

⋂
i∈I Xi) =

⋂
i∈I reccXi.

Proof. Let x0 be a point in
⋂
iXi. By Theorem 2.7.4, v ∈ recc(

⋂
iXi) if and

only if x0 + nv lies in Xi for all positive integers n and all i ∈ I, and this
holds if and only if v ∈ reccXi for all i ∈ I.

The recession cone of a polyhedron is given by the following theorem.

Theorem 2.7.7. If X = {x ∈ Rn | Cx ≥ b} is a nonempty polyhedron, then
reccX = {x ∈ Rn | Cx ≥ 0}.

Proof. The recession cone of a closed halfspace is obviously equal to the cor-
responding conical halfspace. The theorem is thus an immediate consequence
of Theorem 2.7.6.

Note that the recession cone of a subset Y of X can be bigger than the
recession cone of X. For example,

recc R2
++ = R2

+ ) R2
++ ∪ {(0, 0)} = recc(R2

++ ∪ {(0, 0)}).

However, this cannot occur if the superset X is closed.

Theorem 2.7.8. (i) Suppose that X is a closed convex set and that Y ⊆ X.
Then reccY ⊆ reccX.

(ii) If X is a convex set, then recc(rintX) = recc(clX).
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Proof. (i) The case Y = ∅ being trivial, we assume that Y is a nonempty
subset of X and that y is an arbitrary point in Y . If v is a recession vector of
Y , then y+nv are points in Y and thereby also in X for all natural numbers
n. We conclude from Theorem 2.7.4 that v is a recession vector of X.

(ii) The inclusion recc(rintX) ⊆ recc(clX) follows from part (i), because
clX is a closed convex subset.

To prove the converse inclusion, assume that v is a recession vector of
clX, and let x be an arbitrary point in rintX. Then x+ 2v belongs to clX,
so it follows from Theorem 2.5.4 that the open line segment ]x, x + 2v[ is
a subset of rintX, and this implies that the point x + v belongs to rintX.
Thus, x ∈ rintX ⇒ x + v ∈ rintX, and we conclude from Theorem 2.7.2
that v is a recession vector of rintX.

Theorem 2.7.9. Let X be a closed convex set. Then X is bounded if and
only if reccX = {0}.

Proof. Obviously, reccX = {0} if X is a bounded set. So assume that X
is unbounded. Then there exists a sequence (xn)∞1 of points in X such that
‖xn‖ → ∞ as n→∞. The bounded sequence (xn/‖xn‖)∞1 has a convergent
subsequence, and by deleting elements, if necessary, we may as well assume
that the original sequence is convergent. The limit v is a vector of norm 1,
which guarantees that v 6= 0. With λn = 1/‖xn‖ we now have a sequence
of points xn in X and a sequence of positive numbers λn such that λn → 0
and λnxn → v as n → ∞, and this means that v is a recession vector of X
according to Theorem 2.7.4. Hence, reccX 6= {0}.

Definition. Let X be an arbitary set. The intersection reccX ∩ (− reccX) is
a linear subspace, which is called the recessive subspace of X and is denoted
linX.

A closed convex set is called line-free if linX = {0}. The set X is in
other words line-free if and only if reccX is a proper cone.

If X is a nonempty closed convex subset of Rn and x ∈ X is arbitrary,
then clearly

linX = {x ∈ Rn | a+ tx ∈ X for all t ∈ R}.

The image T (X) of a closed convex set X under a linear map T is not
necessarily closed. A counterexample is given by X = {x ∈ R2

+ | x1x2 ≥ 1}
and the projection T (x1, x2) = x1 of R2 onto the first factor, the image being
T (X) = ]0 ,∞[. The reason why the image is not closed in this case is the
fact that X has a recession vector v = (0, 1) which is mapped on 0 by T .
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However, we have the following general result, where N (T ) denotes the
null space of the map T , i.e. N (T ) = {x | Tx = 0}.

Theorem 2.7.10. Let T : Rn → Rm be a linear map, let X be a closed convex
subset of Rn, and suppose that

N (T ) ∩ reccX ⊆ linX.

The image T (X) is then a closed set, and

reccT (X) = T (reccX).

In particular, the image T (X) is closed if X is a closed convex set and
x = 0 is the only vector in reccX such that Tx = 0.

Proof. The intersection

L = N (T ) ∩ linX = N (T ) ∩ reccX

is a linear subspace of Rn. Let L⊥ denote its orthogonal complement. Then
X = X ∩ L+X ∩ L⊥, and

T (X) = T (X ∩ L⊥),

since Tx = 0 for all x ∈ L.
Let y be an arbitrary boundary point of the image T (X). Due to the

equality above, there exists a sequence (xn)∞1 of points xn ∈ X ∩ L⊥ such
that limn→∞ Txn = y.

We claim that the sequence (xn)∞1 is bounded. Assume the contrary.
The sequence (xn)∞1 has then a subsequence (xnk)

∞
1 such that ‖xnk‖ → ∞

as k → ∞ and the bounded sequence (xnk/‖xnk‖)∞1 converges. The limit v
is, of course, a vector of norm 1 in the linear subspace L⊥. Moreover, since
xnk ∈ X and 1/‖xnk‖ → 0, it follows from Theorem 2.7.4 that v ∈ reccX.
Finally,

Tv = lim
k→∞

T (xnk/‖xnk‖) = lim
k→∞
‖xnk‖−1Txnk = 0 · y = 0,

and hence v belongs to N (T ), and thereby also to L. This means that
v ∈ L ∩ L⊥, which contradicts tha fact that v 6= 0, since L ∩ L⊥ = {0}.

The sequence (xn)∞1 is thus bounded. Let (xnk)
∞
1 be a convergent subse-

quence, and let x = limk→∞ xnk . The limit x lies in X since X is closed, and
y = limk→∞ Txnk = Tx, which implies that y ∈ T (X). This proves that the
image T (X) contains its boundary points, so it is a closed set.
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The inclusion T (reccX) ⊆ reccT (X) holds for all sets X. To prove this,
assume that v is a recession vector of X and let y be an arbitrary point in
T (X). Then y = Tx for some point x ∈ X, and since x+ tv ∈ X for all t > 0
and y + tTv = T (x + tv), we conclude that the points y + tTv lie in T (X)
for all t > 0, and this means that Tv is a recession vector of T (X).

To prove the converse inclusion reccT (X) ⊆ T (reccX) for closed convex
setsX and linear maps T fulfilling the assumptions of the theorem, we assume
that w ∈ reccT (X) and shall prove that there is a vector v ∈ reccX such
that w = Tv.

We first note that there exists a sequence (yn)∞1 of points yn ∈ T (X) and
a sequence (λn)∞1 of positive numbers such that λn → 0 and λnyn → w as
n→∞. For each n, choose a point xn ∈ X ∩ L⊥ such that yn = T (xn).

The sequence (λnxn)∞1 is bounded. Because assume the contrary; then
there is a subsequence such that ‖λnkxnk‖ → ∞ and (xnk/‖xnk‖)∞1 converges
to a vector z as k → ∞. It follows from Theorem 2.7.4 that z ∈ reccX,
because the xnk are points in X and ‖xnk‖ → ∞ as k → ∞. The limit z
belongs to the subspace L⊥, and since

Tz = lim
k→∞

T (xnk/‖xnk‖) = lim
k→∞

T (λnkxnk/‖λnkxnk‖)

= lim
k→∞

λnkynk/‖λnkxnk‖ = 0 · w = 0,

we also have z ∈ N (T ) ∩ reccX = L. Hence, z ∈ L ∩ L⊥ = {0}, which
contradicts the fact that ‖z‖ = 1.

The sequence (λnxn)∞1 , being bounded, has a subsequence that converges
to a vector v, which belongs to reccX according to Theorem 2.7.4. Since
T (λnxn) = λnyn → w, we conclude that Tv = w. Hence, w ∈ T (reccX).

Theorem 2.7.11. Let X and Y be nonempty closed convex subsets of Rn and
suppose that

x ∈ reccX & y ∈ reccY & x+ y = 0 ⇒ x ∈ linX & y ∈ linY.

The sum X + Y is then a closed convex set and

recc(X + Y ) = reccX + reccY.

Remark. The assumption of the theorem is fulfilled if reccX and − reccY
have no common vector other than the zero vector.

Proof. Let T : Rn × Rn → Rn be the linear map T (x, y) = x+ y. We leave
as an easy exercise to show that recc(X × Y ) = reccX × reccY and that
lin(X×Y ) = linX×linY . SinceN (T ) = {(x, y) | x+y = 0}, the assumption
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of the theorem yields the inclusion N (T ) ∩ recc(X × Y ) ⊆ lin(X × Y ), and
it now follows from Theorem 2.7.10 that T (X × Y ), i.e. the sum X + Y , is
closed and that

recc(X + Y ) = reccT (X × Y ) = T (recc(X × Y )) = T (reccX × reccY )

= reccX + reccY.

Corollary 2.7.12. The sum X + Y of a nonempty closed convex set X and
a nonempty compact convex set Y is a closed convex set and

recc(X + Y ) = reccX.

Proof. The assumptions of Theorem 2.7.11 are trivially fulfilled, because
reccY = {0}.

Theorem 2.7.13. Suppose that C is a closed convex cone and that Y is a
nonempty compact convex set. Then recc(C + Y ) = C.

Proof. The corollary is a special case of Corollary 2.7.12 since reccC = C.

Exercises

2.1 Prove that the set {x ∈ R2
+ | x1x2 ≥ a} is convex and, more generally, that

the set {x ∈ Rn
+ | x1x2 · · ·xn ≥ a} is convex.

Hint: Use the inequality xλi y
1−λ
i ≤ λxi + (1− λ)yi; see Theorem 6.4.1.

2.2 Determine the convex hull cvxA for the following subsets A of R2:

a) A = {(0, 0), (1, 0), (0, 1)} b) A = {x ∈ R2 | ‖x‖ = 1}
c) A = {x ∈ R2

+ | x1x2 = 1} ∪ {(0, 0)}.

2.3 Give an example of a closed set with a non-closed convex hull.

2.4 Find the inverse image P−1(X) of the convex set X = {x ∈ R2
+ | x1x2 ≥ 1}

under the perspective map P : R2 × R++ → R2.

2.5 Prove that the set {x ∈ Rn+1 |
(∑n

j=1 x
2
j

)1/2 ≤ xn+1} is a cone.

2.6 Let e1, e2, . . . , en denote the standard basis in Rn and let e0 = −
∑n

1 ej .
Prove that Rn is generated as a cone by the n+ 1 vectors e0, e1, e2, . . . , en.

2.7 Prove that each conical halfspace in Rn is the conic hull of a set consisting
of n+ 1 elements.

2.8 Prove that each closed cone in R2 is the conic hull of a set consisting of at
most three elements.

2.9 Prove that the sum of two closed cones in R2 is a closed cone.
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2.10 Find reccX and linX for the following convex sets:

a) X = {x ∈ R2 | −x1 + x2 ≤ 2, x1 + 2x2 ≥ 2, x2 ≥ −1}
b) X = {x ∈ R2 | −x1 + x2 ≤ 2, x1 + 2x2 ≤ 2, x2 ≥ −1}
c) X = {x ∈ R3 | 2x1 + x2 + x3 ≤ 4, x1 + 2x2 + x3 ≤ 4}
d) X = {x ∈ R3 | x2

1 − x2
2 ≥ 1, x1 ≥ 0}.

2.11 Let X and Y be arbitrary nonempty sets. Prove that

recc(X × Y ) = reccX × reccY

and that

lin(X × Y ) = linX × linY .

2.12 Let P : Rn × R++ → Rn be the perspective map. Suppose X is a convex
subset of Rn, and let c(X) = P−1(X) ∪ {(0, 0)}.

a) Prove that c(X) is a cone and, more precisely, that c(X) = con(X×{1}).
b) Find an explicit expression for the cones c(X) and cl(c(X)) if

(i) n = 1 and X = [2, 3];

(ii) n = 1 and X = [2,∞[;

(iii) n = 2 and X = {x ∈ R2 | x1 ≥ x2
2}.

c) Find c(X) if X = {x ∈ Rn | ‖x‖ ≤ 1} and ‖·‖ is an arbitrary norm on
Rn.

d) Prove that cl(c(X)) = c(clX) ∪ (recc(clX)× {0}).
e) Prove that cl(c(X)) = c(clX) if and only if X is a bounded set.

f) Prove that the cone c(X) is closed if and only if X is compact.

2.13 Y = {x ∈ R3 | x1x3 ≥ x2
2, x3 > 0} ∪ {x ∈ R3 | x1 ≥ 0, x2 = x3 = 0} is a

closed cone. (Cf. problem 2.12 b) (iii)). Put

Z = {x ∈ R3 | x1 ≤ 0, x2 = x3 = 0}.

Show that

Y + Z = {x ∈ R3 | x3 > 0} ∪ {x ∈ R3 | x2 = x3 = 0},

with the conclusion that the sum of two closed cones in R3 is not necessarily
a closed cone.

2.14 Prove that the sum X + Y of an arbitrary closed set X and an arbitrary
compact set Y is closed.



Chapter 3

Separation

3.1 Separating hyperplanes

Definition. Let X and Y be two sets in Rn. We say that the hyperplane H
separarates the two sets if the following two conditions† are satisfied:

(i) X is contained in one of the two opposite closed halvspaces defined by
H and Y is contained in the other closed halfspace;

(ii) X and Y are not both subsets of the hyperplane H.

The separation is called strict if there exist two parallell hyperplanes to
H, one on each side of H, that separates X and Y .

The hyperplane H = {x | 〈c, x〉 = b} thus separates the two sets X and
Y , if 〈c, x〉 ≤ b ≤ 〈c, y〉 for all x ∈ X and all y ∈ Y and 〈c, x〉 6= b for some
element x ∈ X ∪ Y .

The separation is strict if there exist numbers b1 < b < b2 such that
〈c, x〉 ≤ b1 < b2 ≤ 〈c, y〉 for all x ∈ X, y ∈ Y .

X

Y

H

Figure 3.1. A strictly separating hyperplane H

†The second condition is usually not included in the definition of separation, but we
have included it in order to force a hyperplane H that separates two subsets of a hyperplane
H ′ to be different from H ′.

51
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The existence of separating hyperplanes is in a natural way connected to
extreme values of linear functions.

Theorem 3.1.1. Let X and Y be two nonempty subsets of Rn.
(i) There exists a hyperplane that separates X and Y if and only if there

exists a vector c such that

sup
x∈X
〈c, x〉 ≤ inf

y∈Y
〈c, y〉 and inf

x∈X
〈c, x〉 < sup

y∈Y
〈c, y〉.

(ii) There exists a hyperplane that separates X and Y strictly if and only if
there exists a vector c such that

sup
x∈X
〈c, x〉 < inf

y∈Y
〈c, y〉.

Proof. A vector c that satisfies the conditions in (i) or (ii) is nonzero, of
course.

Suppose that c satisfies the conditions in (i) and choose the number b
so that supx∈X〈c, x〉 ≤ b ≤ infy∈Y 〈c, y〉. Then 〈c, x〉 ≤ b for all x ∈ X and
〈c, y〉 ≥ b for all y ∈ Y . Moreover, 〈c, x〉 6= b for some x ∈ X ∪ Y because
of the second inequality in (i). The hyperplane H = {x | 〈c, x〉 = b} thus
separates the two sets X and Y .

If c satisfies the condition in (ii), we choose instead b so that

supx∈X〈c, x〉 < b < infy∈Y 〈c, y〉,
and now conclude that the hyperplane H separates X and Y strictly.

Conversely, if the hyperplane H separates X and Y , then, by changing the
signs of c and b if necessary, we may assume that 〈c, x〉 ≤ b for all x ∈ X and
〈c, y〉 ≥ b for all y ∈ Y , and this implies that supx∈X〈c, x〉 ≤ b ≤ infy∈Y 〈c, y〉.
Since H does not contain both X and Y , there are points x1 ∈ X and y1 ∈ Y
with 〈c, x1〉 < 〈c, y1〉, and this gives us the second inequality in (i).

If the separation is strict, then there exist two parallel hyperplanes Hi =
{x | 〈c, x〉 = bi} with b1 < b < b2 that separate X and Y . Assuming that X
lies in the halfspace {x | 〈c, x〉 ≤ b1} , we conclude that

supx∈X〈c, x〉 ≤ b1 < b < b2 ≤ infy∈Y 〈c, y〉,
i.e. the vector c satisfies the condition in (ii).

The following simple lemma reduces the problem of separating two sets
to the case when one of the sets consists of just one point.

Lemma 3.1.2. Let X and Y be two nonempty sets.
(i) If there exists a hyperplane that separates 0 from the set X − Y , then

there exists a hyperplane that separates X and Y .
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(ii) If there exists a hyperplane that strictly separates 0 from the set X−Y ,
then there exists a hyperplane that strictly separates X and Y .

Proof. (i) If there exists a hyperplane that separates 0 from X − Y , then by
Theorem 3.1.1 there exists a vector c such that

0 = 〈c, 0〉 ≤ inf
x∈X, y∈Y

〈c, x− y〉 = inf
x∈X
〈c, x〉 − sup

y∈Y
〈c, y〉

0 = 〈c, 0〉 < sup
x∈X, y∈Y

〈c, x− y〉 = sup
x∈X
〈c, x〉 − inf

y∈Y
〈c, y〉

i.e. supy∈Y 〈c, y〉 ≤ infx∈X〈c, x〉 and infy∈Y 〈c, y〉 < supx∈X〈c, x〉, and we con-
clude that there exists a hyperplane that separates X and Y .

(ii) If instead there exists a hyperplane that strictly separates 0 from
X − Y , then there exists a vector c such that

0 = 〈c, 0〉 < inf
x∈X, y∈Y

〈c, x− y〉 = inf
x∈X
〈c, x〉 − sup

y∈Y
〈c, y〉

and it now follows that supy∈Y 〈c, y〉 < infx∈X〈c, x〉, which shows that Y and
X can be strictly separated by a hyperplane.

Our next theorem is the basis for our results on separation of convex sets.

Theorem 3.1.3. Suppose X is a convex set and that a /∈ clX. Then there
exists a hyperplane H that strictly separates a and X.

Proof. The set clX is closed and convex, and a hyperplane that strictly
separates a and clX will, of course, also strictly separate a and X, since X
is a subset of clX. Hence, it suffices to prove that we can strictly separate a
point a from each closed convex set that does not contain the point.

We may therefore assume, without loss of generality, that the convex set
X is closed and nonempty. Define d(x) = ‖x − a‖2, i.e. d(x) is the square
of the Euclidean distance between x and a. We start by proving that the
restriction of the continuous function d(·) to X has a minimum point.

To this end, choose a positive real number r so big that the closed ball
B(a; r) intersects the set X. Then d(x) > r2 for all x ∈ X \ B(a; r), and
d(x) ≤ r2 for all x ∈ X ∩ B(a; r). The restriction of d to the compact set
X ∩B(a; r) has a minimum point x0 ∈ X ∩B(a; r), and this point is clearly
also a minimum point for d restricted to X, i.e. the inequality d(x0) ≤ d(x)
holds for all x ∈ X.

Now, let c = a − x0. We claim that 〈c, x − x0〉 ≤ 0 for all x ∈ X.
Therefore, assume the contrary, i.e. that there is a point x1 ∈ X such that
〈c, x1 − x0〉 > 0. We will prove that this assumption yields a contradiction.
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x0

a
x1

xt
c

X

Figure 3.2. Illustration for the proof of Theorem 3.1.3.

Consider the points xt = tx1+(1−t)x0. They belong to X when 0 ≤ t ≤ 1
because of convexity. Let f(t) = d(xt) = ‖xt − a‖2. Then

f(t) = ‖xt − a‖2 = ‖t(x1 − x0) + (x0 − a)‖2 = ‖t(x1 − x0)− c‖2

= t2‖x1 − x0‖2 − 2t 〈c, x1 − x0〉+ ‖c‖2.

The function f(t) is a quadratic polynomial in t, and its derivative at 0
satisfies f ′(0) = −2 〈c, y1 − y0〉 < 0. Hence, f(t) is strictly decreasing in a
neighbourhood of t = 0, which means that d(xt) < d(x0) for all sufficiently
small positive numbers t.

This is a contradiction to x0 being the minimum point of the function
and proves our assertion that 〈c, x − x0〉 ≤ 0 for all x ∈ X. Consequently,
〈c, x〉 ≤ 〈c, x0〉 = 〈c, a− c〉 = 〈c, a〉−‖c‖2 for all x ∈ X, and this implies that
supx∈X〈c, x〉 < 〈c, a〉. So there exists a hyperplane that strictly separates a
from X according to Theorem 3.1.1.

Definition. Let X be a subset of Rn and let x0 be a point in X. A hyperplane
H through x0 is called a supporting hyperplane of X, if it separates x0 and
X. We then say that the hyperplane H supports X at the point x0.

The existence of a supporting hyperplane of X at x0 is clearly equivalent
to the condition that there exists a vector c such that

〈c, x0〉 = inf
x∈X
〈c, x〉 and 〈c, x0〉 < sup

x∈X
〈c, x〉.

The hyperplane {x | 〈c, x〉 = 〈c, x0〉} is then a supporting hyperplane.

X

x0

H

Figure 3.3. A supporting hyperplane of X at the point x0
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If a hyperplane supports the set X at the point x0, then x0 is necessarily
a relative boundary point of X. For convex sets the following converse holds.

Theorem 3.1.4. Suppose that X is a convex set and that x0 ∈ X is a relative
boundary point of X. Then there exists a hyperplane H that supports X at
the point x0.

Proof. First suppose that the dimension of X equals the dimension of the
surrounding space Rn. Since x0 is then a boundary point of X, there exists
a sequence (xn)∞1 of points xn /∈ clX that converges to x0 as n → ∞, and
by Theorem 3.1.3 there exists, for each n ≥ 1, a hyperplane which strictly
separates xn and X. Theorem 3.1.1 thus gives us a sequence (cn)∞1 of vectors
such that

(3.1) 〈cn, xn〉 < 〈cn, x〉 for all x ∈ X

and all n ≥ 1, and we can obviously normalize the vectors cn so that ‖cn‖ = 1
for all n.

The unit sphere {x ∈ Rn | ‖x‖ = 1} is compact. Hence, by the Bolzano–
Weierstrass theorem, the sequence (cn)∞1 has a subsequence (cnk)

∞
k=1 which

converges to some vector c of length ‖c‖ = 1. Clearly limk→∞ xnk = x0, so by
going to the limit in the inequality (3.1) we conclude that 〈c, x0〉 ≤ 〈c, x〉 for
all x ∈ X. The set X is therefore a subset of one of the two closed halfspaces
determined by the hyperplane H = {x ∈ Rn | 〈c, x〉 = 〈c, x0〉}, and X is
not a subset of H, since dimX = n. The hyperplane H is consequently a
supporting hyperplane of X at the point x0.

Next suppose that dimX < n. Then there exists an affine subspace a+U
that contains X, where U is a linear subspace of Rn and dimU = dimX.
Consider the set Y = X + U⊥, where U⊥ is the orthogonal complement of
U . Compare with figure 3.4. Y is a ”cylinder” with X as ”base”, and each
y ∈ Y has a unique decomposition of the form y = x + v with x ∈ X and
v ∈ U⊥.

X

X + U⊥

x0

U⊥

Figure 3.4. Illustration for the proof of Theorem 3.1.4.
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The set Y is a convex set of dimension n with x0 as a boundary point.
By the already proven case of the theorem, there exists a hyperplane which
supports Y at the point x0, i.e. there exists a vector c such that

〈c, x0〉 = inf
y∈Y
〈c, y〉 = inf

x∈X, v∈U⊥
〈c, x+ v〉 = inf

x∈X
〈c, x〉+ inf

v∈U⊥
〈c, v〉

and

〈c, x0〉 < sup
y∈Y
〈c, y〉 = sup

x∈X, v∈U⊥
〈c, x+ v〉 = sup

x∈X
〈c, x〉+ sup

v∈U⊥
〈c, v〉.

It follows from the first equation that infv∈U⊥〈c, v〉 is a finite number, and
since U⊥ is a vector space, this is possible if and only if 〈c, v〉 = 0 for all
v ∈ U⊥. The conditions above are therefore reduced to the conditions

〈c, x0〉 = inf
x∈X
〈c, x〉 and 〈c, x0〉 < sup

x∈X
〈c, x〉,

which show that X has indeed a supporting hyperplane at x0.

We are now able to prove the following necessary and sufficient condition
for separation of convex sets.

Theorem 3.1.5. Two convex sets X and Y can be separated by a hyperplane
if and only if their relative interiors are disjoint.

Proof. A hyperplane that separates two sets A and B clearly also separates
their closures clA and clB and thereby also all sets C and D that satisfy the
inclusions A ⊆ C ⊆ clA and B ⊆ D ⊆ clB.

To prove the existence of a hyperplane that separates the two convex
sets X and Y provided rintX ∩ rintY = ∅, it hence suffices to prove that
there exists a hyperplane that separates the two convex sets A = rintX and
B = rintY , because rintX ⊆ X ⊆ cl(rintX) = clX, and the corresponding
inclusions are of course also true for Y .

Since the sets A and B are disjoint, 0 does not belong to the convex set
A − B. Thus, the point 0 either lies in the complement of cl(A − B) or
belongs to cl(A−B) and is a relative boundary point of cl(A−B), because

cl(A−B) \ (A−B) ⊆ cl(A−B) \ rint(A−B)

= rbdry(A−B) = rbdry(cl(A−B)).

In the first case it follows from Theorem 3.1.3 that there is a hyperplane that
strictly separates 0 and A−B, and in the latter case Theorem 3.1.4 gives us
a hyperplane that separates 0 from the set cl(A − B), and thereby afortiori
also 0 from A − B. The existence of a hyperplane that separates A and B
then follows from Lemma 3.1.2.
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Now, let us turn to the converse. Assume that the hyperplane H separates
the two convex sets X and Y . We will prove that there is no point that is
a relative interior point of both sets. To this end, let us assume that x0 is a
point in the intersection X∩Y . Then, x0 lies in the hyperplane H because X
and Y are subsets of opposite closed halfspaces determined by H. According
to the separability definition, at least one of the two convex sets, X say,
has points that lie outside H, and this clearly implies that the affine hull
V = aff X is not a subset of H. Hence, there are points in V from each side
of H. Therefore, the intersection V ∩ B(x0; r) between V and an arbitrary
open ball B(x0; r) centered at x0 also contains points from both sides of H,
and consequently surely points that do not belong to X. This means that x0

must be a relative boundary point of X.
Hence, every point in the intersection X ∩Y is a relative boundary point

of either of the two sets X and Y . The intersection rintX ∩ rintY is thus
empty.

Let us now consider the possibility of strict separation. A hyperplane that
strictly separates two sets obviously also strictly separates their closures, so
it suffices to examine when two closed convex subsets X and Y can be strictly
separated. Of course, the two sets have to be disjoint, i.e. 0 /∈ X − Y is a
necessary condition, and Lemma 3.1.2 now reduces the problem of separating
X strictly from Y to the problem of separating 0 strictly from X − Y . So it
follows at once from Theorem 3.1.3 that there exists a separating hyperplane
if the set X − Y is closed. This gives us the following theorem, where the
sufficient conditions follow from Theorem 2.7.11 and Corollary 2.7.12.

Theorem 3.1.6. Two disjoint closed convex sets X and Y can be strictly
separated by a hyperplane if the set X−Y is closed, and a sufficient condition
for this to be the case is reccX ∩ reccY = {0}. In particular, two disjoint
closed convex set can be separated strictly by a hyperplane if one of the sets
is bounded.

We conclude this section with a result that shows that proper convex
cones are proper subsets of conic halfspaces. More precisely, we have:

Theorem 3.1.7. Let X 6= {0} be a proper convex cone in Rn, where n ≥ 2.
Then X is a proper subset of some conic halfspace {x ∈ Rn | 〈c, x〉 ≥ 0},
whose boundary {x ∈ Rn | 〈c, x〉 = 0} does not contain X as a subset.

Proof. The point 0 is a relative boundary point of X, because no point on
the line segment ]0,−a[ belongs to X when a is a point 6= 0 in X. Hence, by
Theorem 3.1.4, there exists a hyperplane H = {x ∈ Rn | 〈c, x〉 = 0} through
0 such that X lies in the closed halfspace K = {x ∈ Rn | 〈c, x〉 ≥ 0} without



58 3 Separation

X being a subset of H. K is a conic halfspace, and the proper cone X must
be different from K, since no conic halfspaces in Rn are proper cones when
n ≥ 2.

3.2 The dual cone

To each subset A of Rn we associate a new subset A+ of Rn by letting

A+ = {x ∈ Rn | 〈a, x〉 ≥ 0 for all a ∈ A}.

In particular, for sets {a} consisting of just one point we have

{a}+ = {x ∈ Rn | 〈a, x〉 ≥ 0},

which is a conic closed halfspace. For general sets A, A+ =
⋂
a∈A{a}+, and

this is an intersection of conic closed halfspaces. The set A+ is thus in general
a closed convex cone, and it is a polyhedral cone if A is a finite set.

Definition. The closed convex cone A+ is called the dual cone of the set A.

The dual cone A+ of a set A in Rn has an obvious geometric interpreta-
tion when n ≤ 3; it consists of all vectors that form an acute angle or are
perpendicular to all vectors in A.

A
0

A+

0

Figure 3.5. A cone A and its dual cone A+.

Theorem 3.2.1. The following properties hold for subsets A and B of Rn.

(i) A ⊆ B ⇒ B+ ⊆ A+;

(ii) A+ = (conA)+;

(iii) A+ = (clA)+.

Proof. Property (i) is an immediate consequence of the definition of the dual
cone.

To prove (ii) and (iii), we first observe that

(conA)+ ⊆ A+ and (clA)+ ⊆ A+,
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because of property (i) and the obvious inclusions A ⊆ conA and A ⊆ clA.
It thus only remains to prove the converse inclusions. So let us assume

that x ∈ A+. Then

〈λ1a1 + · · ·+ λkak, x〉 = λ1〈a1, x〉+ · · ·+ λk〈ak, x〉 ≥ 0

for all conic combinations of elements ai in A. This proves the implication
x ∈ A+ ⇒ x ∈ (conA)+, i.e. the inclusion A+ ⊆ (conA)+.

For each a ∈ clA there exists a sequence (ak)
∞
1 of elements in A such that

ak → a as k → ∞. If x ∈ A+, then 〈ak, x〉 ≥ 0 for all k, and it follows, by
passing to the limit, that 〈a, x〉 ≥ 0. Since a ∈ clA is arbitrary, this proves
the implication x ∈ A+ ⇒ x ∈ (clA)+ and the inclusion A+ ⊆ (clA)+.

Example 3.2.1. Clearly, (Rn)+ = {0} and {0}+ = Rn.

Example 3.2.2. Let, as usual, e1, e2, . . . , en denote the standard basis of Rn.
Then

{ej}+ = {x ∈ Rn | 〈ej, x〉 ≥ 0} = {x ∈ Rn | xj ≥ 0}.
Since Rn

+ = con{e1, . . . , en}, it follows that

(Rn
+)+ = {e1, . . . , en}+ =

n⋂
j=1

{ej}+ = {x ∈ Rn | x1 ≥ 0, . . . , xn ≥ 0} = Rn
+.

The bidual cone

Definition. The dual cone A+ of a set A in Rn is a new set in Rn, and we
may therefore form the dual cone (A+)+ of A+. The cone (A+)+ is called
the bidual cone of A, and we write A++ instead of (A+)+.

Theorem 3.2.2. Let A be an arbitrary set in Rn. Then

A ⊆ conA ⊆ A++.

Proof. The definitions of dual and bidual cones give us the implications

a ∈ A ⇒ 〈x, a〉 = 〈a, x〉 ≥ 0 for all x ∈ A+

⇒ a ∈ A++,

which show that A ⊆ A++. Since A++ is a cone and conA is the smallest
cone containing A, we conclude that conA ⊆ A++.

Because of the previous theorem, it is natural to ask when conA = A++.
Since A++ is a closed cone, a necessary condition for this to be the case is
that the cone conA be closed. Our next theorem shows that this condition
is also sufficient.
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Theorem 3.2.3. Let X be a convex cone. Then X++ = clX, and conse-
quently, X++ = X if and only if the cone X is a closed.

Proof. It follows from the inclusion X ⊆ X++ and the closedness of the
bidual cone X++ that clX ⊆ X++.

To prove the converse inclusion X++ ⊆ clX, we assume that x0 /∈ clX
and will prove that x0 /∈ X++.

By Theorem 3.1.3, there exists a hyperplane that strictly separates x0

from clX. Hence, there exist a vector c ∈ Rn and a real number b such
that the inequality 〈c, x〉 ≥ b > 〈c, x0〉 holds for all x ∈ X. In particular,
t〈c, x〉 = 〈c, tx〉 ≥ b for all x ∈ X and all numbers t ≥ 0, since X is a cone,
and this clearly implies that b ≤ 0 and that 〈c, x〉 ≥ 0 for all x ∈ X. Hence,
c ∈ X+, and since 〈c, x0〉 < b ≤ 0, we conclude that x0 /∈ X++.

By Theorem 2.6.11, finitely generated cones are closed, so we have the
following immediate corollary.

Corollary 3.2.4. If the cone X is finitely generated, then X++ = X.

Example 3.2.3. The dual cone of the polyhedral cone

X =
m⋂
i=1

{x ∈ Rn | 〈ai, x〉 ≥ 0}

is the cone
X+ = con{a1, a2, . . . , am}.

This follows from the above corollary and Theorem 3.2.1, for

X = {a1, a2, . . . , am}+ = (con{a1, a2, . . . , am})+.

If we use matrices to write the above cone X as {x ∈ Rn | Ax ≥ 0},
then the vector ai corresponds to the ith column of the transposed matrix
AT (cf. Example 2.6.3), and the dual cone X+ is consequently generated by
the columns of AT . Thus,

{x ∈ Rn | Ax ≥ 0}+ = {ATy | y ∈ Rm
+}.

3.3 Solvability of systems of linear inequali-

ties

Corollary 3.2.4 can be reformulated as a criterion for the solvability of systems
of linear inequalities. The proof of this criterion uses the following lemma
about dual cones.
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Lemma 3.3.1. Let X and Y be closed convex cones in Rn. Then

(i) X ∩ Y = (X+ + Y +)+;

(ii) X + Y = (X+ ∩ Y +)+, provided that the cone X + Y is closed.

Proof. We have X+ ⊆ (X ∩ Y )+ and Y + ⊆ (X ∩ Y )+, by Theorem 3.2.1 (i).
Hence, X+ + Y + ⊆ (X ∩ Y )+ + (X ∩ Y )+ = (X ∩ Y )+.

Another application of Theorem 3.2.1 in combination with Theorem 3.2.3
now yields X ∩ Y = (X ∩ Y )++ ⊆ (X+ + Y +)+.

To obtain the converse inclusion we first deduce from X+ ⊆ X+ + Y +

that (X+ + Y +)+ ⊆ X++ = X, and the inclusion (X+ + Y +)+ ⊆ Y is of
course obtained in the same way. Consequently, (X+ +Y +)+ ⊆ X ∩Y . This
completes the proof of property (i).

By replacing X and Y in (i) by the closed cones X+ and Y +, we obtain
the equality X+ ∩ Y + = (X++ + Y ++)+ = (X + Y )+, and since the cone
X + Y is assumed to be closed, we conclude that

X + Y = (X + Y )++ = (X+ ∩ Y +)+.

We are now ready for the promised result on the solvability of certain
systems of linear inequalities, a result that will be used in our proof of the
duality theorem in linear programming.

Theorem 3.3.2. Let U be a finitely generated cone in Rn, V be a finitely
generated cone in Rm, A be an m×n-matrix and c be an n×1-matrix. Then
the system

(S)


Ax ∈ V +

x ∈ U+

cTx < 0

has a solution x if and only if the system

(S∗)

{
c− ATy ∈ U

y ∈ V

has no solution y.

Proof. The system (S∗) clearly has a solution if and only if c ∈ (AT(V ) + U),
and consequently, there is no solution if and only if c /∈ (AT(V ) +U). There-
fore, it is worthwhile to take a closer look at the cone AT(V ) + U .

The cones AT(V ), U and AT(V ) + U are closed, since they are finitely
generated. We may therefore apply Lemma 3.3.1 with

AT(V ) + U =
(
AT(V )+ ∩ U+

)+



62 3 Separation

as conclusion. The condition c /∈ (AT(V )+U) is now seen to be equivalent to
the existence of a vector x ∈ AT(V )+ ∩U+ satisfying the inequality cTx < 0,
i.e. to the existence of an x such that

(†)


x ∈ AT(V )+

x ∈ U+

cTx < 0 .

It now only remains to translate the condition x ∈ AT(V )+; it is equivalent
to the condition

〈y, Ax〉 = 〈ATy, x〉 ≥ 0 for all y ∈ V ,

i.e. to Ax ∈ V +. The two systems (†) and (S) are therefore equivalent, and
this observation completes the proof.

By choosing U = {0} and V = Rm
+ with dual cones U+ = Rn and

V + = Rm
+ , we get the following special case of Theorem 3.3.2.

Corollary 3.3.3 (Farkas’s lemma). Let A be an m × n-matrix and c be an
n× 1-matrix, and consider the two systems:

(S)

{
Ax ≥ 0

cTx < 0
and (S∗)

{
ATy = c

y ≥ 0

The system (S) has a solution if and only if the system (S∗) has no solution.

Example 3.3.1. The system
x1−x2 + 2x3 ≥ 0
−x1 + x2− x3 ≥ 0
2x1−x2 + 3x3 ≥ 0
4x1−x2 + 10x3 < 0

has no solution, because the dual system
y1− y2 + 2y3 = 4
−y1 + y2− y3 =−1
2y1− y2 + 3y3 = 10

has a nonnegative solution y = (3, 5, 3).
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Example 3.3.2. The system
2x1 + x2− x3 ≥ 0
x1 + 2x2− 2x3 ≥ 0
x1− x2 + x3 ≥ 0
x1− 4x2 + 4x3 < 0

is solvable, because the solutions of the dual system
2y1 + y2 + y3 = 1
y1 + 2y2− y3 =−4
−y1− 2y2 + y3 = 4

are of the form y = (2− t,−3 + t, t), t ∈ R, and none of those is nonnegative
since y1 < 0 for t > 2 and y2 < 0 for t < 3.

The following generalization of Example 3.2.3 will be needed in Chap-
ter 10.

Theorem 3.3.4. Let a1, a2, . . . , am be vectors in Rn, and let I, J be a parti-
tion of the index set {1, 2, . . . ,m}, i.e. I ∩ J = ∅ and I ∪ J = {1, 2, . . . ,m}.
Let

X =
⋂
i∈I

{x ∈ Rn | 〈ai, x〉 ≥ 0} ∩
⋂
i∈J

{x ∈ Rn | 〈ai, x〉 > 0},

and suppose that X 6= ∅. Then

X+ = con{a1, a2, . . . , am}.

Proof. Let

Y =
m⋂
i=1

{x ∈ Rn | 〈ai, x〉 ≥ 0}.

The set Y is closed and contains X, and we will prove that Y = clX by
showing that every neighborhood of an arbitrary point y ∈ Y contains points
from X.

So, fix a point x0 ∈ X, and consider the points y + tx0 for t > 0. These
points lie in X, for

〈ai, y + tx0〉 = 〈ai, y〉+ t〈ai, x0〉 =

{
≥ 0 if i ∈ I
> 0 if i ∈ J ,

and since y+ tx0 → y as t→ 0, there are indeed points in X arbitrarily close
to y.

Hence X+ = (clX)+ = Y +, by Theorem 3.2.1, and the conclusion of the
theorem now follows from the result in Example 3.2.3.
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How do we decide whether the set X in Theorem 3.3.4 is nonempty? If
just one of the m linear inequalities that define X is strict (i.e. if the index
set J consists of one element), then Farkas’s lemma gives a necessary and
sufficient condition for X to be nonempty. A generalization to the general
case reads as follows.

Theorem 3.3.5. The set X in Theorem 3.3.4 is nonempty if and only if
m∑
i=1

λiai = 0

λi ≥ 0 for all i

⇒ λi = 0 for all i ∈ J .

Proof. Let the vectors âi in Rn+1 (= Rn × R) be defined by

âi =

{
(ai, 0) if i ∈ I
(ai, 1) if i ∈ J .

Write x̃ = (x, xn+1), and let X̃ be polyhedral cone

X̃ =
m⋂
i=1

{x̃ ∈ Rn+1 | 〈âi, x̃〉 ≥ 0} = (con{â1, . . . , âm})+.

Since

〈âi, (x, xn+1)〉 =

{
〈ai, x〉 if i ∈ I
〈ai, x〉+ xn+1 if i ∈ J ,

and 〈ai, x〉 > 0 for all i ∈ J if and only if there exists a negative real number
xn+1 such that 〈ai, x〉 + xn+1 ≥ 0 for all i ∈ J , we conclude that the point
x lies in X if and only if there exists a negative number xn+1 such that
〈âi, (x, xn+1)〉 ≥ 0 for all i, i.e. if and only if there exists a negative number
xn+1 such that (x, xn+1) ∈ X̃. This is equivalent to saying that the set X is
empty if and only if the implication x̃ ∈ X̃ ⇒ xn+1 ≥ 0 is true, i.e. if and
only if X̃ ⊆ Rn × R+. Using the results on dual cones in Theorems 3.2.1
and 3.2.3 we thus obtain the following chain of equivalences:

X = ∅ ⇔ X̃ ⊆ Rn × R+

⇔ {0} × R+ = (Rn × R+)+ ⊆ X̃+ = con{â1, â2, . . . , âm}
⇔ (0, 1) ∈ con{â1, â2, . . . , âm}

⇔ there are numbers λi ≥ 0 such that
m∑
i=1

λiai = 0 and
∑
i∈J

λi = 1

⇔ there are numbers λi ≥ 0 such that
m∑
i=1

λiai = 0 and λi > 0 for

some i ∈ J .
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(The last equivalence holds because of the homogenouity of the condition∑m
i=1 λiai = 0. If the condition is fulfilled for a set of nonnegative numbers

λi with λi > 0 for at least one i ∈ J , then we can certainly arrange so that∑
i∈J λi = 1 by multiplying with a suitable constant.)

Since the first and the last assertion in the above chain of equivalences are
equivalent, so are their negations, and this is the statement of the theorem.

The following corollary is an immediate consequence of Theorem 3.3.5.

Corollary 3.3.6. The set X in Theorem 3.3.4 is nonempty if the vectors
a1, a2, . . . , am are linearly independent.

The following equivalent matrix version of Theorem 3.3.5 is obtained by
considering the vectors ai, i ∈ I and ai, i ∈ J in Theorems 3.3.4 and 3.3.5 as
rows in two matrices A and C, respectively.

Theorem 3.3.7. Let A be a p×n-matrix and C be q×n-matris. Then exactly
one of the two dual systems{

Ax ≥ 0

Cx > 0
and

{
ATy + CTz = 0

y, z ≥ 0, z 6= 0

has a solution.

Theorem 3.3.7 will be generalized in Chapter 6.5, where we prove a the-
orem on the solvability of systems of convex and affine inequalities.

Exercises

3.1 Find two disjoint closed convex sets in R2 that are not strictly separable by
a hyperplane (i.e. by a line in R2).

3.2 Let X be a convex proper subset of Rn. Show that X is an intersection of
closed halfspaces if X is closed, and an intersection of open halfspaces if X
is open.

3.3 Prove the following converse of Lemma 3.1.2: If two sets X and Y are
(strictly) separable, then X − Y and 0 are (strictly) separable.

3.4 Find the dual cones of the following cones in R2:

a) R+×{0} b) R×{0} c) R×R+ d) (R++×R++)∪{(0, 0)}
e) {x ∈ R2 | x1 + x2 ≥ 0, x2 ≥ 0}

3.5 Prove for arbitrary sets X and Y that (X × Y )+ = X+ × Y +.
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3.6 Determine the cones X, X+ and X++, if X = conA and

a) A = {(1, 0), (1, 1), (−1, 1)} b) A = {(1, 0), (−1, 1), (−1,−1)}
c) A = {x ∈ R2 | x1x2 = 1, x1 > 0}.

3.7 Let A = {a1, a2, . . . , am} be a subset of Rn, and suppose 0 /∈ A. Prove that
the following three conditions are equivalent:

(i) conA is a proper cone.

(ii)
∑m

j=1 λjaj = 0, λ = (λ1, λ2, . . . , λm) ≥ 0 ⇒ λ = 0.

(iii) There is a vector c such that 〈c, a〉 > 0 for all a ∈ A.

3.8 Is the following system consistent?
x1− 2x2− 7x3≥ 0

5x1 + x2− 2x3≥ 0
x1 + 2x2 + 5x3≥ 0

18x1 + 5x2− 3x3 < 0

3.9 Show that 
x1 + x2− x3≥ 2
x1− x2 ≥ 1
x1 + x3≥ 3

⇒ 6x1 − 2x2 + x3 ≥ 11.

3.10 For which values of the parameter α ∈ R is the system
x1 + x2 + αx3≥ 0
x1 +αx2 + x3≥ 0
αx1 + x2 + x3≥ 0
x1 +αx2 +α2x3 < 0

solvable?

3.11 Let A be an m × n-matrix. Prove that exactly one of the two systems (S)
and (S∗) has a solution if

(S)


Ax = 0

x ≥ 0

x 6= 0

and (S∗) ATy > 0a)

(S)

{
Ax = 0

x > 0
and (S∗)

{
ATy ≥ 0

ATy 6= 0 .
b)

3.12 Prove that the following system of linear inequalities is solvable:
Ax = 0

x ≥ 0

ATy ≥ 0

ATy + x > 0 .



Chapter 4

More on convex sets

4.1 Extreme points and faces

Extreme point

Polyhedra, like the one in figure 4.1, have vertices. A vertex is characterized
by the fact that it is not an interior point of any line segment that lies entirely
in the polyhedron. This property is meaningful for arbitrary convex sets.

Figure 4.1. A polyhedron
with vertices.

Figure 4.2. Extreme points of a line
segment, a triangle and a circular disk.

Definition. A point x in a convex set X is called an extreme point of the set
if it does not lie in any open line segment joining two points of X, i.e. if

a1, a2 ∈ X & a1 6= a2 ⇒ x /∈ ]a1, a2[.

The set of all extreme points of X will be denoted by extX.

A point in the relative interior of a convex set is clearly never an extreme
point, except when the convex set consists just one point.† With an exception
for this trivial case, extX is consequently a subset of the relative boundary
of X. In particular, open convex sets have no extreme points.

†For if X = {x0}, then rintX = {x0}, rbdryX = ∅ and extX = {x0}.

67
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Example 4.1.1. The two endpoints are the extreme points of a closed line
segment. The three vertices are the extreme points of a triangle. All points
on the boundary {x | ‖x‖2 = 1} are extreme points of the Euclidean closed
unit ball B(0; 1) in Rn.

Extreme ray

The extreme point concept is of no interest for convex cones, because non-
proper cones have no extreme points, and proper cones have 0 as their only
extreme point. Instead, for cones the correct extreme concept is about rays,
and in order to define it properly we first have to define what it means for a
ray to lie between to rays.

Definition. We say that the ray R = −→a lies between the two rays R1 = −→a1

and R2 = −→a2 if the two vectors a1 and a2 are linearly independent and there
exist two positive numbers λ1 and λ2 so that a = λ1a1 + λ2a2.

It is easy to convince oneself that the concept ”lie between” only depends
on the rays R, R1 and R2, and not on the vectors a, a1 and a2 chosen to
represent them. Furthermore, a1 and a2 are linearly independent if and only
if the rays R1 and R2 are different and not opposite to each other, i.e. if and
only if R1 6= ±R2.

Definition. A ray R in a convex cone X is called an extreme ray of the cone
if the following two conditions are satisfied:

(i) the ray R does not lie between any rays in the cone X;
(ii) the opposite ray −R does not lie in X.

The set of all extreme rays of X is denoted by exrX.

The second condition (ii) is automatically satisfied for all proper cones,
and it implies, as we shall see later (Theorem 4.2.4), that non-proper cones
have no extreme rays.

R3R1 R2

Figure 4.3. A polyhedral cone in R3 with three extreme rays.
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It follows from the definition that no extreme ray of a convex cone with
dimension greater than 1 can pass through a relative interior point of the
cone. The extreme rays of a cone of dimension greater than 1 are in other
words subsets of the relative boundary of the cone.

Example 4.1.2. The extreme rays of the four subcones of R are as follows:
exr{0} = exr R = ∅, exr R+ = R+ and exr R− = R−.

The non-proper cone R × R+ in R2 (the ”upper halfplane”) has no ex-
treme rays, since the two boundary rays R+ × {0} and R− × {0} are dis-
qualified by condition (ii) of the extreme ray definition.

Face

Definition. A subset F of a convex set X is called a proper face of X if
F = X ∩H for some supporting hyperplane H of X. In addition, the set X
itself and the empty set ∅ are called non-proper faces of X.‡

The reason for including the set itself and and the empty set among the
faces is that it simplifies the wording of some theorems and proofs.

X H

F

Figure 4.4. A convex set X with F as one its faces.

The faces of a convex set are obviously convex sets. And the proper faces
of a convex cone are cones, since the supporting hyperplanes of a cone must
pass through the origin and thus be linear subspaces.

Example 4.1.3. Every point on the boundary {x | ‖x‖2 = 1} is a face of
the closed unit ball B(0; 1), because the tangent plane at a boundary point
is a supporting hyperplane and does not intersect the unit ball in any other
point.

Example 4.1.4. A cube in R3 has 26 proper faces: 8 vertices, 12 edges and
6 sides.

‡There is an alternative and more general definition of the face concept, see exercise 4.7.
Our proper faces are called exposed faces by Rockafellar in his standard treatise Convex
Analysis. Every exposed face is also a face according to the alternative definition, but the
two definitions are not equivalent, because there are convex sets with faces that are not
exposed.
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Theorem 4.1.1. The relative boundary of a closed convex set X is equal to
the union of all proper faces of X.

Proof. We have to prove that rbdryX =
⋃
F , where the union is taken over

all proper faces F of X. So suppose that x0 ∈ F , where F = X ∩ H is a
proper face of X, and H is a supporting hyperplane. Since H supports X at
x0, and since, by definition, X is not contained in H, it follows that x0 is a
relative boundary point of X. This proves the inclusion

⋃
F ⊆ rbdryX.

Conversely, if x0 is a relative boundary point of X, then there exists a
hyperplane H that supports X at x0, and this means that x0 lies in the
proper face X ∩H.

Theorem 4.1.2. The intersection of two faces of a convex set is a face of the
set.

Proof. Let F1 and F2 be two faces of the convex set X, and let F = F1 ∩F2.
That F is a face is trivial if the two faces F1 and F2 are identical, or if they
are disjoint, or if one of them is non-proper.

So suppose that the two faces F1 and F2 are distinct and proper, i.e. that
they are of the form Fi = X ∩Hi, where H1 och H2 are distinct supporting
hyperplanes of the set X, and F 6= ∅. Let

Hi = {x ∈ Rn | 〈ci, x〉 = bi},
where the normal vectors ci of the hyperplanes are chosen so that X lies
in the two halfspaces {x ∈ Rn | 〈ci, x〉 ≤ bi}, and let x1 ∈ X be a point
satisfying the condition 〈c1, x1〉 < b1.

The hyperplanes H1 and H2 must be non-parallel, since X ∩H1 ∩H2 =
F 6= ∅. Hence c2 6= −c1, and we obtain a new hyperplane

H = {x ∈ Rn | 〈c, x〉 = b}
by defining c = c1 + c2 and b = b1 + b2. We will show that H is a supporting
hyperplane of X and that F = X ∩ H, which proves our claim that the
intersection F is a face of X.

H1

H2

H

F1

F2

X

F

Figure 4.5. Illustration for the proof of Theorem 4.1.2.
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For all x ∈ X, we have the inequality

〈c, x〉 = 〈c1, x〉+ 〈c2, x〉 ≤ b1 + b2 = b,

and the inequality is strict for the particular point x1 ∈ X, since

〈c, x1〉 = 〈c1, x1〉+ 〈c2, x1〉 < b1 + b2 = b.

So X lies in one of the two closed halfspaces determined by H without being
a subset of H. Moreover, for all x ∈ F = X ∩H1 ∩H2,

〈c, x〉 = 〈c1, x〉+ 〈c2, x〉 = b1 + b2 = b.

which implies that H is a supporting hyperplane of X and that F ⊆ X ∩H.

Conversely, if x ∈ X ∩H, then 〈c1, x〉 ≤ b1, 〈c2, x〉 ≤ b2 and

〈c1, x〉+ 〈c2, x〉 = b1 + b2,

and this implies that 〈c1, x〉 = b1 and 〈c2, x〉 = b2. Hence, x ∈ X ∩H1∩H2 =
F . This proves the inclusion X ∩H ⊆ F .

Theorem 4.1.3. (i) Suppose F is a face of the convex set X. A point x in
F is an extreme point of F if and only if x is an extreme point of X.

(ii) Suppose F is a face of the convex cone X. A ray R in F is an extreme
ray of F if and only if R is an extreme ray of X.

Proof. Since the assertions are trivial for non-proper faces, we may assume
that F = X ∩H for some supporting hyperplane H of X.

No point in a hyperplane lies in the interior of a line segment whose
endpoints both lie in the same halfspace, unless both endpoints lie in the
hyperplane, i.e. unless the line segment lies entirely in the hyperplane.

Analogously, no ray in a hyperplane H (through the origin) lies between
two rays in the same closed halfspace determined by H, unless both these
rays lie in the hyperplane H. And the opposite ray −R of a ray R in a
hyperplane clearly lies in the same hyperplane.

(i) If x ∈ F is an interior point of some line segment with both endpoints
belonging to X, then x is in fact an interior point of a line segment whose

x

X H

F

Figure 4.6. The two endpoints of an open line segment that intersects the
hyperplane H must either both belong to H or else lie in opposite open halfspaces.
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endpoints both belong to F . This proves the implication

x /∈ extX ⇒ x /∈ extF.

The converse implication is trivial, since every line segment in F is a line
segment i X. Hence, x /∈ extX ⇔ x /∈ extF , and this is of course equivalent
to assertion (i).

(ii) Suppose R is a ray in F and that R is not an extreme ray of the cone X.
Then there are two possibilities: R lies between two rays R1 and R2 in X, or
the opposite ray −R lies in X. In the first case, R1 and R2 will necessarily
lie in F , too. In the second case, the ray −R will lie in F . Thus, both cases
lead to the conclusion that R is not an extreme ray of the cone F , and this
proves the implication R /∈ exrX ⇒ R /∈ exrF .

The converse implication is again trivial, and this observation concludes
the proof of assertion (ii).

4.2 Structure theorems for convex sets

Theorem 4.2.1. Let X be a line-free closed convex set with dimX ≥ 2. Then

X = cvx(rbdryX).

Proof. Let n = dimX. By identifying the affine hull of X with Rn, we may
without loss of generality assume that X is a subset of Rn of full dimension,
so that rbdryX = bdryX. To prove the theorem it is now enough to prove
that every point in X lies in the convex hull of the boundary bdryX, because
the inclusionen cvx(bdryX) ⊆ X is trivially true.

The recession cone C = reccX is a proper cone, since X is supposed to
be line-free. Hence, there exists a closed halfspace

K = {x ∈ Rn | 〈c, x〉 ≥ 0},

which contains C as a proper subset, by Theorem 3.1.7. Since C is a closed
cone, we conclude that the corresponding open halfspace

K+ = {x ∈ Rn | 〈c, x〉 > 0}.

contains a vector v that does not belong to C. The opposite vector −v, which
lies in the opposite open halfspace, does not belong to C, either. Compare
figure 4.7.

We have produced two opposite vectors ±v, both lying outside the reces-
sion cone. The two opposite halflines x+−→v and x−−→v from a point x ∈ X
therefore both intersect the complement of X. The intersection between X
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K+

v

x

X

x1

x2

0

C

Figure 4.7. An illustration for the proof of Theorem 4.2.1.

and the line through x with direction vector v, which is a closed convex set,
is thus either a closed line segment [x1, x2] containing x and with endpoints
belonging to the boundary of X, or the singleton set {x} with x belonging
to the boundary of X. In the first case, x is a convex combination of the
boundary points x1 and x2. So, x lies in the convex hull of the boundary in
both cases. This completes the proof of the theorem.

It is now possible to give a complete description of line-free closed convex
sets in terms of extreme points and recession cones.

Theorem 4.2.2. A nonempty closed convex set X has extreme points if and
only if X is line-free, and if X is line-free, then

X = cvx(extX) + reccX.

Proof. First suppose that the set X is not line-free. Its recessive subspace
will then, by definition, contain a nonzero vector y, and this implies that
the two points x ± y lie in X for each point x ∈ X. Therefore, x being the
midpoint of the line segment ]x − y, x + y[, is not an extreme point. This
proves that the set extX of extreme points is empty.

Next suppose that X is line-free. We claim that extX 6= ∅ and that X =
cvx(extX) + reccX, and we will prove this by induction on the dimension
of the set X.

Our claim is trivially true for zero-dimensional sets X, i.e. sets consisting
of just one point. If dimX = 1, then either X is a halfline a + −→v with one
extreme point a and recession cone equal to −→v , or a line segment [a, b] with
two extreme points a, b and recession cone equal to {0}, and the equality in
the theorem is clearly satisfied in both cases.

Now assume that n = dimX ≥ 2 and that our claim is true for all line-
free closed convex sets X with dimension less than n. By Theorems 4.1.1
and 4.2.1,

X = cvx
(⋃

F
)
,
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where the union is taken over all proper faces F of X. Each proper face F is
a nonempty line-free closed convex subset of a supporting hyperplane H and
has a dimension which is less than or equal to n − 1. Therefore, extF 6= ∅
and

F = cvx(extF ) + reccF,

by our induction hypothesis.
Since extF ⊆ extX (by Theorem 4.1.3), it follows that extX 6= ∅. More-

over, reccF is a subset of reccX, so we have the inclusion

F ⊆ cvx(extX) + reccX

for each face F . The union
⋃
F is consequently included in the convex set

cvx(extX) + reccX. Hence

X = cvx
(⋃

F
)
⊆ cvx(extX) + reccX ⊆ X + reccX = X,

so X = cvx(extX) + reccX, and this completes the induction and the proof
of the theorem.

The recession cone of a compact set is equal to the null cone, and the
following result is therefore an immediate corollary of Theorem 4.2.2.

Corollary 4.2.3. Each nonempty compact convex set has extreme points and
is equal to the convex hull of its extreme points.

We shall now formulate and prove the anaologue of Theorem 4.2.2 for
convex cones, and in order to simplify the notation we shall use the following
convention: If A is a family of rays, we let conA denote the cone

con
(⋃
R∈A

R
)
,

i.e. conA is the cone that is generated by the vectors on the rays in the
family A. If we choose a nonzero vector aR on each ray R ∈ A and let
A = {aR | R ∈ A}, then of course conA = conA.

The cone conA is clearly finitely generated if A is a finite family of rays,
and we obtain a set of generators by choosing one nonzero vector from each
ray.

Theorem 4.2.4. A closed convex cone X has extreme rays if and only if the
cone is proper and not equal to the null cone {0}. If X is a proper closed
convex cone, then

X = con(exrX).
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Proof. First suppose that the cone X is not proper, and let R = −→x be an
arbitrary ray in X. We will prove that R can not be an extreme ray.

Since X is non-proper, there exists a nonzero vector a in the intersection
X ∩ (−X). First suppose that R is equal to −→a or to −−→a . Then both R and
its opposite ray −R lie in X, and this means that R is not an extreme ray.

Next suppose R 6= ±−→a . The vectors x and a are then linearly indepen-
dent, and the two rays R1 =

−−−→
x+ a and R2 =

−−→
x−a are consequently distinct

and non-opposite rays in the cone X. Since x = 1
2
(x + a) + 1

2
(x − a), we

conclude that R lies between R1 and R2. Thus, R is not an extreme ray in
this case either, and this proves that non-proper cones have no extreme rays.

The equality X = con(exrX) is trivially true for the null cone, since
exr{0} = ∅ and con ∅ = {0}. To prove that the equality holds for all non-
trivial proper closed convex cones and that these cones do have extreme rays,
we only have to modify slightly the induction proof for the corresponding part
of Theorem 4.2.2.

The start of the induction is of course trivial, since one-dimensional proper
cones are rays. So suppose our assertion is true for all cones of dimension less
than or equal to n − 1, and let X be a proper closed n-dimensional convex
cone. X is then, in particular, a line-free set, whence X = cvx

(⋃
F
)
, where

the union is taken over all proper faces F of the cone. Moreover, since X is
a convex cone, cvx

(⋃
F
)
⊆ con

(⋃
F
)
⊆ conX = X, and we conclude that

(4.1) X = con
(⋃

F
)
.

We may of course delete the trivial face F = {0} from the above union
without destroying the identity, and every remaining face F is a proper closed
convex cone of dimension less than or equal to n − 1 with exrF 6= ∅ and
F = con(exrF ), by our induction assumption. Since exrF ⊆ exrX, it now
follows that the set exrX is nonempty and that F ⊆ con(exrX).

The union
⋃
F of the faces is thus included in the cone con(exrX), so

it follows from equation (4.1) that X ⊆ con(exrX). Since the converse
inclusion is trivial, we have equality X = con(exrX), and the induction step
is now complete.

The recession cone of a line-free convex set is a proper cone. The following
structure theorem for convex sets is therefore an immediate consequence of
Theorems 4.2.2 and 4.2.4.

Theorem 4.2.5. If X is a nonempty line-free closed convex set, then

X = cvx(extX) + con(exr(reccX)).
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The study of arbitrary closed convex sets is reduced to the study of line-
free such sets by the following theorem, which says that every non-line-free
closed convex set is a cylinder with a line-free convex set as its base and with
the recessive subspace linX as its ”axis”.

Theorem 4.2.6. Suppose X is a closed convex set in Rn. The intersection
X ∩ (linX)⊥ is then a line-free closed convex set and

X = linX +X ∩ (linX)⊥.

0

(linX)⊥

X

linX

Figure 4.8. Illustration for Theorem 4.2.6.

Proof. Each x ∈ Rn has a unique decomposition x = y + z with y ∈ linX
and z ∈ (linX)⊥. If x ∈ X, then z lies in X, too, since

z = x− y ∈ X + linX = X.

This proves the inclusion X ⊆ linX+X∩(linX)⊥, and the converse inclusion
follows from linX +X ∩ (linX)⊥ ⊆ linX +X = X.

Exercises

4.1 Find extX and decide whether X = cvx(extX) when

a) X = {x ∈ R2
+ | x1 + x2 ≥ 1}

b) X =
(
[0, 1]× [0, 1[

)
∪
(
[0, 1

2 ]× {1}
)

c) X = cvx
(
{x ∈ R3 | (x1 − 1)2 + x2

2 = 1, x3 = 0} ∪ {(0, 0, 1), (0, 0,−1)}
)
.

4.2 Prove that ext(cvxA) ⊆ A for each subset A of Rn.

4.3 Let X = cvxA and suppose the set A is minimal in the following sense: If
B ⊆ A och X = cvxB, then B = A. Prove that A = extX.

4.4 Let x0 be a point in a convex set X. Prove that x0 ∈ extX if and only if
the set X \ {x0} is convex.

4.5 Give an example of a compact convex subset of R3 such that the set of
extreme points is not closed.
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4.6 A point x0 in a convex set X is called an exposed point if the singleton set
{x0} is a face, i.e. if there exists a supporting hyperplane H of X such that
X ∩H = {x0}.
a) Prove that every exposed point is an extreme point of X.

b) Give an example of a closed convex set in R2 with an extreme point that
is not exposed.

4.7 There is a more general definition of the face concept which runs as follows:

A face of a convex set X is a convex subset F of X such that every closed
line segment in X with a relative interior point in F lies entirely in F , i.e.

(a, b ∈ X & ]a, b[ ∩ F 6= ∅) =⇒ a, b ∈ F .

Let us call faces according to this definition general faces in order to distin-
guish them from faces according to our old definition, which we call exposed
faces, provided they are proper, i.e. different from the faces X and ∅.
The empty set ∅ and X itself are apparently general faces of X, and all
extreme points of X are general faces, too.

Prove that the general faces of a convex set X have the following properties.

a) Each exposed face is a general face.

b) There is a convex set with a general face that is not an exposed face.

c) If F is a general face of X and F ′ is a general face of F , then F ′ is a
general face of X, but the coresponding result is not true in general for
exposed faces.

d) If F is a general face of X and C is an arbitrary convex subset of X such
that F ∩ rintC 6= ∅, then C ⊆ F .

e) If F is a general face of X, then F = X ∩ clF . In particular, F is closed
if X is closed.

f) If F1 and F2 are two general faces of X and rintF1 ∩ rintF2 6= ∅, then
F1 = F2.

g) If F is a general face of X and F 6= X, then F ⊆ rbdryX.





Chapter 5

Polyhedra

We have already obtained some isolated results on polyhedra, but now is the
time to collect these and to complement them in order to get a complete
description of this important class of convex sets.

5.1 Extreme points and extreme rays

Polyhedra and extreme points

Each polyhedron X in Rn, except for the entire space, is an intersection of
finitely many closed halfspaces and may therefore be written in the form

X =
m⋂
j=1

Kj,

with

Kj = {x ∈ Rn | 〈cj, x〉 ≥ bj}

for suitable nonzero vectors cj in Rn and real numbers bj. Using matrix
notation,

X = {x ∈ Rn | Cx ≥ b},

where C is an m× n-matrix with cj
T as rows, and b =

[
b1 b2 . . . bm

]T
.

Let

K◦j = {x ∈ Rn | 〈cj, x〉 > bj} = intKj, and

Hj = {x ∈ Rn | 〈cj, x〉 = bj} = bdryKj.

The sets K◦j are open halfspaces, and the Hj are hyperplanes.

79
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If b = 0, i.e. if all hyperplanes Hj are linear subspaces, then X is a
polyhedral cone.

The polyhedron X is clearly a subset of the closed halfspace Kj, which
is bounded by the hyperplane Hj. Let

Fj = X ∩Hj.

If there is a point in common between the hyperplane Hj and the polyhedron
X, without X being entirely contained in H, then H is a supporting hyper-
plane of X, and the set Fj is a proper face of X. But Fj is a face of X also
in the cases when X ∩Hj = ∅ or X ⊆ Hj, due to our convention regarding
non-proper faces. Of course, the faces Fj are polyhedra.

All points of a face Fj (proper as well as non-proper) are boundary points
of X. Since

X =
m⋂
j=1

K◦j ∪
m⋃
j=1

Fj,

and all points in the open set
⋂m
j=1K

◦
j are interior points of X, we conclude

that

intX =
m⋂
j=1

K◦j and bdryX =
m⋃
j=1

Fj.

The set extX of extreme points of the polyhedron X is a subset of the
boundary

⋃m
j=1 Fj, and the extreme points are characterized by the following

theorem.

Theorem 5.1.1. A point x0 in the polyhedron X =
⋂m
j=1 Kj is an extreme

point if and only if there exists a subset I of the index set {1, 2, . . . ,m} such
that

⋂
j∈I Hj = {x0}.

Proof. Suppose there exists such an index set I. The intersection

F =
⋂
j∈I

Fj = X ∩
⋂
j∈I

Hj = {x0}

is a face of X, by Theorem 4.1.2, and x0 is obviously an extreme point of F .
Therefore, x0 is also an extreme point of X, by Theorem 4.1.3.

Now suppose, conversely, that there is no such index set I, and let J be
an index set that is maximal with respect to the property x0 ∈

⋂
j∈J Hj.

(Remember that the intersection over an empty index set is equal to the
entire space Rn, so J = ∅ if x0 is an interior point of X.) The intersection⋂
j∈J Hj is an affine subspace, which by assumption consists of more than

one point and, therefore, contains a line {x0 + tv | t ∈ R} through x0. The
line is obviously also contained in the larger set

⋂
j∈J Kj.
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Since x0 is an interior point of the halfspace Kj for all indices j /∈ J ,
we conclude that the points x0 + tv belong to all these halfspaces for all
sufficiently small values of |t|. Consequently, there is a number δ > 0 such
that the line segment [x0−δv, x0 +δv] lies in X =

⋂
j∈J Kj ∩

⋂
j /∈J Kj, which

means that x0 is not an extreme point.

The condition
⋂
j∈I Hj = {x0} means that the corresponding system of

linear equations

〈cj, x〉 = bj, j ∈ I,

in n unknowns has a unique solution. A necessary condition for this to be
true is that the index set I contains at least n elements. And if the system
has a unique solution and there are more than n equations, then it is always
possible to obtain a quadratic subsystem with a uniqe solution by eliminating
suitably selected equations.

Hence, the condition m ≥ n is necessary for the polyhedron X =
⋂m
j=1Kj

to have at least one extreme point. (This also follows from Theorem 2.7.7,
for if m < n, then

dim linX = dim{x ∈ Rn | Cx = 0} = n− rankC ≥ n−m > 0,

which means that X is not line-free.)

Theorem 5.1.1 gives us the following method for finding all extreme points
of the polyhedron X when m ≥ n:

Solve for each subset J of {1, 2, . . . ,m} with n elements the corresponding
linear system 〈cj, x〉 = bj, j ∈ J . If the system has a unique solution x0, and
the solution lies in X, i.e. satisfies the remaining linear inequalities 〈cj, x〉 ≥
bj, then x0 is an extreme point of X.

The number of extreme points of X is therefore bounded by
(
m
n

)
, which

is the number of subsets J of {1, 2, . . . ,m} with n elements. In particular,
we have proved the following theorem.

Theorem 5.1.2. Polyhedra have finitely many extreme points.

Polyhedral cones and extreme rays

A polyhedral cone in Rn is an intersection X =
⋂m
j=1Kj of conic halfspaces

Kj which are bounded by hyperplanes Hj through the origin, and the faces
Fj = X ∩Hj are polyhedral cones. Our next theorem is a direct analogue of
Theorem 5.1.1.

Theorem 5.1.3. A point x0 in the polyhedral cone X generates an extreme
ray R = −→x0 of the cone if and only if −x0 /∈ X and there exists a subset I of
the index set {1, 2, . . . ,m} such that

⋂
j∈I Hj = {tx0 | t ∈ R}.
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Proof. Suppose there exists such an index set I and that −x0 does not belong
to the cone X. Then ⋂

j∈I

Fj = X ∩
⋂
j∈I

Hj = R.

By Theorem 4.1.2, this means that R is a face of the cone X. The ray R
is an extreme ray of the face R, of course, so it follows from Theorem 4.1.3
that R is an extreme ray of X.

If −x0 belongs to X, then X is not a proper cone, and hence X has no
extreme rays according to Theorem 4.2.4.

It remains to show that R is not an extreme ray in the case when −x0 /∈ X
and there is no index set I with the property that the intersection

⋂
j∈I Hj is

equal to the line through 0 and x0. So let J be a maximal index set satisfying
the condition x0 ∈

⋂
j∈J Hj. Due to our assumption, the intersection

⋂
j∈J Hj

is then a linear subspace of dimension greater than or equal to two, and
therefore it contains a vector v which is linearly independent of x0. The
vectors x0 + tv and x0 − tv both belong to

⋂
j∈J Hj, and consequently also

to
⋂
j∈J Kj, for all real numbers t. When |t| is a sufficiently small number,

the two vectors also belong to the halfspaces Kj for indices j /∈ J , because
x0 is an interior point of Kj for these indices j. Therefore, there exists a
positive number δ such that the vectors x+ = x0 + δv and x− = x0− δv both
belong to the cone X. The two vectors x+ and x− are linearly independent
and x0 = 1

2
x+ + 1

2
x−, so it follows that the ray R = −→x0 lies between the two

rays −→x+ and −→x− in X, and R is therefore not an extreme ray.

Thus, to find all the extreme rays of the cone

X =
m⋂
j=1

{x ∈ Rn | 〈cj, x〉 ≥ 0}

we should proceed as follows. First choose an index set J consisting of n− 1
elements from the set {1, 2, . . . ,m}. This can be done in

(
m
n−1

)
different

ways. Then solve the corresponding homogeneous linear system 〈cj, x〉 = 0,
j ∈ J . If the solution set is one-dimensional, than pick a solution x0. If x0

satisfies the remaining linear inequalities and −x0 does not, then R = −→x0 is
an extreme ray. If, instead, −x0 satisfies the remaining linear inequalities and
x0 does not, then −R is an extreme ray. Since this is the only way to obtain
extreme rays, we conclude that the number of extreme rays is bounded by
the number

(
m
n−1

)
. In particular, we get the following corollary.

Theorem 5.1.4. Polyhedral cones have finitely many extreme rays.
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5.2 Polyhedral cones

Theorem 5.2.1. A cone is polyhedral if and only if it is finitely generated.

Proof. We first show that every polyhedral cone is finitely generated.
By Theorem 4.2.6, every polyhedral cone X can be written in the form

X = linX +X ∩ (linX)⊥,

and X ∩ (lin)⊥ is a line-free, i.e. proper, polyhedral cone. Let B be a set
consisting of one point from each extreme ray of X ∩ (linX)⊥; then B is a
finite set and

X ∩ (linX)⊥ = conB,

according to Theorems 5.1.4 and 4.2.4.
Let e1, e2, . . . , ed be a basis for the linear subspace linX, and put e0 =

−(e1 + e2 + · · · + ed). The cone linX is generated as a cone by the set
A = {e0, e1, . . . , ed}, i.e.

linX = conA.

Summing up,

X = linX +X ∩ (linX)⊥ = conA+ conB = con(A ∪B),

which shows that the cone X is finitely generated by the set A ∪B.

Next, suppose that X is a finitely generated cone so that X = conA for
some finite set A. We start by the observation that the dual cone X+ is
polyhedral. Indeed, if A 6= ∅ then

X+ = A+ = {x ∈ Rn | 〈x, a〉 ≥ 0 for all a ∈ A} =
⋂
a∈A

{x ∈ Rn | 〈a, x〉 ≥ 0}

is an intersection of finitely many conical halfspaces, i.e. a polyhedral cone.
And if A = ∅, then X = {0} and X+ = Rn.

The already proven part of the theorem now implies that the dual cone
X+ is finitely generated. But the dual cone of X+, i.e. the bidual cone X++,
is then polyhedral, too. Since the bidual cone X++ coincides with the original
cone X, by Corollary 3.2.4, we conclude the X is a polyhedral cone.

We are now able two prove two results that were left unproven in Chap-
ter 2.6; compare Corollary 2.6.9.

Theorem 5.2.2. (i) The intersection X ∩Y of two finitely generated cones
X and Y is a finitely generated cone.

(ii) The inverse image T−1(X) of a finitely generated cone X under a linear
map T is a finitely generated cone.
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Proof. The intersection of two conical polyhedra is obviously a conical poly-
hedron, and the same holds for the inverse image of a conical polyhedron un-
der a linear map. The theorem is therefore a corollary of Theorem 5.2.1.

5.3 The internal structure of polyhedra

Polyhedra are by definition intersections of finite collections of closed half-
spaces, and this can be viewed as an external description of polyhedra. We
shall now give an internal description of polyhedra in terms of extreme points
and extreme rays, and the following structure theorem is the main result of
this chapter.

Theorem 5.3.1. A nonempty subset X of Rn is a polyhedron if and only if
there exist two finite subsets A and B of Rn with A 6= ∅ such that

X = cvxA+ conB.

The cone conB is then equal to the recession cone reccX of X. If the
polyhedron is line-free, we may choose for A the set extX of all extreme points
of X, and for B a set consisting of one nonzero point from each extreme ray
of the recession cone reccX.

e1

b1

b2

0

a1

a2

linX

recc(X ∩ (linX)⊥)

X

X ∩ (linX)⊥

Figure 5.1. An illustration for Theorem 5.3.1. The right part of the figure depicts
an unbounded polyhedron X in R3. Its recessive subspace linX is one-dimensional
and is generated as a cone by e1 and -e1. The intersection X ∩ (linX)⊥, which
is shadowed, is a line-free polyhedron with two extreme points a1 and a2. The
recession cone recc(X ∩ (linX)⊥) is generated by b1 and b2. The representation
X = cvxA+ conB is obtained by taking A = {a1, a2} and B = {e1,−e1, b1, b2}.
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Proof. We first prove that polyhedra have the stated decomposition. So
let X be a polyhedron and put Y = X ∩ (linX)⊥. Then, Y is a line-free
polyhedron, and

X = linX + Y = linX + reccY + cvx(extY ),

by Theorems 4.2.6 and 4.2.2. The two polyhedral cones linX and reccY
are, according to Theorem 5.2.1, generated by two finite sets B1 and B2,
respectively, and their sum is generated by the finite set B = B1 ∪ B2. The
set extY is finite, by Theorem 5.1.2, so the representation

X = cvxA+ conB

is now obtained by taking A = extY .

The cone conB is closed and the convex set cvxA is compact, since the
sets A and B are finite. Hence, conB = reccX by Corollary 2.7.13.

If X is a line-free polyhedron, then

X = cvx(extX) + con(exr(reccX)),

by Theorems 4.2.2 and 4.2.4, and this gives us the required representation of
X with A = extX and with B as a set consisting of one nonzero point from
each extreme ray of reccX.

To prove the converse, suppose that X = cvxA + conB, where A =
{a1, . . . , ap} and B = {b1, . . . , bq} are finite sets. Consider the cone Y in
Rn×R that is generated by the finite set (A×{1}) ∪ (B×{0}). The cone
Y is polyhedral according to Theorem 5.2.1, which means that there is an
m× (n+ 1)-matrix C such that

(5.1) (x, xn+1) ∈ Y ⇔ C

[
x

xn+1

]
≥ 0.

(Here

[
x

xn+1

]
denotes the vector (x1, . . . , xn, xn+1) written as a column ma-

trix.)
Let C ′ denote the submatrix of C which consists of all columns but the

last, and let c′ be the last column of the matrix C. Then

C

[
x

xn+1

]
= C ′x+ xn+1c

′,

which means that the equivalence (5.1) may be written as

(x, xn+1) ∈ Y ⇔ C ′x+ xn+1c
′ ≥ 0.
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By definition, a vector (x, 1) ∈ Rn × R belongs to the cone Y if and only if
there exist nonnegative numbers λ1, λ2, . . . , λp and µ1, µ2, . . . , µq such that{

x = λ1a1 + λ2a2 + · · ·+ λpap + µ1b1 + µ2b2 + · · ·+ µqbq

1 = λ1 + λ2 + · · ·+ λp

i.e. if and only if x ∈ cvxA+ conB. This yields the equivalences

x ∈ X ⇔ (x, 1) ∈ Y ⇔ C ′x+ c′ ≥ 0,

which means that X = {x ∈ Rn | C ′x ≥ −c′}. Thus, X is a polyhedron.

5.4 Polyhedron preserving operations

Theorem 5.4.1. The intersection of finitely many polyhedra in Rn is a poly-
hedron.

Proof. Trivial.

Theorem 5.4.2. Suppose X is a polyhedron in Rn and that T : Rn → Rm is
an affine map. The image T (X) is then a polyhedron in Rm.

Proof. The assertion is trivial if the polyhedron is empty, so suppose it is
nonempty and write it in the form

X = cvxA+ conB,

where A = {a1, . . . , ap} and B = {b1, . . . , bq} are finite sets. Each x ∈ X has
then a representation of the form

x =

p∑
j=1

λjaj +

q∑
j=1

µjbj =

p∑
j=1

λjai +

q∑
j=1

µjbj − (

q∑
j=1

µj)0

with nonnegative coefficients λj and µj and
∑p

j=1 λj = 1, i.e. each x ∈ X is
an affine combination of elements in the set A∪B ∪{0}. Since T is an affine
map,

Tx =

p∑
j=1

λjTaj +

q∑
j=1

µjTbj − (

q∑
j=1

µj)T0 =

p∑
j=1

λjTaj +

q∑
j=1

µj(Tbj − T0).

This shows that the image T (X) is of the form

T (X) = cvxA′ + conB′

with A′ = T (A) and B′ = −T0 + T (B) = {Tb1 − T0, . . . , T bq − T0}. So the
image T (X) is a polyhedron, by Theorem 5.3.1.
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Theorem 5.4.3. Suppose Y is a polyhedron in Rm and that T : Rn → Rm

is an affine map. The inverse image T−1(Y ) is then a polyhedron in Rn.

Proof. First assume that Y is a closed halfspace in Rm (or the entire space
Rm), i.e. that Y = {y ∈ Rm | 〈c, y〉 ≥ b}. (The case Y = Rm is obtained by
c = 0 and b = 0.) The affine map T can be written in the form Tx = Sx+y0,
with S as a linear map and y0 as a vector in Rm. This gives us

T−1(Y ) = {x ∈ Rn | 〈c, Tx〉 ≥ b} = {x ∈ Rn | 〈STc, x〉 ≥ b− 〈c, y0〉}.

So T−1(Y ) is a closed halfspace in Rn if STc 6= 0, the entire space Rn if
STc = 0 and b ≤ 〈c, y0〉, and the empty set ∅ if STc = 0 and b > 〈c, y0〉.

In the general case, Y =
⋂p
j=1Kj is an intersection of finitely many closed

halfspaces. Since S−1(Y ) =
⋂p
j=1 S

−1(Kj), the inverse image S−1(Y ) is an
intersection of closed halfspaces, the empty set, or the entire space Rn. Thus,
S−1(Y ) is a polyhedron.

Theorem 5.4.4. The Cartesian product X × Y of two polyhedra X and Y is
a polyhedron.

Proof. Suppose X lies in Rm and Y lies in Rn. The set X × Rn is a poly-
hedron since it is the inverse image of X under the projection (x, y) 7→ x,
and Rm × Y is a polyhedron for a similar reason. It follows that X × Y is a
polyhedron, because X × Y = (X × Rn) ∩ (Rm × Y ).

Theorem 5.4.5. The sum X + Y of two polyhedra in Rn is a polyhedron.

Proof. The sum X + Y is equal to the image of X × Y under the linear map
(x, y)→ x+ y, so the theorem is a consequence of the previous theorem and
Theorem 5.4.2.

5.5 Separation

It is possible to obtain sharper separation results for polyhedra than for
general convex sets. Compare the following two theorems with Theorems
3.1.6 and 3.1.5.

Theorem 5.5.1. If X and Y are two disjoint polyhedra, then there exists a
hyperplane that strictly separates the two polyhedra.

Proof. The difference X −Y of two polyhedra X and Y is a closed set, since
it is a polyhedron according to Theorem 5.4.5. So it follows from Theorem
3.1.6 that there exists a hyperplane that strictly separates the two polyhedra,
if they are disjoint.
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Theorem 5.5.2. Let X be a convex set, and let Y be a polyhedron that is
disjoint from X. Then there exists a hyperplane that separates X and Y and
does not contain X as a subset.

Proof. We prove the theorem by induction over the dimension n of the sur-
rounding space Rn.

The case n = 1 is trivial, so suppose the assertion of the theorem is true
when the dimension is n − 1, and let X be a convex subset of Rn that is
disjoint from the polyhedron Y . An application of Theorem 3.1.5 gives us
a hyperplane H that separates X and Y and, as a consequence, does not
contain both sets as subsets. If X is not contained in H, then we are done.
So suppose that X is a subset of H. The polyhedron Y then lies in one of the
two closed halfspaces defined by the hyperplane H. Let us denote this closed
halfspace by H+, so that Y ⊆ H+, and let H++ denote the corresponding
open halfspace.

If Y ⊆ H++, then Y and H are disjoint polyhedra, and an application
of Theorem 5.5.1 gives us a hyperplane that strictly separates Y and H. Of
course, this hyperplane also strictly separates Y and X, since X is a subset
of H.

This proves the case Y ⊆ H++, so it only remains to consider the case
when Y is a subset of the closed halfspace H+ without being a subset of the
corresponding open halfspace, i.e. the case

Y ⊆ H+, Y ∩H 6= ∅.

Due to our induction hypothesis, it is possible to separate the nonempty
polyhedron Y1 = Y ∩H and X inside the (n− 1)-dimensional hyperplane H
using an affine (n− 2)-dimensional subset L of H which does not contain X
as a subset.

L divides the hyperplane H into two closed halves L+ and L− with L as
their common relative boundary, and with X as a subset of L− and Y1 as
a subset of L+. Let us denote the relative interior of L− by L−−, so that
L−− = L− \ L. The assumption that X is not a subset of L implies that
X ∩ L−− 6= ∅.

Observe that Y ∩L− = Y1∩L. If Y1∩L = ∅, then there exists a hyperplane
that strictly separates the polyhedra Y och L−, by Theorem 5.5.1, and since
X ⊆ L−, we are done in this case, too.

What remains is to treat the case Y1 ∩ L 6= ∅, and by performing a
translation, if necessary, we may assume that the origin lies in Y1 ∩L, which
implies that L is a linear subspace. See figure 5.2.

Note that the set H++ ∪L+ is a cone and that Y is a subset of this cone.
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X

Y

L+

L−

Y1

H
H+

L

Figure 5.2. Illustration for the proof of Theorem 5.5.2.

Now, consider the cone conY generated by the polyhedron Y , and let

C = L+ conY.

C is a cone, too, and a subset of the cone H++ ∪L+, since Y and L are both
subsets of the last mentioned cone. The cone conY is polyhedral, because
if the polyhedron Y is written as Y = cvxA + conB with finite sets A and
B, then conY = con(A ∪ B) due to the fact that 0 lies in Y . Since the
sum of two polyhedral cones is polyhedral, it follows that the cone C is also
polyhedral.

The cone C is disjoint from the set L−−, since the sets L−− and H++∪L+

are disjoint.
Now write the polyhedral cone C as an intersection

⋂
Ki of finitely many

closed halfspacesKi which are bounded by hyperplanesHi through the origin.
Each halfspace Ki is a cone containing Y as well as L. If a given halfspace Ki

contains in addition a point from L−−, then it contains the cone generated
by that point and L, that is all of L−. Therefore, since C =

⋂
Ki and

C ∩ L−− = ∅, we conclude that there exists a halfspace Ki that does not
contain any point from L−−. In other words, the corresponding boundary
hyperplane Hi separates L− and the cone C and is disjoint from L−−. Since
X ⊆ L−, Y ⊆ C and X ∩ L−− 6= ∅, Hi separates the sets X and Y and
does not contain X. This completes the induction step and the proof of the
theorem.

Exercises

5.1 Find the extreme points of the following polyhedra X:

a) X = {x ∈ R2 | −x1 + x2 ≤ 2, x1 + 2x2 ≥ 2, x2 ≥ −1}
b) X = {x ∈ R2 | −x1 + x2 ≤ 2, x1 + 2x2 ≤ 2, x2 ≥ −1}
c) X = {x ∈ R3 | 2x1 + x2 + x3 ≤ 4, x1 + 2x2 + x3 ≤ 4, x ≥ 0}
d) X = {x ∈ R4 | x1 + x2 + 3x3 + x4 ≤ 4, 2x2 + 3x3 ≥ 5, x ≥ 0}.
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5.2 Find the extreme rays of the cone

X = {x ∈ R3 | x1 − x2 + 2x3 ≥ 0, x1 + 2x2 − 2x3 ≥ 0, x2 + x3 ≥ 0, x3 ≥ 0}.

5.3 Find a matrix C such that

con{(1,−1, 1), (−1, 0, 1), (3, 2, 1), (−2,−1, 0)} = {x ∈ R3 | Cx ≥ 0}.

5.4 Find finite sets A and B such that X = conA + cvxB for the following
polyhedra:

a) X = {x ∈ R2 | −x1 + x2 ≤ 2, x1 + 2x2 ≥ 2, x2 ≥ −1}
b) X = {x ∈ R2 | −x1 + x2 ≤ 2, x1 + 2x2 ≤ 2, x2 ≥ −1}
c) X = {x ∈ R3 | 2x1 + x2 + x3 ≤ 4, x1 + 2x2 + x3 ≤ 4, x ≥ 0}
d) X = {x ∈ R4 | x1 + x2 + 3x3 + x4 ≤ 4, 2x2 + 3x3 ≥ 5, x ≥ 0}.

5.5 Suppose 0 lies in the polyhedron X = cvxA + conB, where A and B are
finite sets. Prove that conX = con(A ∪B).



Chapter 6

Convex functions

6.1 Basic definitions

Epigraph and sublevel set

Definition. Let f : X → R be a function with domainX ⊆ Rn and codomain
R, i.e. the real numbers extended with ∞. The set

epi f = {(x, t) ∈ X × R | f(x) ≤ t}

is called the epigraph of the function.
Let α be a real number. The set

sublevα f = {x ∈ X | f(x) ≤ α}

is called a sublevel set of the function, or more precisely, the α-sublevel set.

The epigraph is a subset of Rn+1, and the word ’epi’ means above. So
epigraph means above the graph.

Rn

R

α

sublevα f

epi f

Figure 6.1. Epigraph and a sublevel set

91
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We remind the reader of the notation dom f for the effective domain of
f , i.e. the set of points where the function f : X → R is finite. Obviously,

dom f = {x ∈ X | f(x) <∞}

is equal to the union of all the sublevel sets of f , and these form an increasing
family of sets, i.e.

dom f =
⋃
α∈R

sublevα f and α < β ⇒ sublevα f ⊆ sublevβ f.

This implies that dom f is a convex set if all the sublevel sets are convex.

Convex functions

Definition. A function f : X → R is called convex if its domain X and
epigraph epi f are convex sets.

A function f : X → R is called concave if the function −f is convex.

x

y

Figure 6.2. The graph of a convex function

Example 6.1.1. The epigraph of an affine function is a closed halfspace. All
affine functions, and in particular all linear functions, are thus convex and
concave.

Example 6.1.2. The exponential funcion ex with R as domain of definition
is a convex function.

To see this, we replace x with x−a in the elementary inequality ex ≥ x+1
and obtain the inequality ex ≥ (x−a)ea+ea, which implies that the epigraph
of the exponential function can be expressed as the intersection⋂

a∈R

{(x, y) ∈ R2 | y ≥ (x− a)ea + ea}

of a family of closed halfspaces in R2. The epigraph is thus convex.
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Theorem 6.1.1. The effective domain dom f and the sublevel sets sublevα f
of a convex function f : X → R are convex sets.

Proof. Suppose that the domain X is a subset of Rn and consider the pro-
jection P1 : Rn × R → Rn of Rn × R onto its first factor, i.e. P1(x, t) = x.
Let furthermore Kα denote the closed halfspace {x ∈ Rn+1 | xn+1 ≤ α}.
Then sublevα f = P1(epi f ∩Kα), for

f(x) ≤ α ⇔ ∃t : f(x) ≤ t ≤ α ⇔ ∃t : (x, t) ∈ epi f ∩Kα

⇔ x ∈ P1(epi f ∩Kα).

The intersections epi f ∩Kα are convex sets, and since convexity is preserved
by linear maps, it follows that the sublevel sets sublevα f are convex. Con-
sequently, their union dom f is also convex.

Quasiconvex functions

Many important properties of convex functions are consequences of the mere
fact that their sublevel sets are convex. This is the reason for paying special
attention to functions with convex sublevel sets and motivates the following
definition.

Definition. A function f : X → R is called quasiconvex if X and all its
sublevel sets sublevα f are convex.

A function f : X → R is called quasiconcave if −f is quasiconvex.

Convex functions are quasiconvex since their sublevel sets are convex. The
converse is not true, because a function f that is defined on some subinterval
I of R is quasiconvex if it is increasing on I, or if it is decreasing on I, or
more generally, if there exists a point c ∈ I such that f is decreasing to the
left of c and increasing to the right of c. There are, of course, non-convex
functions of this type.

Convex extensions

The effective domain dom f of a convex (quasiconvex) function f : X → R
is convex, and since

epi f = {(x, t) ∈ dom f × R | f(x) ≤ t} and

sublevα f = {x ∈ dom f | f(x) ≤ α},

the restriction f |dom f of f to dom f is also a convex (quasiconvex) function,
and the restriction has the same epigraph and the same α-sublevel sets as f .
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So what is the point of allowing ∞ as a function value of a convex func-
tion? We are of course primarily interested in functions with finite values but
functions with infinite values arise naturally as suprema or limits of sequences
of functions with finite values.

Another benefit of allowing ∞ as a function value of (quasi)convex func-
tions is that we can without restriction assume that they are defined on the
entire space Rn. For if f : X → R is a (quasi)convex function defined on a
proper subset X of Rn, and if we define the function f̃ : Rn → R by

f̃(x) =

{
f(x) if x ∈ X
∞ if x /∈ X,

then f and f̃ have the same epigraphs and the same α-sublevel sets. The
extension f̃ is therefore also (quasi)convex. Of course, dom f̃ = dom f .

(Quasi)concave functions have an analogous extension to functions with
values in R = R ∪ {−∞}.

Alternative characterization of convexity

Theorem 6.1.2. A function f : X → R with a convex domain of definition
X is

(a) convex if and only if

(6.1) f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

for all points x, y ∈ X and all numbers λ ∈ ]0, 1[;

(b) quasiconvex if and only if

(6.2) f(λx+ (1− λ)y) ≤ max{f(x), f(y)}

for all points x, y ∈ X and all numbers λ ∈ ]0, 1[.

Proof. (a) Suppose f is convex, i.e. that the epigraph epi f is convex, and
let x and y be two points in dom f . Then the points (x, f(x)) and (y, f(y))
belong to the epigraph, and the convexity of the epigraph implies that the
convex combination(

λx+ (1− λ)y, λf(x) + (1− λ)f(y)
)

of these two points also belong to the epigraph. This statement is equivalent
to the inequality (6.1) being true. If any of the points x, y ∈ X lies outside
dom f , then the inequality is trivially satisfied since the right hand side is
equal to ∞ in that case.
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To prove the converse, we assume that the inequality (6.1) holds. Let
(x, s) and (y, t) be two points in the epigraph, and let 0 < λ < 1. Then
f(x) ≤ s and f(y) ≤ t, by definition, and it therefore follows from the
inequality (6.1) that

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λs+ (1− λ)t,

so the point (λx+(1−λ)y, λs+(1−λ)t), i.e. the point λ(x, s)+(1−λ)(y, t),
lies in the epigraph. In orther words, the epigraph is convex.

(b) The proof is analogous and is left to the reader.

A function f : X → R is clearly (quasi)convex if and only if the restriction
f |L is (quasi)convex for each line L that intersects X. Each such line has
an equation of the form x = x0 + tv, where x0 is a point in X and v is a
vector in Rn, and the corresponding restriction is a one-variable function
g(t) = f(x0 + tv) (with the set {t | x0 + tv ∈ X} as its domain of definition).
To decide whether a function is (quasi)convex or not is thus essentially a
one-variable problem.

Definition. Let f : X → R be a function defined on a convex cone X. The
function is called

• subadditive if f(x+ y) ≤ f(x) + f(y) for all x, y ∈ X;

• positive homogeneous if f(αx) = αf(x) for all x ∈ X and all α ∈ R+.

Every positive homogeneous, subadditive function is clearly convex. Con-
versely, every convex, positive homogeneous function f is subadditive, be-
cause

f(x+ y) = 2f(1
2
x+ 1

2
y) ≤ 2(1

2
f(x) + 1

2
f(y)) = f(x) + f(y).

A seminorm on Rn is a function f : Rn → R, which is subadditive,
positive homogeneous, and symmetric, i.e. satisfies the condition

f(−x) = f(x) for all x ∈ Rn.

The symmetry and homogenouity conditions may of course be merged to
the condition

f(αx) = |α|f(x) for all x ∈ Rn and all α ∈ R.

If f is a seminorm, then f(x) ≥ 0 for all x, since

0 = f(0) = f(x− x) ≤ f(x) + f(−x) = 2f(x).

A seminorm f is called a norm if f(x) = 0 implies x = 0. The usual
notation for a norm is ‖·‖.

Seminorms, and in particular norms, are convex functions.
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Example 6.1.3. The Euclidean norm and the `1-norm, that were defined in
Chapter 1, are special cases of the `p-norms ‖·‖p on Rn. They are defined
for 1 ≤ p <∞ by

‖x‖p =
( n∑
i=1

|xi|p
)1/p

,

and for p =∞ by
‖x‖∞ = max

1≤i≤n
|xi|.

The maximum norm ‖·‖∞ is a limiting case, because ‖x‖p → ‖x‖∞ as p→∞.
The `p-norms are obviously positive homogeneous and symmetric and

equal to 0 only if x = 0. Subadditivity is an immediate consequence of the
triangle inequality |x+ y| ≤ |x|+ |y| for real numbers when p = 1 or p =∞,
and of the Cauchy–Schwarz inequality when p = 2. For the remaining values
of p, subadditivity will be proved in Section 6.4 (Theorem 6.4.3).

Strict convexity

By strengthening the inequalities in the alternative characterization of con-
vexity, we obtain the following definitions.

Definition. A convex function f : X → R is called strictly convex if

f(λx+ (1− λ)y) < λf(x) + (1− λ)f(y)

for all pairs of distinct points x, y ∈ X and all λ ∈ ]0, 1[.
A quasiconvex function f is called strictly quasiconvex if inequality (6.2)

is strict for all pairs of distinct points x, y ∈ X and all λ ∈ ]0, 1[.
A function f is called strictly concave (strictly quasiconcave) if the func-

tion −f is strictly convex (strictly quasiconvex).

Example 6.1.4. A quadratic form q(x) = 〈x,Qx〉 =
∑n

i,j=1 qijxixj on Rn is
convex if and only if it is positive semidefinite, and the form is strictly convex
if and only if it is positive definite. This follows from the identity(
λxi+(1−λ)yi

)(
λxj+(1−λ)yj

)
= λxixj+(1−λ)yiyj−λ(1−λ)(xi−yi)(xj−yj)

which after multiplication by qij and summation yields the equality

q(λx+ (1− λ)y) = λq(x) + (1− λ)q(y)− λ(1− λ)q(x− y).

The right hand side is ≤ λq(x) + (1− λ)q(y) for all 0 < λ < 1 if and only if
q(x−y) ≥ 0, which holds for all x 6= y if and only if q is positive semidefinite.
Strict inequality requires q to be positive definite.
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Jensen’s inequality

The inequalities (6.1) and (6.2) are easily extended to convex combinations
of more than two points.

Theorem 6.1.3. Let f be a function and suppose x = λ1x1+λ2x2+· · ·+λmxm
is a convex combination of the points x1, x2, . . . , xm in the domain of f .
(a) If f is convex, then

(6.3) f(x) ≤
m∑
j=1

λjf(xj). (Jensen’s inequality)

If f is strictly convex and λj > 0 for all j, then equality prevails in (6.3)
if and only if x1 = x2 = · · · = xm.

(b) If f is quasiconvex, then

(6.4) f(x) ≤ max
1≤j≤m

f(xj).

If f is strictly quasiconvex and λj > 0 for all j, then equality prevails in
(6.4) if and only if x1 = x2 = · · · = xm.

Proof. (a) To prove the Jensen inequality we may assume that all coefficients
λj are positive and that all points xj lie in dom f , because the right hand
side of the inequality is infinite if some point xj lies outside dom f . Then

(
x,

m∑
j=1

λjf(xj)
)

=
m∑
j=1

λj
(
xj, f(xj)

)
,

and the right sum, being a convex combination of elements in the epigraph
epi f , belongs to epi f . So the left hand side is a point in epi f , and this gives
us inequality (6.3).

Now assume that f is strictly convex and that we have equality in Jensen’s
inequality for the convex combination x =

∑m
j=1 λjxj, with positive coeffi-

cents λj and m ≥ 2. Let y =
∑m

j=2 λj(1−λ1)−1xj. Then x = λ1x1+(1−λ1)y,
and y is a convex combination of x2, x3, . . . , xm, so it follows from Jensen’s
inequality that

m∑
j=1

λjf(xj) = f(x) ≤ λ1f(x1) + (1− λ1)f(y)

≤ λ1f(x1) + (1− λ1)
m∑
j=2

λj(1− λ1)−1f(xj) =
m∑
j=1

λjf(xj).
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Since the left hand side and right hand side of this chain of inequalities
and equalities are equal, we conclude that equality holds everywhere. Thus,
f(x) = λ1f(x1) + (1 − λ1)f(y), and since f is strictly convex, this implies
that x1 = y = x.

By symmetri, we also have x2 = x, . . . , xm = x, and hence x1 = x2 =
· · · = xm.

(b) Suppose f is quasiconvex, and let α = max1≤j≤m f(xj). If any of the
points xj lies outside dom f , then there is nothing to prove since the right
hand side of the inequality (6.4) is infinite. In the opposite case, α is a finite
number, and each point xj belongs to the convex sublevel set sublevα f , and
it follows that so does the point x. This proves inequality (6.4).

The proof of the assertion about equality for strictly quasiconvex func-
tions is analogous with the corresponding proof for strictly convex func-
tions.

6.2 Operations that preserve convexity

We now describe some ways to construct new convex functions from given
convex functions.

Conic combination

Theorem 6.2.1. Suppose that f : X → R and g : X → R are convex func-
tions and that α and β are nonnegative real numbers. Then αf + βg is also
a convex function.

Proof. Follows directly from the alternative characterization of convexity in
Theorem 6.1.2.

The set of convex functions on a given set X is, in other words, a convex
cone. So every conic combination α1f1+α2f2+· · ·+αmfm of convex functions
on X is convex.

Note that there is no counterpart of this statement for quasiconvex func-
tions − a sum of quasiconvex functions is not necessarily quasiconvex.

Pointwise limit

Theorem 6.2.2. Suppose that the functions fi : X → R, i = 1, 2, 3, . . . , are
convex and that the limit

f(x) = lim
i→∞

fi(x)
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exists as a finite number or∞ for each x ∈ X. The limit function f : X → R
is then also convex.

Proof. Let x and y be two points in X, and suppose 0 < λ < 1. By passing
to the limit in the inequality fi(λx + (1 − λ)y) ≤ λfi(x) + (1 − λ)fi(y) we
obtain the following inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y),

which tells us that the limit function f is convex.

Using Theorem 6.2.2, we may extend the result in Theorem 6.2.1 to in-
finite sums and integrals. For example, a pointwise convergent infinite sum
f(x) =

∑∞
i=1 fi(x) of convex functions is convex.

And if f(x, y) is a function that is convex with respect to the variable
x on some set X for each y in a set Y , α is a nonnegative function defined
on Y , and the integral g(x) =

∫
Y
α(y)f(x, y) dy exists for all x ∈ X, then

g is a convex function on X. This follows from Theorem 6.2.2 by writing
the integral as a limit of Riemann sums, or more directly, by integrating the
inequalites that characterize the convexity of the functions f(·, y).

Composition with affine maps

Theorem 6.2.3. Suppose A : V → Rn is an affine map, that Y is a convex
subset of Rn, and that f : Y → R is a convex function. The composition
f ◦ A is then a convex function on its domain of definition A−1(Y )

Proof. Let g = f ◦ A. Then, for x1, x2 ∈ A−1(Y ) and 0 < λ < 1,

g(λx1 + (1− λ)x2) = f(λAx1 + (1− λ)Ax2) ≤ λf(Ax1) + (1− λ)f(Ax2)

= λg(x1) + (1− λ)g(x2),

which shows that the function g is convex.

The composition f ◦ A of a quasiconvex function f and an affine map A
is quasiconvex.

Example 6.2.1. The function x 7→ ec1x1+···+cnxn is convex on Rn since it is a
composition of a linear map and the convex exponential function t 7→ et.

Pointwise supremum

Theorem 6.2.4. Let fi : X → R, i ∈ I, be a family of functions, and define
the function f : X → R for x ∈ X by

f(x) = sup
i∈I

fi(x).
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Then

(i) f is convex if the functions fi are all convex;
(ii) f is quasiconvex if the functions fi are all quasiconvex.

Proof. By the least upper bound definition, f(x) ≤ t if and only if fi(x) ≤ t
for all i ∈ I, and this implies that

epi f =
⋂
i∈I

epi fi and sublevt f =
⋂
i∈I

sublevt fi

for all t ∈ R. The assertions of the theorem are now immediate consequences
of the fact that intersections of convex sets are convex.

f

f1 f2
f3

Figure 6.3. f = sup fi for a family consisting of three functions.

Example 6.2.2. A pointwise maximum of finitely many affine functions, i.e.
a function of the form

f(x) = max
1≤i≤m

(〈ci, x〉+ ai),

is a convex function and is called a convex piecewise affine function.

Example 6.2.3. Examples of convex piecewise affine functions f on Rn are:

(a) The absolute value of the i:th coordinate of a vector

f(x) = |xi| = max{xi,−xi}.
(b) The maximum norm

f(x) = ‖x‖∞ = max
1≤i≤n

|xi|.

(c) The sum of the m largest coordinates of a vector

f(x) = max{xi1 + · · ·+ xim | 1 ≤ i1 < i2 < · · · < im ≤ n}.



6.2 Operations that preserve convexity 101

Composition

Theorem 6.2.5. Suppose that the function φ : I → R is defined on a real
intervall I that contains the range f(X) of the function f : X → R. The
composition φ ◦ f : X → R is convex

(i) if f is convex and φ is convex and increasing;

(ii) if f is concave and φ is convex and decreasing.

Proof. The inequality

φ
(
f(λx+ (1− λ)y)

)
≤ φ

(
λf(x) + (1− λ)f(y)

)
holds for x, y ∈ X and 0 < λ < 1 if either f is convex and φ is increasing, or
f is concave and φ is decreasing. If in addition φ is convex, then

φ
(
λf(x) + (1− λ)f(y)

)
≤ λφ(f(x)) + (1− λ)φ(f(y)),

and by combining the two inequalities above, we obtain the inequality that
shows that the function φ ◦ f is a convex.

There is a corresponding result for quasiconvexity: The composition φ◦f
is quasiconvex if either f is quasiconvex and φ is increasing, or f is quasi-
concave and φ is decreasing.

Example 6.2.4. The function

x 7→ ex
2
1+x22+···+x2k ,

where 1 ≤ k ≤ n, is convex on Rn, since the exponential function is convex
and increasing, and positive semidefinite quadratic forms are convex.

Example 6.2.5. The two functions t 7→ 1/t and t 7→ − ln t are convex and
decreasing on the interval ]0,∞[. So the function 1/g is convex and the
function ln g is concave, if g is a concave and positive function.

Infimum

Theorem 6.2.6. Let C be a convex subset of Rn+1, and let g be the function
defined for x ∈ Rn by

g(x) = inf{t ∈ R | (x, t) ∈ C},

with the usual convention inf ∅ = +∞. Suppose there exists a point x0 in the
relative interior of the set

X0 = {x ∈ Rn | g(x) <∞} = {x ∈ Rn | ∃t ∈ R : (x, t) ∈ C}

with a finite function value g(x0). Then g(x) > −∞ for all x ∈ Rn, and
g : Rn → R is a convex function with X0 as its effective domain.
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Proof. Let x be an arbitrary point in X0. To show that g(x) > −∞, i.e. that
the set

Tx = {t ∈ R | (x, t) ∈ C}
is bounded below, we first choose a point x1 ∈ rintX0 such that x0 lies on
the open line segment ]x, x1[, and write x0 = λx+ (1− λ)x1 with 0 < λ < 1.
We then fix a real number t1 such that (x1, t1) ∈ C, and for t ∈ Tx define
the number t0 as t0 = λt + (1 − λ)t1. The pair (x0, t0) is then a convex
combination of the points (x, t) and (x1, t1) in C, so

g(x0) ≤ t0 = λt+ (1− λ)t1,

by convexity and the definition of g. We conclude that

t ≥ 1

λ

(
g(x0)− (1− λ)t1

)
,

and this inequality shows that the set Tx is bounded below.
So the function g has R as codomain, and dom g = X0. Now, let x1 and

x2 be arbitrary points in X0, and let λ1 and λ2 be two positive numbers with
sum 1. To each ε > 0 there exist two real numbers t1 and t2 such that the
two points (x1, t1) and (x2, t2) lie in C and t1 < g(x1) + ε and t2 < g(x2) + ε.
The convex combination (λ1x1 + λ2x2, λ1t1 + λ2t2) of the two points lies in
C, too, and

g(λ1x1 + λ2x2) ≤ λ1t1 + λ2t2 ≤ λ1g(x1) + λ2g(x2) + ε.

This means that the point λ1x1 + λ2x2 lies in X0, and by letting ε tend to 0
we conclude that g(λ1x1 + λ2x2) ≤ λ1g(x1) + λ2g(x2). Hence, the set X0 is
convex, and the function g is convex.

We have seen that the pointwise supremum f(x) = supi∈I fi(x) of an
arbitrary family of convex functions is convex. So if f : X × Y → R is a
function with the property that the functions f(·, y) are convex on X for
each y ∈ Y , and we define the function g on X by g(x) = supy∈Y f(x, y),
then g is convex, and this is true without any further conditions on the set
Y . Our next theorem shows that the corresponding infimum is a convex
function, provided f is convex as a function on the product set X × Y .

Theorem 6.2.7. Suppose f : X × Y → R is a convex function, and for each
x ∈ X define

g(x) = inf
y∈Y

f(x, y).

If there is a point x0 ∈ rintX such that g(x0) > −∞, then g(x) is a finite
number for each x ∈ X, and g : X → R is a convex function.
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Proof. Suppose X is a subset of Rn and let

C = {(x, t) ∈ X × R | ∃y ∈ Y : f(x, y) ≤ t}.

C is a convex subset of Rn+1, because given two points (x1, t1) and (x2, t2)
in C, and two positive numbers λ1 and λ2 with sum 1, there exist two points
y1 and y2 in the convex set Y such that f(xi, yi) ≤ ti for i = 1, 2, and this
implies that

f(λ1x1 + λ2x2, λ1y1 + λ2y2) ≤ λ1f(x1, y1) + λ2f(x2, y2) ≤ λ1t1 + λ2t2,

which shows that the convex combination λ1(x1, t1) + λ2(x2, t2) lies in C.
Moreover, g(x) = inf{t | (x, t) ∈ C}, so the corollary follows immediately
from Theorem 6.2.6.

Perspective

Definition. Let f : X → R be a function defined on a cone X in Rn. The
function g : X × R++ → R, defined by

g(x, s) = sf(x/s),

is called the perspective of f .

Theorem 6.2.8. The perspective g of a convex function f : X → R with a
convex cone X as domain is a convex function.

Proof. Let (x, s) and (y, t) be two points in X × R++, and let α, β be two
positive numbers with sum 1. Then

g
(
α(x, s) + β(y, t)

)
= g(αx+ βy, αs+ βt) = (αs+ βt)f

(αx+ βy

αs+ βt

)
= (αs+ βt)f

( αs

αs+ βt
· x
s

+
βt

αs+ βt
· y
t

)
≤ αsf

(x
s

)
+ βtf

(y
t

)
= αg(x, s) + βg(y, t).

Example 6.2.6. By the previous theorem, f(x) = xnq(x/xn) is a convex
function on Rn−1 × R++ whenever q(x) is a positive semidefinite quadratic
form on Rn−1. In particular, by choosing the Euclidean norm as quadratic
form, we see that the function

x 7→ (x2
1 + x2

2 + · · ·+ x2
n−1)/xn

is convex on the open halfspace Rn−1 × R++.
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6.3 Maximum and minimum

Minimum points

For an arbitrary function to decide whether a given point is a global minimum
point is an intractable problem, but there are good numerical methods for
finding local minimum points if we impose some regularity conditions on the
function. This is the reason why convexity plays such an important role
in optimization theory. A local minimum of a convex function is namely
automatically a global minimum.

Let us recall that a point x0 ∈ X is a local minimum point of the function
f : X → R if there exists an open ball B = B(x0; r) with center at x0 such
that f(x) ≥ f(x0) for all x ∈ X ∩B. The point is a (global) minimum point
if f(x) ≥ f(x0) for all x ∈ X.

Theorem 6.3.1. Suppose that the function f : X → R is convex and that
x0 ∈ dom f is a local minimum point of f . Then x0 is a global minimum
point. The minimum point is unique if f is strictly convex.

Proof. Let x ∈ X be an arbitrary point different from x0. Since f is a convex
function and λx + (1 − λ)x0 → x0 as λ → 0, the following inequalities hold
for λ > 0 sufficiently close to 0:

f(x0) ≤ f(λx+ (1− λ)x0) ≤ λf(x) + (1− λ)f(x0)

(with strict inequality in the last place if f is strictly convex). From this
follows at once that f(x) ≥ f(x0) (and f(x) > f(x0), respectively), which
proves that x0 is a global minimum point (and that there are no other mini-
mum points if the convexity is strict)

Theorem 6.3.2. The set of minimum points of a quasiconvex function is
convex.

Proof. The assertion is trivial for functions with no minimum point, since
the empty set is convex, and for the function which is identically equal to∞
on X. So, suppose that the quasiconvex function f : X → R has a minimum
point x0 ∈ dom f . The set of minimum points is then equal to the sublevel
set {x ∈ X | f(x) ≤ f(x0)}, which is convex by definition.

Maximum points

Theorem 6.3.3. Suppose X = cvxA and that the function f : X → R is
quasiconvex. Then

sup
x∈X

f(x) = sup
a∈A

f(a).
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If the function has a maximum, then there is a maximum point in A.

Proof. Let x ∈ X. Since x is a convex combination x =
∑m

j=1 λjaj of ele-
ments aj ∈ A,

f(x) = f(
m∑
j=1

λjaj) ≤ max
1≤j≤m

f(aj) ≤ sup
a∈A

f(a),

and it follows that
sup
x∈X

f(x) ≤ sup
a∈A

f(a).

The converse inequality being trivial, since A is a subset of X, we conclude
that equality holds.

Moreover, if x is a maximum point, then f(x) ≥ max1≤j≤m f(aj), and
combining this with the inequality above, we obtain f(x) = max1≤j≤m f(aj),
which means that the maximum is certainly attained at some of the points
aj ∈ A.

Thus, we can find the maximum of a quasiconvex function whose domain
is the convex hull of a finite set A, by just comparing finitely many function
values. Of course, this may be infeasible if the set A is very large.

Since compact convex sets coincide with the convex hull of their extreme
points, we have the following corollary of the previous theorem.

Corollary 6.3.4. Suppose that X is a compact convex set and that f : X → R
is a quasiconvex function. If f has a maximum, then there is a maximum
point among the extreme points of X.

Example 6.3.1. The quadratic form f(x1, x2) = x2
1 + 2x1x2 + 2x2

2 is strictly
convex, since it positive definite. The maximum of f on the traingle with
vertices at the points (1, 1), (−2, 1) and (0, 2) is attained at some of the
vertices. The function values at the vertices are 5, 2, and 8, respectively.
The maximum value is hence equal to 8, and it is attained at (0, 2).

A non-constant realvalued convex function can not attain its maximum
at an interior point of its domain, because of the following theorem.

Theorem 6.3.5. A convex function f : X → R that attains its maximum at
a relative interior point of X, is necessarily constant on X.

Proof. Suppose f has a maximum at the point a ∈ rintX, and let x be an
arbitrary point in X. Since a is a relative interior point, there exists a point
y ∈ X such that a belongs to the open line segment ]x, y[, i.e. a = λx+(1−λ)y
for some number λ satisfying 0 < λ < 1. By convexity and since f(y) ≤ f(a),

f(a) = f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λf(x) + (1− λ)f(a),
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with f(x) ≥ f(a) as conclusion. Since the converse inequality holds trivially,
we have f(x) = f(a). The function f is thus equal to f(a) everywhere.

6.4 Some important inequalities

Many inequalities can be proved by convexity arguments, and we shall give
three important examples.

Arithmetic and geometric mean

Definition. Let θ1, θ2, . . . , θn be given positive numbers with
∑n

j=1 θj = 1.
The weighted arithmetic mean A and the weighted geometric mean G of n pos-
itive numbers a1, a2, . . . , an with the given numbers θ1, θ2, . . . , θn as weights
are defined as

A =
n∑
j=1

θjaj and G =
n∏
j=1

a
θj
j .

The usual arithmetic and geometric means are obtained as special cases
by taking all weights equal to 1/n.

We have the following well-known inequality between the arithmetic and
the geometric means.

Theorem 6.4.1. For all positive numbers a1, a2, . . . , an

G ≤ A

with equality if and only if a1 = a2 = · · · = an.

Proof. Let xj = ln aj, so that aj = exj = exp(xj). The inequality G ≤ A is
now transformed to the inequality

exp
( n∑
j=1

θjxj
)
≤

n∑
j=1

θj exp(xj),

which is Jensen’s inequality for the strictly convex exponential function, and
equality holds if and only if x1 = x2 = · · · = xn, i.e. if and only if a1 = a2 =
· · · = an.

Example 6.4.1. A lot of maximum and minimum problems can be solved
by use of the inequality of arithmetic and geometric means. Here follows a
general example.
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Let f be a function of the form

f(x) =
m∑
i=1

ci
( n∏
j=1

x
αij
j

)
, x ∈ Rn

where ci > 0 and αij are real numbers for all i, j.
The function g(x) = 16x1 +2x2 +x−1

1 x−2
2 , corresponding to n = 2, m = 3,

c = (16, 2, 1) and

α = [αij] =

 1 0
0 1
−1 −2

 ,
serves as a typical example of such a function.

Suppose that we want to minimize f(x) over the set {x ∈ Rn | x > 0}.
This problem can be attacked in the following way. Let θ1, θ2, . . . , θm be
positive numbers with sum equal to 1, and write

f(x) =
m∑
i=1

θi
(ci
θi

n∏
j=1

x
αij
j

)
.

The inequality of arithmetic and geometric means now gives us the following
inequality

(6.5) f(x) ≥
m∏
i=1

((ci
θi

)θi( n∏
j=1

x
θiαij
j

))
= C(θ) ·

n∏
j=1

x
βj
j ,

with

C(θ) =
m∏
i=1

(ci
θi

)θi and βj =
m∑
i=1

θiαij.

If it is possible to choose the weights θi > 0 so that
∑m

i=1 θi = 1 and

βj =
m∑
i=1

θiαij = 0 for all j,

then inequality (6.5) becomes

f(x) ≥ C(θ),

and equality occurs if and only if all the products
ci
θi

n∏
j=1

x
αij
j are equal, a

condition that makes it possible to determine x.
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Hölder’s inequality

Theorem 6.4.2 (Hölder’s inequallity). Suppose 1 ≤ p ≤ ∞ and let q be the
dual index defined by the equality 1/p+ 1/q = 1. Then

|〈x, y〉| =
∣∣ n∑
j=1

xjyj
∣∣ ≤ ‖x‖p‖y‖q

for all x, y ∈ Rn. Moreover, to each x there corresponds a y with norm
‖y‖q = 1 such that 〈x, y〉 = ‖x‖p.

Remark. Observe that q = 2 when p = 2. Thus, the Cauchy–Schwarz in-
equality is a special case of Hölder’s inequality.

Proof. The case p =∞ follows directly from the triangle inequality for sums:∣∣ n∑
j=1

xjyj
∣∣ ≤ n∑

j=1

|xj||yj| ≤
n∑
j=1

‖x‖∞ |yj| = ‖x‖∞‖y‖1.

So assume that 1 ≤ p < ∞. Since
∣∣∑n

1 xjyj
∣∣ ≤ ∑n

1 |xj||yj|, and the
vector (|x1|, . . . , |xn|) has the same `p-norm as (x1, . . . , xn) and the vector
(|y1|, . . . , |yn|) has the same `q-norm as (y1, . . . , yn), we can without loss of
generality assume that the numbers xj and yj are positive.

The function t 7→ tp is convex on the interval [0,∞[. Hence,

(6.6)
( n∑
j=1

λjtj

)p
≤

n∑
j=1

λjt
p
j .

for all positive numbers t1, t2, . . . , tn and all positive numbers λ1, λ2, . . . , λn
with

∑n
1 λj = 1. Now, let us make the particular choice

λj =
yqj∑n
j=1 y

q
j

and tj =
xjyj
λj

.

Then

λjtj = xjyj and λjt
p
j =

xpjy
p
j

y
(p−1)q
j

( n∑
j=1

yqj

)p−1

= xpj

( n∑
j=1

yqj

)p−1

,

which inserted in the inequality (6.6) gives( n∑
j=1

xjyj

)p
≤

p∑
j=1

xpj

( n∑
j=1

yqj

)p−1

,

and we obtain Hölder’s inequality by raising both sides to 1/p.
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It is easy to verify that Hölder’s inequality holds with equality and that
‖y‖q = 1 if we choose y as follows:

x = 0 : All y with norm equal to 1.

x 6= 0, 1 ≤ p <∞ : yj =

{
‖x‖−p/qp |xj|p/xj if xj 6= 0,

0 if xj = 0.

x 6= 0, p =∞ : yj =

{
|xj|/xj if j = j0,

0 if j 6= j0,

where j0 is an index such that |xj0| = ‖x‖∞.

Theorem 6.4.3 (Minkowski’s inequality). Suppose p ≥ 1 and let x and y be
arbitrary vectors in Rn. Then

‖x+ y‖p ≤ ‖x‖p + ‖y‖p.
Proof. Consider the linear forms x 7→ fa(x) = 〈a, x〉 for vectors a ∈ Rn

satisfying ‖a‖q = 1. By Hölder’s inequality,

fa(x) ≤ ‖a‖q‖x‖p ≤ ‖x‖p,
and for each x there exists a vector a with ‖a‖q = 1 such that Hölder’s
inequality holds with equality, i.e. such that fa(x) = ‖x‖p. Thus

‖x‖p = sup{fa(x) | ‖a‖q = 1},
and hence, f(x) = ‖x‖p is a convex function by Theorem 6.2.4. Positive
homogenouity is obvious, and positive homogeneous convex functions are
subadditive, so the proof of Minkowski’s inequality is now complete.

6.5 Solvability of systems of convex inequal-

ities

The solvability of systems of linear inequalities was discussed in Chapter 3.
Our next theorem is kind of a generalization of Theorem 3.3.7 and treats the
solvability of a system of convex and affine inequalities.

Theorem 6.5.1. Let fi : Ω → R, i = 1, 2, . . . ,m, be a family of convex
functions defined on a convex subset Ω of Rn.

Let p be an integer in the interval 1 ≤ p ≤ m, and suppose if p < m that
the functions fi are restrictions to Ω of affine functions for i ≥ p + 1 and
that the set

{x ∈ rint Ω | fi(x) ≤ 0 for i = p+ 1, . . . ,m}
is nonempty. The following two assertions are then equivalent:
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(i) The system {
fi(x) < 0, i = 1, 2, . . . , p
fi(x) ≤ 0, i = p+ 1, . . . ,m

has no solution x ∈ Ω.

(ii) There exist nonnegative numbers λ1, λ2, . . . , λm, with at least one of the
numbers λ1, λ2, . . . , λp being nonzero, such that

m∑
i=1

λifi(x) ≥ 0

for all x ∈ Ω.

Remark. The system of inequalities must contain at least one strict inequality,
and all inequalities are allowed to be strict (the case p = m).

Proof. If the system (i) has a solution x, then the sum in (ii) is obviously
negative for the same x, since at least one of its terms is negative and the
others are non-positive. Thus, (ii) implies (i).

To prove the converse implication, we assume that the system (i) has no
solution and define M to be the set of all y = (y1, y2, . . . , ym) ∈ Rm such
that the system {

fi(x) < yi, i = 1, 2, . . . , p
fi(x) = yi, i = p+ 1, . . . ,m

has a solution x ∈ Ω.
The set M is convex, for if y′ and y′′ are two points in M , 0 ≤ λ ≤ 1, and

x′, x′′ are solutions in Ω of the said systems of inequalities and equalities with
y′ and y′′, respectively, as right hand members, then x = λx′+ (1−λ)x′′ ∈ Ω
will be a solution of the system with λy′+(1−λ)y′′ as its right hand member,
due to the convexity and affinity of the functions fi for i ≤ p and i > p,
respectively.

Our assumptions concerning the system (i) imply that M∩Rm
− = ∅. Since

Rm
− is a polyhedron, there exist, by the separation theorem 5.5.2, a nonzero

vector λ = (λ1, λ2, . . . , λm) and a real number α such that the hyperplane
H = {y | 〈λ, y〉 = α} separates M and Rm

− and does not contain M as subset.
We may assume that

λ1y1 + λ2y2 + · · ·+ λmym

{
≥ α for all y ∈M ,

≤ α for all y ∈ Rm
− .

By first choosing y = 0, we see that α ≥ 0, and by then choosing y = tei,
where ei is the i:th standard basis vector in Rm, and letting t tend to −∞,
we conclude that λi ≥ 0 for all i.
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For each x ∈ Ω and ε > 0,

y = (f1(x) + ε, . . . , fp(x) + ε, fp+1(x), . . . , fm(x))

is a point in M . Consequently,

λ1(f1(x) + ε) + · · ·+ λp(fp(x) + ε) + λp+1fp+1(x) + · · ·+ λmfm(x) ≥ α ≥ 0,

and by letting ε tend to zero, we obtain the inequality

λ1f1(x) + λ2f2(x) + · · ·+ λmfm(x) ≥ 0

for all x ∈ Ω.
If p = m, we are done since the vector λ = (λ1, λ2, . . . , λm) is then

nonzero, but it remains to prove that some of the coefficients λ1, λ2, . . . , λp is
nonzero when p < m. Assume the contrary, i.e. that λ1 = λ2 = · · · = λp = 0,
and let

h(x) =
m∑

i=p+1

λifi(x).

The function h is affine, and h(x) ≥ 0 for all x ∈ Ω. Furthermore, by the
assumptions of the theorem, there exists a point x0 in the relative interior
of Ω such that fi(x0) ≤ 0 for all i ≥ p + 1, which implies that h(x0) ≤ 0.
Thus, h(x0) = 0. This means that the restriction h|Ω, which is a concave
function since h is affine, attains its minimum at a relative interior point,
and according to Theorem 6.3.5 (applied to the function −h|Ω), this implies
that the function h is constant and equal to 0 on Ω.

But to each y ∈M there corresponds a point x ∈ Ω such that yi = fi(x)
for i = p+ 1, . . .m, and this implies that

〈λ, y〉 =
∑m

i=p+1 λifi(x) = h(x) = 0.

We conclude that α = 0 and that the hyperplane H contains M , which is a
contradiction. Thus, at least one of the coefficients λ1, λ2, . . . , λp has to be
nonzero, and the theorem is proved.

6.6 Continuity

A real-valued convex function is automatically continuous at all relative in-
terior points of the domain. More precisely, we have the following theorem.

Theorem 6.6.1. Suppose f : X → R is a convex function and that a is
a point in the relative interior of dom f . Then there exist a relative open
neighborhood U of a in dom f and a constant M such that

|f(x)− f(a)| ≤M‖x− a‖

for all x ∈ U . Hence, f is continuous on the relative interior of dom f .
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Proof. We start by proving a special case of the theorem and then show how
to reduce the general case to this special case.

1. So first assume that X is an open subset of Rn, that dom f = X, i.e. that
f is a real-valued convex function, that a = 0, and that f(0) = 0.

We will show that if we choose the number r > 0 such that the closed
hypercube

K(r) = {x ∈ Rn | ‖x‖∞ ≤ r}
is included in X, then there is a constant M such that

(6.7) |f(x)| ≤M‖x‖

for all x in the closed ball B(0; r) = {x ∈ Rn | ‖x‖ ≤ r}, where ‖·‖ is the
usual Euclidean norm.

The hypercube K(r) has 2n extreme points (vertices). Let L denote the
largest of the function values of f at these extreme points. Since the convex
hull of the extreme points is equal to K(r), it follows from Theorem 6.3.3
that

f(x) ≤ L

for all x ∈ K(r), and thereby also for all x ∈ B(0; r), because B(0; r) is a
subset of K(r).

We will now make this inequality sharper. To this end, let x be an
arbitrary point in B(0; r) different from the center 0. The halfline from 0
through x intersects the boundary of B(0; r) at the point

y =
r

‖x‖
x,

and since x lies on the line segment [0, y], x is a convex combination of its
end points. More precisely, x = λy + (1 − λ)0 with λ = ‖x‖/r. Therefore,
since f is convex,

f(x) ≤ λf(y) + (1− λ)f(0) = λf(y) ≤ λL =
L

r
‖x‖.

The above inequality holds for all x ∈ B(0; r). To prove the same inequal-
ity with f(x) replaced by |f(x)|, we use the fact that the point −x belongs
to B(0; r) if x does so, and the equality 0 = 1

2
x+ 1

2
(−x). By convexity,

0 = f(0) ≤ 1

2
f(x) +

1

2
f(−x) ≤ 1

2
f(x) +

L

2r
‖x‖,

which simplifies to the inequality

f(x) ≥ −L
r
‖−x‖ = −L

r
‖x‖.

This proves that inequality (6.7) holds for x ∈ B(0; r) with M = L/r.
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2. We now turn to the general case. Let n be the dimension of the set dom f .
The affine hull of dom f is equal to the set a + V for some n-dimensional
linear subspace V , and since V is isomorphic to Rn, we can obtain a bijective
linear map T : Rn → V by choosing a coordinate system in V .

The inverse image Y of the relative interior of dom f under the map
y 7→ a + Ty of Rn onto aff(dom f) is an open convex subset of Rn, and Y
contains the point 0. Define the function g : Y → R by

g(y) = f(a+ Ty)− f(a).

Then, g is a convex function, since g is composed by a convex function and
an affine function, and g(0) = 0.

For x = a + Ty ∈ rint(dom f) we now have f(x) − f(a) = g(y) and
x− a = Ty, so in order to prove the general case of our theorem, we have to
show that there is a constant M such that |g(y)| ≤M‖Ty‖ for all y in some
neighborhood of 0. But the map y 7→ ‖Ty‖ is a norm on Rn, and since all
norms are equivalent, it suffices to show that there is a constant M such that

|g(y)| ≤M‖y‖

for all y in some neighborhood of 0, and that is exactly what we did in step 1
of the proof. So the theorem is proved.

The following corollary follows immediately from Theorem 6.6.1, because
affine sets have no relative boundary points.

Corollary 6.6.2. A convex function f : X → R with an affine subset X as
domain is continuous.

For functions f with a closed interval I = [a, b] as domain, convexity
imposes no other restrictions on the function value f(b) than that it has
to be greater than or equal to limx→b− f(x). Thus, a convex function need
not be continuous at the endpoint b, and a similar remark holds for the left
endpoint, of course. For example, a function f , that is identically equal to
zero on I \ {a, b}, is convex if f(a) ≥ 0 and f(b) ≥ 0. Cf. exercise 7.6.

6.7 The recessive subspace of convex func-

tions

Example 6.7.1. Let f : R2 → R be the convex function

f(x1, x2) = x1 + x2 + e(x1−x2)2 .
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The restrictions of f to lines with direction given by the vector v = (1, 1) are
affine functions, since

f(x+ tv) = f(x1 + t, x2 + t) = x1 + x2 + 2t+ e(x1−x2)2 = f(x) + 2t.

Let V = {x ∈ R2 | x1 = x2} be the linear subspace of R2 spanned by the
vector v, and consider the the orthogonal decomposition R2 = V ⊥+V . Each
x ∈ R2 has a corresponding unique decomposition x = y + z with y ∈ V ⊥
and z ∈ V , namely

y = 1
2
(x1 − x2, x2 − x1) and z = 1

2
(x1 + x2, x1 + x2).

Moreover, since z = 1
2
(x1 + x2)v = z1v,

f(x) = f(y + z) = f(y) + 2z1 = f |V ⊥(y) + 2z1.

So there is a corresponding decomposition of f as a sum of the restriction
of f to V ⊥ and a linear function on V . It is easy to verify that the vector
(v, 2) = (1, 1, 2) spans the recessive subspace lin(epi f), and that V is equal
to the image P1(lin(epi f)) of lin(epi f) under the projection P1 of R2 × R
onto the first factor R2.

The result in the previous example can be generalized, and in order to
describe this generalization we need a definition.

Definition. Let f : X → R be a function defined on a subset X of Rn. The
linear subspace

Vf = P1(lin(epi f)),

where P1 : Rn × R → Rn is the projection of Rn × R onto its first factor
Rn, is called the recessive subspace of the function f .

Theorem 6.7.1. Let f be a convex function with recessive subspace Vf .

(i) A vector v belongs to Vf if and only if there is a unique number αv such
that (v, αv) belongs to the recessive subspace lin(epi f) of the epigraph
of the function.

(ii) The map g : Vf → R, defined by g(v) = αv for v ∈ Vf , is linear.

(iii) dom f = dom f + Vf .

(iv) f(x+ v) = f(x) + g(v) for all x ∈ dom f and all v ∈ Vf .

(v) If the function f is differentiable at x ∈ dom f then g(v) = 〈f ′(x), v〉
for all v ∈ Vf .

(vi) Suppose V is a linear subspace, that h : V → R is a linear map, that
dom f +V ⊆ dom f , and that f(x+ v) = f(x) +h(v) for all x ∈ dom f
and all v ∈ V . Then, V ⊆ Vf .

Proof. (i) By definition, v ∈ Vf if and only if there is a real number αv such
that (v, αv) ∈ lin(epi f). To prove that the number αv is uniquely determined
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by v ∈ Vf , we assume that the pair (v, β) also lies in lin(epi f).
The point (x+ tv, f(x) + tαv) belongs to the epigraph for each x ∈ dom f

and each t ∈ R, i.e.

(6.8) x+ tv ∈ dom f and f(x+ tv) ≤ f(x) + tαv.

Hence, (x + tv, f(x + tv)) is a point in the epigraph, and our assumption
(v, β) ∈ lin(epi f) now implies that (x+ tv − tv, f(x+ tv)− tβ) is a point in
i epi f , too. We conclude that

(6.9) f(x) ≤ f(x+ tv)− tβ

for all t ∈ R. By combining the two inequalities (6.8) and (6.9), we obtain
the inequality f(x) ≤ f(x) + (αv − β)t, which holds for all t ∈ R. This is
possible only if β = αv, and proves the uniqueness of the number αv.

(ii) Let, as before, P1 be the projection of Rn × R onto Rn, and let P2 be
the projection of Rn × R onto the second factor R. The uniqueness result
(i) implies that the restriction of P1 to the linear subspace lin(epi f) is a
bijective linear map onto Vf . Let Q denote the inverse of this restriction; the
map g is then equal to the composition P2 ◦Q of the two linear maps P2 and
Q, and this implies that g is a linear function.

(iii) The particular choice of t = 1 in (6.8) yields the implication

x ∈ dom f & v ∈ Vf ⇒ x+ v ∈ dom f ,

which proves the inclusion dom f + Vf ⊆ dom f , and the converse inclusion
is of course trivial.

(iv) By choosing t = 1 in the inequalities (6.8) and(6.9) and using the fact
that αv = β = g(v), we obtain the two inequalities f(x + v) ≤ f(x) + g(v)
and f(x) ≤ f(x+ v)− g(v), which when combined prove assertion (iv).

(v) Consider the restriction φ(t) = f(x + tv) of the function f to the line
through the point x with direction v ∈ Vf . By (iii), φ is defined for all
t ∈ R, and by (iv), φ(t) = f(x) + tg(v). Hence, φ′(0) = g(v). But if f is
differentiable at x, then we also have φ′(0) = 〈f ′(x), v〉 according to the chain
rule, and this proves our assertion (v).

(vi) Suppose v ∈ V . If (x, s) is an arbitrary point in the epigraph epi f ,
then f(x + tv) = f(x) + h(tv) ≤ s + th(v), which means that the point
(x + tv, s + th(v)) lies in epi f for every real number t. This proves that
(v, h(v)) belongs to lin(epi f) and, consequently, that v is a vector in Vf .

By our next theorem, every convex function is the sum of a convex func-
tion with a trivial recessive subspace and a linear function.
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Theorem 6.7.2. Suppose that f is a convex function with recessive subspace
Vf . Let f̃ denote the restriction of f to dom f ∩ V ⊥f , and let g : Vf → R be
the linear function defined in Theorem 6.7.1. The recessive subspace Vf̃ of f̃

is then trivial, i.e. equal to {0}, dom f = dom f ∩ V ⊥f + Vf , and

f(y + z) = f̃(y) + g(z)

for all y ∈ dom f ∩ V ⊥f and all z ∈ Vf .

Proof. Each x ∈ Rn has a unique decomposition x = y+ z with y ∈ V ⊥f and
z ∈ Vf , and if x ∈ dom f then y = x− z ∈ dom f +Vf = dom f , by Theorem
6.7.1, and hence y ∈ dom f∩V ⊥f . This proves that dom f = dom f∩V ⊥f +Vf .

The equality f(y + z) = f̃(y) + g(z) now follows from (iv) in Theorem
6.7.1, so it only remains to prove that Vf̃ = {0}. Suppose v ∈ Vf̃ , and let x0

be an arbitrary point in dom f̃ . Then x0 + v lies in dom f̃ , too, and since
dom f̃ ⊆ V ⊥f and V ⊥f is a linear subspace, we conclude that v = (x0 + v)−x0

is a vector in V ⊥f . This proves the inclusion Vf̃ ⊆ V ⊥f .
Theorem 6.7.1 gives us two linear functions g : Vf → R and g̃ : Vf̃ → R

such that f(x + v) = f(x) + g(v) for all x ∈ dom f and all v ∈ Vf , and
f̃(y + w) = f̃(y) + g̃(w) for all y ∈ dom f ∩ V ⊥f and all w ∈ Vf̃ .

Now, let w be an arbitrary vector in Vf̃ and x be an arbitrary point in
dom f , and write x as x = y+v with y ∈ dom f ∩ V ⊥f and v ∈ Vf . The point
y + w lies in dom f ∩ V ⊥f , and we get the following identities:

f(x+ w) = f(y + v + w) = f(y + w + v) = f(y + w) + g(v)

= f̃(y + w) + g(v) = f̃(y) + g̃(w) + g(v)

= f(y) + g(v) + g̃(w) = f(x) + g̃(w).

Therefore, Vf̃ ⊆ Vf , by Theorem 6.7.1 (v). Hence, Vf̃ ⊆ V ⊥f ∩ Vf = {0},
which proves that Vf̃ = {0}.

6.8 Closed convex functions

Definition. A convex function is called closed if it has a closed epigraph.

Theorem 6.8.1. A convex function f : X → R is closed if and only if all its
sublevel sets are closed.

Proof. Suppose that X is a subset of Rn and that f is a closed function. Let

Xα = sublevα f = {x ∈ X | f(x) ≤ α}
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be an arbitrary nonempty sublevel set of f , and define Yα to be the set

Yα = epi f ∩ {(x, xn+1) ∈ Rn × R | xn+1 ≤ α}.

The set Yα is closed, being the intersection between the closed epigraph epi f
and a closed halfspace, and Xα = P (Yα), where P : Rn × R → Rn is the
projection P (x, xn+1) = x.

Obviously, the recession cone reccYα contains no nonzero vector of the
form v = (0, vn+1), i.e. no nonzero vector in the null spaceN (P ) = {0}×R of
the projection P . Hence, (reccYα)∩N (P ) = {0}, so it follows from Theorem
2.7.10 that the sublevel set Xα is closed.

To prove the converse, assume that all sublevel sets are closed, and let
(x0, y0) be a boundary point of epi f . Let

(
(xk, yk)

)∞
1

be a sequence of points
in epi f that converges to (x0, y0), and let ε be an arbitrary positive number.
Then, since yk → y0 as k →∞, f(xk) ≤ yk ≤ y0 + ε for all sufficiently large
k, so the points xk belong to the sublevel set {x ∈ X | f(x) ≤ y0 + ε} for all
sufficiently large k. The sublevel set being closed, it follows that the limit
point x0 lies in the same sublevel set, i.e. x0 ∈ X and f(x0) ≤ y0 + ε, and
since ε > 0 is arbitrary, we conclude that f(x0) ≤ y0. Hence, (x0, y0) is a
point in epi f . So epi f contains all its boundary points and is therefore a
closed set.

Corollary 6.8.2. Continuous convex functions f : X → R with closed do-
mains X are closed functions.

Proof. Follows immediately from Theorem 6.8.1, because the sublevel sets of
real-valued continuous functions with closed domains are closed sets.

Theorem 6.8.3. All nonempty sublevel sets of a closed convex function have
the same recession cone and the same recessive subspace. Hence, all sublevel
sets are bounded if one of the nonempty sublevel sets is bounded.

Proof. Let f : X → R be a closed convex function, and suppose that x0 is
a point in the sublevel set Xα = {x ∈ X | f(x) ≤ α}. Since Xα and epi f
are closed convex sets and (x0, α) is a point in epi f , we obtain the following
equivalences:

v ∈ reccXα ⇔ x0 + tv ∈ Xα for all t ∈ R+

⇔ f(x0 + tv) ≤ α for all t ∈ R+

⇔ (x0 + tv, α) ∈ epi f for all t ∈ R+

⇔ (x0, α) + t(v, 0) ∈ epi f for all t ∈ R+

⇔ (v, 0) ∈ recc(epi f),
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with the conclusion that the recession cone

reccXα = {v ∈ Rn | (v, 0) ∈ recc(epi f)}

does not depend on α as long as Xα 6= ∅. Of course, the same is then true
for the recessive subspace

linXα = reccXα ∩ (− reccXα) = {v ∈ Rn | (v, 0) ∈ lin(epi f)}.

The statement concerning bounded sublevel sets follows from the fact
that a closed convex set is bounded if and only if its recession cone is equal
to the zero cone {0}.

Theorem 6.8.4. A convex function f , which is bounded on an affine subset
M , is constant on M .

Proof. Let M = a + U , where U is a linear subspace, and consider the
restriction g = f |M of f to M . The function g is continuous since all points
of M are relative interior points, and closed since the domain M is a closed
set. Let α = sup{g(x) | x ∈ M}; then {x | g(x) ≤ α} = M , so by the
previous theorem, all nonempty sublevel sets of g has linM , that is the
subspace U , as their recessive subspace.

Let now x0 be an arbitrary point in M . Since the recessive subspace of
the particular sublevel set {x | g(x) ≤ g(x0} is equal to U , we conclude that
g(x0 + u) ≤ g(x0) for all u ∈ U . Hence, g(x) ≤ g(x0) for all x ∈ M , which
means that x0 is a maximum point of g. Since x0 ∈M is arbitrary, all points
in M are maximum points, and this implies that g is constant on M .

6.9 The support function

Definition. Let A be a nonempty subset of Rn. The function SA : Rn → R,
defined by

SA(x) = sup{〈y, x〉 | y ∈ A}

(with the usual convention that SA(x) = ∞ if the function y 7→ 〈y, x〉 is
unbounded above on A) is called the support function of the set A.

Theorem 6.9.1. (a) The support function SA is a closed convex function.
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(b) Suppose A and B are nonempty subsets of Rn, that α > 0 and that
C : Rn → Rm is a linear map. Then

SA = ScvxA = Scl(cvxA)(i)

SαA = αSA(ii)

SA+B = SA + SB(iii)

SA∪B = max {SA, SB}(iv)

SC(A) = SA ◦ CT.(v)

Proof. (a) The support function SA is closed and convex, because its epi-
graph

epiSA = {(x, t) | 〈y, x〉 ≤ t for all y ∈ A} =
⋂
y∈A

{(x, t) | 〈y, x〉 ≤ t}

is closed, being the intersection of a family of closed halfspaces in Rn × R.

(b) Since linear forms are convex, it follows from Theorem 6.3.3 that

SA(x) = sup{〈x, y〉 | y ∈ A} = sup{〈x, y〉 | y ∈ cvxA} = ScvxA(x)

for all x ∈ Rn. Moreover, if a function f is continuous on the closure of
a set X, then supy∈X f(y) = supy∈clX f(y), and linear forms are of course
continuous. Therefore, ScvxA(x) = Scl(cvxA)(x) for all x.

This proves the identity (i), and the remaining identities are obtained as
follows:

SαA(x) = sup
y∈αA
〈y, x〉 = sup

y∈A
〈αy, x〉 = α sup

y∈A
〈y, x〉 = αSA(x).

SA+B(x) = sup
y∈A+B

〈y, x〉 = sup
y1∈A, y2∈B

〈y1 + y2, x〉

= sup
y1∈A, y2∈B

(〈y1, x〉+ 〈y2, x〉) = sup
y1∈A
〈y1, x〉+ sup

y2∈B
〈y2, x〉

= SA(x) + SB(x).

SA∪B(x) = sup
y∈(A∪B)

〈y, x〉 = max {sup
y∈A
〈y, x〉, sup

y∈B
〈y, x〉}

= max {SA(x), SB(x)}.

SC(A)(x) = sup
y∈C(A)

〈y, x〉 = sup
z∈A
〈Cz, x〉 = sup

z∈A
〈z, CTx〉 = SA(CTx).

Example 6.9.1. The support function of a closed interval [a, b] on the real
line is given by

S[a,b](x) = S{a,b}(x) = max{ax, bx},
since [a, b] = cvx{a, b}.
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Example 6.9.2. In order to find the support function of the closed unit ball
Bp = {x ∈ Rn | ‖x‖p ≤ 1} with respect to the `p-norm, we use Hölder’s
inequality, obtaining

SBp(x) = sup{〈x, y〉 | ‖y‖p ≤ 1} = ‖x‖q,

where the relation between p and q is given by the equation 1/p+1/q = 1.

Closed convex sets are completely characterized by their support func-
tions, due to the following theorem.

Theorem 6.9.2. Suppose that X1 and X2 are two nonempty closed convex
subsets of Rn with support functions SX1 and SX2, respectively. Then

X1 ⊆ X2 ⇔ SX1 ≤ SX2(a)

X1 = X2 ⇔ SX1 = SX2 .(b)

Proof. Assertion (b) is an immediate consequence of (a), and the implication
X1 ⊆ X2 ⇒ SX1 ≤ SX2 is trivial, so it only remains to prove the converse
implication, or equivalently, the implication X1 6⊆ X2 ⇒ SX1 6≤ SX2 .

To prove the latter implication we assume that X1 6⊆ X2, i.e. that there
exists a point x0 ∈ X1\X2. The point x0 is strictly separable from the closed
convex set X2, which means that there exist a vector c ∈ Rn and a number
b such that 〈x, c〉 ≤ b for all x ∈ X2 while 〈x0, c〉 > b. Consequently,

SX1(c) ≥ 〈x0, c〉 > b ≥ sup{〈x, c〉 | x ∈ X2} = SX2(c),

which shows that SX1 6≤ SX2 .

By combining the previous theorem with property (i) of Theorem 6.9.1,
we obtain the following corollary.

Corollary 6.9.3. Let A and B be two nonempty subsets of Rn. Then,

SA = SB ⇔ cl(cvxA) = cl(cvxB).

6.10 The Minkowski functional

Let X be a convex subset of Rn with 0 as an interior point of X. Consider
the sets tX for t ≥ 0. This is an increasing family of sets, whose union equals
all of Rn, i.e.

0 ≤ s < t⇒ sX ⊆ tX and
⋃
t≥0

tX = Rn.
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The family is increasing, because using the convexity of the sets tX and
the fact that they contain 0, we obtain the following inclusions for 0 ≤ s < t:

sX =
s

t
(tX) + (1− s

t
) 0 ⊆ s

t
(tX) + (1− s

t
)(tX) ⊆ tX.

That the union equals Rn only depends on 0 being an interior point of
X. For let B(0; r0) be a closed ball centered at 0 and contained in X. An
arbitrary point x ∈ Rn will then belong to the set r−1

0 ‖x‖X since r0‖x‖−1x
lies in B(0; r0).

Now fix x ∈ Rn and consider the set {t ≥ 0 | x ∈ tX}. This set is an
unbounded subinterval of [0,∞[, and it contains the number r−1

0 ‖x‖. We
may therefore define a function

φX : Rn → R+

by letting

φX(x) = inf{t ≥ 0 | x ∈ tX}.

Obviously,

φX(x) ≤ r−1
0 ‖x‖ for all x.

Definition. The function φX : Rn → R+ is called the Minkowski functional
of the set X.

Theorem 6.10.1. The Minkowski functional φX has the following properties:

(i) For all x, y ∈ Rn and all λ ∈ R+,

(a) φX(λx) = λφX(x),

(b) φX(x+ y) ≤ φX(x) + φX(y).

(ii) There exists a constant C such that

|φX(x)− φX(y)| ≤ C‖x− y‖
for all x, y ∈ Rn.

(iii) intX = {x ∈ Rn | φX(x) < 1} and clX = {x ∈ Rn | φX(x) ≤ 1}.

The Minkowski functional is, in other words, positive homogeneous, subaddi-
tive, and Lipschitz continuous. So it is in particular a convex function.

Proof. (i) The equivalence x ∈ tX ⇔ λx ∈ λtX, which holds for λ > 0,
together with the fact that φX(0) = 0, implies positive homogenouity.

To prove subadditivity we choose, given ε > 0, two positive numbers
s < φX(x) + ε and t < φX(y) + ε such that x ∈ sX and y ∈ tX. The point

1

s+ t
(x+ y) =

s

s+ t

x

s
+

t

s+ t

y

t
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is a point in X, by convexity, and it follows that the point x + y belongs to
the set (s+ t)X. This implies that

φX(x+ y) ≤ s+ t < φX(x) + φX(y) + 2ε,

and since this inequality is true for all ε > 0, we conclude that

φX(x+ y) ≤ φX(x) + φX(y).

(ii) We have already noted that the inequality φX(x) ≤ C‖x‖ holds for all x
with C = r−1

0 . By subadditivity,

φX(x) = φX(x− y + y) ≤ φX(x− y) + φX(y),

and hence
φX(x)− φX(y) ≤ φX(x− y) ≤ C‖x− y‖.

For symmetry reasons

φX(y)− φX(x) ≤ C‖y − x‖ = C‖x− y‖,
and hence |φX(x)− φX(y)| ≤ C‖x− y‖.
(iii) The sets {x ∈ Rn | φX(x) < 1} and {x ∈ Rn | φX(x) ≤ 1} are open
and closed, respectively, since φX is continuous. Therefore, to prove assertion
(iii) it suffices, due to the characterization of intX as the largest open set
contained in X and of clX as the smallest closed set containing X, to prove
the inclusions

intX ⊆ {x ∈ Rn | φX(x) < 1} ⊆ X ⊆ {x ∈ Rn | φX(x) ≤ 1} ⊆ clX.

Suppose x ∈ intX. Since tx → x as t → 1, the points tx belong to the
interior of X for all numbers t that are sufficiently close to 1. Thus, there
exists a number t0 > 1 such that t0x ∈ X, i.e. such that x ∈ t−1

0 X, which
means that φX(x) ≤ t−1

0 < 1, and this proves the inclusion

intX ⊆ {x ∈ Rn | φX(x) < 1}.
The implications φX(x) < t ⇒ x ∈ tX ⇒ φX(x) ≤ t are direct con-

sequences of the definition of φX(x), and by choosing t = 1 we obtain the
inclusions

{x ∈ Rn | φX(x) < 1} ⊆ X ⊆ {x ∈ Rn | φX(x) ≤ 1}.

To prove the remaining inclusion it is now enough to prove the inclusion

{x ∈ Rn | φX(x) = 1} ⊆ clX.

So, suppose φX(x) = 1. Then there is a sequence (tn)∞1 of numbers > 1 such
that tn → 1 as n→∞ and x ∈ tnX for all n. The points t−1

n x belong to X
for all n, and since t−1

n x→ x as n→∞, x is a point in the closure clX.
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Exercises

6.1 Find two quasiconvex functions f1, f2 with a non-quasiconvex sum f1 + f2.

6.2 Prove that the following functions f : R3 → R are convex:

a) f(x) = x2
1 + 2x2

2 + 5x2
3 + 3x2x3

b) f(x) = 2x2
1 + x2

2 + x2
3 − 2x1x2 + 2x1x3

c) f(x) = ex1−x2 + ex2−x1 + x2
3 − 2x3.

6.3 For which values of the real number a is the function

f(x) = x2
1 + 2x2

2 + ax2
3 − 2x1x2 + 2x1x3 − 6x2x3

convex and strictly convex?

6.4 Prove that the function f(x) = x1x2 · · ·xn with Rn
+ as domain is quasicon-

cave, and that the function g(x) = (x1x2 · · ·xn)−1 with Rn
++ as domain is

convex.

6.5 Let x[k] denote the k:th biggest coordinate of the point x = (x1, x2, . . . , xn).
In other words, x[1], x[2], . . . , x[n] are the coordinates of x in decreasing order.

Prove for each k that the function f(x) =
∑k

i=1 x[i] is convex.

6.6 Suppose f : R+ → R is convex. Prove that

f(x1) + f(x2) + · · ·+ f(xn) ≤ f(x1 + x2 + · · ·+ xn) + (n− 1)f(0)

for all x1, x2, . . . , xn ≥ 0. Note the special case f(0) = 0!

6.7 The function f is defined on a convex subset of Rn. Suppose that the
function f(x) + 〈c, x〉 is quasiconvex for each c ∈ Rn. Prove that f is
convex.

6.8 We have derived Corollary 6.2.7 from Theorem 6.2.6. Conversely, prove that
Theorem 6.2.6 follows easily from Corollary 6.2.7.

6.9 X is a convex set in Rn with a nonempty interior, and f : X → R is a
continuous function, whose restriction to intX is convex. Prove that f is
convex.

6.10 Suppose that the function f : X → R is convex. Prove that

inf {f(x) | x ∈ X} = inf {f(x) | x ∈ rint(dom f)}.

6.11 Use the method in Example 6.4.1 to determine the minimum of the function

g(x1, x2) = 16x1 + 2x2 + x−1
1 x−2

2

over the set x1 > 0, x2 > 0.

6.12 Find the Minkowski functional of

a) the closed unit ball B(0; 1) in Rn with respect to the `p-norm ‖·‖p;
b) the halfspace {x ∈ Rn | x1 ≤ 1}.
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6.13 Let X be a convex set with 0 as interior point and suppose that the set
is symmetric with respect to 0, i.e. x ∈ X ⇒ −x ∈ X. Prove that the
Minkowski functional φX is a norm.



Chapter 7

Smooth convex functions

This chapter is devoted to the study of smooth convex functions, i.e. convex
functions that are differentiable. A prerequisite for differentiability at a point
is that the function is defined and finite in a neighborhood of the point.
Hence, it is only meaningful to study differentiability properties at interior
points of the domain of the function, and by passing to the restriction of
the function to the interior of its domain, we may as well assume from the
beginning that the domain of definition is open. That is the reason for
assuming all domains to be open and all function values to be finite in this
chapter.

7.1 Convex functions on R

Let f be a real-valued function that is defined in a neighborhood of the point
x ∈ R. The one-sided limit

f ′+(x) = lim
t→0+

f(x+ t)− f(x)

t
,

if it exists, is called the right derivative of f at the point x. The left derivative
f ′−(x) is similarly defined as the one-sided limit

f ′−(x) = lim
t→0−

f(x+ t)− f(x)

t
.

The function is obviously differentiable at the point x if and only if the right
and the left derivatives both exist and are equal, and the derivative f ′(x) is
in that case equal to their common value.

The left derivative of the function f : I → R can be expressed as a right
derivative of the function f̌ , defined by

f̌(x) = f(−x) for all x ∈ −I,

125
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because

f ′−(x) = lim
t→0+

f(x− t)− f(x)

−t
= − lim

t→0+

f̌(−x+ t)− f̌(−x)

t

and hence
f ′−(x) = −f̌ ′+(−x).

Observe that the function f̌ is convex if f is convex.

The basic differentiability properties of convex functions are consequences
of the following lemma, which has an obvious interpretation in terms of slopes
of various chords. Cf. figure 7.1.

Lemma 7.1.1. Suppose f is a real-valued convex function that is defined on
a subinterval of R containing the points x1 < x2 < x3. Then

f(x2)− f(x1)

x2 − x1

≤ f(x3)− f(x1)

x3 − x1

≤ f(x3)− f(x2)

x3 − x2

.

The above inequalities are strict if f is strictly convex.

x1 x2 x3

A
B

C

Figure 7.1. A geometric interpretation of Lemma 7.1.1: If kPQ
denotes the slope of the chord PQ, then kAB ≤ kAC ≤ kBC .

Proof. Write x2 = λx3 + (1 − λ)x1; then λ =
x2 − x1

x3 − x1

is a number in the
interval ]0, 1[. By convexity,

f(x2) ≤ λf(x3) + (1− λ)f(x1),

which simplifies to f(x2)− f(x1) ≤ λ(f(x3)− f(x1)), and this is equivalent
to the leftmost of the two inequalities in the lemma.

The rightmost inequality is obtained by applying the already proven in-
equality to the convex function f̌ . Since −x3 < −x2 < −x1,

f(x2)− f(x3)

x3 − x2

=
f̌(−x2)− f̌(−x3)

−x2 − (−x3)
≤ f̌(−x1)− f̌(−x3)

−x1 − (−x3)
=
f(x1)− f(x3)

x3 − x1

,

and multiplication by −1 gives the desired result.
The above inequalities are strict if f is strictly convex.
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The differentiability properties of convex one-variable functions are given
by the following theorem.

Theorem 7.1.2. Suppose f : I → R is a convex function with an open subin-
terval I of R as its domain. Then:

(a) The function f has right and left derivatives at all points x ∈ I, and
f ′−(x) ≤ f ′+(x).

(b) If f ′−(x) ≤ a ≤ f ′+(x), then

f(y) ≥ f(x) + a(y − x) for all y ∈ I.

The above inequality is strict for y 6= x, if f is strictly convex.

(c) If x < y, then f ′+(x) ≤ f ′−(y), and the inequality is strict if f is strictly
convex.

(d) The functions f ′+ : I → R and f ′− : I → R are increasing, and they are
strictly increasing if f is strictly convex.

(e) The set of points x ∈ I where the function is not differentiable, is finite
or countable.

Proof. Fix x ∈ I and let

F (t) =
f(x+ t)− f(x)

t
.

The domain of F is an open interval Jx with the point 0 removed.
We start by observing that if s, t, u ∈ Jx and u < 0 < t < s, then

(7.1) F (u) ≤ F (t) ≤ F (s)

(and the inequalities are strict if f is strictly convex).
The right inequality F (t) ≤ F (s) follows directly from the left inequality

in Lemma 7.1.1 by choosing x1 = x, x2 = x+ t and x3 = x+ s, and the left
inequality F (u) ≤ F (t) follows from the inequality between the extreme ends
in the same lemma by instead choosing x1 = x+ u, x2 = x and x3 = x+ t.

It follows from inequality (7.1) that the function F (t) is increasing for
t > 0 (strictly increasing if f is strictly convex) and bounded below by
F (u0), where u0 is an arbitrary negative number in the domain of F . Hence,
the limit

f ′+(x) = lim
t→0+

F (t)

exists and
F (t) ≥ f ′+(x)

for all t > 0 in the domain of F (with strict inequality if f is strictly convex).
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By replacing t with y−x, we obtain the following implication for a ≤ f ′+(x):

(7.2) y > x⇒ f(y)− f(x) ≥ f ′+(x)(y − x) ≥ a(y − x)

(with strict inequality if f is strictly convex).
The same argument, applied to the function f̌ and the point −x, shows

that f̌ ′+(−x) exists, and that

−y > −x⇒ f̌(−y)− f̌(−x) ≥ −a(−y − (−x))

if −a ≤ f̌ ′+(−x). Since f ′−(x) = −f̌ ′+(−x), this means that the left derivative
f ′−(x) exists and that the implication

(7.3) y < x⇒ f(y)− f(x) ≥ a(y − x)

is true for all constants a satisfying a ≥ f ′−(x). The implications (7.2) and
(7.3) are both satisfied if f ′−(x) ≤ a ≤ f ′+(x), and this proves assertion (b).

Using inequality (7.1) we conclude that F (−t) ≤ F (t) for all sufficiently
small values of t. Hence

f ′−(x) = lim
t→0+

F (−t) ≤ lim
t→0+

F (t) = f ′+(x),

and this proves assertion (a).

As a special case of assertion (b), we have the two inequalities

f(y)− f(x) ≥ f ′+(x)(y − x) and f(x)− f(y) ≥ f ′−(y)(x− y),

and division by y − x now results in the implication

y > x⇒ f ′+(x) ≤ f(y)− f(x)

y − x
≤ f ′−(y).

(If f is strictly convex, we may replace ≤ with < at both places.) This proves
assertion (c).

By combining (c) with the inequality in (a) we obtain the implication

x < y ⇒ f ′+(x) ≤ f ′−(y) ≤ f ′+(y),

which shows that the right derivative f ′+ is increasing. That the left derivative
is increasing is proved in a similar way. (And the derivatives are strictly
increasing if f is strictly convex.)

To prove the final assertion (e) we define Ix to be the open interval
]f ′−(x), f ′+(x)[. This interval is empty if the derivative f ′(x) exists, and it is
nonempty if the derivative does not exist, and intervals Ix and Iy belonging
to different points x and y are disjoint because of assertion (c). Now choose,
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for each point x where the derivative does not exist, a rational number rx
in the interval Ix. Since different intervals are pairwise disjoint, the chosen
numbers will be different, and since the set of rational numbers is countable,
there are at most countably many points x at which the derivative does not
exist.

Definition. The line y = f(x0) + a(x− x0) is called a supporting line of the
function f : I → R at the point x0 ∈ I if

(7.4) f(x) ≥ f(x0) + a(x− x0)

for all x ∈ I.

A supporting line at the point x0 is a line which passes through the point
(x0, f(x0)) and has the entire function curve y = f(x) above (or on) itself. It
is, in other words, a (one-dimensional) supporting hyperplane of the epigraph
of f at the point (x0, f(x0)). The concept will be generalized for functions
of several variables in the next chapter.

x0 x

y

y = f(x0) + a(x− x0)

y = f(x)

Figure 7.2. A supporting line.

Assertion (b) of the preceding theorem shows that convex functions with
open domains have supporting lines at each point, and that the tangent is a
supporting line at points where the derivative exists. By our next theorem,
the existence of supporting lines is also a sufficient condition for convexity.

Theorem 7.1.3. Suppose that the function f : I → R, where I is an open
interval, has a supporting line at each point in I. Then, f is a convex func-
tion.

Proof. Suppose that x, y ∈ I and that 0 < λ < 1, and let a be the constant
belonging to the point x0 = λx+(1−λ)y in the definition (7.4) of a supporting
line. Then we have f(x) ≥ f(x0) + a(x− x0) and f(y) ≥ f(x0) + a(y − x0).
By multiplying the first inequality by λ and the second inequality by (1−λ),
and then adding the two resulting inequalities, we obtain

λf(x) + (1− λ)f(y) ≥ f(x0) + a
(
λx+ (1− λ)y − x0

)
= f(x0).

So the function f is convex.
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Observe that if the inequality (7.4) is strict for all x 6= x0 and for all
x0 ∈ I, then f is strictly convex.

For differentiable functions we now obtain the following necessary and
sufficient condition for convexity.

Theorem 7.1.4. A differentiable function f : I → R is convex if and only
if its derivative f ′ is increasing. And it is strictly convex if and only if the
derivative is strictly increasing.

Proof. Assertion (d) in Theorem 7.1.2 shows that the derivative of a (strictly)
convex function is (strictly) increasing.

To prove the converse, we assume that the derivative f ′ is increasing. By
the mean value theorem, if x and x0 are distinct points in I, there exists a
point ξ between x and x0 such that

f(x)− f(x0)

x− x0

= f ′(ξ)

{
≥ f ′(x0) if x > x0,

≤ f ′(x0) if x < x0.

Multiplication by x− x0 results, in both cases, in the inequality

f(x)− f(x0) ≥ f ′(x0)(x− x0),

which shows that y = f(x0) + f ′(x0)(x − x0) is a supporting line of the
function f at the point x0. Therefore, f is convex by Theorem 7.1.3.

The above inequalites are strict if the derivative is strictly increasing, and
we conclude that f is strictly convex in that case.

For two times differentiable functions we obtain the following corollary.

Corollary 7.1.5. A two times differentiable function f : I → R is convex
if and only if f ′′(x) ≥ 0 for all x ∈ I. The function is strictly convex if
f ′′(x) > 0 for all x ∈ I.

Proof. The derivative f ′ is increasing (strictly increasing) if the second deri-
vative f ′′ is nonnegative (positive). And the second derivative is nonnegative
if the derivative is increasing.

Remark. A continuous function f : J → R with a non-open interval J as
domain is convex if (and only if) the restriction of f to the interior of J is
convex. Hence, if the derivative exists and is increasing in the interior of J ,
or if the second derivative exists and f ′′(x) ≥ 0 for all interior points x of
the interval, then f is convex on J . Cf. exercise 7.7.
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Example 7.1.1. The functions x 7→ ex, x 7→ − lnx and x 7→ xp, where
p > 1, are strictly convex on their domains R, ]0,∞[ and [0,∞[, respectively,
because their first derivatives are strictly increasing functions.

7.2 Differentiable convex functions

A differentiable one-variable function f is convex if and only if its derivative
is an increasing function. In order to generalize this result to functions of
several variables it is necessary to express the condition that the derivative is
increasing in a generalizable way. To this end, we note that the derivative f ′

is increasing on an interval if and only if f ′(x+h)h ≥ f ′(x)h for all numbers
x and x+h in the interval, and this inequality is also meaningful for functions
f of several variables if we interpret f ′(x)h as the value of the linear form
Df(x) at h. The inequality generalizing that the derivative of a function of
several variables is increasing will thus be written Df(x+ h)[h] ≥ Df(x)[h],
or using gradient notation, 〈f ′(x+ h), h〉 ≥ 〈f ′(x), h〉.

Theorem 7.2.1. Let X be an open convex subset of Rn, and let f : X → R
be a differentiable function. The following three conditions are equivalent:

(i) f is a convex function.

(ii) f(x+ v) ≥ f(x) +Df(x)[v] for all x, x+ v ∈ X.

(iii) Df(x+ v)[v] ≥ Df(x)[v] for all x, x+ v ∈ X.

The function f is strictly convex if and only if the inequalities in (ii) and
(iii) can be replaced by strict inequalities when v 6= 0.

Proof. Let us for given points x and x+ v in X consider the restriction φx,v
of f to the line through x with direction v, i.e. the one-variable function

φx,v(t) = f(x+ tv)

with the open interval Ix,v = {t ∈ R | x+ tv ∈ X} as domain. The functions
φx,v are differentiable with derivative φ′x,v(t) = Df(x+tv)[v], and f is convex
if and only if all restrictions φx,v are convex.

(i) ⇒ (ii) So if f is convex, then φx,v is a convex function, and it follows
from Theorem 7.1.2 (b) that φx,v(t) ≥ φx,v(0)+φ′x,v(0)t for all t ∈ Ix,v, which
means that f(x+ tv) ≥ f(x) +Df(x)[v] t for all t such that x+ tv ∈ X. We
now obtain the inequality in (ii) by choosing t = 1.

(ii)⇒ (iii) We obtain inequality (iii) by adding the two inequalities

f(x+ v) ≥ f(x) +Df(x)[v] and f(x) ≥ f(x+ v) +Df(x+ v)[−v].
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(iii)⇒ (i) Suppose (iii) holds, and let y = x+ sv and w = (t− s)v. If t > s,
then

φ′x,v(t)− φ′x,v(s) = Df(x+ tv)[v]−Df(x+ sv)[v]

= Df(y + w)[v]−Df(y)[v]

=
1

t− s
(
Df(y + w)[w]−Df(y)[w]

)
≥ 0,

which means that the derivative φ′x,v is increasing. The functions φx,v are
thus convex.

This proves the equivalence of assertions (i), (ii) and (iii), and by replacing
all inequalities in the proof by strict inequalities, we obtain the corresponding
equivalent assertions for strictly convex functions.

The derivative of a differentiable function is equal to zero at a local min-
imum point. For convex functions, the converse is also true.

Theorem 7.2.2. Suppose f : X → R is a differentiable convex function.
Then x̂ ∈ X is a global minimum point if and only if f ′(x̂) = 0.

Proof. That the derivative equals zero at a minimum point is a general fact,
and the converse is a consequence of property (ii) in the previous theorem,
for if f ′(x̂) = 0, then f(x) ≥ f(x̂) +Df(x̂)[x− x̂] = f(x̂) for all x ∈ X.

Convexity can also be expressed by a condition on the second derivative,
and the natural substitute for the one-variable condition f ′′(x) ≥ 0 is that
the second derivative should be positive semidefinite.

Theorem 7.2.3. Let X be an open convex subset of Rn, and suppose that
the function f : X → R is two times differentiable. Then f is convex if and
only if the second derivative f ′′(x) is positive semidefinite for all x ∈ X.

If f ′′(x) is positive definite for all x ∈ X, then f is strictly convex.

Proof. The one-variable functions φx,v(t) = f(x + tv) are now two times
differentiable with second derivative

φ′′x,v(t) = D2f(x+ tv)[v, v] = 〈v, f ′′(x+ tv)v〉.

Since f is convex if and only if all functions φx,v are convex, f is convex if
and only if all second derivatives φ′′x,v are nonnegative functions .

If the second derivative f ′′(x) is positive semidefinite for all x ∈ X, then
φ′′x,v(t) = 〈v, f ′′(x+ tv)v〉 ≥ 0 for all x ∈ X and all v ∈ Rn, which means that
the second derivatives φ′′x,v are nonnegative funtions. Conversely, if the second
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derivatives φ′′x,v are nonnegative, then in particular 〈v, f ′′(x)〉 = φ′′x,v(0) ≥ 0
for all x ∈ X and all v ∈ Rn, and we conclude that the second derivative
f ′′(x) is positive semidefinite for all x ∈ X.

If the second derivatives f ′′(x) are all positive definite, then φ′′x,v(t) > 0
for v 6= 0, which implies that the functions φx,v are strictly convex, and then
f is strictly convex, too.

7.3 Strong convexity

The function surface of a convex functions bends upwards, but there is no
lower positive bound on the curvature. By introducing such a bound we
obtain the notion of strong convexity.

Definition. Let µ be a positive number. A function f : X → R is called µ-
strongly convex if the function f(x)− 1

2
µ‖x‖2 is convex, and the function f is

called strongly convex if it is µ-strongly convex for some positive number µ.

Theorem 7.3.1. A differentiable function f : X → R with a convex domain
is µ-strongly convex if and only if the following two mutually equivalent in-
equalities are satisfied for all x, x+ v ∈ X:

Df(x+ v)[v] ≥ Df(x)[v] + µ‖v‖2(i)

f(x+ v) ≥ f(x) +Df(x)[v] + 1
2
µ‖v‖2.(ii)

Proof. Let g(x) = f(x)− 1
2
µ‖x‖2 and note that g′(x) = f ′(x)− µx and that

consequently Df(x)[v] = Dg(x)[v] + µ〈x, v〉.
If f is µ-strongly convex, then g is a convex function, and so it follows

from Theorem 7.2.1 that

Df(x+ v)[v]−Df(x)[v] = Dg(x+ v)[v]−Dg(x)[v] + µ〈x+ v, v〉 − µ〈x, v〉
≥ µ〈v, v〉 = µ‖v‖2,

i.e. inequality (i) is satisfied.

(i)⇒ (ii): Assume (i) holds, and define the function Φ for 0 ≤ t ≤ 1 by

Φ(t) = f(x+ tv)− f(x)−Df(x)[v] t.

Then Φ′(t) = Df(x + tv)[v] − Df(x)[v] =
1

t

(
Df(x + tv)[tv] − Df(x)[tv]

)
,

and it now follows from inequality (i) that

Φ′(t) ≥ t−1µ‖tv‖2 = µ‖v‖2 t.
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By integrating the last inequality over the interval [0, 1] we obtain

Φ(1) = Φ(1)− Φ(0) ≥ 1
2
µ‖v‖2,

which is the same as inequality (ii).

If inequality (ii) holds, then

g(x+ v) = f(x+ v)− 1
2
µ‖x+ v‖2 ≥ f(x) +Df(x)[v] + 1

2
µ‖v‖2 − 1

2
µ‖x+ v‖2

= g(x) + 1
2
µ‖x‖2 +Dg(x)[v] + µ〈x, v〉+ 1

2
µ‖v‖2 − 1

2
µ‖x+ v‖2

= g(x) +Dg(x)[v].

The function g is thus convex, by Theorem 7.2.1, and f(x) = g(x) + 1
2
µ‖x‖2

is consequently µ-strongly convex.

Theorem 7.3.2. A twice differentiable function f : X → R with a convex
domain is µ-strongly convex if and only if

(7.5) 〈v, f ′′(x)v〉 = D2f(x)[v, v] ≥ µ‖v‖2

for all x ∈ X and all v ∈ Rn.

Remark. If A is a symmetric operator, then

min
v 6=0

〈v, Av〉
‖v‖2

= λmin,

where λmin is the smallest eigenvalue of the operator. Thus, a two times
differentiable function f with a convex domain is µ-strongly convex if and
only if the eigenvalues of the hessian f ′′(x) are greater than or equal to µ for
each x in the domain.

Proof. Let φx,v(t) = f(x+ tv). If condition (7.5) holds, then

φ′′x,v(t) = D2f(x+ tv)[v, v] ≥ µ‖v‖2

for all t in the domain of the function. Using Taylor’s formula with remainder
term, we therefore conclude that

φx,v(t) = φx,v(0) + φ′x,v(0)t+ 1
2
φ′′x,v(ξ)t

2 ≥ φx,v(0) + φ′x,v(0)t+ 1
2
µ‖v‖2 t2.

For t = 1 this amounts to inequality (ii) in Theorem 7.3.1, and hence f is a
µ-strongly convex function.

Conversely, if f is µ-strongly convex, then by Theorem 7.3.1 (i)

φ′x,v(t)− φ′x,v(0)

t
=
Df(x+ tv)[tv]−Df(x)[tv]

t2
≥ µ‖v‖2.

Taking the limit as t→ 0 we obtain

D2f(x)[v, v] = φ′′x,v(0) ≥ µ‖v‖2.
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7.4 Convex functions with Lipschitz continu-

ous derivatives

The rate of convergence of classical iterative algorithms for minimizing func-
tions depends on the variation of the deriviative − the more the derivative
varies in a neighborhood of the minimum point, the slower the convergence.
The size of the Lipschitz constant is a measure of the variation of the deriva-
tive for functions with a Lipschitz continuous derivative. Therefore, we start
with a result which for arbitrary functions connects Lipschitz continuity of
the first derivative to bounds on the second derivative.

Theorem 7.4.1. Suppose f is a twice differentiable function and that X is a
convex subset of its domain.

(i) If ‖f ′′(x)‖ ≤ L for all x ∈ X, then the derivative f ′ is Lipschitz con-
tinuous on X with Lipschitz constant L.

(ii) If the derivative f ′ is Lipschitz continuous on the set X with constant
L, then ‖f ′′(x)‖ ≤ L for all x ∈ intX.

Proof. (i) Suppose that ‖f ′′(x)‖ ≤ L for all x ∈ X, and let x and y be two
points in X. Put v = y − x, let w be an arbitrary vector with ‖w‖ = 1, and
define the function φ for 0 ≤ t ≤ 1 by

φ(t) = Df(x+ tv)[w] = 〈f ′(x+ tv), w〉.

Then φ is differentiable with derivative

φ′(t) = D2f(x+ tv)[w, v] = 〈w, f ′′(x+ tv)v〉

so it follows from the Cauchy-Schwarz inequality that

|φ′(t)| ≤ ‖w‖‖f ′′(x+ tv)v‖ ≤ ‖f ′′(x+ tv)‖‖v‖ ≤ L‖v‖,

since x+ tv is a point in X. By the mean value theorem, φ(1)−φ(0) = φ′(s)
for some point s ∈ ]0, 1[. Consequently,

|〈f ′(y)− f ′(x), w〉| = |φ(1)− φ(0)| = |φ′(s)| ≤ L‖y − x‖.

Since w is an arbitrary vector of norm 1, we conclude that

‖f ′(y)− f ′(x)‖ = sup
‖w‖=1

〈f ′(y)− f ′(x), w〉 ≤ L‖y − x‖,

i.e. the derivative f ′ is Lipschitz continuous on X with constant L.
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(ii) Assume conversely that the first derivative f ′ is Lipschitz continuous on
the set X with constant L. Let x be a point in the interior of X, and let v
and w be arbitrary vectors with norm 1. The function

φ(t) = Df(x+ tv)[w] = 〈f ′(x+ tv, w〉

is then defined and differentiable and the point x+ tv lies in X for all t in a
neighborhood of 0, and it follows that

|φ(t)− φ(0)| = |〈f ′(x+ tv)− f ′(x), w〉| ≤ ‖f ′(x+ tv)− f ′(x)‖‖w‖
≤ L‖tv‖ = L|t|.

Division by t and passing to the limit as t→ 0 results in the inequality

|〈w, f ′′(x)v〉| = |φ′(0)| ≤ L

with the conclustion that

‖f ′′(x)‖ = sup
‖v‖=1

‖f ′′(x)v‖ = sup
‖v‖,‖w‖=1

〈w, f ′′(x)v〉 ≤ L.

Definition. A differentiable function f : X → R belongs to the class Sµ,L(X)
if f is µ-strongly convex and the derivative f ′ is Lipschitz continuous with
constant L. The quotient Q = L/µ is called the condition number of the
class.

Due to Theorem 7.3.1, a differentiable function f with a convex domain
X belongs to the class Sµ,L(X) if and only if it satisfies the following two
inequalities for all x, x+ v ∈ X:

〈f ′(x+ v)− f ′(x), v〉 ≥ µ‖v‖2 and ‖f ′(x+ v)− f ′(x)‖ ≤ L‖v‖.

If we combine the first of these two inequalities with the Cauchy–Schwarz
inequality, we obtain the inequality µ‖v‖ ≤ ‖f ′(x+v)−f ′(x)‖, so we conclude
that µ ≤ L and Q ≥ 1.

Example 7.4.1. Strictly convex quadratic functions

f(x) = 1
2
〈x, Px〉+ 〈q, x〉+ r

belong to the class Sλmin,λmax(Rn), where λmin and λmax denote the smallest
and the largest eigenvalue, respectively, of the positive definite matrix P .

For f ′(x) = Px+ q and f ′′(x) = P , whence

D2f(x)[v, v] = 〈v, Pv〉 ≥ λmin‖v‖2 and

‖f ′(x+ v)− f ′(x)‖ = ‖Pv‖ ≤ ‖P‖ ‖v‖ = λmax‖v‖.

The condition number of the quadratic function f is thus equal to the
quotient λmax/λmin between the largest and the smallest eigenvalue.
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The sublevel sets {x | f(x) ≤ α} of a strictly convex quadratic function
f are ellipsoids for all values of α greater than the minimum value of the
function, and the ratio of the longest and the shortest axes of any of these
ellipsoids is equal to

√
λmax/λmin, i.e. to the square root of the condition

number Q. This ratio is obviously also equal to the ratio of the radii of the
smallest ball containing and the largest ball contained in the ellipsoid. As
we shall see, something similar applies to all functions in the class Sµ,L(Rn).

Theorem 7.4.2. Let f be a function in the class Sµ,L(Rn) with minimum
point x̂, and let α be a number greater than the minimum value f(x̂). Then

B(x̂; r) ⊆ {x ∈ X | f(x) ≤ α} ⊆ B(x̂;R),

where r =
√

2L−1(α− f(x̂)) and R =
√

2µ−1(α− f(x̂)).

Remark. Note that R/r =
√
L/µ =

√
Q.

Proof. Since f ′(x̂) = 0 we obtain the following inequalities from Theorems
1.1.2 and 7.3.1 (by replacing a and x respectively with x̂ and v with x− v̂):

f(x̂) + 1
2
µ‖x− x̂‖2 ≤ f(x) ≤ f(x̂) + 1

2
L‖x− x̂‖2.

Hence, x ∈ S = {x ∈ X | f(x) ≤ α} implies

1
2
µ‖x− x̂‖2 ≤ f(x)− f(x̂) ≤ α− f(x̂) = 1

2
µR2,

which means that ‖x− x̂‖ ≤ R and proves the inclusion S ⊆ B(x̂;R).

And if x ∈ B(x̂; r), then f(x) ≤ f(x̂) + 1
2
Lr2 = α, which means that

x ∈ S and proves the inclusion B(x̂; r) ⊆ S.

Convex functions on Rn with Lipschitz continuous derivatives are char-
acterized by the following theorem.

Theorem 7.4.3. A differentiable function f : Rn → R is convex and its
derivative is Lipschitz continuous with Lipschitz constant L if and only if the
following mutually equivalent inequalities are fulfilled for all x, v ∈ Rn:

f(x) +Df(x)[v] ≤ f(x+ v) ≤ f(x) +Df(x)[v] +
L

2
‖v‖2(i)

f(x+ v) ≥ f(x) +Df(x)[v] +
1

2L
‖f ′(x+ v)− f ′(x)‖2(ii)

Df(x+ v)[v] ≥ Df(x)[v] +
1

L
‖f ′(x+ v)− f ′(x)‖2(iii)
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Proof. That inequality (i) has to be satisfied for convex functions with a
Lipschitz continuous derivative is a consequence of Theorems 1.1.2 and 7.2.1.

(i) ⇒ (ii): Let w = f ′(x + v) − f ′(x), and apply the right inequality in
(i) with x replaced by x + v and v replaced by −L−1w; this results in the
inequality

f(x+ v − L−1w) ≤ f(x+ v)− L−1Df(x+ v)[w] + 1
2
L−1‖w‖2.

The left inequality in (i) with v − L−1w instead of v yields

f(x+ v − L−1w) ≥ f(x) +Df(x)[v − L−1w].

By combining these two new inequalities, we obtain

f(x+ v) ≥ f(x) +Df(x)[v − L−1w] + L−1Df(x+ v)[w]− 1
2
L−1‖w‖2

= f(x) +Df(x)[v] + L−1
(
Df(x+ v)[w]−Df(x)[w]

)
− 1

2
L−1‖w‖2

= f(x) +Df(x)[v] + L−1〈f ′(x+ v)− f ′(x), w〉 − 1
2
L−1‖w‖2

= f(x) +Df(x)[v] + L−1〈w,w〉 − 1
2
L−1‖w‖2

= f(x) +Df(x)[v] + 1
2
L−1‖w‖2,

and that is inequality (ii).

(ii)⇒ (iii): Add inequality (ii) to the inequality obtained by changing x to
x+ v and v to −v. The result is inequality (iii).

Let us finally assume that inequality (iii) holds. The convexity of f is then
a consequence of Theorem 7.2.1, and by combining (iii) with the Cauchy–
Schwarz inequality, we obtain the inequality

1

L
‖f ′(x+ v)− f ′(x)‖2 ≤ Df(x+ v)[v]−Df(x)[v] = 〈f ′(x+ v)− f ′(x), v〉

≤ ‖f ′(x+ v)− f ′(x)‖ · ‖v‖,

which after division by ‖f ′(x + v) − f ′(x)‖ gives us the desired conclusion:
the derivative is Lipschitz continuous with Lipschitz constant L.

Theorem 7.4.4. If f ∈ Sµ,L(Rn), then

Df(x+ v)[v] ≥ Df(x)[v] +
µL

µ+ L
‖v‖2 +

1

µ+ L
‖f ′(x+ v)− f ′(x)‖2

for all x, v ∈ Rn.
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Proof. Let g(x) = f(x) − 1
2
µ‖x‖2; the function g is then convex, and since

Dg(x)[v] = Df(x)[v]− µ〈x, v〉, it follows from Theorem 1.1.2 that

g(x+ v) = f(x+ v)− 1
2
µ‖x+ v‖2

≤ f(x) +Df(x)[v] + 1
2
L‖v‖2 − 1

2
µ‖x+ v‖2

= g(x) + 1
2
µ‖x‖2 +Dg(x)[v] + µ〈x, v〉+ 1

2
L‖v‖2 − 1

2
µ‖x+ v‖2

= g(x) +Dg(x)[v] + 1
2
(L− µ)‖v‖2.

This shows that g satisfies condition (i) in Theorem 7.4.3 with L replaced by
L− µ. The derivative g′ is consequently Lipschitz continuous with constant
L− µ. The same theorem now gives us the inequality

Dg(x+ v)[v] ≥ Dg(x)[v] +
1

L− µ
‖g′(x+ v)− g′(x)‖2,

which is just a reformulation of the inequality in Theorem 7.4.4.

Exercises

7.1 Show that the following functions are convex.

a) f(x1, x2) = ex1 + ex2 + x1x2, x1 + x2 > 0

b) f(x1, x2) = sin(x1 + x2), −π < x1 + x2 < 0

c) f(x1, x2) = −
√

cos(x1 + x2), −π
2 < x1 + x2 <

π
2 .

7.2 Is the function

f(x1, x2) =
x2

1

x2
+
x2

2

x1

convex in the first quadrant x1 > 0, x2 > 0?

7.3 Show that the function

f(x) =

n−1∑
j=1

x2
j/xn

is convex in the halfspace xn > 0.

7.4 Show that the following function is concave on the set [0, 1[×[0, 1[×[0, 1[:

f(x1, x2, x3) = ln(1− x1) + ln(1− x2) + ln(1− x3)

− (x2
1 + x2

2 + x2
3 + x1x2 + x1x3 + x2x3).

7.5 Let I be an interval and suppose that the function f : I → R is convex. Show
that f is either increasing on the interval, or decreasing on the interval, or
there exists a point c ∈ I such that f is decreasing to the left of c and
increasing to the right of c.
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7.6 Suppose f : ]a, b[→ R is a convex function.

a) Prove that the two one-sided limits limx→a+ f(x) and limx→b− f(x) exist
(as finite numbers or ±∞).

b) Suppose that the interval is finite, and extend the function to the closed
interval [a, b] by defining f(a) = α and f(b) = β. Prove that the extended
function is convex if and only if α ≥ limx→a+ f(x) and β ≥ limx→b− f(x).

7.7 Prove that a continuous function f : [a, b] → R is convex if and only if its
restriction to the open interval ]a, b[ is convex.

7.8 F is a family of differentiable functions on Rn with the following two prop-
erties:

(i) f ∈ F ⇒ f + g ∈ F for all affine functions g : Rn → R.
(ii) If f ∈ F and f ′(x0) = 0, then x0 is a minimum point of f .

Prove that all functions in F are convex.

7.9 Suppose that f : X → R is a twice differentiable convex function. Prove
that its recessive subspace Vf is a subset of N (f ′′(x)) for each x ∈ X.

7.10 Let f : X → R be a differentiable function with a convex domain X. Prove
that f is quasiconvex if and only if

f(x+ v) ≤ f(x) ⇒ Df(x)[v] ≤ 0

for all x, x+ v ∈ X.
[Hint: It suffices to prove the assertion for functions on R; the general result
then follows by taking restrictions to lines.]

7.11 Let f : X → R be a twice differentiable function with a convex domain X.
Prove the following assertions:

a) If f is quasiconvex, then

Df(x)[v] = 0 ⇒ D2f(x)[v, v] ≥ 0

for all x ∈ X and all v ∈ Rn.

b) If

Df(x)[v] = 0 ⇒ D2f(x)[v, v] > 0

for all x ∈ X and all v 6= 0, then f is quasiconvex.
[Hint: It is enough to prove the results for functions defined on R.]

7.12 Prove that the function α1f1 + α2f2 is (α1µ1 + α2µ2)-strongly convex if f1

is µ1-strongly convex, f2 is µ2-strongly convex and α1, α2 > 0.

7.13 Prove that if a differentiable µ-strongly convex function f : X → R has a
minimum at the point x̂, then ‖x− x̂‖ ≤ µ−1‖f ′(x)‖ for all x ∈ X.



Chapter 8

The subdifferential

We will now generalize a number of results from the previous chapter to
convex functions that are not necessarily differentiable everywhere. However,
real-valued convex functions with open domains can not be too irregular −
they are, as already noted, continuous, and they have direction derivatives.

8.1 The subdifferential

If f is a differentiable function, then y = f(a) + 〈f ′(a), x− a〉 is the equation
of a hyperplane that is tangent to the surface y = f(x) at the point (a, f(a)).
And if f is also convex, then f(x) ≥ f(a) + 〈f ′(a), x − a〉 for all x in the
domain of the function (Theorem 7.2.1), so the tangent plane lies below the
graph of the function and is a supporting hyperplane of the epigraph.

The epigraph of an arbitrary convex function is a convex set, by definition.
Hence, through each boundary point belonging to the epigraph of a convex
function there passes a supporting hyperplane. The supporting hyperplanes
of a convex one-variable function f , defined on an open interval, are given
by Theorem 7.1.2, which says that the line y = f(x0) + a(x − x0) supports
the epigraph at the point (x0, f(x0)) if (and only if) f ′−(x0) ≤ a ≤ f ′+(x0).

The existence of supporting hyperplanes characterizes convexity, and this
is a reason for a more detailed study of this concept.

Definition. Let f : X → R be a function defined on a subset X of Rn. A
vector c ∈ Rn is called a subgradient of f at the point a ∈ X if the inequality

(8.1) f(x) ≥ f(a) + 〈c, x− a〉

holds for all x ∈ X.
The set of all subgradients of f at a is called the subdifferential of f at a

and is denoted by ∂f(a).

141
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y = |x|

y = ax

y

x

Figure 8.1. The line y = ax is a supporting line of
the function f(x) = |x| at the origin if −1 ≤ a ≤ 1.

Remark. The inequality (8.1) is of course satisfied by all points a ∈ X and
all vectors c ∈ Rn if x is a point in the set X \ dom f . Hence, to verify that
c is a subgradient of f at a it suffices to verify that the inequality holds for
all x ∈ dom f .

The inequality (8.1) does not hold for any vector c if a is a point in
X \dom f and x is a point in dom f . Hence, ∂f(a) = ∅ for all a ∈ X \dom f ,
except in the trivial case when dom f = ∅, i.e. when f is equal to ∞ on
the entire set X. In this case we have ∂f(a) = Rn for all a ∈ X since the
inequality (8.1) is now trivially satisfied by all a, x ∈ X and all c ∈ Rn.

Example 8.1.1. The subdifferentials of the one-variable function f(x) = |x|
are

∂f(a) =


{−1} if a < 0,

[−1, 1] if a = 0,

{1} if a > 0.

Theorem 8.1.1. The subdifferentials of an arbitrary function f : X → R are
closed and convex sets.

Proof. For points a ∈ dom f ,

∂f(a) =
⋂
x∈dom f{c ∈ Rn | 〈c, x− a〉 ≤ f(x)− f(a)}

is convex and closed, since it is an intersection of closed halfspaces, and the
case a ∈ X \ dom f is trivial.

Theorem 8.1.2. A point a ∈ X is a global minimum point of the function
f : X → R if and only if 0 ∈ ∂f(a).

Proof. The assertion follows immediately from the subgradient definition.
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Our next theorem tells us that the derivative f ′(a) is the only subgradient
candidate for functions f that are differentiable at a. Geometrically this
means that the tangent plane at a is the only possible supporting hyperplane.

Theorem 8.1.3. Suppose that the function f : X → R is differentiable at the
point a ∈ dom f . Then either ∂f(a) = {f ′(a)} or ∂f(a) = ∅.

Proof. Suppose c ∈ ∂f(a). By the differentiability definition,

f(a+ v)− f(a) = 〈f ′(a), v〉+ r(v)

with a remainder term r(v) satisfying the condition

lim
v→0

r(v)

‖v‖
= 0,

and by the subgradient definition, f(a+ v)− f(a) ≥ 〈c, v〉 for all v such that
a+ v belongs to X. Consequently,

(8.2)
〈c, v〉
‖v‖

≤ 〈f
′(a), v〉+ r(v)

‖v‖

for all v with a sufficiently small norm ‖v‖.

Let ej be the j:th unit vector. Then 〈c, ej〉 = cj and 〈f ′(a), ej〉 =
∂f

∂xj
(a),

so by choosing v = tej in inequality (8.2), noting that ‖tej‖ = |t|, and letting
t→ 0 from the right and from the left, respectively, we obtain the following
two inequalities

cj ≤
∂f

∂xj
(a) and − cj ≤ −

∂f

∂xj
(a),

which imply that cj =
∂f

∂xj
(a). Hence, c = f ′(a), and this proves the inclusion

∂f(a) ⊆ {f ′(a)}.

We can now reformulate Theorem 7.2.1 as follows: A differentiable func-
tion with a convex domain is convex if and only if it has a subgradient (which
is then equal to the derivative) everywhere. Our next theorem generalizes
this result.

Theorem 8.1.4. Let f : X → R be a function with a convex domain X.

(a) If dom f is a convex set and ∂f(x) 6= ∅ for all x ∈ dom f , then f is a
convex function.

(b) If f is a convex function, then ∂f(x) 6= ∅ for all x ∈ rint(dom f).
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Proof. (a) Let x and y be two arbitrary points in dom f and consider the
point z = λx+(1−λ)y, where 0 < λ < 1. By assumption, f has a subgradient
c at the point z. Using the inequality (8.1) at the point a = z twice, one
time with x replaced by y, we obtain the inequality

λf(x) + (1− λ)f(y) ≥ λ
(
f(z) + 〈c, x− z〉

)
+ (1− λ)

(
f(z) + 〈c, y − z〉

)
= f(z) + 〈c, λx+ (1− λ)y − z〉 = f(z) + 〈c, 0〉 = f(z),

which shows that the restriction of f to dom f is a convex function, and this
implies that f itself is convex.

(b) Conversely, assume that f is a convex function, and let a be a point in
rint(dom f). We will prove that the subdifferential ∂f(a) is nonempty.

The point (a, f(a)) is a relative boundary point of the convex set epi f .
Therefore, there exists a supporting hyperplane

H = {(x, xn+1) ∈ Rn × R | 〈c, x− a〉+ cn+1(xn+1 − f(a)) = 0}

of epi f at the point (a, f(a)), and we may choose the normal vector (c, cn+1)
in such a way that

(8.3) 〈c, x− a〉+ cn+1(xn+1 − f(a)) ≥ 0

for all points (x, xn+1) ∈ epi f . We shall see that this implies that cn+1 > 0.
By applying inequality (8.3) to the point (a, f(a)+1) in the epigraph, we

first obtain the inequality cn+1 ≥ 0.
Now suppose that cn+1 = 0, and put L = aff(dom f). Since epi f ⊆ L×R

and the supporting hyperplane H = {(x, xn+1) ∈ Rn×R | 〈c, x−a〉 = 0} by
definition does not contain epi f as a subset, it does not contain L×R either.
We conclude that there exists a point y ∈ L such that 〈c, y−a〉 6= 0. Consider
the points yλ = (1− λ)a + λy for λ ∈ R; these points lie in the afine set L,
and yλ → a as λ → 0. Since a is a point in the relative interior of dom f ,
the points yλ lie in dom f if |λ| is sufficiently small, and this implies that
the inequality (8.3) can not hold for all points (yλ, f(yλ)) in the epigraph,
because the expression 〈c, yλ − a〉 (= λ〈c, y − a〉) assumes both positive and
negative values depending on the sign of λ.

This is a contradiction and proves that cn+1 > 0, and by dividing inequal-
ity (8.3) by cn+1 and letting d = −(1/cn+1)c, we obtain the inequality

xn+1 ≥ f(a) + 〈d, x− a〉
for all (x, xn+1) ∈ epi f . In particular, f(x) ≥ f(a) + 〈d, x − a〉 for all
x ∈ dom f , which means that d is a subgradient of f at a.

It follows from Theorem 8.1.4 that a real-valued function f with an open
convex domain X is convex if and only if ∂f(x) 6= ∅ for all x ∈ X.
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Theorem 8.1.5. The subdifferential ∂f(a) of a convex function f is a com-
pact nonempty set if a is an interior point of dom f .

Proof. Suppose a is a point in int(dom f). The subdifferential ∂f(a) is closed
by Theorem 8.1.1 and nonempty by Theorem 8.1.4, so it only remains to
prove that it is a bounded set.

Theorem 6.6.1 yields two positive constants M and δ such that the closed
ball B(a; δ) lies in dom f and

|f(x)− f(a)| ≤M‖x− a‖ for x ∈ B(a; δ).

Now suppose that c ∈ ∂f(a) and that c 6= 0. By choosing x = a+ δc/‖c‖
in inequality (8.1), we conclude that

δ‖c‖ = 〈c, x− a〉 ≤ f(x)− f(a) ≤M‖x− a‖ = δM

with the bound ‖c‖ ≤M as a consequence. The subdifferential ∂f(a) is thus
included in the closed ball B(0;M).

Theorem 8.1.6. The sublevel sets of a strongly convex function f : X → R
are bounded sets.

Proof. Suppose that f is µ-strongly convex. Let x0 be a point in the relative
interior of dom f , and let c be a subgradient at the point x0 of the convex
function g(x) = f(x) − 1

2
µ‖x‖2. Then, for each x belonging to the sublevel

set S = {x ∈ X | f(x) ≤ α},

α ≥ f(x) = g(x) + 1
2
µ‖x‖2 ≥ g(x0) + 〈c, x− x0〉+ 1

2
µ‖x‖2

= f(x0)− 1
2
µ‖x0‖2 + 〈c, x− x0〉+ 1

2
µ‖x‖2

= f(x0) + 1
2
µ
(
‖x+ µ−1c‖2 − ‖x0 + µ−1c‖2

)
,

which implies that

‖x+ µ−1c‖2 ≤ ‖x0 + µ−1c‖2 + 2µ−1(α− f(x0)).

The sublevel set S is thus included in a closed ball with center at the point

−µ−1c and radius R =
√
‖x0 + µ−1c‖2 + 2µ−1(α− f(x0)) .

Corollary 8.1.7. If a continuous and strongly convex function has a nonempty
closed sublevel set, then it has a unique minimum point.

In particular, every strongly convex function f : Rn → R has a unique
minimum point.
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Proof. Let f be a continuous, strongly convex function with a nonempty
closed sublevel set S. Then S is compact by the previous theorem, so the
restriction of f to S assumes a minimum at some point in S, and this point
is obviously a global minimum point of f . The minimum point is unique,
because strongly convex functions are strictly convex.

A convex function f : Rn → R is automatically continuous, and continu-
ous functions on Rn are closed. Hence, all sublevel sets of a strongly convex
function on Rn are closed, so it follows from the already proven part of the
theorem that there is a unique minimum point.

8.2 Closed convex functions

In this section, we will use the subdifferential to supplement the results on
closed convex functions in chapter 6.8 with some new results. We begin with
an alternative characterization of closed convex functions.

Theorem 8.2.1. A convex function f : X → R is closed if and only if, for
all convergent sequences (xk)

∞
1 of points in dom f with limit x0,

(8.4) lim
k→∞

f(xk)

{
≥ f(x0) if x0 ∈ dom f ,

= +∞ if x0 ∈ cl(dom f) \ dom f .

Proof. Suppose that f is closed, i.e. that epi f is a closed set, and let (xk)
∞
1

be a sequence in dom f which converges to a point x0 ∈ cl(dom f), and put

L = lim
k→∞

f(xk).

Let a be an arbitrary point in the relative interior of dom f and let c be a
subgradient of f at the point a. Then f(xk) ≥ f(a) + 〈c, xk − a〉 for all k,
and since the right hand side converges (to f(a) + 〈c, x0− a〉) as k →∞, we
conclude that the sequence (f(xk))

∞
1 is bounded below. Its least limit point,

i.e. L, is therefore a real number or +∞.
Inequality (8.4) is trivially satisfied if L = +∞, so assume that L is a

finite number, and let (xkj)
∞
j=1 be a subsequence of the given sequence with

the property that f(xkj) → L as j → ∞. The points (xkj , f(xkj)), which
belong to epi f , then converge to the point (x0, L), and since the epigraph is
assumed to be closed, we conclude that the limit point (x0, L) belongs to the
epigraph, i.e. x0 ∈ dom f and L ≥ f(x0).

So if x0 does not belong to dom f but to cl(dom f)\dom f , then we must
have L = +∞. This proves that (8.4) holds.
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Conversely, suppose (8.4) holds for all convergent sequences, and let
((xk.tk))

∞
1 be a sequence of points in epi f which converges to a point (x0, t0).

Then, (xk)
∞
1 converges to x0 and (tk)

∞
1 converges to t0, and since f(xk) ≤ tk

for all k, we conclude that

lim
k→∞

f(xk) ≤ lim
k→∞

tk = t0.

In particular, limk→∞ f(xk) < +∞, so it follows from inequality (8.4) that
x0 ∈ dom f and that f(x0) ≤ t0. This means that the limit point (x0, t0)
belongs to epi f . Hence, epi f contains all its boundary points and is therefore
a closed set, and this means that f is a closed function.

Corollary 8.2.2. Suppose that f : X → R is a convex function and that
its effective domain dom f is relative open. Then, f is closed if and only
if limk→∞ f(xk) = +∞ for each sequence (xk)

∞
1 of points in dom f that

converges to a relative boundary point of dom f .

Proof. Since a convex function is continuous at all points in the relative
interior of its effective domain, we conclude that limk→∞ f(xk) = f(x0) for
each sequence (xk)

∞
1 of points in dom f that converges to a point x0 in dom f .

Condition (8.4) of the previous theorem is therefore fulfilled if and only if
limk→∞ f(xk) = +∞ for all sequences (xk)

∞
1 in dom f that converge to a

point in rbdry(dom f).

So a convex function with an affine set as effective domain is closed (and
continuous), because affine sets lack relative boundary points.

Example 8.2.1. The convex function f(x) = − lnx with R++ as domain is
closed, since lim

x→0
f(x) = +∞.

Theorem 8.2.3. If the function f : X → R is convex and closed, then

f(x) = lim
λ→1−

f(λx+ (1− λ)y)

for all x, y ∈ dom f .

Proof. The inequality

lim
λ→1−

f(λx+ (1− λ)y) ≤ lim
λ→1−

(λf(x) + (1− λ)f(y)) = f(x)

holds for all convex functions f , and the inequality

lim
λ→1−

f(λx+ (1− λ)y) ≥ f(x)

holds for all closed convex functions f according to Theorem 8.2.1.
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Theorem 8.2.4. Suppose that f and g are two closed convex functions, that

rint(dom f) = rint(dom g)

and that

f(x) = g(x)

for all x ∈ rint(dom f). Then f = g.

We remind the reader that the equality f = g should be interpreted as
dom f = dom g and f(x) = g(x) for all points x in the common effective
domain.

Proof. If rint(dom f) = ∅, then dom f = dom g = ∅, and there is nothing to
prove, so suppose that x0 is a point in rint(dom f). Then, λx+ (1−λ)x0 lies
in rint(dom f), too, for each x ∈ dom f and 0 < λ < 1, and it follows from
our assumptions and Theorem 8.2.3 that

g(x) = lim
λ→1−

g(λx+ (1− λ)x0) = lim
λ→1−

f(λx+ (1− λ)x0) = f(x).

Hence, g(x) = f(x) for all x ∈ dom f , and it follows that dom f ⊆ dom g.
The converse inclusion holds by symmetry, so dom f = dom g.

Theorem 8.2.5. Let f : X → R and g : Y → R be two closed convex func-
tions with X ∩ Y 6= ∅. The sum f + g : X ∩ Y → R is then a closed convex
function.

Proof. The theorem follows from the characterization of closedness in Theo-
rem 8.2.1. Let (xk)

∞
1 be a convergent sequence of points in dom(f + g) with

limit point x0. If x0 belongs to dom(f + g) (= dom f ∩ dom g), then

lim
k→∞

(f(xk) + g(xk)) ≥ lim
k→∞

f(xk) + lim
k→∞

g(xk) ≥ f(x0) + g(x0),

and if x0 does not belong to dom(f + g), then we use the trivial inclusion

cl(A ∩B) \ A ∩B ⊆ (clA \ A) ∪ (clB \B),

with A = dom f and B = dom g, to conclude that the sum f(xk) + g(xk)
tends to +∞, because one of the two sequences (f(xk))

∞
1 and (g(xk))

∞
1 tends

to +∞ while the other either tends to +∞ or has a finite limes inferior.



8.2 Closed convex functions 149

The closure

Definition. Let f : X → R be a function defined on a subset of Rn and
define (cl f)(x) for x ∈ Rn by

(cl f)(x) = inf{t | (x, t) ∈ cl(epi f)}.

The function cl f : Rn → R is called the closure of f .

Theorem 8.2.6. The closure cl f of a convex function f , whose effective
domain is a nonempty subset of Rn, has the following properties:

(i) The closure cl f : Rn → R is a convex function.

(ii) dom f ⊆ dom(cl f) ⊆ cl(dom f).

(iii) rint(dom(cl f)) = rint(dom f).

(iv) (cl f)(x) ≤ f(x) for all x ∈ dom f .

(v) (cl f)(x) = f(x) for all x ∈ rint(dom f).

(vi) epi(cl f) = cl(epi f).

Proof. (i) Let x0 be an arbitrary point in rint(dom f), and let c be a sub-
gradient of f at the point x0. Then f(x) ≥ f(x0) + 〈c, x − x0〉 for all
x ∈ dom f , which means that the epigraph epi f is a subset of the closed
set K = {(x, t) ∈ cl(dom f) × R | 〈c, x − x0〉 + f(x0) ≤ t}. It follows that
cl(epi f) ⊆ K, and hence

(cl f)(x) = inf{t | (x, t) ∈ cl(epi f)} ≥ inf{t | (x, t) ∈ K}
= f(x0) + 〈c, x− x0〉 > −∞

for all x ∈ Rn. So R is a codomain of the function cl f , and since cl(epi f)
is a convex set, it now follows from Theorem 6.2.6 that cl f : Rn → R is a
convex function.

(ii), (iv) and (v) It follows from the inclusion epi f ⊆ cl(epi f) ⊆ K that

(cl f)(x)

{
≤ inf{t | (x, t) ∈ epi f} = f(x) < +∞ if x ∈ dom f ,

≥ inf{t | (x, t) ∈ K} = inf ∅ = +∞ if x /∈ cl(dom f),

(cl f)(x0) ≥ inf{t | (x0, t) ∈ K} = f(x0).

This proves that dom f ⊆ dom(cl f) ⊆ cl(dom f), that (cl f)(x) ≤ f(x) for
all x ∈ dom f , and that (cl f)(x0) = f(x0), and since x0 is an arbitrary point
in rint(dom f), we conclude that (cl f)(x) = f(x) for all x ∈ rint(dom f).

(iii) Since rint(clX) = rintX for arbitrary convex sets X, it follows in par-
ticular from (ii) that

rint(dom f) ⊆ rint(dom(cl f)) ⊆ rint(cl(dom f)) = rint(dom f),
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with the conclusion that rint(dom(cl f)) = rint(dom f).

(vi) The implications

(x, t) ∈ cl(epi f)⇒ (cl f)(x) ≤ t⇒ (x, t) ∈ epi(cl f)

follow immediately from the closure and epigraph definitions. Conversely,
suppose that (x, t) is a point in epi(cl f), i.e. that (cl f)(x) ≤ t, and let
U × I be an open neighborhood of (x, t). The neighborhood I of t contains
a number s such that (x, s) ∈ cl(epi f), and since U × I is also an open
neighborhood of (x, s), it follows that epi f ∩ (U × I) 6= ∅. This proves that
(x, t) ∈ cl(epi f), so we have the implication

(x, t) ∈ epi(cl f)⇒ (x, t) ∈ cl(epi f).

Thus, epi(cl f) = cl(epi f).

Theorem 8.2.7. If f is a closed convex function, then cl f = f .

Proof. We have rint(dom(cl f)) = rint(dom f) and (cl f)(x) = f(x) for all
x ∈ rint(dom f), by the previous theorem. Therefore it follows from Theorem
8.2.4 that cl f = f .

8.3 The conjugate function

Definition. Let f : X → R be an arbitrary function defined on a subset X
of Rn and define a function f ∗ on Rn by

f ∗(y) = sup{〈y, x〉 − f(x) | x ∈ X}

for y ∈ Rn. The function f ∗ is called the conjugate function or the Fenchel
transform of f .

We use the shorter notation f ∗∗ for the conjugate function of f ∗, i.e.
f ∗∗ = (f ∗)∗.

The conjugate function f ∗ of a function f : Rn → R with a nonempty
effective domain is obviously a function Rn → R, and

f ∗(y) = sup{〈y, x〉 − f(x) | x ∈ dom f}.

There are two trivial cases: If the effective domain of f : X → R is empty,
then f ∗(y) = −∞ for all y ∈ Rn, and if f : X → R assumes the value −∞
at some point, then f ∗(y) = +∞ for all y ∈ Rn.
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x

y

(0,−f∗(c))

y = cxy = f(x)

Figure 8.2. A graphical illustration of the conjugate function f∗ when f
is a one-variable function. The function value f∗(c) is equal to the maximal
vertical distance between the line y = cx and the curve y = f(x). If f is
differentiable, then f∗(c) = cx0 − f(x0) for some point x0 with f ′(x0) = c.

Example 8.3.1. The support functions that were defined in Section 6.9, are
conjugate functions. To see this, define for a given subset A of Rn the
function χA : Rn → R by

χA(x) =

{
0 if x ∈ A,

+∞ if x /∈ A.

The function χA is called the indicator function of the set A, and it is a
convex function if A is a convex set. Obviously,

χ∗A(y) = sup{〈y, x〉 | x ∈ A} = SA(y)

for all y ∈ Rn, so the support function of A coincides with the conjugate
function χ∗A of the indicator function of A.

We are primarily interested in conjugate functions of convex functions
f : X → R, but we start with some general results.

Theorem 8.3.1. The conjugate function f ∗ of a function f : X → R with a
nonempty effective domain is convex and closed.

Proof. The epigraph epi f ∗ consists of all points (y, t) ∈ Rn × R that satisfy
the inequalities 〈x, y〉 − t ≤ f(x) for all x ∈ dom f , which means that it is
the intersection of a family of closed halfspaces in Rn × R. Hence, epi f ∗ is
a closed convex set, so the conjugate function f ∗ is closed and convex.

Theorem 8.3.2 (Fenchel’s inequality). Let f : X → R be a function with a
nonempty effective domain. Then

〈x, y〉 ≤ f(x) + f ∗(y)
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for all x ∈ X and all y ∈ Rn. Moreover, the two sides are equal for a given
x ∈ dom f if and only if y ∈ ∂f(x).

Proof. The inequality follows immediately from the definition of f ∗(y) as a
least upper bound if x ∈ dom f , and it is trivially true if x ∈ X \ dom f .
Moreover, by the subgradient definition, if x ∈ dom f then

y ∈ ∂f(x)⇔ f(z)− f(x) ≥ 〈y, z − x〉 for all z ∈ dom f

⇔ 〈y, z〉 − f(z) ≤ 〈y, x〉 − f(x) for all z ∈ dom f

⇔ f ∗(y) ≤ 〈y, x〉 − f(x)

⇔ f(x) + f ∗(y) ≤ 〈x, y〉,

and by combining this with the already proven Fenchel inequality, we obtain
the equivalence y ∈ ∂f(x)⇔ f(x) + f ∗(y) = 〈x, y〉.

By the previous theorem, for all points y in the set
⋃
{∂f(x) | x ∈ dom f}

f ∗(y) = 〈xy, y〉 − f(xy),

where xy is a point satisfying the condition y ∈ ∂f(xy). For differentiable
functions f we obtain the points xy as solutions to the equation f ′(x) = y.
Here follows a concrete example.

Example 8.3.2. Let f : ]−1,∞[→ R be the function

f(x) =


−x(x+ 1)−1 if −1 < x ≤ 0,

2x if 0 ≤ x < 1,

(x− 2)2 + 1 if 1 ≤ x < 2,

2x− 3 if x ≥ 2.

Its graph is shown in the left part of Figure 8.3.
A look at the figure shows that the curve y = f(x) lies above all lines

that are tangent to the curve at a point (x, y) with −1 < x < 0, lies above
all lines through the origin with a slope between f ′−(0) = −1 and the slope of
the chord that connects the origin and the point (2, 1) on the curve, and lies
above all lines through the point (2, 1) with a slope between 1

2
and f ′+(2) = 2.

This means that⋃
{∂f(x)} =

⋃
−1<x<0

{f ′(x)} ∪ ∂f(0) ∪ ∂f(2) ∪
⋃
x>2

{f ′(x)}

= ]−∞,−1[ ∪ [−1, 1
2
] ∪ [1

2
, 2] ∪ {2} = ]−∞, 2].
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−1 1 2 3 x

1

2

3

y

1

2

3

−1−2−3−4 1 2

+∞

Figure 8.3. To the left the graph of the function f : ]−1,∞[→ R,
and to the right the graph of the conjugate function f∗ : R→ R.

The equation f ′(x) = c has for c < −1 the solution x = −1 +
√
−1/c in

the interval −1 < x < 0. Let

xc =


−1 +

√
−1/c if c < −1,

0 if −1 ≤ c ≤ 1
2
,

2 if 1
2
≤ c ≤ 2.

Then c ∈ ∂f(xc), and it follows from the remark after Theorem 8.3.2 that

f ∗(c) = cxc − f(xc) =


−c− 2

√
−c+ 1 if c < −1,

0 if −1 ≤ c ≤ 1
2
,

2c− 1 if 1
2
≤ c ≤ 2.

Since

f ∗(c) = sup
x>−1
{cx− f(x)} ≥ sup

x≥2
{cx− f(x)} = sup

x≥2
{(c− 2)x+ 3} = +∞

if c > 2, we conclude that dom f ∗ =]−∞, 2]. The graph of f ∗ is shown in the
right part of Figure 8.3.

Theorem 8.3.3. Let f : X → R be an arbitrary function. Then

f ∗∗(x) ≤ f(x)

for all x ∈ X. Furthermore, f ∗∗(x) = f(x) if x ∈ dom f and ∂f(x) 6= ∅.

Proof. If f(x) = +∞ for all x ∈ X, then f ∗ ≡ −∞ and f ∗∗ ≡ +∞, according
to the remarks following the definition of the conjugate function, so the
inequality holds with equality for all x ∈ X in this trivial case.
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Suppose, therefore, that dom f 6= ∅. Then 〈x, y〉 − f ∗(y) ≤ f(x) for
all x ∈ X and all y ∈ dom f ∗ because of Fenchel’s inequality, and hence
f ∗∗(x) = sup{〈x, y〉 − f ∗(y) | y ∈ dom f ∗} ≤ f(x).

If ∂f(x) 6= ∅, then Fenchel’s inequality holds with equality for y ∈ ∂f(x).
This means that f(x) = 〈x, y〉 − f ∗(y) ≤ f ∗∗(x) and implies that f(x) =
f ∗∗(x).

The following corollary follows immediately from Theorem 8.3.3, because
convex functions have subgradients at all relative interior points of their
effective domains.

Corollary 8.3.4. If f : X → R is a convex function, then f ∗∗(x) = f(x) for
all x in the relative interior of dom f .

We will prove that f ∗∗ = cl f if f is a convex function, and for this purpose
we need the following lemma.

Lemma 8.3.5. Suppose that f is a convex function and that (x0, t0) is a
point in Rn×R which does not belong to cl(epi f). Then there exist a vector
c ∈ Rn and a real number d such that the ”non-vertical” hyperplane

H = {(x, xn+1) | xn+1 = 〈c, x〉+ d}

strictly separates the point (x0, t0) from cl(epi f).

Proof. By the Separation Theorem 3.1.3, there exists a hyperplane

H = {(x, xn+1) | cn+1xn+1 = 〈c, x〉+ d}

which strictly separates the point from cl(epi f). If cn+1 6= 0, then we can
without loss of generality assume that cn+1 = 1, and there is nothing more
to prove. So assume that cn+1 = 0, and choose the signs of c and d so that
〈c, x0〉+ d > 0 and 〈c, x〉+ d < 0 for all x ∈ dom f .

Using the subgradient c′ at some point in the relative interior of dom f
we obtain an affine function 〈c′, x〉 + d′ such that f(x) ≥ 〈c′, x〉 + d′ for all
x ∈ dom f . This implies that

f(x) ≥ 〈c′, x〉+ d′ + λ(〈c, x〉+ d) = 〈c′ + λc, x〉+ d′ + λd

for all x ∈ dom f and all positive numbers λ, while

〈c′ + λc, x0〉+ d′ + λd = 〈c′, x0〉+ d′ + λ(〈c, x0〉+ d) > t0

for all sufficiently large numbers λ. So the epigraph epi f lies above the
hyperplane

Hλ = {(x, xn+1) | xn+1 = 〈c′ + λc, x〉+ d′ + λd}.



8.3 The conjugate function 155

and the point (x0, t0) lies strictly below the same hyperplane, if the number
λ is big enough. By moving the hyperplane Hλ slightly downwards, we
obtain a parallel non-vertical hyperplane which strictly separates (x0, t0) and
cl(epi f).

Lemma 8.3.6. If f : X → R is a convex function, then

rint(dom f ∗∗) = rint(dom f).

Proof. Since rint(dom f) = rint(cl(dom f)), it suffices to prove the inclusion

dom f ⊆ dom f ∗∗ ⊆ cl(dom f).

The left inclusion follows immediately from the inequality in Theorem 8.3.3.
To prove the right inclusion, we assume that x0 /∈ cl(dom f) and shall prove
that this implies that x0 /∈ dom f ∗∗.

It follows from our assumption that the points (x0, t0) do not belong
to cl(epi f) for any number t0. Thus, given t0 ∈ R there exists, by the
previous lemma, a hyperplane H = {(x, xn+1) ∈ Rn×R | xn+1 = 〈c, x〉+ d}
which strictly separates (x0, t0) and cl(epi f). Hence, t0 < 〈c, x0〉 + d and
〈c, x〉+ d < f(x) for all x ∈ dom f . Consequently,

−d ≥ sup{〈c, x〉 − f(x) | x ∈ dom f} = f ∗(c),

and hence

t0 < 〈c, x0〉+ d ≤ 〈c, x0〉 − f ∗(c) ≤ f ∗∗(x0).

Since this holds for all real numbers t0, it follows that f ∗∗(t0) = +∞, which
means that x0 /∈ dom f ∗∗.

Theorem 8.3.7. If f is a convex function, then f ∗∗ = cl f .

Proof. It follows from Lemma 8.3.6 and Theorem 8.2.6 (iii) that

rint(dom f ∗∗) = rint(dom(cl f)),

and from Theorem 8.3.4 and Theorem 8.2.6 (v) that

f ∗∗(x) = (cl f)(x)

for all x ∈ rint(dom f ∗∗). So the two functions f ∗∗ and cl f are equal, ac-
cording to Theorem 8.2.4, because both of them are closed and convex .

Corollary 8.3.8. If f is a closed convex function, then f ∗∗ = f .
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8.4 The direction derivative

Definition. Suppose the function f : X → R is defined in a neighborhood of
x, and let v be an arbitrary vector in Rn. The limit

f ′(x; v) = lim
t→0+

f(x+ tv)− f(x)

t
,

provided it exists, is called the direction derivative of f at the point x in the
direction v.

If f is differentiable at x, then obviously f ′(x; v) = Df(x)[v].

Example 8.4.1. If f is a one-variable function, then

f ′(x; v) =


f ′+(x)v if v > 0,

0 if v = 0,

f ′−(v)v if v < 0.

So, the direction derivative is a generalization of left- and right derivatives.

Theorem 8.4.1. Let f : X → R be a convex function with an open domain.
The direction derivative f ′(x; v) exists for all x ∈ X and all directions v, and

f(x+ v) ≥ f(x) + f ′(x; v)

if x+ v lies in X.

Proof. Let φ(t) = f(x + tv); then f ′(x; v) = φ′+(0), which exists since con-
vex one-variable functions do have right derivatives at each point by Theo-
rem 7.1.2. Moreover,

φ(t) ≥ φ(0) + φ′+(0) t

for all t in the domain of φ, and we obtain the inequality of the theorem by
choosing t = 1.

Theorem 8.4.2. The direction derivative f ′(x; v) of a convex function is a
positively homogeneous and convex function of the second variable v, i.e.

f ′(x;αv) = αf ′(x; v) if α ≥ 0

f ′(x;αv + (1− α)w) ≤ αf ′(x; v) + (1− α)f ′(x;w) if 0 ≤ α ≤ 1.
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Proof. The homogenouity follows directly from the definition (and holds for
arbitrary functions). Moreover, for convex functions f

f(x+ t(αv + (1− α)w))− f(x) = f(α(x+ tv) + (1− α)(x+ tw))− f(x)

≤ α
(
f(x+ tv)− f(x)

)
+ (1− α)

(
f(x+ tw)− f(x)

)
.

The required convexity inequality is now obtained after division by t > 0 by
passing to the limit as t→ 0+.

Theorem 7.1.2 gives a relation between the subgradient and the direction
derivative for convex one-variable functions f − the number c is a subgradient
at x if and only if f ′−(x) ≤ c ≤ f ′+(x). The subdifferential ∂f(x) is in other
words equal to the interval [f ′−(x), f ′+(x)].

We may express this relation using the support function of the subdiffer-
ential. Let us recall that the support function SX of a set X in Rn is defined
as

SX(x) = sup{〈y, x〉 | y ∈ X}.

For one-variable functions f this means that

S∂f(x)(v) = S[f ′−(x),f ′+(x)](v) = max{f ′+(x)v, f ′−(x)v} =


f ′+(x)v if v > 0,

0 if v = 0,

f ′−(x)v if v < 0

= f ′(x; v).

We will generalize this identity, and to achieve this we need to consider the
subgradients of the function v 7→ f ′(x; v). We denote the subdifferential of
this function at the point v0 by ∂2f

′(x; v0).
If the function f : X → R is convex, then so is the function v 7→ f ′(x; v),

according to our previous theorem, and the subdifferentials ∂2f
′(x; v) are

thus nonempty sets for all x ∈ X and all v ∈ Rn.

Lemma 8.4.3. Let f : X → R be a convex function with an open domain X
and let x be a point in X. Then:

c ∈ ∂2f
′(x; 0)⇔ f ′(x; v) ≥ 〈c, v〉 for all v ∈ Rn(i)

∂2f
′(x; v) ⊆ ∂2f

′(x; 0) for all v ∈ Rn(ii)

c ∈ ∂2f
′(x; v)⇒ f ′(x; v) = 〈c, v〉(iii)

∂f(x) = ∂2f
′(x; 0).(iv)

Proof. The equivalence (i) follows directly from the definition of the subgra-
dient and the fact that f ′(x; 0) = 0.
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(ii) and (iii): Suppose c ∈ ∂2f
′(x; v) and let w ∈ Rn be an arbitrary vector.

Then, by homogenouity and the definition of the subgradient, we have the
following inequality for t ≥ 0:

tf ′(x;w) = f ′(x; tw) ≥ f ′(x; v) + 〈c, tw − v〉 = f ′(x; v) + t〈c, w〉 − 〈c, v〉,

and this is possible for all t > 0 only if f ′(x;w) ≥ 〈c, w〉. So we conclude from
(i) that c ∈ ∂2f

′(x; 0), and this proves the inclusion (ii). By choosing t = 0
we obtain the inequality f ′(x; v) ≤ 〈c, v〉, which implies that f ′(x; v) = 〈c, v〉,
and completes the proof of the implication (iii).

(iv) Suppose c ∈ ∂2f
′(x; 0). By (i) and Theorem 8.4.1,

f(y) ≥ f(x) + f ′(x; y − x) ≥ f(x) + 〈c, y − x〉

for all y ∈ X, which proves that c is a subgradient of f at the point x and
gives us the inclusion ∂2f

′(x; 0) ⊆ ∂f(x).
Conversely, suppose c ∈ ∂f(x). Then f(x+ tv)− f(x) ≥ 〈c, tv〉 = t〈c, v〉

for all sufficiently small numbers t. Division by t > 0 and passing to the limit
as t→ 0+ results in the inequality f ′(x; v) ≥ 〈c, v〉, and it now follows from
(i) that c ∈ ∂2f

′(x; 0). This proves the inclusion ∂f(x) ⊆ ∂2f
′(x; 0), and the

proof is now complete.

Theorem 8.4.4. Suppose that f : X → R is a convex function with an open
domain. Then

f ′(x; v) = S∂f(x)(v) = max{〈c, v〉 | c ∈ ∂f(x)}

for all x ∈ X and all v ∈ Rn.

Proof. It follows from (i) and (iv) in the preceding lemma that

〈c, v〉 ≤ f ′(x; v)

for all c ∈ ∂f(x), and from (ii), (iii) and (iv) in the same lemma that 〈c, v〉
is equal to f ′(x; v) for all subgradients c in the nonempty subset ∂2f

′(x; v)
of ∂f(x).

8.5 Subdifferentiation rules

Theorem 8.5.1. Let X be an open convex set, and suppose that fi : X → R
are convex functions and αi are nonnegative numbers for i = 1, 2 . . . ,m.
Define

f =
m∑
i=1

αifi.
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Then

∂f(x) =
m∑
i=1

αi∂fi(x).

Proof. A sum of compact, convex sets is compact and convex. Therefore,∑m
i=1 αi∂fi(x) is a closed and convex set, just as the set ∂f(x). Hence, by

Theorem 6.9.2 it suffices to prove that the two sets have the same support
function. And this follows from Theorems 8.4.4 and 6.9.1, according to which

S∂f(x)(v) = f ′(x; v) =
m∑
i=1

αif
′
i(x; v) =

m∑
i=1

αiS∂fi(x) = S∑m
i=1 αi∂fi(x)(v).

Theorem 8.5.2. Suppose that the functions fi : X → R are convex for i = 1,
2,. . . , m, and that their domain X is open, and let

f = max
1≤i≤m

fi.

Then

∂f(x) = cvx
( ⋃
i∈I(x)

∂fi(x)
)
,

for all x ∈ X, where I(x) = {i | fi(x) = f(x)}.

Proof. The functions fi are continuous at x and fj(x) < f(x) for all j /∈ I(x).
Hence, for all sufficiently small numbers t,

f(x+ tv)− f(x) = max
i∈I(x)

fi(x+ tv)− f(x) = max
i∈I(x)

(fi(x+ tv)− fi(x)),

and it follows after division by t and passing to the limit that

f ′(x; v) = max
i∈I(x)

f ′i(x; v).

We use Theorem 6.9.1 to conclude that

S∂f(x)(v) = f ′(x; v) = max
i∈I(x)

f ′i(x; v) = max
i∈I(x)

S∂fi(x)(v) = S⋃
i∈I(x) ∂fi(x)(v)

= Scvx(
⋃
i∈I(x) ∂fi(x))(v),

and the equality for ∂f(x) is now a consequence of Theorem 6.9.2.

Our next theorem shows how to compute the subdifferential of a compo-
sition with affine functions.
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Theorem 8.5.3. Suppose C is a linear map from Rn to Rm, that b is a vector
in Rm, and that g is a convex function with an open domain in Rm, and let f
be the function defined by f(x) = g(Cx+ b). Then, for each x in the domain
of f ,

∂f(x) = CT(∂g(Cx+ b)).

Proof. The sets ∂f(x) and CT(∂g(Cx + b)) are convex and compact, so it
suffices to show that their support functions are identical. But for each
v ∈ Rn

f ′(x; v) = lim
t→0+

g(C(x+ tv) + b)− g(Cx+ b)

t

= lim
t→0+

g(Cx+ b+ t Cv)− g(Cx+ b)

t
= g′(Cx+ b;Cv),

so it follows because of Theorem 6.9.1 that

S∂f(x)(v) = f ′(x; v) = g′(Cx+ b;Cv) = S∂g(Cx+b)(Cv) = SCT(∂g(Cx+b))(v).

The Karush–Kuhn–Tucker theorem

As an application of the subdifferentiation rules we now prove a variant of a
theorem by Karush–Kuhn–Tucker on minimization of convex functions with
convex constraints. A more thorough treatment of this theme will be given
in Chapters 10 and 11.

Theorem 8.5.4. Suppose that the functions f , g1, g2, . . . , gm are convex and
defined on an open convex set Ω, and let

X = {x ∈ Ω | gi(x) ≤ 0 for i = 1, 2, . . . ,m.}
Moreover, suppose that there exists a point x ∈ Ω such that gi(x) < 0 for
i = 1, 2, . . . ,m. (Slater’s condition)

Then, x̂ ∈ X is a minimum point of the restriction f |X if and only if
for each i = 1, 2, . . . ,m there exist a subgradient ci ∈ ∂gi(x̂) and a scalar
λ̂i ∈ R+ with the following properties:

−
m∑
i=1

λ̂ici ∈ ∂f(x̂) and(i)

λ̂igi(x̂) = 0 for i = 1, 2, . . . ,m.(ii)

Remark. If the functions are differentiable, then condition (i) simplifies to

∇f(x̂) +
m∑
i=1

λ̂i∇gi(x̂) = 0.

Cf. Theorem 11.2.1.
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Proof. Let x̂ be a point in X and consider the convex function

h(x) = max {f(x)− f(x̂), g1(x), . . . , gm(x)}

with Ω as its domain. Clearly, h(x̂) = 0. By defining

I(x̂) = {i | gi(x̂) = 0},

we obtain I(x̂) = {i | gi(x̂) = h(x̂)}, and it follows from Theorem 8.5.2 that

∂h(x̂) = cvx
(
∂f(x̂) ∪

⋃
{∂gi(x̂) | i ∈ I(x̂)}

)
.

Now assume that x̂ is a minimum point of the restriction f |X . Then
h(x) = f(x) − f(x̂) ≥ 0 for all x ∈ X with equality when x = x̂. And if
x /∈ X, then h(x) > 0 since gi(x) > 0 for at least one i. Thus, x̂ is a global
minimum point of h.

Conversely, if x̂ is a global minimum point of h, then h(x) ≥ 0 for all
x ∈ Ω. In particular, for x ∈ X this means that h(x) = f(x)−f(x̂) ≥ 0, and
hence x̂ is a mimimum point of the restriction f |X , too.

Using Theorem 8.1.2 we therefore obtain the following equivalences:

x̂ is a minimum point of f |X ⇔ x̂ is a minimum point of h

⇔ 0 ∈ ∂h(x̂)

⇔ 0 ∈ cvx
(
∂f(x̂) ∪

⋃
{∂gi(x̂) | i ∈ I(x̂)}

)
⇔ 0 = λ0c0 +

∑
i∈I(x̂)

λici

⇔ λ0c0 = −
∑
i∈I(x̂)

λici,(8.5)

where c0 ∈ ∂f(x̂), ci ∈ ∂gi(x̂) for i ∈ I(x̂), and the scalars λi are nonnegative
numbers with sum equal to 1.

We now claim that λ0 > 0. To prove this, assume the contrary. Then∑
i∈I(x̂) λici = 0, and it follows that∑
i∈I(x̂)

λigi(x) ≥
∑
i∈I(x̂)

λi
(
gi(x̂) + 〈ci, x− x̂〉

)
= 〈

∑
i∈I(x̂)

λici, x− x̂〉 = 0,

which is a contradiction, since gi(x) < 0 for all i and λi > 0 for some i ∈ I(x̂).
We may therefore divide the equality in (8.5) by λ0, and conditions (i)

and (ii) in our theorem are now fulfilled if we define λ̂i = λi/λ0 for i ∈ I(x̂),
and λ̂i = 0 for i /∈ I(x̂), and choose arbitrary subgradients ci ∈ ∂gi(x̂) for
i /∈ I(x̂).
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Exercises

8.1 Suppose f : Rn → R is a strongly convex function. Prove that

lim
‖x‖→∞

f(x) =∞

8.2 Find ∂f(−1, 1) for the function f(x1, x2) = max(|x1|, |x2|).

8.3 Determine the subdifferential ∂f(0) at the origin for the following functions
f : Rn → R:

a) f(x) = ‖x‖2 b) f(x) = ‖x‖∞ c) f(x) = ‖x‖1.

8.4 Determine the conjugate functions of the following functions:

a) f(x) = ax+ b, dom f = R b) f(x) = − lnx, dom f = R++

c) f(x) = ex, dom f = R d) f(x) = x lnx, dom f = R++

e) f(x) = 1/x, dom f = R++.

8.5 Use the relation between the support function SA and the indicator function
χA and the fact that SA = Scl(cvxA) to prove Corollary 6.9.3, i.e. that

cl(cvxA) = cl(cvxB) ⇔ SA = SB.
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Chapter 9

Optimization

The Latin word optimum means ’the best’. The optimal alternative among
a number of different alternatives is the one that is the best in some way.
Optimization is therefore, in a broad sense, the art of determining the best.

Optimization problems occur not only in different areas of human plan-
ning, but also many phenomena in nature can be explained by simple opti-
mization principles. Examples are light propagation and refraction in differ-
ent media, thermal conductivity and chemical equilibrium.

In everyday optimization problems, it is often difficult, if not impossible,
to compare and evaluate different alternatives in a meaningful manner. We
shall leave this difficulty aside, for it can not be solved by mathematical
methods. Our starting point is that the alternatives are ranked by means of
a function, for example a profit or cost function, and that the option that
gives the maximum or minimum function value is the best one.

The problems we will address are thus purely mathematical − to min-
imize or maximize given functions over sets that are given by a number of
constraints.

9.1 Optimization problems

Basic notions

For the problem of minimizing a function f : Ω→ R over a subset X of the
domain Ω of the function, we use the notation

min f(x)
s.t. x ∈ X.

Here, s.t. is an abbreviation for the phrase subject to the condition.

165
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The elements of the setX are called the feasible points or feasible solutions
of the optimization problem. The function f is the objective function.

Observe that vi allow ∞ as a function value of the objective function in
a minimization problem.

The (optimal) value vmin of the minimization problem is by definition

vmin =

{
inf {f(x) | x ∈ X} if X 6= ∅,
∞ if X = ∅.

The optimal value is thus a real number if the objective function is bounded
below and not identically equal to ∞ on the set X, the value is −∞ if the
function is not bounded below on X, and the value is ∞ if the objective
function is identically equal to ∞ on X or if X = ∅.

Of course, we will also study maximization problems, and the problem of
maximizing a function f : Ω→ R over X will be written

max f(x)
s.t. x ∈ X.

The (optimal) value vmax of the maximization problem is defined by

vmax =

{
sup {f(x) | x ∈ X} if X 6= ∅,
−∞ if X = ∅.

The optimal value of a minimization or maximization problem is in this
way always defined as a real number, −∞ or∞, i.e. as an element of the ex-
tended real line R. If the value is a real number, we say that the optimization
problem has a finite value.

A feasible point x0 for an optimization problem with objective function
f is called an optimal point or optimal solution if the value of the problem
is finite and equal to f(x0). An optimal solution of a minimization problem
is, in other words, the same as a global minimum point. Of course, problems
with finite optimal values need not necessarily have any optimal solutions.

From a mathematical point of view, there is no difference in principle be-
tween maximization problems and minimization problems, since the optimal
values vmax and vmin of the problems

max f(x)
s.t. x ∈ X

and min −f(x)
s.t. x ∈ X

,

respectively, are connected by the simple relation vmax = −vmin, and x0 is a
maximum point of f if and only if x0 is a minimum point of −f . For this
reason, we usually only formulate results for minimization problems.
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Finally, a comment as to why we allow ∞ and −∞ as function values
of the objective functions as this seems to complicate matters. The most
important reason is that sometimes we have to consider functions that are
defined as pointwise suprema of an infinite family of functions, and the supre-
mum function may assume infinite values even if all functions in the family
assume only finite values. The alternative to allowing functions with values
in the extended real line would be to restrict the domain of these supremum
functions, and this is neither simpler nor more elegant.

General comments

There are some general and perhaps completely obvious comments that are
relevant for many optimization problems.

Existence of feasible points

This point may seem trivial, for if a problem has no feasible points then
there is not much more to be said. It should however be remembered that
the set of feasible points is seldom given explicitly. Instead it is often defined
by a system of equalities and inequalities, which may not be consistent. If
the problem comes from the ”real world”, simplifications and defects in the
mathematical model may lead to a mathematical problem that lacks feasible
points.

Existence of optimal solutions

Needless to say, a prerequisite for the determination of the optimal solution
of a problem is that there is one. Many theoretical results are of the form
”If x0 is an optimal solution, then x0 satisfies these conditions.” Although
this usually restricts the number of potential candidates for optimal points,
it does not prove the existence of such points.

From a practical point of view, however, the existence of an optimal so-
lution − and its exact value, if such a solution exists − may not be that
important. In many applications one is often satisfied with a feasible solu-
tions that is good enough.

Uniqueness

Is the optimal solution, if such a solution exists, unique? The answer is
probably of little interest for somebody looking for the solution of a practical
problem − he or she should be satisfied by having found a best solution even
if there are other solutions that are just as good. And if he or she would
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consider one of the optimal solutions better than the others, then we can only
conclude that the optimization problem is not properly set from the start,
because the objective function apparently does not include everything that
is required to sort out the best solution.

However, uniqueness of an optimal solution may sometimes lead to inter-
esting properties that can be of use when looking for the solution.

Dependence on parameters and sensitivity

Sometimes, and in particular in problems that come directly from ”reality”,
objective functions and constraints contain parameters, which are only given
with a certain accuracy and, in the worst case, are more or less coarse esti-
mates. In such cases, it is not sufficient to determine the optimal solution,
but it is at least as important to know how the solution changes when pa-
rameters are changed. If a small perturbation of one parameter alters the
optimal solution very much, there is reason to consider the solution with
great skepticism.

Qualitative aspects

Of course, it is only for a small class of optimization problems that one
can specify the optimum solution in exact form, or where the solution can
be described by an algorithm that terminates after finitely many iterations.
The mathematical solution to an optimization problem often consists of a
number of necessary and/or sufficient conditions that the optimal solution
must meet. At best, these can be the basis for useful numerical algorithms,
and in other cases, they can perhaps only be used for qualitative statements
about the optimal solutions, which however in many situations can be just
as interesting.

Algorithms

There is of course no numerical algorithm that solves all optimization prob-
lems, even if we restrict ourselves to problems where the constraint set is
defined by a a finite number of inequalities and equalities. However, there
are very efficient numerical algorithms for certain subclasses of optimization
problems, and many important applied optimization problems happen to be-
long to these classes. We shall study some algorithms of this type in Part III
and Part IV of this book.

The development of good algorithms has been just as important as the
computer development for the possibility of solving big optimization prob-
lems, and much of the algorithm development has occurred in recent decades.



9.2 Classification of optimization problems 169

9.2 Classification of optimization problems

To be able to say anything sensible about the minimization problem

(P) min f(x)
s.t. x ∈ X

we must make various assumptions about the objective function f : Ω → R
and about the set X of feasible points.

We will always assume that Ω is a subset of Rn and that the set X can
be expressed as the solution set of a number of inequalities and equalities,
i.e. that

X = {x ∈ Ω | g1(x) ≤ 0, . . . , gp(x) ≤ 0, gp+1(x) = 0, . . . , gm(x) = 0}

where g1, g2, . . . , gm are real valued functions defined on Ω.
We do not exclude the possibility that all constraints are equalities, i.e.

that p = 0, or that all constraints are inequalities, i.e. that p = m, or that
there are no constraints at all, i.e. that m = 0.

Since the equality h(x) = 0 can be replaced by the two inequalities
±h(x) ≤ 0, we could without loss of generality assume that all constraints
are inequalities, but it is convenient to formulate results for optimization
problems with equalities among the constraints without first having to make
such rewritings.

If x̂ is a feasible point and gi(x̂) = 0, we say that the i:th constraint is
active at the point x̂. All constraints in the form of equalities are, of course,
active at all feasible points.

The condition x ∈ Ω is (in the case Ω 6= Rn) of course also a kind of
constraint, but it plays a different role than the other constraints. We will
sometimes call it the implicit constraint in order to distinguish it from the
other explicit constraints. If Ω is given as the solution set of a number of
inequalities of type hi(x) ≤ 0 and the functions hi, the objective function
and the explicit constraint functions are defined on the entire space Rn, we
can of course include the inequalities hi(x) ≤ 0 among the explicit conditions
and omit the implicit constraint.

The domain Ω will often be clear from the context, and it is in these cases
not mentioned explicitly in the formulation of the optimization problem. The
minimization problem (P) will therefore often be given in the following form

min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m.
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Linear programming

The problem of maximizing or minimizing a linear form over a polyhedron,
which is given in the form of an intersection of closed halvspaces in Rn,
is called linear programming, abbreviated LP. The problem (P) is, in other
words, an LP problem if the objective function f is linear and X is the set
of solutions to a finite number of linear equalities and inequalities.

We will study LP problems in detail in Chapter 12.

Convex optimization

The minimization problem

min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

with implicit constraint x ∈ Ω is called convex, if the set Ω is convex, the
objective function f : Ω → R is convex, and the constraint functions gi are
convex for i = 1, 2, . . . , p and affine for i = p+ 1, . . . ,m.

The affine conditions gp+1(x) = 0, . . . , gm(x) = 0 in a convex problem
can of course be summarized as Ax = b, where A is an (m− p)× n-matrix.

The set X of feasible points is convex in a convex minimization problem,
for

X =

p⋂
i=1

{x ∈ Ω | gi(x) ≤ 0} ∩
m⋂

i=p+1

{x | gi(x) = 0},

and this expresses X as an intersection of sublevel sets of convex functions
and hyperplanes.

A maximization problem

max f(x)
s.t. x ∈ X

is called convex if the corresponding equivalent minimization problem

min −f(x)
s.t. x ∈ X

is convex, which means that the objective function f has to be concave.

LP problems are of course convex optimization problems. General convex
optimization problems are studied in Chapter 11.
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Convex quadratic programming

We get a special case of convex optimization if X is a polyhedron and the
objective function f is a sum of a linear form and a positive semidefinite
quadratic form, i.e. has the form f(x) = 〈c, x〉 + 〈x,Qx〉, where Q is a
positive semidefinite matrix. The problem (P) is then called convex quadratic
programming. LP problems constitute a subclass of the convex quadratic
problems, of course.

Non-linear optimization

Non-linear optimization is about optimization problems that are not sup-
posed to be LP problems. Since non-linear optimization includes almost
everything, there is of course no general theory that can be applied to an
arbitrary non-linear optimization problem.

If f is a differentiable function and X is a ”decent” set in Rn, one can of
course use differential calculus to attack the minimization problem (P). We
recall in this context the Lagrange theorem, which gives a necessary condition
for the minimum (and maximum) when

X = {x ∈ Rn | g1(x) = g2(x) = · · · = gm(x) = 0}.
A counterpart of Lagrange’s theorem for optimization problems with con-
straints in the form of inequalities is given in Chapter 10.

Integer programming

An integer programming problem is a mathematical optimization problem in
which some or all of the variables are restricted to be integers. In particular,
a linear integer problem is a problem of the form

min 〈c, x〉
s.t. x ∈ X ∩ (Zm × Rn−m)

where 〈c, x〉 is a linear form and X is a polyhedron in Rn.
Many problems dealing with flows in networks, e.g. commodity distribu-

tion problems and maximum flow problems, are linear integer problems that
can be solved using special algorithms.

Simultaneous optimization

The title refers to a type of problems that are not really optimization prob-
lems in the previous sense. There are many situations, where an individual
may affect the outcome through his actions without having full control over
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the situation. Some variables may be in the hands of other individuals with
completely different desires about the outcome, while other variables may be
of a completely random nature. The problem to in some sense optimize the
outcome could then be called simultaneous optimization.

Simultaneous optimization is the topic of game theory, which deals with
the behavior of the various agents in conflict situations. Game theoretical
concepts and results have proved to be very useful in various contexts, e.g.
in economics.

9.3 Equivalent problem formulations

Let us informally call two optimization problems equivalent if it is possible to
determine in an automatical way an optimal solution to one of the problems,
given an optimal solution to the other, and vice versa.

A trivial example of equivalent problems are, as already mentioned, the
problems

max f(x)
s.t. x ∈ X

and min −f(x).
s.t. x ∈ X

We now describe some useful transformations that lead to equivalent op-
timization problem

Elimination of equalities

Consider the problem

(P) min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m.

If it is possible to solve the subsystem of equalities and express the solution
in the form x = h(y) with a parameter y running over some subset of Rd,
then we can eliminate the equalities and rewrite problem (P) as

(P′) min f(h(y))
s.t. gi(h(y)) ≤ 0, i = 1, 2, . . . , p

If ŷ is an optimal solution to (P′), then h(ŷ) is of course an optimal solution
to (P). Conversely, if x̂ is an optimal solution to (P), then x̂ = h(ŷ) for some
value ŷ of the parameter, and this value is an optimal solution to (P′).

The elimination is always possible (by a simple algorithm) if all constraint
equalities are affine, i.e. if the system can be written in the form Ax = b for
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some (m − p) × n-matrix A. Assuming that the system is consistent, the
solution set is an affine subspace of dimension d = n − rankA, and there
exists an n×d-matrix C of rank d and a particular solution x0 to the system
such that Ax = b if and only if x = Cy + x0 for some y ∈ Rd. The problem
(P) is thus in this case equivalent to the problem

min f(Cy + x0)
s.t. gi(Cy + x0) ≤ 0, i = 1, 2, . . . , p

(with implicit constraint Cy + x0 ∈ Ω).
In convex optimization problems, and especially in LP problems, we can

thus, in principle, eliminate the equalities from the constraints and in this
way replace the problem by an equivalent optimization problem without any
equality constraints.

Slack variables

The inequality g(x) ≤ 0 holds if and only if there is a number s ≥ 0 such
that g(x) + s = 0. By thus replacing all inequalities in the problem

(P) min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

with equalities, we obtain the following equivalent problem

(P′) min f(x)

s.t.


gi(x) + si = 0, i = 1, 2, . . . , p

gi(x) = 0, i = p+ 1, . . . ,m
si ≥ 0, i = 1, 2, . . . , p

with n + p variables, m equality constraints and p simple inequality con-
straints. The new variables si are called slack variables.

If x̂ is an optimal solution to (P), we get an optimal solution (x̂, ŝ) to (P′)
by setting ŝi = −gi(x̂). Conversely, if (x̂, ŝ) is an optimal solution to the last
mentioned problem, then x̂ is of course an optimal solution to the original
problem.

If the original constraints are affine, then so are all new constraints. The
transformation thus transforms LP problems to LP problems.

Inequalities of the form g(x) ≥ 0 can of course similarly be written as
equalities g(x)−s = 0 with nonnegative variables s. These new variables are
usually called surplus variables.
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Nonnegative variables

Every real number can be written as a difference between two nonnegative
numbers. In an optimization problem, we can thus replace an unrestricted
variable xi, i.e. a variable that a priori may assume any real value, with two
nonnegative variables x′i and x′′i by setting

xi = x′i − x′′i , x′i ≥ 0, x′′i ≥ 0.

The number of variables increases with one and the number of inequalities
increases with two for each unrestricted variable that is replaced, but the
transformation leads apparently to an equivalent problem. Moreover, convex
problems are transfered to convex problems and LP problems are transformed
to LP problems.

Example 9.3.1. The LP problem

min x1 + 2x2

s.t.


x1 + x2 ≥ 2

2x1−x2 ≤ 3
x1 ≥ 0

is transformed, using two slack/surplus variables and by replacing the un-
restricted variable x2 with a difference of two nonnegative variables, to the
following equivalent LP problem in which all variables are nonnegative and
all remaining constraints are equalities.

min x1 + 2x′2 − 2x′′2 + 0s1 + 0s2

s.t.


x1 + x′2−x′′2 − s1 = 2

2x1−x′2 + x′′2 + s2 = 3
x1, x

′
2, x
′′
2, s1, s2 ≥ 0.

Epigraph form

Every optimization problem can be replaced by an equivalent problem with
a linear objective function, and the trick to accomplish this is to utilize the
epigraph of the original objective function. The two problems

(P) min f(x)
s.t. x ∈ X

and (P′) min t

s.t.

{
f(x) ≤ t
x ∈ X

are namely equivalent, and the objective function in (P′) is linear. If x̂ is an
optimal solution to (P), then (x̂, f(x̂)) is an optimal solution to (P′), and if
(x̂, t̂) is an optimal solution to (P′), then x̂ is an optimal solution to (P).
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If problem (P) is convex, i.e. has the form

min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

with convex functions f and gi for 1 ≤ i ≤ p, and affine functions gi for
i ≥ p+ 1, then the epigraph variant

min t

s.t.


f(x)− t ≤ 0,

gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

is also a convex problem.
So there is no restriction to assume that the objective function of a convex

program is linear when we are looking for general properties of such programs.

Piecewise affine objective functions

Suppose that X is a polyhedron (given as an intersection of closed halfspaces)
and consider the convex optimization problem

(P) min f(x)
s.t. x ∈ X

where the objective function f(x) is piecewise affine and given as

f(x) = max{〈ci, x〉+ bi | i = 1, 2, . . . ,m}.

The epigraph transformation results in the equivalent convex problem

min t

s.t.

{
max

1≤i≤m
(〈ci, x〉+ bi) ≤ t

x ∈ X,

and since max1≤i≤m αi ≤ t if and only if αi ≤ t for all i, this problem is in
turn equivalent to the LP problem

(P′) min t

s.t.

{
〈ci, x〉 − t+ bi ≤ 0, i = 1, 2, . . . ,m

x ∈ X.

The constraint set of this LP problem is a polyhedron in Rn × R.
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If instead the objective function in problem (P) is a sum

f(x) = f1(x) + f2(x) + · · ·+ fk(x)

of piecewise affine functions fi, then problem (P) is equivalent to the convex
problem

min t1 + t2 + · · ·+ tk

s.t.

{
fi(x) ≤ ti i = 1, 2, . . . , k

x ∈ X

and this problem becomes an LP problem if every inequality fi(x) ≤ ti is
expressed as a system of linear inequalities in a similar way as above.

9.4 Some model examples

Diet problem

Let us start with a classical LP problem that was formulated and studied
during the childhood of linear programming. The goal of the diet problem
is to select a set of foods that will satisfy a set of daily nutritional require-
ments at minimum cost. There are n foods L1, L2, . . . , Ln available at a
cost of c1, c2, . . . , cn dollars per unit. The foods contain various nutrients
N1, N2, . . . , Nm (proteins, carbohydrates, fats, vitamins, etc.). The number
of units of nutrients per unit of food is shown by the following table:

L1 L2 . . . Ln
N1 a11 a12 . . . a1n

N2 a21 a22 . . . a2n
...
Nm am1 am2 . . . amn

Buying x1, x2, . . . , xn units of the foods, one thus obtains

ai1x1 + ai2x2 + · · ·+ ainxn

units of nutrient Ni at a cost of

c1x1 + c2x2 + · · ·+ cnxn.

Suppose that the daily requirement of the different nutrients is b1, b2,
. . . , bm and that it is not harmful to have too much of any substance. The
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problem to meet the daily requirement at the lowest possible cost is called
the diet problem. Mathematically, it is of the form

min c1x1 + c2x2 + · · ·+ cnxn

s.t.



a11x1 + a12x2 + · · · + a1nxn ≥ b1

a21x1 + a22x2 + · · · + a2nxn ≥ b2
...

am1x1 + am2x2 + · · · + amnxn ≥ bm
x1, x2, . . . , xn ≥ 0.

The diet problem is thus an LP problem. In addition to determining
the optimal diet and the cost of this, it would be of interest to answer the
following questions:

1. How does a price change of one or more of the foods affect the optimal
diet and the cost?

2. How is the optimal diet affected by a change of the daily requirement
of one or more nutrients?

3. Suppose that pure nutrients are available on the market. At what price
would it be profitable to buy these and satisfy the nutritional needs by
eating them instead of the optimal diet? Hardly a tasty option for a
gourmet but perhaps possible in animal feeding.

Assume that the cost of the optimal diet is z, and that its cost changes
to z + ∆z when the need for nutrient N1 is changed from b1 to b1 + ∆b1,
ceteris paribus. It is obvious that the cost can not be reduced when demand
increases, so therefore ∆b1 > 0 entails ∆z ≥ 0. If it is possible to buy the
nutrient N1 in completely pure form to the price p1, then it is economically
advantageous to meet the increased need by taking the nutrient in pure form,
provided that p1∆b1 ≤ ∆z. The maximum price of N1 which makes nutrient
in pure form an economical alternative is therefore ∆z/∆b1, and the limit as
∆b1 → 0, i.e. the partial derivative ∂z

∂b1
, is called the dual price or the shadow

price in economic literature.
It is possible to calculate the nutrient shadow prices by solving an LP

problem closely related to the diet problem. Assume again that the market
provides nutrients in pure form and that their prices are y1, y2, . . . , ym. Since
one unit of food Li contains a1i, a2i, . . . , am units of each nutrient, we can
”manufacture” one unit of food Li by buying just this set of nutrients, and
hence it is economically advantageous to replace all foods by pure nutrients
if

a1iy1 + a2iy2 + · · ·+ amym ≤ ci

for i = 1, 2, . . . , n. Under these conditions the cost of the required daily ration
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b1, b2, . . . , bm is at most equal to the maximum value of the LP problem

max b1y1 + b2y2 + · · ·+ bmym

s.t.



a11y1 + a21y2 + . . . + am1ym ≤ c1

a12y1 + a22y2 + . . . + am2ym ≤ c2
...

a1ny1 + a2ny2 + . . . + amnym ≤ cn
y1, y2, . . . , ym ≥ 0.

We will show that this so called dual problem has the same optimal value
as the original diet problem and that the optimal solution is given by the
shadow prices.

Production planning

Many problems related to production planning can be formulated as LP
problems, and a pioneer in the field was the Russian mathematician and
economist Leonid Kantorovich, who studied and solved such problems in the
late 1930s. Here is a typical such problem.

A factory can manufacture various goods V1, V2, . . . , Vn. This requires
various inputs (raw materials and semi-finished goods) and different types of
labor, something which we collectively call production factors P1, P2, . . . , Pm.
These are available in limited quantities b1, b2, . . . , bm. In order to manufac-
ture, market and sell one unit of the respective goods, production factors are
needed to an extent given by the following table:

V1 V2 . . . Vn
P1 a11 a12 . . . a1n

P2 a21 a22 . . . a2n
...
Pm am1 am2 . . . amn

Every manufactured product Vj can be sold at a profit which is cj dollars per
unit, and the goal now is to plan the production x1, x2, . . . , xn of the various
products so that the profit is maximized.

Manufacturing x1, x2, . . . , xn units of the goods consumes ai1x1 + ai2x2 +
· · · + ainxn units of production factor Pi and results in a profit equal to
c1x1 + c2x2 + · · ·+ cnxn. The optimization problem that we need to solve is
thus the LP problem
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max c1x1 + c2x2 + · · ·+ cnxn

s.t.



a11x1 + a12x2 + . . . + a1nxn ≤ b1

a21x1 + a22x2 + . . . + a2nxn ≤ b2
...

am1x1 + am2x2 + . . . + amnxn ≤ bm
x1, x2, . . . , xn ≥ 0.

Here it is reasonable to ask similar questions as for the diet problem, i.e. how
is the optimal solution and the optimal profit affected by

1. altered pricing c1, c2, . . . , cn;

2. changes in the resource allocation.

If we increase a resource Pi that is already fully utilized, so does (nor-
mally) the profit. What will the price of this resource be for the expansion
to pay off? The critical price is called the shadow price, and it can be inter-
preted as a partial derivative, and as the solution to a dual problem.

Transportation problem

The transportation problem is another classical LP problem that was formu-
lated and solved before the invention of the simplex algorithm

A commodity (e.g. gasoline) is stored at m places S1, S2, . . . , Sm and de-
manded at n other locations D1, D2, . . . , Dn. The quantity of the commodity
available at Si is ai units, while bj units are demanded at Dj. To ship 1 unit
from storage place Si to demand center Dj costs cij dollars.

The total supply, i.e.
∑m

i=1 ai, is assumed for simplicity to be equal to the
total demand

∑n
j=1 bj, so it is possible to meet the demand by distributing

xij units from Si to Dj. To do this at the lowest transportation cost gives

...

...

...

...

ai

bn

bj

b1

cij
xij

Figure 9.1. The transportation problem
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rise to the LP problem

min
m∑
i=1

n∑
j=1

cijxij

s.t.


∑n

j=1 xij = ai, i = 1, 2, . . . , m∑m
i=1 xij = bj, j = 1, 2, . . . , n

xij ≥ 0, all i, j.

An investment problem

An investor has 1 million dollars, which he intends to invest in various
projects, and he has found m interesting candidates P1, P2, . . . , Pm for this.
The return will depend on the projects and the upcoming economic cycle.
He thinks he can identify n different economic situations E1, E2, . . . , En, but
it is impossible for him to accurately predict what the economy will look like
in the coming year, after which he intends to collect the return. However,
one can accurately assess the return of each project during the various eco-
nomic cycles; each invested million dollars in project Pi will yield a return
of aij million dollars during business cycle Ej. We have, in other words, the
following table of return for various projects and business cycles:

E1 E2 . . . En
P1 a11 a12 . . . a1n

P2 a21 a22 . . . a2n
...
Pm am1 am2 . . . amn

Our investor intends to invest x1, x2, . . . , xm million dollars in the various
projects, and this will give him the return

a1jx1 + a2jx2 + · · ·+ amjxm

million dollars, assuming that the economy will be in state Ej. Since our in-
vestor is a very cautious person, he wants to guard against the worst possible
outcome, and the worst possible outcome for the investment x1, x2, . . . , xm is

min
1≤j≤n

m∑
i=1

aijxi.
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He therefore wishes to maximize this outcome, which he does by solving the
problem

max min
1≤j≤n

m∑
i=1

aijxi

s.t. x ∈ X

where X is the set {(x1, x2, . . . , xm) ∈ Rm
+ |
∑m

i=1 xi = 1} of all possible ways
to distribute one million on the various projects.

In this formulation, the problem is a convex maximization problem with
a piecewise affine concave objective function. However, we can transform it
into an equivalent LP problem by making use of a hypograph formulation.
Utilizing the techniques of the previous section, we see that the investor’s
problem is equivalent to the LP problem

max v

s.t.



a11x1 + a21x2 + . . . + am1xm ≥ v
a12x1 + a22x2 + . . . + am2xm ≥ v

...
a1nx1 + a2nx2 + . . . + amnxm ≥ v

x1 + x2 + . . . + xm = 1
x1, x2, . . . , xm ≥ 0.

Two-person zero-sum game

Two persons, row player Rick and column player Charlie, each choose, inde-
pendently of each other, an integer. Rick chooses a number i in the range
1 ≤ i ≤ m and Charlie a number j in the range 1 ≤ j ≤ n. If they choose
the pair (i, j), Rick wins aij dollars of Charlie, and to win a negative amount
is of course the same as to loose the corresponding positive amount.

The numbers m, n and aij are supposed to be known by both players, and
the objective of each player is to win as much as possible (or equivalently, to
loose as little as possible). There is generally no best choice for any of the
players, but they could try to maximize their expected winnings by selecting
their numbers at random with a certain probability distribution.

Suppose Rick chooses the number i with probability xi, and Charlie
chooses the number j with probability yj. All probabilities are of course
nonnegative numbers, and

∑m
i=1 xi =

∑n
j=1 yj = 1. Let

X = {x ∈ Rm
+ |

m∑
i=1

xi = 1} and Y = {y ∈ Rn
+ |

n∑
j=1

yj = 1}.
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The elements in X are called the row player’s mixed strategies, and the ele-
ments in Y are the column player’s mixed strategies.

Since the players choose their numbers independently of each other, the
outcome (i, j) will occur with probability xiyj. Rick’s pay-off is therefore a
random variable with expected value

f(x, y) =
m∑
i=1

n∑
j=1

aijxiyj.

Row player Rick can now conceivably argue like this: ”The worst that can
happen to me, if I choose the probability distribution x, is that my opponent
Charlie happens to choose a probability distribution y that minimizes my
expected profit f(x, y)”. In this case, Rick will obtain the amount

g(x) = min
y∈Y

f(x, y) = min
y∈Y

n∑
j=1

yj
( m∑
i=1

aijxi
)
.

The sum
∑n

j=1 yj
(∑m

i=1 aijxi
)

is a weighted arithmetic mean of the n numbers∑m
i=1 aijxi, j = 1, 2, . . . , n, with the weights y1, y2, . . . , yn, and such a mean

is greater than or equal to the smallest of the n numbers, and equality is
obtained by putting all weight on this smallest number. Hence,

g(x) = min
1≤j≤n

m∑
i=1

aijxi.

Rick, who wants to maximize his outcome, should therefore choose to
maximize g(x), i.e. Rick’s problem becomes

max g(x)
s.t. x ∈ X.

This is exactly the same problem as the investor’s problem. Hence, Rick’s op-
timal strategy, i.e. optimal choice of probabilities, coincides with the optimal
solution to the LP problem

max v

s.t.



a11x1 + a21x2 + . . . + am1xm ≥ v
a12x1 + a22x2 + . . . + am2xm ≥ v

...
a1nx1 + a2nx2 + . . . + amnxm ≥ v

x1 + x2 + . . . + xm = 1
x1, x2, . . . , xm ≥ 0.
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The column player’s problem is analogous, but he will of course minimize
the maximum expected outcome f(x, y). Charlie must therefore solve the
problem

min max
1≤i≤m

n∑
j=1

aijyj

s.t. y ∈ Y

to find his optimal strategy, and this problem is equivalent to the LP problem

min u

s.t.



a11y1 + a12y2 + . . . + a1nyn ≤ u
a21y1 + a22y2 + . . . + a2nyn ≤ u

...
am1y1 + am2y2 + . . . + amnyn ≤ u

y1 + y2 + . . . + yn = 1
y1, y2, . . . , yn ≥ 0.

The two players’ problems are examples of dual problems, and it follows
from results that will appear in Chapter 12 that they have the same optimal
value.

Consumer Theory

The behavior of consumers is studied in a branch of economics known as
microeconomics. Assume that there are n commodities V1, V2, . . . , Vn on
the market and that the price of these goods is given by the price vector
p = (p1, p2, . . . , pn). A basket x consisting of x1, x2, . . . , xn units of the goods
thus costs 〈p, x〉 = p1x1 + p2x2 + · · ·+ pnxn.

A consumer values her benefit of the commodity bundle x by using a
subjective utility function f , where f(x) > f(y) means that she prefers x to
y. A reasonable assumption about the utility function is that every convex
combination λx + (1 − λ)y of two commodity bundles should be valued as
being at least as good as the worst of the two bundles x and y, i.e. that
f(λx + (1 − λ)y) ≥ min

(
f(x), f(y)

)
. The utility function f is assumed, in

other words, to be quasiconcave, and a stronger assumption, which is often
made in the economic literature and that we are making here, is that f is
concave.

Suppose now that our consumer’s income is I, that the entire income
is disposable for consumption, and that she wants to maximize her utility.
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Then, the problem that she needs to solve is the convex optimization problem

max f(x)

s.t.

{
〈p, x〉 ≤ I

x ≥ 0.

To determine empirically a consumer’s utility function is of course al-
most impossible, so microtheory is hardly useful for quantitative calculations.
However, one can make qualitative analyzes and answer questions of the type:
How does an increase in income change the consumer behavior? and How
does changes in the prices of the goods affect the purchasing behavior?

Portfolio optimization

A person intends to buy shares in n different companies C1, C2, . . . , Cn for S
dollars. One dollar invested in the company Cj gives a return of Rj dollars,
where Rj is a random variable with known expected value

µj = E[Rj].

The covariances

σij = E[(Ri − µi)(Rj − µj)]

are also assumed to be known.
The expected total return e(x) from investing x = (x1, x2, . . . , xn) dollars

in the companies C1, C2, . . . , Cn is given by

e(x) = E
[ n∑
j=1

xjRj

]
=

n∑
j=1

µjxj,

and the variance of the total return is

v(x) = Var
[ n∑
j=1

xjRj

]
=

n∑
i,j=1

σijxixj.

Note that v(x) is a positive semi-definite quadratic form.
It is not possible for our person to maximize the total return, because

the return is a random variable, i.e. depends on chance. However, he can
maximize the expected total return under appropriate risk conditions, i.e.
requirements for the variance. Alternatively, he can minimize the risk with
the investment given certain requirements on the expected return. Thus
there are several possible strategies, and we will formulate three such.
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(i) The strategy to maximize the expected total return, given an upper
bound B on the variance, leads to the convex optimization problem

max e(x)

s.t.


v(x) ≤ B

x1 + x2 + · · ·+ xn = S
x ≥ 0.

(ii) The strategy to minimize the variance of the total return, given a lower
bound b on the expected return, gives rise to the convex quadratic program-
ming problem

min v(x)

s.t.


e(x) ≥ b

x1 + x2 + · · ·+ xn = S
x ≥ 0.

(iii) The two strategies can be considered together in the following way. Let
ε ≥ 0 be a (subjective) parameter, and consider the convex quadratic problem

min εv(x)− e(x)

s.t.

{
x1 + x2 + · · ·+ xn = S

x ≥ 0

with optimal solution x(ε). We leave as an exercise to show that

v(x(ε1)) ≥ v(x(ε2)) and e(x(ε1)) ≥ e(x(ε2))

if 0 ≤ ε1 ≤ ε2. The parameter ε is thus a measure of the person’s attitude
towards risk; the smaller the ε, the greater the risk (= variance) but also the
greater expected return.

Snell’s law of refraction

We will study the path of a light beam which passes through n parallel
transparent layers. The j:th slice Sj is assumed to be aj units wide and to
consist of a homogeneous medium in which the speed of light is vj. We choose
a coordinate system as in figure 9.2 and consider a light beam on its path
from the origin on the surface of the first slice to a point with y-coordinate
b on the outer surface of the last slice.

According to Fermat’s principle, the light chooses the fastest route. The
path of the beam is therefore determined by the optimal solution to the
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θj

S1 S2 Sj Sn

aj

yj

(x, b)

x

y

Figure 9.2. The path of a light beam through
layers with different refraction indices.

convex optimization problem

min
n∑
j=1

v−1
j

√
y2
j + a2

j

s.t.
n∑
j=1

yj = b,

and we obtain Snell’s law of refraction

sin θi
sin θj

=
vi
vj

by solving the problem.

Overdetermined systems

If a system of linear equations

Ax = b

with n unknowns and m equations is inconsistent, i.e. has no solutions, you
might want to still determine the best approximate solution, i.e. the n-tuple
x = (x1, x2, . . . , xn) that makes the error as small as possible. The error is
by definition the difference Ax − b between the left and the right hand side
of the equation, and as a measure of the size of the error we use ‖Ax − b‖
for some suitably chosen norm.

The function x 7→ ‖Ax − b‖ is convex, so the problem of minimizing
‖Ax − b‖ over all x ∈ Rn is a convex problem regardless of which norm is
used, but the solution depends on the norm, of course. Let as usual aij denote
the element at location i, j in the matrix A, and let b = (b1, b2, . . . , bm).
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1. The so-called least square solution is obtained by using the Euclidean
norm ‖·‖2. Since ‖Ax− b‖2

2 =
∑m

i=1(ai1x1 + ai2x2 + · · ·+ ainxn− bi)2, we get
the least square solution as the solution of the convex quadratic problem

minimize
m∑
i=1

(ai1x1 + ai2x2 + · · ·+ ainxn − bi)2.

The gradient of the objective function is equal to zero at the optimal point,
which means that the optimal solution is obtained as the solution to the
linear system

ATAx = ATb.

2. By instead using the ‖·‖∞ norm, one obtains the solution that gives the
smallest maximum deviation between the left and the right hand side of the
linear system Ax = b. Since

‖Ax− b‖∞ = max
1≤i≤m

|ai1x1 + ai2x2 + · · ·+ ainxn − bi|,

the objective function is now piecewise affine, and the problem is therefore
equivalent to the LP problem

min t

s.t.


±(a11x1 + a12x2 + · · · + a1nxn− b1)≤ t

...
±(am1x1 + am2x2 + · · · + amnxn− bm)≤ t.

3. Instead of minimizing the sum of squares of the differences between left
and right sides, we can of course minimize the sum of the absolute value of
the differences, i.e. use the ‖·‖1-norm. Since the objective function

‖Ax− b‖1 =
m∑
i=1

|ai1x1 + ai2x2 + · · ·+ ainxn − bi|

is a sum of convex piecewise affine functions, our convex minimization prob-
lem is in this case equivalent to the LP problem

min t1 + t2 + · · ·+ tm

s.t.


±(a11x1 + a12x2 + · · · + a1nxn− b1)≤ t1

...
±(am1x1 + am2x2 + · · · + amnxn− bm)≤ tm.
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Largest inscribed ball

A convex set X with nonempty interior is given in Rn, and we want to
determine a ball B(x, r) in X (with respect to a given norm) with the largest
possible radius r. We assume that X can be described as the solution set to
a system of inequalities, i.e. that

X = {x ∈ Rn | gi(x) ≤ 0, i = 1, 2, . . . ,m},

with convex functions gi.

The ball B(x, r) lies in X if and only if gi(x + ry) ≤ 0 for all y with
‖y‖ ≤ 1 and i = 1, 2, . . . ,m, which makes it natural to consider the functions

hi(x, r) = sup
‖y‖≤1

gi(x+ ry), i = 1, 2, . . . ,m.

The functions hi are convex since they are defined as suprema of convex
functions in the variables x and r.

The problem of determining the ball with the largest possible radius has
now been transformed into the convex optimization problem

max r
s.t. hi(x, r) ≤ 0, i = 1, 2, . . . ,m.

For general convex sets X, it is of course impossible to determine the
functions hi explicitly, but if X is a polyhedron, gi(x) = 〈ci, x〉 − bi, and the
norm in question is the `p-norm, then it follows from Hölder’s inequality that

hi(x, r) = sup
‖y‖p≤1

(〈ci, x〉+ r〈ci, y〉 − bi) = 〈ci, x〉+ r‖ci‖q − bi

for r ≥ 0, where ‖·‖q denotes the dual norm.

The problem of determining the center x and the radius r of the largest
ball that is included in the polyhedron

X = {x ∈ Rn | 〈ci, x〉 ≤ bi, i = 1, 2, . . . ,m}

has now been reduced to the LP problem

max r
s.t. 〈ci, x〉+ r‖ci‖q ≤ bi, i = 1, 2, . . . ,m.



Exercises 189

Exercises

9.1 In a chemical plant one can use four different processes P1, P2, P3, and P4 to
manufacture the products V1, V2, and V3. Produced quantities of the various
products, measured in tons per hour, for the various processes are shown in
the following table:

P1 P2 P3 P4

V1 −1 2 2 1
V2 4 1 0 2
V3 3 1 2 1

(Process P1 thus consumes 1 ton of V1 per hour!) Running processes P1,
P2, P3, and P4 costs 5 000, 4 000, 3 000, and 4 000 dollars per per hour,
respectively. The plant intends to produce 16, 40, and 24 tons of products V1,
V2, and V3 at the lowest possible cost. Formulate the problem of determining
an optimal production schedule.

9.2 Bob has problems with the weather. The weather occurs in the three states
pouring rain, drizzle and sunshine. Bob owns a raincoat and an umbrella,
and he is somewhat careful with his suit. The raincoat is difficult to carry,
and the same applies − though to a lesser degree − to the umbrella; the
latter, however, is not fully satisfactory in case of pouring rain. The following
table reveals how happy Bob considers himself in the various situations that
can arise (the numbers are related to his blood pressure, with 0 corresponding
to his normal state).

Pouring rain Drizzle Sunshine

Raincoat 2 1 −2
Umbrella 1 2 −1
Only suit −4 −2 2

In the morning, when Bob goes to work, he does not know what the weather
will be like when he has to go home, and he would therefore choose the clothes
that optimize his mind during the walk home. Formulate Bob’s problem as
an LP problem.

9.3 Consider the following two-person game in which each player has three al-
ternatives and where the payment to the row player is given by the following
payoff matrix.

1 2 3

1 1 0 5
2 3 3 4
3 2 4 0

In this case, it is obvious which alternatives both players must choose. How
will they play?
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9.4 Charlie and Rick have three cards each. Both have the ace of diamonds
and the ace of spades. Charlie also has the two of diamonds, and Rick has
the two of spades. The players play simultaneously one card each. Charlie
wins if both these cards are of the same color and loses in the opposite case.
The winner will receive as payment the value of his winning card from the
opponent, with ace counting as 1. Write down the payoff matrix for this two-
person game, and formulate column player Charlie’s problem to optimize his
expected profit as an LP problem.

9.5 The overdetermined system 
x1 + x2 = 2
x1− x2 = 0

3x1 + 2x2 = 4

has no solution.

a) Determine the least square solution.
b) Formulate the problem of determining the solution that minimizes the

maximum difference between the left and the right hand sides of the
system.

c) Formulate the problem of determining the solution that minimizes the
sum of the absolut values of the differences between the left and the right
hand sides.

9.6 Formulate the problem of determining

a) the largest circular disc,
b) the largest square with sides parallel to the coordinate axes,

that is contained in the triangle bounded by the lines x1−x2 = 0, x1−2x2 = 0
and x1 + x2 = 1.



Chapter 10

The Lagrange function

10.1 The Lagrange function and the dual prob-

lem

The Lagrange function

To the minimization problem

(P) min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

with x ∈ Ω as implicit condition and m explicit constraints, the first p of
which in the form of inequalities, we shall associate a dual maximization
problem, and the tool to accomplish this is the Lagrange function defined
below. To avoid trivial matters we assume that dom f 6= ∅, i.e. that the
objective function f : Ω→ R is not identically equal to ∞ on Ω.

X denotes as before the set of feasible points in the problem (P), i.e.

X = {x ∈ Ω | g1(x) ≤ 0, . . . , gp(x) ≤ 0, gp+1(x) = 0, . . . , gm(x) = 0},
and vmin(P ) is the optimal value of the problem.

Definition. Let
Λ = Rp

+ × Rm−p.

The function L : Ω× Λ→ R, defined by

L(x, λ) = f(x) +
m∑
i=1

λigi(x),

is called the Lagrange function of the minimization problem (P), and the
variables λ1, λ2, . . . , λm are called Lagrange multipliers.

191
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For each x ∈ dom f , the expression L(x, λ) is the sum of a real number
and a linear form in λ1, λ2, . . . , λm. Hence, the function λ 7→ L(x, λ) is affine
(or rather, the restriction to Λ of an affine function on Rm). The Lagrange
function is thus especially concave in the variable λ for each fixed x ∈ dom f .

If x ∈ Ω \ dom f , then obviously L(x, λ) =∞ for all λ ∈ Λ. Hence,

inf
x∈Ω

L(x, λ) = inf
x∈dom f

L(x, λ) <∞

for all λ ∈ Λ.

Definition. For λ ∈ Λ, we define

φ(λ) = inf
x∈Ω

L(x, λ)

and call the function φ : Λ → R the dual function associated to the mini-
mization problem (P).

It may of course happen that the domain

domφ = {λ ∈ Λ | φ(λ > −∞}
of the dual function is empty; this occurs if the functions x 7→ L(x, λ) are
unbounded below on Ω for all λ ∈ Λ.

Theorem 10.1.1. The dual function φ of the minimization problem (P) is
concave and

φ(λ) ≤ vmin(P )

for all λ ∈ Λ.

Hence, domφ = ∅ if the objective function f in the original problem (P) is
unbounded below on the constraint set, i.e. if vmin(P ) = −∞.

Proof. The functions λ → L(x, λ) are concave for x ∈ dom f , which means
that the function φ is the infimum of a family of concave functions. It
therefore follows from Theorem 6.2.4 that φ is concave.

Suppose λ ∈ Λ and x ∈ X; then λigi(x) ≤ 0 for i ≤ p and λigi(x) = 0 for
i > p, and it follows that

L(x, λ) = f(x) +
n∑
i=1

λigi(x) ≤ f(x),

and that consequently

φ(λ) = inf
x∈Ω

L(x, λ) ≤ inf
x∈X

L(x, λ) ≤ inf
x∈X

f(x) = vmin(P ).
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The following optimality criterion is now an immediate consequence of
the preceding theorem.

Theorem 10.1.2 (Optimality criterion). Suppose x̂ is a feasible point for the
minimization problem (P) and that there is a point λ̂ ∈ Λ such that

φ(λ̂) = f(x̂).

Then x̂ is an optimal solution.

Proof. The common value f(x̂) belongs to the intersection R∩R = R of the
codomains of f and φ, and it is thus a real number, and by Theorem 10.1.1,
f(x̂) ≤ vmin(P ). Hence, f(x̂) = vmin(P ).

Example 10.1.1. Let us consider the simple minimization problem

min f(x) = x2
1 − x2

2

s.t. x2
1 + x2

2 ≤ 1.

The Lagrange function is

L(x1, x2, λ) = x2
1 − x2

2 + λ(x2
1 + x2

2 − 1)

= (λ+ 1)x2
1 + (λ− 1)x2

2 − λ

with (x1, x2) ∈ R2 and λ ∈ R+.
The Lagrange function is unbounded below when 0 ≤ λ < 1, and it

attains the minimum value −λ for x1 = x2 = 0 when λ ≥ 1, so the dual
function φ is given by

φ(λ) =

{
−∞ , if 0 ≤ λ < 1

−λ , if λ ≥ 1.

We finally note that the optimality condition φ(λ̂) = f(x̂) is satisfied by
the point x̂ = (0, 1) and the Lagrange multiplier λ̂ = 1. Hence, (0, 1) is an
optimal solution.

The optimality criterion gives a sufficient condition for optimality, but it
is not necessary, as the following trivial example shows.

Example 10.1.2. Consider the problem

min f(x) = x
s.t. x2 ≤ 0.
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There is only one feasible point, x̂ = 0, which is therefore the optimal solu-
tion. The Lagrange function L(x, λ) = x + λx2 is bounded below for λ > 0
and

φ(λ) = inf
x∈R

(x+ λx2) =

{
−1/4λ, if λ > 0

−∞, if λ = 0.

But φ(λ) < 0 = f(x̂) for all λ ∈ Λ = R+, so the optimality criterion in
Theorem 10.1.2 is not satisfied by the optimal point.

For the converse of Theorem 10.1.2 to hold, some extra condition is thus
needed, and we describe such a condition in Chapter 11.1.

The dual problem

In order to obtain the best possible lower estimate of the optimal value of
the minimization problem (P), we should, in the light of Theorem 10.1.1,
maximize the dual function. This leads to the following definition.

Definition. The optimization problem

(D) max φ(λ)
s.t. λ ∈ Λ

is called the dual problem of the minimization problem (P).

The dual problem is a convex problem, irrespective of whether the prob-
lem (P) is convex or not, because the dual function is concave. The value of
the dual problem will be denoted by vmax(D) with the usual conventions for
±∞-values.

Our next result is now an immediate corollary of Theorem 10.1.1.

Theorem 10.1.3 (Weak duality). The following inequality holds between the
optimal values of the problem(P) and its dual problem (D):

vmax(D) ≤ vmin(P ).

The inequality in the above theorem is called weak duality. If the two
optimal values are equal, i.e. if

vmax(D) = vmin(P )

then we say that strong duality holds for problem (P).
Weak duality thus holds for all problems while strong duality only holds

for special types of problems. Of course, strong duality prevails if the opti-
mality criterion in Theorem 10.1.2 is satisfied.
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Example 10.1.3. Consider the minimization problem

min x3
1 + 2x2

s.t. x2
1 + x2

2 ≤ 1.

It is easily verified that the minimum is attained for x = (0,−1) and that
the optimal value is vmin(P ) = −2. The Lagrange function

L(x1, x2, λ) = x3
1 + 2x2 + λ(x2

1 + x2
2 − 1) = x3

1 + λx2
1 + 2x2 + λx2

2 − λ
tends, for each fixed λ ≥ 0, to −∞ as x2 = 0 and x1 → −∞. The Lagrange
function is in other words unbounded below on R2 for each λ, and hence
φ(λ) = −∞ for all λ ∈ Λ. The value of the dual problem is therefore
vmax(D) = −∞, so strong duality does not hold in this problem.

The Lagrange function, the dual function and the dual problem of a
minimization problem of the type (P) are defined in terms of the constraint
functions of the problem. Therefore, it may be worth emphasizing that
problems that are equivalent in the sense that they have the same objective
function f and the same set X of feasible points do not necessarily have
equivalent dual problems. Thus, strong duality may hold for one way of
framing a problem but fail to hold for other ways. See exercise 10.2.

Example 10.1.4. Let us find the dual problem of the LP problem

(LP-P) min 〈c, x〉

s.t.

{
Ax≥ b
x≥ 0.

Here A is an m× n-matrix, c is a vector in Rn and b a vector in Rm. Let us
rewrite the problem in the form

min 〈c, x〉

s.t.

{
b− Ax ≤ 0
x ∈ Rn

+

with x ∈ Rn
+ as an implicit constraint. The matrix inequality b − Ax ≤ 0

consists ofm linear inequalities, and the Lagrangefunction is therefore defined
on the product set Rn

+ × Rm
+ , and it is given by

L(x, λ) = 〈c, x〉+ 〈λ, b− Ax〉 = 〈c− ATλ, x〉+ 〈b, λ〉.
For fixed λ, L(x, λ) is bounded below on the set Rn

+ if and only if c−ATλ ≥ 0,
with minimum value equal to 〈b, λ〉 attained at x = 0. The dual function
φ : Rm

+ → R is thus given by

φ(λ) =

{
〈b, λ〉 , if ATλ ≤ c

−∞ , otherwise.
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The dual problem to the LP problem (LP-P) is therefore also an LP problem,
namely (after renaming the parameter λ to y) the LP problem

(LP-D) max 〈b, y〉

s.t.

{
ATy≤ c
y≥ 0.

Note the beautiful symmetry between the two problems.
By weak duality, we know for sure that the optimal value of the maximiza-

tion problem is less than or equal to the optimal value of the minimization
problem. As we shall see later, strong duality holds for LP problems, i.e. the
two problems above have the same optimal value, provided at least one of
the problems has feasible points.

We now return to the general minimization problem

(P) min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

with X as the set of feasible points, Lagrange function L : Ω × Λ → R,
and dual function φ. Our next theorem shows that the optimality criterion
in Theorem 10.1.2 can be formulated as a saddle point condition on the
Lagrange function.

Theorem 10.1.4. Suppose (x̂, λ̂) ∈ Ω×Λ. The following three conditions are
equivalent for the optimization problem (P):

(i) x̂ ∈ X and f(x̂) = φ(λ̂), i.e. the optimality criterion is satisfied.

(ii) For all (x, λ) ∈ Ω× Λ,

L(x̂, λ) ≤ L(x̂, λ̂) ≤ L(x, λ̂),

i.e. (x̂, λ̂) is a saddle point for the Lagrange function.

(iii) x̂ ∈ X, x̂ minimizes the function x 7→ L(x, λ̂) when x runs through Ω,
and

λ̂igi(x̂) = 0

for i = 1, 2, . . . , p.

Thus, x̂ is an optimal solution to the problem (P) if any of the equivalent
conditions (i)–(iii) is satisfied.

The condition in (iii) that λ̂igi(x̂) = 0 for i = 1, 2, . . . , p is called com-
plementarity. An equivalent way to express this, which explains the name,
is

λ̂i = 0 or gi(x̂) = 0.
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A constraint with a positive Lagrange multiplier is thus necessarily active at
the point x̂.

Proof. (i)⇒ (ii): For x̂ ∈ X and arbitrary λ ∈ Λ (= Rp
+ × Rn−p) we have

L(x̂, λ) = f(x̂) +
m∑
i=1

λigi(x̂) = f(x̂) +

p∑
i=1

λigi(x̂) ≤ f(x̂),

since λi ≥ 0 and gi(x̂) ≤ 0 for i = 1, 2, . . . , p. Moreover,

φ(λ̂) = inf
z∈Ω

L(z, λ̂) ≤ L(x, λ̂) for all x ∈ Ω.

If f(x̂) = φ(λ̂), then consequently

L(x̂, λ) ≤ f(x̂) = φ(λ̂) ≤ L(x, λ̂)

for all (x, λ) ∈ Ω × Λ, and by the particular choice of x = x̂, λ = λ̂ in
this inequality, we see that f(x̂) = L(x̂, λ̂). This proves the saddle point
inequality in (ii) with L(x̂, λ̂) = f(x̂).

(ii) ⇒ (iii): It is obvious that x̂ minimizes the function L( · , λ̂) if and only
if the right part of the saddle point inequality holds. The minimum value is
moreover finite (due to our tacit assumption dom f 6= ∅), and hence f(x̂) is
a finite number.

The left part of the saddlepoint inequality means that

f(x̂) +
m∑
i=1

λigi(x̂) ≤ f(x̂) +
m∑
i=1

λ̂igi(x̂)

for all λ ∈ Λ, or equivalently that

m∑
i=1

(λi − λ̂i)gi(x̂) ≤ 0

for all λ ∈ Λ.
Now fix the index k and choose in the above inequality the number λ so

that λi = λ̂i for all i except i = k. It follows that

(10.1) (λk − λ̂k)gk(x̂) ≤ 0

for all such λ.
If k > p, we choose λk = λ̂k ± 1 with the conclusion that ±gk(x̂) ≤ 0, i.e.

that gk(x̂) = 0. For k ≤ p we instead choose λk = λ̂k+1, with the conclusion
that gk(x̂) ≤ 0. Thus, x̂ satisfies all the constraints, i.e. x̂ ∈ X.
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For k ≤ p we finally choose λk = 0 and λk = 2λ̂k, respectively, in the
inequality (10.1) with ±λ̂kgk(x̂) ≤ 0 as result. This means that λ̂kgk(x̂) = 0
for k ≤ p, and the implication (ii)⇒ (iii) is now proved.

(iii)⇒ (i): From (iii) follows at once

φ(λ̂) = inf
x∈Ω

L(x, λ̂) = L(x̂, λ̂) = f(x̂) +
m∑
i=1

λ̂igi(x̂) = f(x̂),

which is condition (i).

If the objective and constraint functions f and g1, g2, . . . , gm are differ-
entiable, so is the Lagrange function L(x, λ) = f(x) +

∑m
i=1 λigi(x), and we

use L′x(x0, λ) as the notation for the value of the derivative of the function
x 7→ L(x, λ) at the point x0, i.e.

L′x(x0, λ) = f ′(x0) +
m∑
i=1

λig
′
i(x0).

If the differentiable function x 7→ L(x, λ) has a minimum at an inte-
rior point x0 in Ω, then L′x(x0, λ) = 0. The following corollary is thus an
immediate consequence of the implication (i)⇒ (iii) in Theorem 10.1.4.

Corollary 10.1.5. Suppose that x̂ is an optimal solution to the minimization
problem (P), that x̂ is an interior point of the domain Ω, that the objec-
tive and constraint functions are differentiable at x̂, and that the optimality
criterion f(x̂) = φ(λ̂) is satisfied by some Lagrange multiplier λ̂ ∈ Λ. Then

(KKT)

{
L′x(x̂, λ̂) = 0 and

λ̂igi(x̂) = 0 for i = 1, 2, . . . , p.

The system (KKT) is called the Karush–Kuhn–Tucker condition.

The equality L′x(x̂, λ̂) = 0 means that

f ′(x̂) +
m∑
i=1

λ̂ig
′
i(x̂) = 0,

which written out in more detail becomes

∂f

∂x1

(x̂) +
m∑
i=1

λ̂i
∂gi
∂x1

(x̂) = 0

...

∂f

∂xn
(x̂) +

m∑
i=1

λ̂i
∂gi
∂xn

(x̂) = 0.
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Example 10.1.5. In Example 10.1.1 we found that x̂ = (0, 1) is an optimal
solution to the minimization problem

min x2
1 − x2

2

s.t. x2
1 + x2

2 ≤ 1

and that the optimality criterion is satisfied with λ̂ = 1. The Lagrange
function is L(x, λ) = x2

1 − x2
2 + λ(x2

1 + x2
2 − 1), and indeed, x = (0, 1) and

λ = 1 satisfy the KKT-system
∂L(x, λ)

∂x1

= 2(λ+ 1)x1 = 0

∂L(x, λ)

∂x1

= 2(λ− 1)x2 = 0

λ(x2
1 + x2

2 − 1) = 0.

10.2 John’s theorem

Conditions which guarantee that the KKT condition is satisfied at an optimal
point, are usually called constraint qualification conditions, and in the next
chapter we will describe such a condition for convex problems. In this section
we will study a different qualifying condition, John’s condition, for general
optimization problems with constraints in the form of inequalities.

Let us therefore consider a problem of the form

(P) min f(x)
s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m

with implicit constraint set Ω, i.e. domain for the objective and the constraint
functions.

Whether a constraint is active or not at an optimal point plays a ma-
jor role, and affine constraints are thereby easier to handle than other con-
straints. Therefore, we introduce the following notations:

Iaff(x) = {i | the function gi is affine and gi(x) = 0},
Ioth(x) = {i | the function gi is not affine and gi(x) = 0},
I(x) = Iaff(x) ∪ Ioth(x).

So Iaff(x) consists of the indices of all active affine constraints at the point
x, Ioth(x) consists of the indices of all other active constraints at the point,
and I(x) consists of the indices of all active constraints at the point.
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Theorem 10.2.1 (John’s theorem). Suppose x̂ is a local minimum point for
the problem (P), that x̂ is an interior point in Ω, and that the functions f
and g1, g2, . . . , gm are differentiable at the point x̂. If there exists a vector
z ∈ Rn such that

(J)

{
〈g′i(x̂), z〉 ≥ 0 for all i ∈ Iaff(x̂)

〈g′i(x̂), z〉 > 0 for all i ∈ Ioth(x̂),

then there exist Lagrange parameters λ̂ ∈ Rm
+ such that

(KKT)

{
L′x(x̂, λ̂) = 0

λ̂igi(x̂) = 0 for i = 1, 2, . . . ,m.

Remark 1. According to Theorem 3.3.5, the system (J) is solvable if and only
if

(J′)


∑
i∈I(x̂)

uig
′
i(x̂) = 0

u ≥ 0

⇒ ui = 0 for all i ∈ Ioth(x̂).

The system (J) is thus in particular solvable if the gradient vectors ∇gi(x̂)
are linearly independent for i ∈ I(x̂).

Remark 2. If Ioth(x̂) = ∅, then (J) is trivially satisfied by z = 0.

Proof. Let Z denote the set of solutions to the system (J). The first part
of the proof consists in showing that Z is a subset of the conic halfspace
{z ∈ Rn | −〈f ′(x̂), z〉 ≥ 0}.

Assume therefore that z ∈ Z and consider the halfline x̂ − tz for t ≥ 0.
We claim that x̂− tz ∈ X for all sufficiently small t > 0.

If g is an affine function, i.e. has the form g(x) = 〈c, x〉+ b, then g′(x) = c
and g(x+ y) = 〈c, x+ y〉+ b = 〈c, x〉+ b+ 〈c, y〉 = g(x) + 〈g′(x), y〉 for all x
and y. Hence, for all indices i ∈ Iaff(x̂),

gi(x̂− tz) = gi(x̂)− t〈g′i(x̂), z〉 = −t〈g′i(x̂), z〉 ≤ 0

for all t ≥ 0.

For indices i ∈ Ioth(x̂), we obtain instead, using the chain rule, the in-
equality

d

dt
gi(x̂− tz)|t=0 = −〈g′i(x̂), z〉 < 0.

The function t 7→ gi(x̂− tz) is in other words decreasing at the point t = 0,
whence gi(x̂− tz) < gi(x̂) = 0 for all sufficiently small t > 0.
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If the i:th constraint is inactive at x̂, i.e. if i /∈ I(x̂), then gi(x̂) < 0, and
it follows from continuity that gi(x̂− tz) < 0 for all sufficiently small t > 0.

We have thus proved that the points x̂ − tz belong to the constraint set
X if t > 0 is sufficiently small. Since x̂ is a local minimum point of f , it
follows that f(x̂− tz) ≥ f(x̂) for all sufficiently small t > 0. Consequently,

−〈f ′(x̂), z〉 =
d

dt
f(x̂− tz)

∣∣
t=0

= lim
t→0+

f(x̂− tz)− f(x̂)

t
≥ 0.

This proves the alleged inclusion

Z ⊆ {z ∈ Rn | −〈f ′(x̂), z〉 ≥ 0} = {−f ′(x̂)}+ =
(
con{−f ′(x̂)}

)+
,

and it now follows from Theorem 3.2.1, Corollary 3.2.4 and Theorem 3.3.4
that

con{−f ′(x̂)} ⊆ Z+ = con{g′i(x̂) | i ∈ I(x̂)}.
So the vector −f ′(x̂) belongs to the cone generated by the vektors g′i(x̂),
i ∈ I(x̂), which means that there are nonnegative integers λ̂i, i ∈ I(x̂), such
that

−f ′(x̂) =
∑
i∈I(x̂)

λ̂ig
′
i(x̂).

If we finally define λ̂i = 0 for i /∈ I(x̂), then

f ′(x̂) +
m∑
i=1

λ̂ig
′
i(x̂) = 0

and λ̂igi(x̂) = 0 for i = 1, 2, . . . ,m. This means that the KKT-condition is
satisfied.

The condition in John’s statement that the system (J) has a solution
can be replaced with other qualifying constraints but can not be completely
removed without the conclusion being lost. This is shown by the following
example.

Example 10.2.1. Consider the problem

min f(x) = x1

s.t.

{
g1(x) =−x3

1 + x2 ≤ 0
g2(x) = −x2 ≤ 0

with Lagrange function L(x, λ) = x1+λ1(x2−x3
1)−λ2x2. The unique optimal

solution is x̂ = (0, 0), but the system L′x(x̂, λ) = 0, i.e.{
1 = 0

λ1−λ2 = 0,
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g1(x) = 0

g2(x) = 0

∇g1(x̂)

∇g2(x̂)

-∇f(x̂)

X

x̂

Figure 10.1. Illustration for Example 10.2.1: The vector −∇f(x̂) does
not belong to the cone generated by the gradients ∇g1(x̂) and ∇g2(x̂).

has no solutions. This is explained by the fact that the system (J), i.e.{
−z2 ≥ 0
z2 > 0,

has no solutions.

Example 10.2.2. We will solve the problem

min x1x2 + x3

s.t.

{
2x1− 2x2 + x3 + 1 ≤ 0
x2

1 + x2
2−x3 ≤ 0

using John’s theorem. Note first that the constraints define a compact set
X, for the inequalities

x2
1 + x2

2 ≤ x3 ≤ −2x1 + 2x2 − 1

imply that (x1 + 1)2 + (x2 − 1)2 ≤ 1, and consequently, −2 ≤ x1 ≤ 0,
0 ≤ x2 ≤ 2, and 0 ≤ x3 ≤ 7. Since the objective function is continuous,
there is indeed an optimal solution.

Let us now first investigate whether the system (J) is solvable. We use the
equivalent version (J′) in the remark after the theorem. First note that the
gradients of the constraint functions are never equal to zero. The condition
(J′) is thus met in the points where only one of the constraints is active.

Assume therefore that x is a point where I(x) = {1, 2}, i.e. where both
constraints are active, and that u1(2,−2, 1) + u2(2x1, 2x2,−1) = (0, 0, 0). If
u2 > 0, we conclude from the above equation that u1 = u2, x1 = −1 and
x2 = 1. Inserting x1 = −1 and x2 = 1 into the two active constraints yields
x3 = 3 and x3 = 2, respectively, which is contradictory. Thus, u2 = 0, which
means that the condition (J′) is fulfilled at all feasible points.
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We conclude that the optimal point satisfies the KKT-condition, which
in this instance is as follows

x2 + 2λ1 + 2x1λ2 = 0 (i)
x1− 2λ1 + 2x2λ2 = 0 (ii)
1 + λ1− λ2 = 0 (iii)

λ1(2x1 − 2x2 + x3 + 1) = 0 (iv)
λ2(x2

1 + x2
2 − x3) = 0 (v)

The further investigation is divided into two cases.

λ1 = 0 : Equation (iii) implies that λ2 = 1, which inserted into (i) and (ii)
gives x1 = x2 = 0, and from (v) now follows x3 = 0. But this is a false
solution, since (0, 0, 0) /∈ X.

λ1 > 0 : Equation (iv) now implies that

2x1 − 2x2 + x3 + 1 = 0. (vi)

From (i) and (ii) follows (x1 + x2)(1 + 2λ2) = 0, and since λ2 ≥ 0,

x1 + x2 = 0. (vii)

By (iii,) λ2 > 0. Condition (v) therefore implies that

x2
1 + x2

2 − x3 = 0. (viii)

The system consisting of equations (vi), (vii), (viii) has two solutions, namely

x̂ = (−1+
√

1/2, 1−
√

1/2, 3−2
√

2) and x = (−1−
√

1/2, 1+
√

1/2, 3+2
√

2).

Using (i) and (iii), we compute the corresponding λ and obtain

λ̂ = (−1/2 +
√

1/2, 1/2 +
√

1/2) and λ = (−1/2−
√

1/2, 1/2−
√

1/2),

respectively. Note that λ̂ ≥ 0 and λ < 0. The system KKT thus has a unique
solution (x, λ) with λ ≥ 0, namely x = x̂, λ = λ̂. By John’s theorem, x̂ is
the unique optimal solution of our minimization problem, and the optimal
value is 3/2−

√
2.

Exercises

10.1 Determine the dual function for the optimization problem

min x2
1 + x2

2

s.t. x1 + x2 ≥ 2,

and prove that (1, 1) is an optimal solution by showing that the optimality
criterion is satisfied by λ̂ = 2. Also show that the KKT-condition is satisfied
at the optimal point.
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10.2 Consider the two minimization problems

(Pa) min e−x1

x2
1/x2 ≤ 0

and (Pb) min e−x1

|x1| ≤ 0

both with Ω = {(x1, x2) | x2 > 0} as implicit domain. The two problems
have the same set X = {(0, x2) | x2 > 0} of feasible points and the same
optimal value vmin = 1. Find their dual functions and dual problems, and
show that strong duality holds for (Pb) but not for (Pa).

10.3 Suppose the function f : X × Y → R has two saddle points (x̂1, ŷ1) and
(x̂2, ŷ2). Prove that

a) f(x̂1, ŷ1) = f(x̂2, ŷ2);

b) (x̂1, ŷ2) and (x̂2, ŷ1) are saddle points, too.

10.4 Let f : X × Y → R be an arbitrary function.

a) Prove that
sup
y∈Y

inf
x∈X

f(x, y) ≤ inf
x∈X

sup
y∈Y

f(x, y).

b) Suppose there is a point (x̂, ŷ) ∈ X × Y such that

sup
y∈Y

inf
x∈X

f(x, y) = inf
x∈X

f(x, ŷ) and inf
x∈X

sup
y∈Y

f(x, y) = sup
y∈Y

f(x̂, y).

Prove that (x̂, ŷ) is a saddle point of the function f if and only if

inf
x∈X

f(x, ŷ) = sup
y∈Y

f(x̂, y),

and that the common value then is equal to f(x̂, ŷ).

10.5 Consider a minimization problem

min f(x)

s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m

with convex differentiable constraint functions g1, g2, . . . , gm, and suppose
there is a point x0 ∈ X = {x | g1(x) ≤ 0, . . . , gm(x) ≤ 0} which satisfies
all non-affine constraints with strict inequality. Show that the system (J) is
solvable at all points x̂ ∈ X.
[Hint: Show that z = x̂− x0 satisfies (J).]

10.6 Solve the following optimization problems

a) min x3
1 + x1x

2
2

s.t.

{
x2

1 + 2x2
2 ≤ 1
x2 ≥ 0

b) max x2
1 + x2

2 + arctanx1x2

s.t.

{
x2

1 + x2
2 ≤ 2

0 ≤ x1 ≤ x2

c) min x1x2

s.t.

{
x2

1 + x1x2 + 4x2
2 ≤ 1

x1 + 2x2 ≥ 0

d) max x2
1x2x3

s.t.

{
2x1 + x1x2 + x3 ≤ 1

x1, x2, x3 ≥ 0.
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Convex optimization

11.1 Strong duality

We recall that the minimization problem

(P) min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

is called convex if
• the implicit constraint set Ω is convex,
• the objective function f is convex,
• the constraint functions gi are convex for i = 1, 2, . . . , p and affine for
i = p+ 1, . . . ,m.

The set X of feasible points is convex in a convex optimization problem,
and the Lagrange function

L(x, λ) = f(x) +
m∑
i=1

λigi(x)

is convex in the variable x for each fixed λ ∈ Λ = Rp
+ × Rm−p, since it is a

conic combination of convex functions.

We have already noted that the optimality criterion in Theorem 10.1.2
need not be fulfilled at an optimal point, not even for convex problems,
because of the trivial counterexample in Example 10.1.2. For the criterion
to be met some additional condition is needed, and a weak one is given in
the next definition.

Definition. The problem (P) satisfies Slater’s condition if there is a feasible
point x in the relative interior of Ω such that gi(x) < 0 for each non-affine
constraint function gi.

205
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Slater’s condition is of course vacously fulfilled if all constraint functions
are affine.

For convex problems that satisfy Slater’s condition, the optimality cri-
terion is both sufficient and necessary for optimality. We have namely the
following result.

Theorem 11.1.1 (Duality theorem). Suppose that the problem (P) is convex
and satisfies Slater’s condition, and that the optimal value vmin is finite. Let
φ : Λ → R denote the dual function of the problem. Then there is a point
λ̂ ∈ Λ such that

φ(λ̂) = vmin.

Proof. First suppose that all constraints are inequalities, i.e. that p = m, and
renumber the constraints so that the functions gi are convex and non-affine
for i = 1, 2, . . . , k and affine for i = k + 1, . . . ,m.

Because of Slater’s condition, the system{
gi(x) < 0, i = 1, 2, . . . , k
gi(x) ≤ 0, i = k + 1, . . . ,m

has a solution in the relative interior of Ω, whereas the system
f(x)− vmin < 0

gi(x) < 0, i = 1, 2, . . . , k
gi(x) ≤ 0, i = k + 1, . . . ,m

lacks solutions in Ω, due to the definition of vmin. Therefore, it follows from
Theorem 6.5.1 that there exist nonnegative scalars λ̂0, λ̂1, . . . , λ̂m such that
at least one of the numbers λ̂0, λ̂1, . . . , λ̂k is positive and

λ̂0(f(x)− vmin) + λ̂1g1(x) + λ̂2g2(x) + · · ·+ λ̂mgm(x) ≥ 0

for all x ∈ Ω. Here, the coefficient λ̂0 has to be positive, because if λ̂0 = 0
then λ̂1g1(x) + · · · + λ̂mgm(x) ≥ 0 for all x ∈ Ω, which contradicts the fact
that the first mentioned system of inequalities has a solution in Ω. We may
therefore assume, by dividing by λ̂0 if necessary, that λ̂0 = 1, and this gives
us the inequality

L(x, λ̂) = f(x) +
m∑
i=1

λ̂igi(x) ≥ vmin

for all x ∈ Ω. It follows that

φ(λ̂) = inf
x∈Ω

L(x, λ̂) ≥ vmin,

which combined with Theorem 10.1.1 yields the desired equality φ(λ̂) = vmin.
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If the problem has affine equality constraints, i.e. if p < m, we replace
each equality gi(x) = 0 with the two inequalities ±gi(x) ≤ 0, and it follows
from the already proven case of the theorem that there exist nonnegative
Lagrange multipliers λ̂1, . . . , λ̂p, µ̂p+1, . . . , µ̂m, ν̂p+1, . . . , ν̂m such that

f(x) +

p∑
i=1

λ̂igi(x) +
m∑

i=p+1

(µ̂i − ν̂i)gi(x) ≥ vmin

for all x ∈ Ω, By defining λ̂i = µ̂i − ν̂i for i = p + 1, . . . ,m, we obtain a
point λ̂ ∈ Λ = Rp

+ × Rm−p which satisfies φ(λ̂) ≥ vmin, and this completes
the proof of the theorem.

By combining Theorem 11.1.1 with Theorem 10.1.2 we get the following
corollary.

Corollary 11.1.2. Suppose that the problem (P) is convex and that it satisfies
Slater’s condition. Then, a feasible point x̂ is optimal if and only if it satisfies
the optimality criterion, i.e. if and only if there exists a λ̂ ∈ Λ such that
φ(λ̂) = f(x̂).

11.2 The Karush–Kuhn–Tucker theorem

Variants of the following theorem were first proved by Karush and Kuhn–
Tucker, and the theorem is therefore usually called the Karush–Kuhn–Tucker
theorem.

Theorem 11.2.1. Let

(P) min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

be a convex problem, and suppose that the objective and constraint functions
are differentiable at the feasible point x̂.

(i) If λ̂ is a point in Λ and the pair (x̂, λ̂) satisfies the KKT-condition{
L′x(x̂, λ̂) = 0

λ̂igi(x̂) = 0 for i = 1, 2, . . . , p

then strong duality prevails; x̂ is an optimal solution to the problem (P)
and λ̂ is an optimal solution to the dual problem.
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(ii) Conversely, if Slater’s condition is fulfilled and x̂ is an optimal solution,
then there exist Lagrange multipliers λ̂ ∈ Λ such that (x̂, λ̂) satisfies the
KKT-condition.

Proof. (i) The KKT-condition implies that x̂ is a stationary point of the
convex function x 7→ L(x, λ̂), and an interior stationary point of a convex
function is a minimum point, according to Theorem 7.2.2. Condition (iii) in
Theorem 10.1.4 is thus fulfilled, and this means that the optimality criterion
is satisfied by the pair (x̂, λ̂).

(ii) Conversely, if Slater’s condition is satisfied and x̂ is an optimal solu-
tion, then the optimality criterion f(x̂) = φ(λ̂) is satisfied by some λ̂ ∈ Λ,
according to Theorem 11.1.1. The KKT-condition is therefore met because
of Corollary 10.1.5.

The KKT-condition has a natural geometrical interpretation. Assume for
simplicity that all constraints are inequalities, i.e. that p = m, and let I(x̂)
denote the index set for the constraints that are active at the optimal point
x̂. The KKT-condition means that λ̂i = 0 for all indices i /∈ I(x̂) and that

−∇f(x̂) =
∑
i∈I(x̂)

λ̂i∇gi(x̂),

where all coefficients λ̂i occuring in the sum are nonnegative. The geometrical
meaning of the above equality is that the vector −∇f(x̂) belongs to the cone
generated by the gradients ∇gi(x̂) of the active inequality constraints. Cf.
figure 11.1 and figure 11.2.

f(x) = 3

f(x) = 2

f(x) = 1

x̂

−∇f(x̂)
∇g1(x̂)

∇g2(x̂)

X

g1(x) ≤ 0 g2(x) ≤ 0

Figure 11.1. The point x̂ is opti-
mal since both constraints are ac-
tive at the point and
−∇f(x̂) ∈ con{∇g1(x̂),∇g2(x̂)}.

f(x) = 2

f(x) = 1

∇g1(x̂)
∇g2(x̂)

−∇f(x̂)

x̂

x
X

g1(x) ≤ 0 g2(x) ≤ 0

Figure 11.2. Here the point x̂ is
not optimal since
−∇f(x̂) 6∈ con{∇g1(x̂),∇g2(x̂)}.
The optimum is instead attained at
x, where −∇f(x) = λ1∇g1(x) for
some λ1 > 0.
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Example 11.2.1. Consider the problem

min ex1−x3 + e−x2{
(x1 − x2)2 − x3 ≤ 0

x3 − 4 ≤ 0.

The objective and the constraint functions are convex. Slater’s condition is
satisfied, since for instance (1, 1, 1) satisfies both constraints strictly. Accord-
ing to Theorem 11.2.1, x is therefore an optimal solution to the problem if
and only if x solves the system

ex1−x3 + 2λ1(x1 − x2) = 0 (i)
−e−x2 − 2λ1(x1 − x2) = 0 (ii)
−ex1−x3 − λ1 + λ2 = 0 (iii)
λ1

(
(x1 − x2)2 − x3

)
= 0 (iv)

λ2(x3 − 4) = 0 (v)
λ1, λ2 ≥ 0 (vi)

It follows from (i) and (vi) that λ1 > 0, from (iii) and (vi) that λ2 > 0,
and from (iv) and (v) that x3 = 4 and x1 − x2 = ±2. But x1 − x2 < 0,
because of (i) and (vi), and hence x1 − x2 = −2. By comparing (i) and (ii)
we see that x1 − x3 = −x2, i.e. x1 + x2 = 4. It follows that x = (1, 3, 4)
and λ = (e−3/4, 5e−3/4) is the unique solution of the system. The problem
therefore has a unique optimal solution, namely (1, 3, 4). The optimal value
is equal to 2e−3.

11.3 The Lagrange multipliers

In this section we will study how the optimal value vmin(b) of an arbitrary
minimization problem of the type

(Pb) min f(x)

s.t.

{
gi(x) ≤ bi, i = 1, 2, . . . , p
gi(x) = bi, i = p+ 1, . . . ,m

depends on the constraint parameters b1, b2, . . . , bm. The functions f and
g1, g2, . . . , gm are, as previously, defined on a subset Ω of Rn, b = (b1, . . . , bm)
is a vector in Rm, and

X(b) = {x ∈ Ω | gi(x) ≤ bi for 1 ≤ i ≤ p and gi(x) = bi for p < i ≤ m}
is the set of feasible points.
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The Lagrange function and the dual function associated to the minimiza-
tion problem (Pb) are denoted by Lb and φb, respectively. By definition,

Lb(x, λ) = f(x) +
m∑
i=1

λi(gi(x)− bi),

and the relationship between the Lagrange functions Lb and Lb belonging to
two different parameter vectors b and b, is therefore given by the equation

Lb(x, λ) = Lb(x, λ) +
m∑
i=1

λi(bi − bi) = Lb(x, λ) + 〈λ, b− b〉.

By forming the infimum over x ∈ Ω, we immediately get the following relation
for the dual functions:

(11.1) φb(λ) = φb(λ) + 〈λ, b− b〉.

The following theorem gives an interpretation of the Lagrange parameters
in problems which satisfy the optimality criterion in Theorem 10.1.2, and thus
especially for convex problems which satisfy Slater’s condition.

Theorem 11.3.1. Suppose that the minimization problem (Pb) has an optimal
solution x and that the optimality criterion is satisfied at the point, i.e. that
there are Lagrange multipliers λ such that φb(λ) = f(x). Then:

(i) The objective function f is bounded below on X(b) for each b ∈ Rm,
so the optimal value vmin(b) of problem (Pb) is finite if the set X(b) of
feasible points is nonempty, and equal to +∞ if X(b) = ∅.

(ii) The vector −λ is a subgradient at the point b of the optimal value func-
tion vmin : Rm → R.

(iii) Suppose that the optimality criterion is satisfied in the problem (Pb) for
all b in an open convex set U . The restriction of the function vmin to
U is then a convex function.

Proof. By using weak duality for problem (Pb), the identity (11.1) and the
optimality criterion for problem (Pb), we obtain the following inequality:

vmin(b) = inf
x∈X(b)

f(x) ≥ φb(λ) = φb(λ) + 〈λ, b− b〉 = f(x) + 〈λ, b− b〉

= vmin(b)− 〈λ, b− b〉.

It follows, first, that the optimal value vmin(b) can not be equal to −∞, and
second, that −λ is a subgradient of the function vmin at the point b.

If the optimality criterion is satisfied at all b ∈ U , then vmin has a sub-
gradient at all points in U , and such a function is convex.
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Now suppose that the function vmin is differentiable at the point b. The
gradient at the point b is then, by Theorem 8.1.3, the unique subgradient
at the point, so it follows from (ii) in the above theorem that v′min(b) = −λ.
This gives us the approximation

vmin(b1 + ∆b1, . . . , bm + ∆bm) ≈ vmin(b1, . . . , bm)− λ1∆b1 · · · − λm∆bm

for small increments ∆bj. So the Lagrange multipliers provide information
about how the optimal value is affected by small changes in the parameters.

Example 11.3.1. As an illustration of Theorem 11.3.1, let us study the con-
vex problem

min x2
1 + x2

2

s.t.

{
x1 + 2x2 ≤ b1

2x1 + x2 ≤ b2.

Since it is about minimizing the distance squared from the origin to a poly-
hedron, there is certainly an optimal solution for each right-hand side b, and
since the constraints are affine, it follows from the Karush–Kuhn–Tucker
theorem that the optimal solution satisfies the KKT-condition, which in the
present case is the system

2x1 + λ1 + 2λ2 = 0 (i)
2x2 + 2λ1 + λ2 = 0 (ii)

λ1(x1 + 2x2 − b1) = 0 (iii)
λ2(2x1 + x2 − b2) = 0 (iv)

λ1, λ2 ≥ 0.

We now solve this system by considering four separate cases:

λ1 = λ2 = 0 : In this case, x1 = x2 = 0 is the unique solution to the KKT-
system. Thus, the point (0, 0) is optimal provided it is feasible, and so is the
case if and only if b1 ≥ 0 and b2 ≥ 0. The optimal value for these parameter
values is vmin(b) = 0.

λ1 > 0, λ2 = 0 : From (i) and (ii), it follows first that x2 = 2x1 = −λ1, and
(iii) then gives x = 1

5
(b1, 2b1). This point is feasible if 2x1 + x2 = 4

5
b1 ≤ b2,

and for the Lagrange multiplier λ1 = −2
5
b1 to be positive, we must also have

b1 < 0. Thus, the point x = 1
5
(b1, 2b1) is optimal if b1 < 0 and 4b1 ≤ 5b2, and

the corresponding value is vmin(b) = 1
5
b2

1.

λ1 = 0, λ2 > 0 : From (i) and (ii), it now follows that x1 = 2x2 = −λ2,
which inserted into (iv) gives x = 1

5
(2b2, b2). This is a feasible point if

x1 +2x2 = 4
5
b2 ≤ b1. The Lagrange multiplier λ2 = −2

5
b2 is positive if b2 < 0.
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Hence, the point x = 1
5
(2b2, b2) is optimal and the optimal value is v(b) = 1

5
b2

2,
if b2 < 0 och 4b2 ≤ 5b1.

λ1 > 0, λ2 > 0: By solving the subsystem obtained from (iii) and (iv), we
get x = 1

3
(2b2 − b1, 2b1 − b2), and the equations (i) and (ii) then result in

λ = 2
9
(4b2 − 5b1, 4b1 − 5b2). The two Lagrange multipliers are positive if

5
4
b1 < b2 < 4

5
b1. For these parameter values, x is the optimal point and

vmin(b) = 1
9
(5b2

1 − 8b1b2 + 5b2
2) is the optimal value.

The result of our investigation is summarized in the following table:

vmin(b) −λ1 =
∂v

∂b1

−λ2 =
∂v

∂b2

b1 ≥ 0, b2 ≥ 0 0 0 0

b1 < 0, b2 ≥ 4
5
b1

1
5
b2

1
2
5
b1 0

b2 < 0, b2 ≤ 5
4
b1

1
5
b2

2 0 2
5
b2

5
4
b1 < b2 <

4
5
b1

1
9
(5b2

1 − 8b1b2 + 5b2
2) 2

9
(5b1 − 4b2) 2

9
(5b2 − 4b1)

Exercises

11.1 Let b > 0 and consider the following trivial convex optimization problem

min x2

s.t. x ≥ b.

Slater’s condition is satisfied and the optimal value is attained at the point
x̂ = b. Find the number λ̂ which, according to Theorem 11.1.1, satisfies the
optimality criterion.

11.2 Verify in the previous exercise that v′(b) = λ̂.

11.3 Consider the minimization problem

(P) min f(x)

s.t.

{
gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

with x ∈ Ω as implicit constraint, and the equivalent epigraph formulation

(P′) min t

s.t.


f(x)− t ≤ 0,

gi(x) ≤ 0, i = 1, 2, . . . , p
gi(x) = 0, i = p+ 1, . . . ,m

of the problem with (t, x) ∈ R× Ω as implicit constraint.
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a) Show that (P′) satisfies Slater’s condition if and only if (P) does.

b) Determine the relation between the Lagrange functions of the two prob-
lems and the relation between their dual functions.

c) Prove that the two dual problems have the same optimal value, and that
the optimality criterion is satisfied in the minimization problem (P) if
and only if it is satisfied in the problem (P′).

11.4 Prove for convex problems that Slater’s condition is satisfied if and only if,
for each non-affine constraint gi(x) ≤ 0, there is a feasible point xi in the
relative interior of Ω such that gi(xi) < 0.

11.5 Let

(Pb) min f(x)

s.t.

{
gi(x) ≤ bi, i = 1, 2, . . . , p
gi(x) = bi, i = p+ 1, . . . ,m

be a convex problem, and suppose that its optimal value vmin(b) is > −∞
for all right-hand sides b that belong to some convex subset U of Rm. Prove
that the restriction of vmin to U is a convex function.

11.6 Solve the following convex optimization problems.

a) min ex1−x2 + ex2 − x1

s.t. x ∈ R2

b) min ex1−x2 + ex2 − x1

s.t.

{
x2

1 + x2
2 ≤ 1

x1 + x2 ≥ −1

c) min −x1 − 2x2

s.t.

{
ex1 + x2 ≤ 1

x2 ≥ 0

d) min x1 + 2x2

s.t.

{
x2

1 + x2
2 ≤ 5

x1− x2 ≤ 1

e) min x1 − x2

s.t.

{
0 < x1≤ 2
0 ≤ x2≤ lnx1

f) min ex1 + ex2 + x1x2

s.t.

{
x1 + x2≥ 1
x1, x2≥ 0

11.7 Solve the convex optimization problem

min x2
1 + x2

2 − ln(x1 + x2)

s.t.


(x1 − 1)2 + x2

2 ≤ 9
x1 + x2 ≥ 2
x1, x2 ≥ 0.

11.8 Solve the convex optimization problem

min

n∑
j=1

v−1
j

√
y2
j + a2

j

s.t.

{∑n
j=1 yj = b

y ∈ Rn
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that occurred in our discussion of light refraction in Section 9.4, and verify
Snell’s law of refraction: sin θi/ sin θj = vi/vj , where θj = arctan yj/aj .

11.9 Lisa has inherited 1 million dollars that she intends to invest by buying
shares in three companies: A, B and C. Company A manufactures mobile
phones, B manufactures antennas for mobile phones, and C manufactures ice
cream. The annual return on an investment in the companies is a random
variable, and the expected return for each company is estimated to be

A B C
Expected return: 20% 12% 4%

Lisa’s expected return if she invests x1, x2, x3 million dollars in the three
companies, is thus equal to

0.2x1 + 0.12x2 + 0.04x3.

The investment risk is by definition the variance of the return. To calculate
this we need to know the variance of each company’s return and the corre-
lation between the returns of the various companies. For obvious reasons,
there is a strong correlation between sales in companies A and B, while sales
of the company C only depend on whether the summer weather is beau-
tiful or not, and not on the number of mobile phones sold. The so-called
covariance matrix is in our case the matrix50 40 0

40 40 0
0 0 10


For those who know some basic probability theory, it is now easy to calculate
the risk − it is given by the expression

50x2
1 + 80x1x2 + 40x2

2 + 10x2
3.

Lisa, who is a careful person, wants to minimize her investment risk but she
also wants to have an expected return of at least 12 %. Formulate and solve
Lisa’s optimization problem.

11.10 Consider the consumer problem

max f(x)

s.t.

{
〈p, x〉 ≤ I

x ≥ 0

discussed in Section 9.4, where f(x) is the consumer’s utility function, as-
sumed to be concave and differentiable, I is her disposable income, p =
(p1, p2, . . . , pn) is the price vector and x = (x1, x2, . . . , xn) denotes a con-
sumption bundle.
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Suppose that x̂ is an optimal solution. The optimal utility v, as well as
x̂, depends on the income I, of course; let us assume that v = v(I) is a
differentiable function. Show that under these assumptions

x̂j , x̂k > 0 ⇒ 1

pj

∂f

∂xj

∣∣∣
x̂

=
1

pk

∂f

∂xk

∣∣∣
x̂

=
dv

dI

x̂j = 0, x̂k > 0 ⇒ 1

pj

∂f

∂xj

∣∣∣
x̂
≤ 1

pk

∂f

∂xk

∣∣∣
x̂
.

In words, this means:

The ratio between the marginal utility and the price of a commodity is for
the optimal solution the same for all goods that are actually purchased, and
it equals the marginal increase of utility at an increase of income. For goods
that are not purchased, the corresponding ratio is not larger.

The conclusion is rather trivial, for it xk > 0 and
1

pj

∂f

∂xj
>

1

pk

∂f

∂xk
, then the

consumer benefits from changing a small quantity ε/pk of commodity no. k
to the quantity ε/pj of commodity no. j.





Chapter 12

Linear programming

Linear programming (LP) is the art of optimizing linear functions over poly-
hedra, described as solution sets to systems of linear inequalities. In this
chapter, we describe and study the basic mathematical theory of linear pro-
gramming, above all the very important duality concept.

12.1 Optimal solutions

The optimal value of a general optimization problem was defined in Chap-
ter 9. In particular, each LP problem

(P) min 〈c, x〉
s.t. x ∈ X

has an optimal value, which in this section will be denoted by vmin(c) to
indicate its dependence of the objective function.

LP problems with finite optimal values always have optimal solutions.
The existence of an optimal solution is of course obvious if the polyhedron of
feasible points is bounded, i.e. compact, since the objective function is con-
tinuous. For arbitrary LP problems, we rely on the representation theorem
for polyhedra to prove the existence of optimal solutions.

Theorem 12.1.1. Suppose that the polyhedron X of feasible solutions in the
LP problem (P) is nonempty and a subset of Rn. Then we have:

(i) The value function vmin : Rn → R is concave with effective domain

dom vmin = (reccX)+.

The objective function 〈c, x〉 is, in other words, bounded below on X if
and only if c belongs to the dual cone of the recession cone of X.

217
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(ii) The problem has optimal solutions for each c ∈ (reccX)+, and the set
of optimal solutions is a polyhedron. Moreover, the optimum is attained
at some extreme point of X if X is a line-free polyhedron.

Proof. By definition, the optimal value vmin(c) = inf{〈c, x〉 | x ∈ X} is
the pointwise infimum of a family of concave functions, namely the linear
functions c 7→ 〈c, x〉, with x running through X. So the value function vmin

is concave by Theorem 6.2.4.

Let us now determine dom vmin, i.e. the set of c such that vmin(c) > −∞.
By the structure theorem for polyhedra (Theorem 5.3.1), there is a finite
nonempty set A such that X = cvxA + reccX, where A = extX if the
polyhedron is line-free. The optimal value vmin(c) can therefore be calculated
as follows:

vmin(c) = inf{〈c, y + z〉 | y ∈ cvxA, z ∈ reccX}(12.1)

= inf{〈c, y〉 | y ∈ cvxA}+ inf{〈c, z〉 | z ∈ reccX}
= min{〈c, y〉 | y ∈ A}+ inf{〈c, z〉 | z ∈ reccX},

The equality inf{〈c, y〉 | y ∈ cvxA} = min{〈c, y〉 | y ∈ A} holds because of
Theorem 6.3.3, since linear functions are concave.

If c belongs to the dual cone (reccX)+, then 〈c, z〉 ≥ 0 for all vectors
z ∈ reccX with equality for z = 0, and it follows from equation (12.1) that

vmin(c) = min{〈c, y〉 | y ∈ A} > −∞.

This proves the inclusion (reccX)+ ⊆ dom vmin, and that the optimal value
is attained at a point in A, and then in particular at some extreme point of
X if the polyhedron X is line-free.

If c /∈ (reccX)+, then 〈c, z0〉 < 0 for some vector z0 ∈ reccX. Since
tz0 ∈ reccX for t > 0 and limt→∞〈c, tz0〉 = −∞, it follows that

inf{〈c, z〉 | z ∈ reccX} = −∞,

and equation (12.1) now implies that vmin(c) = −∞. This concludes the
proof of the equality dom vmin = (reccX)+.

The set of minimum points to an LP problem with finite value vmin is
equal to the intersection

X ∩ {x ∈ Rn | 〈c, x〉 = vmin}

between the polyhedron X and a hyperplane, and it is consequently a poly-
hedron.
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c

〈c, x〉 = k′

〈c, x〉 = k

〈c, x〉 = vmin

x̂

X

Figure 12.1. The minimum of 〈c, x〉 over the line-
free polyhedron X is attained at an extreme point.

Example 12.1.1. The polyhedron X of feasible points for the LP problem

min x1 + x2

s.t.


x1−x2≥−2
x1 + x2≥ 1
−x1 ≥−3

has three extreme points, namely (3, 5), (−1
2
, 3

2
) and (3,−2). The values of

the objective function f(x) = x1 + x2 at these points are f(3, 5) = 8 and
f(−1

2
, 3

2
) = f(3,−2) = 1. The least of these is 1, which is the optimal value.

The optimal value is attained at two extreme points, (1
2
, 3

2
) och (3,−2), and

thus also at all points on the line segment between those two points.

(− 1
2
, 3
2

)

(3, 5)

(3,−2)

x1 + x2 = k

x1

x2

Figure 12.2. Illustration for Example 12.1.1.

Suppose that X = {x ∈ Rn | Ax ≥ b} is a line-free polyhedron and
that we want to minimize a given linear function over X. To determine the
optimal value of this LP problem, we need according to the previous theorem,
assuming that the objective function is bounded below on X, only calculate
function values at the finitely many extreme points of X. In theory, this
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is easy, but in practice it can be an insurmountable problem, because the
number of extreme points may be extremely high. The number of potential
extreme points of X when A is an m × n-matrix, equals

(
m
n

)
, which for

m = 100 and n = 50 is a number that is greater than 1029. The simplex
algorithm, which we will study in Chapter 13, is based on the idea that
it is not necessary to search through all the extreme points; the algorithm
generates instead a sequence x1, x2, x3, . . . of extreme points with decreasing
objective function values 〈c, x1〉 ≥ 〈c, x2〉 ≥ 〈c, x3〉 ≥ . . . until the minimum
point is found. The number of extreme points that needs to be investigated
is therefore generally relatively small.

Sensitivity analysis

Let us rewrite the polyhedron of feasible points in the LP problem

(P) min 〈c, x〉
s.t. x ∈ X

as
X = cvxA+ conB

with finite sets A and B. We know from the preceding theorem and its proof
that a feasible point x is optimal for the LP problem if and only if{

〈c, a〉 ≥ 〈c, x〉 for all a ∈ A
〈c, b〉 ≥ 0 for all b ∈ B,

and these inequalities define a convex cone Cx in the variable c. The set of
all c for which a given feasible point is optimal, is thus a convex cone.

Now suppose that x is indeed an optimal solution to (P). How much
can we change the coefficients of the objective function without changing
the optimal solution? The study of this issue is an example of sensitivity
analysis.

Expressed in terms of the cone Cx, the answer is simple: If we change
the coefficients of the objective function to c+ ∆c, then x is also an optimal
solution to the perturbed LP problem

(P′) min 〈c+ ∆c, x〉
s.t. x ∈ X

if and only if c+ ∆c belongs to the cone Cx, i.e. if and only if ∆c lies in the
polyhedron −c+ Cx.

In summary, we have thus come to the following conclusions.
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Theorem 12.1.2. (i) The set of all c for which a given feasible point is
optimal in the LP problem (P), is a convex cone.

(ii) If x is an optimal solution to problem (P), then there is a polyhedron
such that x is also an optimal solution to the perturbed LP problem (P ′)
for all ∆c in the polyhedron.

The set {∆ck | ∆c ∈ −c+ Cx and ∆cj = 0 for j 6= k} is a (possibly un-
bounded) closed interval [−dk, ek] around 0. An optimal solution to the prob-
lem (P) is therefore also optimal for the perturbed problem that is obtained
by only varying the objective coefficient ck, provided that the perturbation
∆ck lies in the interval −dk ≤ ∆ck ≤ ek. Many computer programs for
LP problems, in addition to generating the optimal value and the optimal
solution, also provide information about these intervals.

Sensitivity analysis will be studied in connection with the simplex algo-
rithm in Chapter13.7.

Example 12.1.2. The printout of a computer program that was used to solve
an LP problem with c = (20, 30, 40, . . . ) contained among other things the
following information:

Optimal value: 4000 Optimal solution: x = (50, 40, 10, . . . )

Sensitivity report: Variable Value Objective Allowable Allowable
coeff. decrease increase

x1 50 20 15 5
x2 40 30 10 10
x3 10 40 15 20
...

...
...

...
...

Use the printout to determine the optimal solution and the optimal value
if the coefficients c1, c2 and c3 are changed to 17, 35 and 45, respectively, and
the other objective coefficients are left unchanged.

Solution: The columns ”Allowable decrease” and ”Allowable increase” show
that the polyhedron of changes ∆c that do not affect the optimal solution
contains the vectors (−15, 0, 0, 0, . . . ), (0, 10, 0, 0, . . . ) and (0, 0, 20, 0, . . . ).
Since

(−3, 5, 5, 0, . . . ) = 1
5
(−15, 0, 0, 0, . . . ) + 1

2
(0, 10, 0, 0, . . . ) + 1

4
(0, 0, 20, 0, . . . )

and 1
5

+ 1
2

+ 1
4

= 19
20
< 1, ∆c = (−3, 5, 5, 0, . . . ) is a convex combination of

changes that do not affect the optimal solutions, namley the three changes
mentioned above and (0, 0, 0, 0, . . . ). The solution x = (50, 40, 10, . . . ) is
therefore still optimal for the LP problem with c = (17, 35, 45, . . . ). However,
the new optimal value is of course 4000− 20 · 3 + 30 · 5 + 40 · 5 = 4290.
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12.2 Duality

Dual problems

By describing the polyhedron X in a linear minimization problem

min 〈c, x〉
s.t. x ∈ X

as the solution set of a system of linear inequalities, we get a problem with
a corresponding Lagrange function, and hence also a dual function and a
dual problem. The description of X as a solution set is of course not unique,
so the dual problem is not uniquely determined by X as a polyhedron, but
whichever description we choose, we get, according to Theorem 11.1.1, a dual
problem, where strong duality holds, because Slater’s condition is satisfied
for convex problems with affine constraints.

In this section, we describe the dual problem for some commonly occur-
ring polyhedron descriptions, and we give an alternative proof of the duality
theorem. Our premise is that the polyhedron X is given as

X = {x ∈ U+ | Ax− b ∈ V +},

where
• U and V are finitely generated cones in Rn and Rm, respectively;
• A is an m× n-matrix;

• b is a vector in Rm.

As usual, we identify vectors with column matrices and matrices with linear
transformations. The set X is of course a polyhedron, for by writing

X = U+ ∩ A−1(b+ V +)

we see that X is an intersection of two polyhedra − the conical polyhe-
dron U+ and the inverse image A−1(b + V +) under the linear map A of the
polyhedron b+ V +.

The LP problem of minimizing 〈c, x〉 over the polyhedron X with the
above description will now be written

(P) min 〈c, x〉
s.t. Ax− b ∈ V +, x ∈ U+

and in order to form a suitable dual problem we will perceive the condition
x ∈ U+ as an implicit constraint and express the other condition Ax−b ∈ V +

as a system of linear inequalities. Assume therefore that the finitely generated
cone V is generated by the columns of the m× k-matrix D, i.e. that

V = {Dz | z ∈ Rk
+}.
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The dual cone V + can then be written as

V + = {y ∈ Rm | DTy ≥ 0},
and the constraint Ax − b ∈ V + can now be expressed as a system of in-
equalities, namely DTAx−DTb ≥ 0.

Our LP problem (P) has thus been transformed into

min 〈c, x〉
s.t. DTb−DTAx ≤ 0, x ∈ U+.

The associated Lagrange function L : U+ × Rk
+ → R is defined by

L(x, λ) = 〈c, x〉+ 〈λ,DTb−DTAx〉 = 〈c− ATDλ, x〉+ 〈b,Dλ〉,

and the corresponding dual function φ : Rk
+ → R is given by

φ(λ) = inf
x∈U+

L(x, λ) =

{
〈b,Dλ〉 , if c− ATDλ ∈ U
−∞ , otherwise.

This gives us a dual problem of the form

max 〈b,Dλ〉
s.t. c− ATDλ ∈ U, λ ∈ Rk

+.

Since Dλ describes the cone V as λ runs through Rk
+, we can by setting

y = Dλ reformulate the dual problem so that it becomes

max 〈b, y〉
s.t. c− ATy ∈ U, y ∈ V.

It is therefore natural to define duality for LP problems of the form (P) as
follows.

Definition. Given the LP problem

(P) min 〈c, x〉
s.t. Ax− b ∈ V +, x ∈ U+,

which we call the primal problem, we call the problem

(D) max 〈b, y〉
s.t. c− ATy ∈ U, y ∈ V

the dual LP problem.
The optimal values of the two problems are denoted by vmin(P ) and

vmax(D). The polyhedron of feasible points will be denoted by X for the
primal problem and by Y for the dual problem.
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Example 12.2.1. Different choices of the cones U and V give us different
concrete dual problems (P) and (D). We exemplify with four important spe-
cial cases.

1. The choice U = {0}, U+ = Rn and V = V + = Rm
+ gives us the following

dual pair:

(P1) min 〈c, x〉
s.t. Ax ≥ b

and (D1) max 〈b, y〉
s.t. ATy = c, y ≥ 0.

Every LP problem can be expressed in the form (P1), because every poly-
hedron can be expressed as an intersection of halfspaces, i.e. be written as
Ax ≥ b.

2. The choice U = U+ = Rn
+ and V = V + = Rm

+ gives instead the dual pair:

(P2) min 〈c, x〉
s.t. Ax ≥ b, x ≥ 0

and (D2) max 〈b, y〉
s.t. ATy ≤ c, y ≥ 0.

This is the most symmetric formulation of duality, and the natural formu-
lation for many application problems with variables that represent physical
quantities or prices, which of course are nonnegative. The diet problem and
the production planning problem in Chapter 9.4 are examples of such prob-
lems.

3. U = U+ = Rn
+, V = Rm and V + = {0} result in the dual pair:

(P3) min 〈c, x〉
s.t. Ax = b, x ≥ 0

and (D3) max 〈b, y〉
s.t. ATy ≤ c.

The formulation (P3) is the natural starting point for the simplex algo-
rithm.

4. The choice U = {0}, U+ = Rn, V = Rm and V + = {0} gives us the pair

(P4) min 〈c, x〉
s.t. Ax = b

and (D4) max 〈b, y〉
s.t. ATy = c.

Example 12.2.2. A trivial example of dual LP problems in one variable is

min 5x
s.t. 2x ≥ 4

and max 4y
s.t. 2y = 5, y ≥ 0

Both problems have the optimal value 10.
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Example 12.2.3. The problems

min x1 + x2

s.t.


x1−x2 ≥−2
x1 + x2 ≥ 1
−x1 ≥ −3

and max −2y1 + y2 − 3y3

s.t.


y1 + y2− y3 = 1
−y1 + y2 = 1

y1, y2, y3 ≥ 0

are dual. The optimal solutions to the primal minimization problem were
determined in Example 12.1.1 and the optimal value was found to be 1.
The feasible points for the dual maximization problem are of the form y =
(t, 1+t, 2t) with t ≥ 0, and the corresponding values of the objective function
are 1 − 7t. The maximum value is attained for t = 0 at the point (0, 1, 0),
and the maximum value is equal to 1.

The Duality Theorem

The primal and dual problems in Examples 12.2.2 and 12.2.3 have the same
optimal value, and this is no coincidence but a consequence of the duality
theorem, which is formulated below and is a special case of the duality the-
orem for general convex problems (Theorem 11.1.1). In this section we give
an alternative proof of this important theorem, and we start with the trivial
result about weak duality.

Theorem 12.2.1 (Weak duality). The optimal values of the two dual LP prob-
lems (P) and (D) satisfy the inequality

vmax(D) ≤ vmin(P ).

Proof. The inequality is trivially satisfied if any of the two polyhedra X and
Y of feasible points is empty, because if Y = ∅ then vmax(D) = −∞, by
definition, and if X = ∅ then vmin(P ) = +∞, by definition.

Assume therefore that both problems have feasible points. If x ∈ X and
y ∈ Y , then y ∈ V , (Ax− b) ∈ V +, (c−ATy) ∈ U and x ∈ U+, by definition,
and hence 〈Ax− b, y〉 ≥ 0 and 〈c− ATy, x〉 ≥ 0. It follows that

〈b, y〉 ≤ 〈b, y〉+ 〈c− ATy, x〉 = 〈b, y〉+ 〈c, x〉 − 〈y, Ax〉
= 〈c, x〉+ 〈b, y〉 − 〈Ax, y〉 = 〈c, x〉 − 〈Ax− b, y〉 ≤ 〈c, x〉.

The objective function 〈b, y〉 in the maximization problem (D) is in other
words bounded above on Y by 〈c, x〉 for each x ∈ X, and hence

vmax(D) = sup
y∈Y
〈b, y〉 ≤ 〈c, x〉.
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The objective function 〈c, x〉 in the minimization problem (P) is therefore
bounded below on X by vmax(D). This implies that vmax(D) ≤ vmin(P ) and
completes the proof of the theorem.

The following optimality criterion follows from weak duality.

Theorem 12.2.2 (Optimality criterion). Suppose that x̂ is a feasible point for
the minimization problem (P), that ŷ is a feasible point for the dual maxi-
mization problem (D), and that

〈c, x̂〉 = 〈b, ŷ〉.
Then x̂ and ŷ are optimal solutions of the respective problems.

Proof. The assumptions on x̂ and ŷ combined with Theorem 12.2.1 give us
the following chain of inequalities

vmax(D) ≥ 〈b, ŷ〉 = 〈c, x̂〉 ≥ vmin(P ) ≥ vmax(D).

Since the two extreme ends are equal, there is equality everywhere, which
means that ŷ is a maximum point and x̂ is a minimum point.

Theorem 12.2.3 (Duality theorem). Suppose that at least one of the two dual
LP problems

min 〈c, x〉
s.t. Ax− b ∈ V +, x ∈ U+

(P)

and

max 〈b, y〉
s.t. c− ATy ∈ U, y ∈ V

(D)

has feasible points. Then, the two problem have the same optimal value.

Thus, provided that at least one of the two dual problems has feasible points:

(i) X = ∅ ⇔ the objective function 〈b, y〉 is not bounded above on Y .

(ii) Y = ∅ ⇔ the objective function 〈c, x〉 is not bounded below on X.

(iii) If X 6= ∅ and Y 6= ∅, then there exist points x̂ ∈ X and ŷ ∈ Y such
that 〈b, y〉 ≤ 〈b, ŷ〉 = 〈c, x̂〉 ≤ 〈c, x〉 for all x ∈ X and all y ∈ Y .

The duality theorem for linear programming problems is a special case
of the general duality theorem for convex problems, but we give here an
alternative proof based directly on the following variant of Farkas’s lemma.

Lemma. The system

(12.2)

{
〈c, x〉≤ α

x ∈X
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has a solution if and only if the systems

{
〈b, y〉> α

y ∈ Y and (12.3-B)


〈b, y〉 = 1
−ATy ∈ U

y ∈ V
(12.3-A)

both have no solutions,

Proof. The system (12.2), i.e. 
〈c, x〉≤α

Ax− b ∈ V +

x ∈ U+,

is solvable if and only if the following homogenized system is solvable:

(12.2′)


〈c, x〉 ≤ αt

Ax− bt ∈ V +

x ∈ U+

t∈ R
t > 0.

(If x solves the system (12.2), then (x, 1) solves the system (12.2′), and if
(x, t) solves the system (12.2′), then x/t solves the system (12.2).) We can
write the system (12.2′) more compactly by introducing the matrix

Ã =

[
α −cT
−b A

]
and the vectors x̃ = (t, x) ∈ R× Rn and d = (−1, 0) ∈ R× Rn, namely as

(12.2′′)

 Ãx̃ ∈ R+ × V +

x̃ ∈ R× U+

dTx̃ < 0.

By Theorem 3.3.2, the system (12.2′′) is solvable if and only if the follow-
ing dual system has no solutions:

(12.3′′)

{
d− ÃTỹ ∈ {0} × U

ỹ ∈ R+ × V .

Since

ÃT =

[
α −bT
−c AT

]
,
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we obtain the following equivalent system from (12.3′′) by setting ỹ = (s, y)
with s ∈ R and y ∈ Rm:

(12.3′)


−1− αs+ 〈b, y〉 = 0

cs− ATy ∈ U
y ∈ V
s ≥ 0.

The system (12.2) is thus solvable if and only if the system (12.3′) has no
solutions, and by considering the cases s > 0 and s = 0 separately, we see
that the system (12.3′) has no solutions if and only if the two systems

〈b, y/s〉= α+1/s
c− AT(y/s) ∈ U

y/s ∈ V
s> 0

and


〈b, y〉= 1
−ATy ∈ U

y ∈ V

have no solutions, and this is obviously the case if and only if the systems
(12.3-A) and (12.3-B) both lack solutions.

Proof of the duality theorem. We now return to the proof of the duality
theorem, and because of weak duality, we only need to show the inequality

(12.4) vmin(P ) ≤ vmax(D).

We divide the proof of this inequality in three separate cases.

Case 1. Y 6= ∅ and the system (12.3-B) has no solution.

The inequality (12.4) is trivially true if vmax(D) = ∞. Therefore, assume
that vmax(D) < ∞. Then, because of the definition of vmax(D), the system
(12.3-A) has no solution when α = vmax(D). So neither of the two systems in
(12.3) has a solution for α = vmax(D). Thus, the system (12.2) has a solution
for this α-value by the lemma, which means that there is a feasible point x̂
such that 〈c, x̂〉 ≤ vmax(D). Consequently, vmin(P ) ≤ 〈c, x̂〉 ≤ vmax(D).

Note that it follows from the proof that the minimization problem actually
has an optimal solution x̂.

Case 2. Y = ∅ and the system (12.3-B) has no solution.

The system (12.3-A) now lacks solutions for all values of α, so it follows
from the lemma that the system (12.2) is solvable for all α-values, and this
means that the objective function 〈c, x〉 is unbounded below on X. Hence,
vmin(P ) = −∞ = vmax(D) in this case.
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Case 3. The system (12.3-B) has a solution

It now follows from the lemma that the system (12.2) has no solution for all
values of α, and this implies that the set X of feasible solutions is empty.
The polyhedron Y of feasible points in the dual problem is consequently
nonempty. Choose a point y0 ∈ Y , let y be a solution to the system (12.3-B)
and consider the points yt = y0 + ty for t > 0. The vectors yt belong to V ,
because they are conical combinations of vectors in V . Moreover, the vectors
c−ATyt = (c−ATy0)− tATy are conic combinations of vectors in U and thus
belong to U . This means that the vector yt lies in Y for t > 0, and since

〈b, yt〉 = 〈b, y0〉+ t〈b, y〉 = 〈b, y0〉+ t→ +∞
as t→∞, we conclude that vmax(D) =∞. The inequality (12.4) is in other
words trivially fulfilled.

The Complementary Theorem

Theorem 12.2.4 (Complementary theorem). Suppose that x̂ is a feasible point
for the LP problem (P) and that ŷ is a feasible point for the dual LP problem
(D). Then, the two points are optimal for their respective problems if and
only if

〈c− ATŷ, x̂〉 = 〈Ax̂− b, ŷ〉 = 0.

Proof. Note first that due to the definition of the polyhedra X and Y of
feasible points, we have 〈Ax−b, y〉 ≥ 0 for all points x ∈ X and y ∈ V , while
〈c− ATy, x〉 ≥ 0 for all points y ∈ Y and x ∈ U .

In particular, 〈Ax̂ − b, ŷ〉 ≥ 0 and 〈c − ATŷ, x̂〉 ≥ 0 if x̂ is an optimal
solution to the primal problem (P) and ŷ is an optimal solution to the dual
problem (D). Moreover, 〈c, x̂〉 = 〈b, ŷ〉 because of the Duality theorem, so it
follows that

〈c, x̂〉−〈Ax̂−b, ŷ〉 ≤ 〈c, x̂〉 = 〈b, ŷ〉 ≤ 〈b, ŷ〉+〈c−ATŷ, x̂〉 = 〈c, x̂〉−〈Ax̂−b, ŷ〉.

Since the two extreme ends of this inequality are equal, we have equality
everywhere, i.e. 〈Ax̂− b, ŷ〉 = 〈c− ATŷ, x̂〉 = 0.

Conversely, if 〈c − ATŷ, x̂〉 = 〈Ax̂ − b, ŷ〉 = 0, then 〈c, x̂〉 = 〈ATŷ, x̂〉 and
〈b, ŷ〉 = 〈Ax̂, ŷ〉, and since 〈ATŷ, x̂〉 = 〈Ax̂, ŷ〉, we conclude that 〈c, x̂〉 =
〈b, ŷ〉. The optimality of the two points now follows from the Optimality
criterion.

Let us for clarity formulate the Complementarity theorem in the impor-
tant special case when the primal and dual problems have the form described
as Case 2 in Example 12.2.1.
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Corollary 12.2.5. Suppose that x̂ and ŷ are feasible points for the dual prob-
lems

min 〈c, x〉
s.t. Ax ≥ b, x ≥ 0

(P2)

and

max 〈b, y〉
s.t. ATy ≤ c, y ≥ 0.

(D2)

respectively. Then, they are optimal solutions if and only if

(12.5)

{
(Ax̂)i > bi ⇒ ŷi = 0

x̂j > 0 ⇒ (ATŷ)j = cj

In words we can express condition (12.5) as follows, which explains the term
’complementary slackness’: If x̂ satisfies an individual inequality in the sys-
tem Ax ≥ b strictly, then the corresponding dual variable ŷi has to be equal
to zero, and if ŷ satisfies an individual inequality in the system ATy ≤ c
strictly, then the corresponding primal variable xj has to be equal to zero.

Proof. Since 〈Ax̂− b, ŷ〉 =
∑m

i=1((Ax̂)i− bi)ŷi is a sum of nonnegative terms,
we have 〈Ax̂ − b, ŷ〉 = 0 if and only if all the terms are equal to zero, i.e. if
and only if (Ax̂)i > bi ⇒ ŷi = 0.

Similarly, 〈c − ATŷ, x̂〉 = 0 if and only if x̂j > 0 ⇒ (ATŷ)j = cj. The
corollary is thus just a reformulation of Theorem 12.2.4 for dual problems of
type (P2)–(D2).

The curious reader may wonder whether the implications in the condition
(12.5) can be replaced by equivalences. The following trivial example shows
that this is not the case.

Example 12.2.4. Consider the dual problems

min x1 + 2x2

s.t. x1 + 2x2 ≥ 2, x ≥ 0
and max 2y

s.t.

{
y ≤ 1

2y ≤ 2, y ≥ 0

with A = cT =
[
1 2

]
and b = [2]. The condition (12.5) is not fulfilled with

equivalence at the optimal points x̂ = (2, 0) and ŷ = 1, because x̂2 = 0 and
(ATŷ)2 = 2 = c2.

However, there are other optimal solutions to the minimization problem;
all points on the line segment between (2, 0) and (0, 1) are optimal, and the
optimal pairs x̂ = (2 − 2t, t) and ŷ = 1 satisfy the condition (12.5) with
equivalence for 0 < t < 1.
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The last conclusion in the above example can be generalized. All dual
problems with feasible points have a pair of optimal solutions x̂ and ŷ that
satisfy the condition (12.5) with implications replaced by equivalences. See
exercise 12.8.

Example 12.2.5. The LP problem

min −x1 + 2x2 + x3 + 2x4

s.t.


−x1−x2− 2x3 +x4 ≥ 4
−2x1 + x2 + 3x3 +x4 ≥ 8

x1, x2, x3, x4 ≥ 0

is easily solved by first solving the dual problem

max 4y1 + 8y2

s.t.


−y1− 2y2 ≤−1
−y1 + y2 ≤ 2
−2y1 + 3y2 ≤ 1
y1 + y2 ≤ 2
y1, y2 ≥ 0

graphically and then using the Complementary theorem.

4y1 + 8y2 = 12

1 2 y1

1

2

y2

Figure 12.3. A graphical solution to
the maximization problem in Ex. 12.2.5.

A graphical solution is obtained from figure 12.3, which shows that ŷ =
(1, 1) is the optimal point and that the value is 12. Since ŷ satisfies the first
two constraints with strict inequality and ŷ1 > 0 and ŷ2 > 0, we obtain the
optimal solution x̂ to the minimization problem as a solution to the system

−x1−x2− 2x3 +x4 = 4
−2x1 + x2 + 3x3 +x4 = 8
x1 = 0

x2 = 0
x1, x2, x3, x4 ≥ 0.
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The solution to this system is x̂ =
(
0, 0, 4

5
, 28

5

)
, and the optimal value is 12,

which it of course has to be according to the Duality theorem.

Exercises

12.1 The matrix A and the vector c are assumed to be fixed in the LP problem

min 〈c, x〉
s.t. Ax ≥ b

but the right hand side vector b is allowed to vary. Suppose that the problem
has a finite value for some right hand side b. Prove that for each b, the value
is either finite or there are no feasible points. Show also that the optimal
value is a convex function of b.

12.2 Give an example of dual problems which both have no feasible points.

12.3 Use duality to show that (3, 0, 1) is an optimal solution to the LP problem

min 2x1 + 4x2 + 3x3

s.t.


2x1 + 3x2 + 4x3 ≥ 10
x1 + 2x2 ≥ 3

2x1 + 7x2 + 2x3 ≥ 5, x ≥ 0.

12.4 Show that the column player’s problem and the row player’s problem in a
two-person zero-sum game (see Chapter 9.4) are dual problems.

12.5 Investigate how the optimal solution to the LP problem

max x1 + x2

s.t.


tx1 + x2 ≥−1
x1 ≤ 2
x1− x2 ≥ −1

depends on the parameter t.

12.6 The Duality theorem follows from Farkas’s lemma (Corollary 3.3.3). Show
conversely that Farkas’s lemma follows from the Duality theorem by consid-
ering the dual problems

min 〈c, x〉
s.t. Ax ≥ 0

and max 〈0, y〉
s.t. ATy = c, y ≥ 0

12.7 Let Y = {y ∈ Rm | c−ATy ∈ U, y ∈ V }, where U and V are closed convex
cones, and suppose that Y 6= ∅.

a) Show that reccY = {y ∈ Rm | −ATy ∈ U, y ∈ V }.
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b) Show that the system (12.3-B) has a solution if and only if the vector −b
does not belong to the dual cone of reccY .

c) Show, using the result in b), that the conclusion in case 3 of the proof of
the Duality theorem follows from Theorem 12.1.1, i.e. that vmax(D) =∞ if
(and only if) the system (12.3-B) has a solution.

12.8 Suppose that the dual problems

min 〈c, x〉
s.t. Ax ≥ b, x ≥ 0

and max 〈b, y〉
s.t. ATy ≤ c, y ≥ 0

both have feasible points. Prove that there exist optimal solutions x̂ and ŷ
to the problems that satisfy{

(Ax̂)i > bi ⇔ ŷi = 0
x̂j > 0 ⇔ (ATŷ)j = cj .

[Hint: Because of the Complementarity theorem it suffices to show that the
following system of inequalities has a solution: Ax ≥ b, x ≥ 0, ATy ≤ c,
y ≥ 0, 〈b, y〉 ≥ 〈c, x〉, Ax+ y > b, Ay − c < x. And this system is solvable if
and only if the following homogeneous system is solvable: Ax−bt ≥ 0, x ≥ 0,
−ATy+ ct ≥ 0, y ≥ 0, −〈c, x〉+ 〈b, y〉 ≤ 0, Ax+y− bt > 0, x−ATy+ ct > 0,
t > 0. The solvability can now be decided by using Theorem 3.3.7.]
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Chapter 13

The simplex algorithm

For practical purposes, there are somewhat simplified two kinds of methods
for solving LP problems. Both generate a sequence of points with progres-
sively better objective function values. Simplex methods, which were intro-
duced by Dantzig in the late 1940s, generate a sequence of extreme points of
the polyhedron of feasible points in the primal (or dual) problem by moving
along the edges of the polyhedron. Interior-point methods generate instead,
as the name implies, points in the interior of the polyhedron. These methods
are derived from techniques for non-linear programming, developed by Fiacco
and McCormick in the 1960s, but it was only after Karmarkars innovative
analysis in 1984 that the methods began to be used for LP problems.

In this chapter, we describe and analyze the simplex algorithm.

13.1 Standard form

The simplex algorithm requires that the LP problem is formulated in a special
way, and the variant of the algorithm that we will study assumes that the
problem is a minimization problem, that all variables are nonnegative and
that all other constraints are formulated as equalities.

Definition. An LP problem has standard form if it has the form

min c1x1 + c2x2 + · · ·+ cnxn

s.t.


a11x1 + a12x2 + · · ·+ a1nxn = b1

...
am1x1 + am2x2 + · · ·+ amnxn = bm

x1, x2, . . . , xn ≥ 0.

237
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By introducing the matrices

A =


a11 a12 . . . a1n

a21 a22 . . . a2n
...

...
...

am1 am2 . . . amn

 , b =


b1

b2
...
bm

 and c =


c1

c2
...
cn


we get the following compact writing for an LP problem in standard form:

min 〈c, x〉
s.t. Ax = b, x ≥ 0.

We noted in Chapter 9 that each LP problem can be transformed into an
equivalent LP problem in standard form by using slack/surplus variables and
by replacing unrestricted variables with differences of nonnegative variables.

Duality

We gave a general definition of the concept of duality in Chapter 12.2 and
showed that dual LP problems have the same optimal value, except when
both problems have no feasible points. In our description of the simplex
algorithm, we will need a special case of duality, and to make the presenta-
tion independent of the results in the previous chapter, we now repeat the
definition for this special case.

Definition. The LP problem

(D) max 〈b, y〉
s.t. ATy ≤ c

is said to be dual to the LP problem

(P) min 〈c, x〉
s.t. Ax = b, x ≥ 0.

We shall use the following trivial part of the Duality theorem.

Theorem 13.1.1 (Weak duality). If x is a feasible point for the minimization
problem (P) and y is a feasible point for the dual maximization problem (D),
i.e. if Ax = b, x ≥ 0 and ATy ≤ c, then

〈b, y〉 ≤ 〈c, x〉.

Proof. The inequalities ATy ≤ c and x ≥ 0 imply that att 〈x,ATy〉 ≤ 〈x, c〉,
and hence

〈b, y〉 = 〈Ax, y〉 = 〈x,ATy〉 ≤ 〈x, c〉 = 〈c, x〉.
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Corollary 13.1.2 (Optimality criterion). Suppose that x̂ is a feasible point for
the minimization problem (P), that ŷ is a feasible point for the dual maxi-
mization problem (D), and that 〈c, x̂〉 = 〈b, ŷ〉. Then x̂ and ŷ are optimal
solutions to the respective problems.

Proof. It follows from the assumptions and Theorem 13.1.1, applied to the
point y and an arbitrary feasible point x for the minimization problem, that

〈c, x〉 = 〈b, y〉 ≤ 〈c, x〉

for all feasible points x. This shows that x is a minimum point, and an
analogous argument shows that y is a maximum point.

13.2 Informal description of the simplex al-

gorithm

In this section we describe the main features of the simplex algorithm with
the help of some simple examples. The precise formulation of the algorithm
and the proof that it works is given in sections 13.4 and 13.5.

Example 13.2.1. We start with a completely trivial problem, namely

min f(x) = x3 + 2x4

s.t.

{
x1 + 2x3−x4 = 2

x2− x3 + x4 = 3, x ≥ 0.

Since the coefficients of the objective function f(x) are positive and x ≥ 0, it
is clear that f(x) ≥ 0 for all feasible points x. There is also a feasible point
x with x3 = x4 = 0, namely x = (2, 3, 0, 0). The minimum is therefore equal
to 0, and (2, 3, 0, 0) is the (unique) minimum point.

Now consider an arbitrary problem of the form

(13.1) min f(x) = cm+1xm+1 + · · ·+ cnxn + d

s.t.


x1 + a1m+1xm+1 + . . . + a1nxn = b1

x2 + a2m+1xm+1 + . . . + a2nxn = b2
...

xm + amm+1xm+1 + . . . + amnxn = bm, x ≥ 0

where

b1, b2, . . . , bm ≥ 0.
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If cm+1, cm+2, . . . , cn ≥ 0, then obviously f(x) ≥ d for all feasible points x,
and since x = (b1, . . . , bm, 0, . . . , 0) is a feasible point and f(x) = d, it follows
that d is the optimal value.

The constraint system in LP problem (13.1) has a very special form, for it
is solved with respect to the basic variables x1, x2, . . . , xm, and these variables
are not present in the objective function. Quite generally, we shall call a set
of variables basic to a given system of linear equations if it is possible to solve
the system with respect to the variables in the set.

Example 13.2.2. Let us alter the objective function in Example 13.2.1 by
changing the sign of the x3-coefficient. Our new problem thus reads as fol-
lows:

(13.2) min f(x) = −x3 + 2x4

s.t.

{
x1 + 2x3−x4 = 2

x2− x3 + x4 = 3, x ≥ 0.

The point (2, 3, 0, 0) is of course still feasible and the corresponding value
of the objective function is 0, but we can get a smaller value by choosing
x3 > 0 and keeping x4 = 0. However, we must ensure that x1 ≥ 0 and
x2 ≥ 0, so the first constraint equation yields the bound x1 = 2− 2x3 ≥ 0,
i.e. x3 ≤ 1.

We now transform the problem by solving the system (13.2) with respect
to the variables x2 and x3, i.e. by changing basic variables from x1, x2 to
x2, x3. Using Gaussian elimination, we obtain{

1
2
x1 +x3− 1

2
x4 = 1

1
2
x1 +x2 + 1

2
x4 = 4.

The new basic variable x3 is then eliminated from the objectiv function by
using the first equation in the new system. This results in

f(x) = 1
2
x1 + 3

2
x4 − 1,

and our problem has thus been reduced to a problem of the form (13.1),
namely

min 1
2
x1 + 3

2
x4 − 1

s.t.

{
1
2
x1 +x3− 1

2
x4 = 1

1
2
x1 +x2 + 1

2
x4 = 4, x ≥ 0

with x2 and x3 as basic variables and with nonnegative coefficients for the
other variables in the objectiv function. Hence, the optimal value is equal to
−1, and (0, 4, 1, 0) is the optimal point.
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The strategy for solving a problem of the form (13.1), where some co-
efficient cm+k is negative, consists in replacing one of the basic variables
x1, x2, . . . , xm with xm+k so as to obtain a new problem of the same form. If
the new c-coefficients are nonnegative, then we are done. If not, we have to
repeat the procedure. We illustrate with another example.

Example 13.2.3. Consider the problem

(13.3) min f(x) = 2x1 − x2 + x3 − 3x4 + x5

s.t.


x1 + 2x4− x5 = 5

x2 + x4 + 3x5 = 4
x3− x4 + x5 = 3, x ≥ 0.

First we have to eliminate the basic variables x1, x2, x3 from the objective
function with

(13.4) f(x) = −5x4 + 5x5 + 9

as result. Since the coefficient of x4 is negative, x4 has to be eliminated
from the objective function and from two constraint equations in such a way
that the right hand side of the transformed system remains nonnegative.
The third equation in (13.3) can not be used for this elimination, since the
coefficient of x4 is negative. Eliminating x4 from the first equation by using
the second equation results in the equation x1 − 2x2 − 7x5 = 5− 2 · 4 = −3,
which has an illegal right-hand side. It therefore only remains to use the first
of the constraints in (13.3) for the elimination. We then get the following
equivalent system

(13.5)


1
2
x1 +x4− 1

2
x5 = 5

2

−1
2
x1 +x2 + 7

2
x5 = 3

2
1
2
x1 +x3 + 1

2
x5 = 11

2
, x ≥ 0

with x2, x3, x4 as new basic variables.
The reason why the right-hand side of the system remains positive when

the first equation of (13.3) is used for the elimination of x4, is that the ratio
of the right-hand side and the x4-coefficient is smaller for the first equation
than for the second (5/2 < 4/1).

We now eliminate x4 from the objective function, using equation (13.4)
and the first equation of the system (13.5), and obtain

f(x) = 5
2
x1 + 5

2
x5 − 7

2

which is to be minimized under the constraints (13.5). The minimum value
is clearly equal to −7

2
, and (0, 3

2
, 11

2
, 5

2
, 0) is the minimum point.



242 13 The simplex algorithm

To reduce the writing it is customary to omit the variables and only work
with coefficients in tabular form. The problem (13.3) is thus represented by
the following simplex tableau:

1 0 0 2 −1 5
0 1 0 1 3 4
0 0 1 −1 1 3
2 −1 1 −3 1 f

The upper part of the tableau represents the system of equations, and the
lower row represents the objective function f . The vertical line corresponds
to the equality signs in (13.3).

To eliminate the basic variables x1, x2, x3 from the objective function we
just have to add −2 times row 1, row 2 and −1 times row 3 to the objective
function row in the above tableau. This gives us the new tableau

1 0 0 2 −1 5
0 1 0 1 3 4
0 0 1 −1 1 3
0 0 0 −5 5 f − 9

The bottom row corresponds to equation (13.4). Note that the constant term
9 appears on the other side of the equality sign compared to (13.4), and this
explains the minus sign in the tableau. We have also highlighted the basic
variables by underscoring.

Since the x4-coefficient of the objective function is negative, we have to
transform the tableau in such a way that x4 becomes a new basic variable.
By comparing the ratios 5/2 and 4/1 we conclude that the first row has to
be the pivot row, i.e. has to be used for the eliminations. We have indicated
this by underscoring the coefficient in the first row and the fourth column of
the tableau, the so-called pivot element.

Gaussian elimination gives rise to the new simplex tableau

1
2

0 0 1 −1
2

5
2

−1
2

1 0 0 7
2

3
2

1
2

0 1 0 1
2

11
2

5
2

0 0 0 5
2

f + 7
2

Since the coefficients of the objective function are now nonnegative, we can
read the minimum, with reversed sign, in the lower right corner of the tableau.
The minimum point is obtained by assigning the value 0 to the non-basic
variables x1 and x5, which gives x = (0, 3

2
, 11

2
, 5

2
, 0).
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Example 13.2.4. Let us solve the LP problem

min x1 − 2x2 + x3

s.t.


x1 + 2x2 + 2x3 +x4 = 5
x1 + x3 +x5 = 2

x2− 2x3 +x6 = 1, x ≥ 0.

The corresponding simplex tableau is

1 2 2 1 0 0 5
1 0 1 0 1 0 2
0 1 −2 0 0 1 1
1 −2 1 0 0 0 f

with x4, x5, x6 as basic variables, and these are already eliminated from the
objective function. Since the x2-coefficient of the objective function is nega-
tive, we have to introduce x2 as a new basic variable, and we have to use the
underscored element as pivot element, since 1/1 < 5/2. Using the third row,
the tableau is transformed into

1 0 6 1 0 −2 3
1 0 1 0 1 0 2
0 1 −2 0 0 1 1
1 0 −3 0 0 2 f + 2

and this tableau corresponds to the problem

min x1 − 3x3 + 2x6 − 2

s.t.


x1 + 6x3 +x4 − 2x6 = 3
x1 + x3 +x5 = 2

x2− 2x3 + x6 = 1, x ≥ 0.

Since the x3-coefficient in the objective function is now negative, we have
to repeat the procedure. We must thus introduce x3 as a new basic variable,
and this time we have to use the first row as pivot row, for 3/6 < 2/1. The
new tableau has the following form

1
6

0 1 1
6

0 −1
3

1
2

5
6

0 0 −1
6

1 1
3

3
2

1
3

1 0 1
3

0 1
3

2
3
2

0 0 1
2

0 1 f + 7
2

We can now read off the minimum−7
2

and the minimum point (0, 2, 1
2
, 0, 3

2
, 0).
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So far, we have written the function symbol f in the lower right corner of
our simplex tableaux. We have done this for pedagogical reasons to explain
why the function value in the box gets a reverse sign. Remember that the
last row of the previous simplex tableau means that

3
2
x1 + 1

2
x4 + x6 = f(x) + 7

2
.

Since the symbol has no other function, we will omit it in the future.

Example 13.2.5. The problem

min f(x) = −2x1 + x2

s.t.

{
x1−x2 +x3 = 3
−x1 + x2 +x4 = 4, x ≥ 0

gives rise to the following simplex tableaux:

1 −1 1 0 3
−1 1 0 1 4
−2 1 0 0 0

1 −1 1 0 3
0 0 1 1 7
0 −1 2 0 6

Since the objective function has a negative x2-coefficient, we are now
supposed to introduce x2 as a basic variable, but no row will work as a
pivot row since the entire x2-column is non-positive. This implies that the
objective function is unbounded below, i.e. there is no minimum. To see this,
we rewrite the last tableau with variables in the form

min f(x) = −x2 + 2x3 − 6

s.t.

{
x1 = x2−x3 + 3
x4 = −x3 + 7.

By choosing x2 = t and x3 = 0 we get a feasible point xt = (3 + t, t, 0, 7) for
each t ≥ 0, and since f(xt) = −t− 6→ −∞ as t→∞, we conclude that the
objective function is unbounded below.

Examples 13.2.4 and 13.2.5 are typical for LP problems of the form (13.1).
In Section 13.5, namely, we show that one can always perform the iterations
so as to obtain a final tableau similar to the one in Example 13.2.4 or the one
in Example 13.2.5, and in Section 13.6 we will show how to get started, i.e.
how to transform an arbitrary LP problem in standard form into a problem
of the form (13.1).
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13.3 Basic solutions

In order to describe and understand the simplex algorithm it is necessary
first to know how to produce solutions to a linear system of equations. We
assume that Gaussian elimination is familiar and concentrate on describing
how to switch from one basic solution to another. We begin by reviewing the
notation that we will use in the rest of this chapter.

The columns of an m× n-matrix A will be denoted A∗1, A∗2, . . . , A∗n so
that

A =
[
A∗1 A∗2 . . . A∗n

]
.

We will often have to consider submatrices comprised of certain columns
in an m× n-matrix A. So if 1 ≤ k ≤ n and

α = (α1, α2, . . . , αk)

is a permutation of k elements chosen from the set {1, 2, . . . , n}, we let A∗α
denote the m × k-matrix consisting of the columns A∗α1 , A∗α2 , . . . , A∗αk in
the matrix A, i.e.

A∗α =
[
A∗α1 A∗α2 . . . A∗αk

]
.

And if

x =


x1

x2
...
xn


is a column matrix with n entries, then xα denotes the column matrix

xα1

xα2

...
xαk

 .
As usual, we make no distinction between column matrices with n entries
and vectors in Rn.

We consider permutations α = (α1, α2, . . . , αk) as ordered sets and allow
us therefore to write j ∈ α if j is any of the numbers α1, α2, . . . , αk. This
also allows us to write sums of the type

k∑
i=1

xαiA∗αi
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as ∑
j∈α

xjA∗j,

or with matrices as
A∗αxα.

Definition. Let A be an m×n-matrix of rank m, and let α = (α1, α2, . . . , αm)
be a permutation of m numbers from the set {1, 2, . . . , n}. The permutation
α is called a basic index set of the matrix A if the columns of them×m-matrix
A∗α form a basis for Rm.

The condition that the columns A∗α1 , A∗α2 , . . . , A∗αm form a basis is equiv-
alent to the condition that the submatrix

A∗α =
[
A∗α1 A∗α2 . . . A∗αm

]
is invertible. The inverse of the matrix A∗α will be denoted by A−1

∗α . This
matrix, which thus means (A∗α)−1, will appear frequently in the sequel − do
not confuse it with (A−1)∗α, which is not generally well defined.

If α = (α1, α2, . . . , αm) is a basic index set, so too is of course every
permutation of α.

Example 13.3.1. The matrix[
3 1 1 −3
3 −1 2 −6

]
has the following basic index sets: (1, 2), (2, 1), (1, 3), (3, 1), (1, 4), (4, 1)
(2, 3), (3, 2), (2, 4), and (4, 2).

We also need a convenient way to show the result of replacing an element
in an ordered set with some other element. Therefore, letM = (a1, a2, . . . , an)
be an arbitrary n-tuple (ordered set). The n-tuple obtained by replacing the
item ar at location r with an arbitrary object x will be denoted by Mr̂[x]. In
other words,

Mr̂[x] = (a1, . . . , ar−1, x, ar+1, . . . , an).

An m × n-matrix can be regarded as an ordered set of columns. If b is
a column matrix with m entries and 1 ≤ r ≤ n, we therefore write Ar̂[b] for
the matrix [

A∗1 . . . A∗r−1 b A∗r+1 . . . A∗n
]
.

Another context in which we will use the above notation for replacement
of elements, is when α = (α1, α2, . . . , αm) is a permutation of m elements
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taken from the set {1, 2, . . . , n}. If 1 ≤ r ≤ m, 1 ≤ k ≤ n and k /∈ α, then
αr̂[k] denotes the new permutation

(α1, . . . , αr−1, k, αr+1, . . . , αm).

Later we will need the following simple result, where the above notation
is used.

Lemma 13.3.1. Let E be the unit matrix of order m, and let b be a column
matrix with m elements. The matrix Er̂[b] is invertible if and only if br 6= 0,
and in this case

Er̂[b]
−1 = Er̂[c],

where

cj =

{
−bj/br for j 6= r,

1/br for j = r.

Proof. The proof is left to the reader as a simple exercise.

Example 13.3.2. 1 4 0
0 3 0
0 5 1

−1

=

 1 −4/3 0
0 1/3 0
0 −5/3 1


Systems of linear equations and basic solutions

Consider a system of linear equations

(13.6)


a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

am1x1 + am2x2 + · · · + amnxn = bm

with coefficient matrix A of rank m and right-hand side matrix b. Such a
system can equivalently be regarded as a vector equation

(13.6′)
n∑
j=1

xjA∗j = b

or as a matrix equation

(13.6′′) Ax = b.

Both alternative approaches are, as we shall see, fruitful.
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We solve the system (13.6), preferably using Gaussian elimination, by
expressing m of the variables, xα1 , xα2 , . . . , xαm say, as linear combinations
of the remaining n−m variables xβ1 , xβ2 , . . . , xβn−m and b1, b2, . . . , bm. Each
assignment of values to the latter β-variables results in a unique set of values
for the former α-variables. In particular, we get a unique solution by setting
all β-variables equal to 0.

This motivates the following definition.

Definition. Let α = (α1, α2, . . . , αm) be a permutation of m numbers chosen
from the set {1, 2, . . . , n}, and let β = (β1, β2, . . . , βn−m) be a permutation
of the remaining n −m numbers. The variables xα1 , xα2 , . . . , xαm are called
basic variables and the variables xβ1 , xβ2 , . . . , xβn−m are called free variables
in the system (13.6), if for each c = (c1, c2, . . . , cn−m) ∈ Rn−m there is a
unique solution x to the system (13.6) such that xβ = c. The unique solution
obtained by setting all free variables equal to 0 is called a basic solution.

Any m variables can not be chosen as basic variables; to examine which
ones can be selected, let α = (α1, α2, . . . , αm) be a permutation of m numbers
from the set {1, 2, . . . , n} and let β = (β1, β2, . . . , βn−m) be an arbitrary
permutation of the remaining n −m numbers, and rewrite equation (13.6′)
as

(13.6′′′)
m∑
j=1

xαjA∗αj = b−
n−m∑
j=1

xβjA∗βj .

If α is a basic index set, i.e. if the columns A∗α1 , A∗α2 , . . . , A∗αm form a
basis of Rm, then equation (13.6′′′) has clearly a unique solution for each
assignment of values to the β-variables, and (xα1 , xα2 , . . . , xαm) is in fact the
coordinates of the vector b −

∑n−m
j=1 xβjA∗βj in this basis. In particular, the

coordinates of the vector b are equal to (xα1 , xα2 , . . . , xαm), where x is the
corresponding basic solution, defined by the condition that xβj = 0 for all j.

Conversely, suppose that each assignment of values to the β-variables
determines uniquely the values of the α-variables. In particular, the equation

(13.7)
m∑
j=1

xαjA∗αj = b

has then a unique solution, and this implies that the equation

(13.8)
m∑
j=1

xαjA∗αj = 0
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has no other solution then the trivial one, xαj = 0 for all j, because we would
otherwise get several solutions to equation (13.7) by to a given one adding
a non-trivial solution to equation (13.8). The columns A∗α1 , A∗α2 , . . . , A∗αm
are in other words linearly independent, and they form a basis for Rm since
they are m in number. Hence, α is a basic index set.

In summary, we have proved the following result.

Theorem 13.3.2. The variables xα1 , xα2 , . . . , xαm are basic variables in the
system (13.6) if and only if α is a basic index set of the coefficient matrix A.

Let us now express the basic solution corresponding to the basic index
set α in matrix form. By writing the matrix equation (13.6′′) in the form

A∗αxα + A∗βxβ = b

and multiplying from the left by the matrix A−1
∗α , we get

xα + A−1
∗αA∗βxβ = A−1

∗α b, i.e.

xα = A−1
∗α b− A−1

∗αA∗βxβ,

which expresses the basic variables as linear combinations of the free variables
and the coordinates of b. The basic solution is obtained by setting xβ = 0
and is given by

xα = A−1
∗α b , xβ = 0.

We summarize this result in the following theorem.

Theorem 13.3.3. Let α be a basic index set of the matrix A. The corre-
sponding basic solution x to the system Ax = b is given by the conditions

xα = A−1
∗α b and xk = 0 for k /∈ α.

The n−m free variables in a basic solution are equal to zero by definition.
Of course, some basic variable may also happen to be equal to zero, and since
this results in certain complications for the simplex algorithm, we make the
following definition.

Definition. A basic solution x is called non-degenerate if xi 6= 0 for m indices
i and degenerate if xi 6= 0 for less than m indices i.

Two basic index sets α and α′, which are permutations of each other,
naturally give rise to the same basic solution x. So the number of different
basic solutions to a system Ax = b with m equations and n unknowns is at
most equal to the number of subsets with m elements that can be chosen
from the set {1, 2, . . . , n}, i.e. at most equal to

(
n
m

)
. The number is smaller

if the matrix A contains m linearly dependent columns.
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Example 13.3.3. The system{
3x1 + x2 + x3− 3x4 = 3
3x1−x2 + 2x3− 6x4 = 3

has − apart from permutations − the following basic index sets: (1, 2), (1, 3),
(1, 4), (2, 3) and (2, 4), and the corresponding basic solutions are in turn
(1, 0, 0, 0), (1, 0, 0, 0), (1, 0, 0, 0), (0, 1, 2, 0) and (0, 1, 0,−2

3
). The basic so-

lution (1, 0, 0, 0) is degenerate, and the other two basic solutions are non-
degenerate.

The reason for our interest in basic index sets and basic solutions is that
optimal values of LP problems are attained at extreme points, and these
points are basic solutions, because we have the following characterisation of
extreme points.

Theorem 13.3.4. Suppose that A is an m×n-matrix of rank m, that b ∈ Rm

and that c ∈ Rn. Then:

(i) x is an extreme point of the polyhedron X = {x ∈ Rn | Ax = b, x ≥ 0}
if and only if x is a nonnegative basic solution to the system Ax = b,
i.e. if and only if there is a basic index set α of the matrix A such that
xα = A−1

∗α b ≥ 0 and xk = 0 for k /∈ α.

(ii) y is an extreme point of the polyhedron Y = {y ∈ Rm | ATy ≤ c} if and
only if ATy ≤ c and there is a basic index set α of the matrix A such
that y = (A−1

∗α )Tcα.

Proof. (i) According to Theorem 5.1.1, x is an extreme point of the poly-
hedron X if and only if x ≥ 0 and x is the unique solution of a system of
linear equations consisting of the equation Ax = b and n−m equations out
of the n equations x1 = 0, x2 = 0, . . . , xn = 0. Let α1, α2, . . . , αm be the
indices of the m equations xi = 0 that are not used in this system. Then,
α = (α1, α2, . . . , αm) is a basic index set and x is the corresponding basic
solution.

(ii) Because of the same theorem, y is an extreme point of the polyhedron
Y if and only if y ∈ Y and y is the unique solution of a quadratic system of
linear equations obtained by selecting m out of the n equations in the system
ATy = c. Let α1, α2, . . . , αm denote the indices of the selected equations.
The quadratic system is then of the form (A∗α)Ty = cα, and this system
of equations has a unique solution y = (A−1

∗α )Tcα if and only if A∗α is an
invertible matrix, i.e. if and only if α = (α1, α2, . . . , αm) is a basic index set
of A.
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Example 13.3.4. It follows from Theorem 13.3.4 and Example 13.3.3 that
the polyhedron X of solutions to the system{

3x1 + x2 + x3− 3x4 = 3
3x1−x2 + 2x3− 6x4 = 3, x ≥ 0

has two extreme points, namely (1, 0, 0, 0) and (0, 1, 2, 0).
The ”dual” polyhedron Y of solutions to the system

3y1 + 3y2 ≤ 2
y1− y2 ≤ 1
y1 + 2y2 ≤ 1

−3y1− 6y2 ≤ −1

has three extreme points, namely (5
6
,−1

6
), (1

3
, 1

3
) and (7

9
,−2

9
), corresponding

to the basic index sets (1, 2), (1, 3) and (2, 4). (The points associated with
the other two basic index sets (1, 4) and (2, 3), y = (1,−1

3
) and y = (1, 0),

respectively, are not extreme points since they lie outside Y .)

Changing basic index sets

We will now discuss how to generate a suite of basic solutions by successively
replacing one element at a time in the basic index set.

Theorem 13.3.5. Suppose that α = (α1, α2, . . . , αm) is a basic index set of
the system Ax = b and let x denote the corresponding basic solution. Let k
be a column index not belonging to the basic index set α, and let v ∈ Rn be
the column vector defined by

vα = A−1
∗αA∗k, vk = −1 and vj = 0 for j /∈ α ∪ {k}.

(i) Then Av = 0, so it follows that x−tv is a solution to the system Ax = b
for all t ∈ R.

(ii) Suppose that 1 ≤ r ≤ m and define a new ordered set α′ by replacing
the element αr in α with the number k, i.e.

α′ = αr̂[k] = (α1, . . . , αr−1, k, αr+1, . . . , αm).

Then, α′ is a basic index set if and only if vαr 6= 0. In this case,

A−1
∗α′ = Er̂[vα]−1A−1

∗α

and if x′ is the basic solution corresponding to the basic index set α′,
then

x′ = x− τv,
where τ = xαr/vαr .
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(iii) The two basic solutions x and x′ are identical if and only if τ = 0. So
if x is a non-degenerate basic solution, then x 6= x′.

We will call v the search vector associated with the basic index set α and
the index k, since we obtain the new basic solution x′ from the old one x by
searching in the direction of minus v.

Proof. (i) It follows immediately from the definition of v that

Av =
∑
j∈α

vjA∗j +
∑
j /∈α

vjA∗j = A∗αvα − A∗k = A∗k − A∗k = 0.

(ii) The set α′ is a basic index set if and only if A∗α′ is an invertible matrix.
But

A−1
∗αA∗α′ = A−1

∗α
[
A∗α1 . . . A∗αr−1 A∗k A∗αr+1 . . . A∗αm

]
=
[
A−1
∗αA∗α1 . . . A

−1
∗αA∗αr−1 A

−1
∗αA∗k A

−1
∗αA∗αr+1 . . . A

−1
∗αA∗αm

]
=
[
E∗1 . . . E∗r−1 vα E∗r+1 . . . E∗m

]
= Er̂[vα],

where of course E denotes the unit matrix of order m. Hence

A∗α′ = A∗αEr̂[vα].

The matrix A∗α′ is thus invertible if and only if the matrix Er̂[vα] is invertible,
and this is the case if and only if vαr 6= 0, according to Lemma 13.3.1. If the
inverse exists, then

A−1
∗α′ =

(
A∗αEr̂[vα]

)−1
= Er̂[vα]−1A−1

∗α .

Now, define xτ = x− τv. Then xτ is a solution to the equation Ax = b,
by part (i) of the theorem, so in order to prove that xτ is the basic solution
corresponding to the basic index set α′, it suffices to show that xτj = 0 for all
j /∈ α′, i.e. for j = αr and for j /∈ α ∪ {k}.

But xταr = xαr−τvαr = 0, because of the definition of τ , and if j /∈ α∪{k}
then xj and vj are both equal to 0, whence xτj = xj − τvj = 0.

(iii) Since vk = −1, we have τv = 0 if and only if τ = 0. Hence , x′ = x if
and only if τ = 0.

If the basic solution x is non-degenerate, then xj 6= 0 for all j ∈ α and in
particular xαr 6= 0, which implies that τ 6= 0, and that x′ 6= x.
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Corollary 13.3.6. Keep the asumptions of Theorem 13.3.5 and suppose in
addition that x ≥ 0, that the index set

I+ = {j ∈ α | vj > 0}

is nonempty, and that the index r is chosen so that αr ∈ I+ and

τ = xαr/vαr = min{xj/vj | j ∈ I+}.

Then x′ ≥ 0.

Proof. Since x′j = 0 for all j /∈ α′, it suffices to show that x′j ≥ 0 for all
j ∈ α ∪ {k}.

We begin by noting that τ ≥ 0 since x ≥ 0, and therefore

x′k = xk − τvk = 0 + τ ≥ 0.

For indices j ∈ α \ I+ we have vj ≤ 0, and this implies that

x′j = xj − τvj ≥ xj ≥ 0.

Finally, if j ∈ I+, then xj/vj ≥ τ , and it follows that

x′j = xj − τvj ≥ 0.

This completes the proof.

13.4 The simplex algorithm

The variant of the simplex algorithm that we shall describe assumes that the
LP problem is given in standard form. So we start from the problem

min 〈c, x〉
s.t. Ax = b, x ≥ 0

where A is an m× n-matrix, b ∈ Rm and c ∈ Rn.
We assume that

rankA = m = the number of rows in A.

Of course, this is no serious restriction, because if rankA < m and the system
Ax = b is consistent, then we can delete (m − rankA) constraint equations
without changing the set of solutions, and this leaves us with an equivalent
system A′x = b, where the rank of A′ is equal to the number of rows in A′.

Let us call a basic index set α of the matrix A and the corresponding
basic solution x to the system Ax = b feasible, if x is a feasible point for our
standard problem, i.e. if x ≥ 0.
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The simplex algorithm starts from a feasible basic index set α of the
matrix A, and we shall show in Section 13.6 how to find such an index set
by applying the simplex algorithm to a so-called artificial problem.

First compute the corresponding feasible basic solution x, i.e.

xα = A−1
∗α b ≥ 0,

and then the number λ ∈ R and the column vectors y ∈ Rm and z ∈ Rn,
defined as

λ = 〈c, x〉 = 〈cα, xα〉
y = (A−1

∗α )Tcα

z = c− ATy.
The number λ is thus equal to the value of the objective function at x.

Note that zα = cα − (ATy)α∗ = cα − (A∗α)Ty = cα − cα = 0, so in order
to compute the vector z we only have to compute its coordinates

zj = cj − (A∗j)
Ty = cj − 〈A∗j, y〉

for indices j /∈ α. The numbers zj are usually called reduced costs.

Lemma 13.4.1. The number λ and the vectors x, y and z have the following
properties:

(i) 〈z, x〉 = 0, i.e. the vectors z and x are orthogonal.

(ii) Ax = 0⇒ 〈c, x〉 = 〈z, x〉.
(iii) Ax = b⇒ 〈c, x〉 = λ+ 〈z, x〉.
(iv) If v is the search vector corresponding to the basic index set α and the

index k /∈ α, then 〈c, x− tv〉 = λ+ tzk.

Proof. (i) Since zj = 0 for j ∈ α and xj = 0 for j /∈ α,

〈z, x〉 =
∑
j∈α

zjxj +
∑
j /∈α

zjxj = 0 + 0 = 0.

(ii) It follows immediately from the definition of z that

〈z, x〉 = 〈c, x〉 − 〈ATy, x〉 = 〈c, x〉 − 〈y, Ax〉 = 〈c, x〉
for all x satisfying the equation Ax = 0.

(iii) If Ax = b, then

〈c, x〉 − 〈z, x〉 = 〈ATy, x〉 = 〈y, Ax〉 = 〈(A−1
∗α )Tcα, b〉 = 〈cα, A−1

∗α b〉
= 〈cα, xα〉 = λ.

(iv) Since Av = 0, it follows from (ii) that

〈c, x− tv〉 = 〈c, x〉 − t〈c, v〉 = λ− t〈z, v〉 = λ+ tzk.
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The following theorem contains all the essential ingredients of the simplex
algorithm.

Theorem 13.4.2. Let α, x, λ, y and z be defined as above.

(i) (Optimality) If z ≥ 0, then x is an optimal solution to the minimiza-
tion problem

min 〈c, x〉
s.t. Ax = b, x ≥ 0

and y is an optimal solution to the dual maximization problem

max 〈b, y〉
s.t. ATy ≤ c

with λ as the optimal value. The optimal solution x to the minimization
problem is unique if zj > 0 for all j /∈ α.

(ii) Suppose that z 6≥ 0, and let k be an index such that zk < 0. Let further
v be the search vector associated to α and k, i.e.

vα = A−1
∗αA∗k, vk = −1, vj = 0 for j /∈ α ∪ {k},

and set xt = x − tv for t ≥ 0. Depending on whether v ≤ 0 or v 6≤ 0,
the following applies:

(ii a) (Unbounded objective function) If v ≤ 0, then the points
xt are feasible for the minimization problem for all t ≥ 0 and
〈c, xt〉 → −∞ as t→∞. The objective function is thus unbounded
below, and the dual maximization problem has no feasible points.

(ii b) (Iteration step) If v 6≤ 0, then define a new basic index set
α′ and the number τ as in Theorem 13.3.5 (ii) with the index r
chosen as in Corollary 13.3.6. The basic index set α′ is feasible
with x′ = x− τv as the corresponding feasible basic solution, and

〈c, x′〉 = 〈c, x〉+ τzk ≤ 〈c, x〉.
Hence, 〈c, x′〉 < 〈c, x〉, if τ > 0.

Proof. (i) Suppose that z ≥ 0 and that x is an arbitrary feasible point for
the minimization problem. Then 〈z, x〉 ≥ 0 (since x ≥ 0), and it follows
from part (iii) of Lemma 13.4.1 that 〈c, x〉 ≥ λ = 〈c, x〉. The point x is thus
optimal and the optimal value is equal to λ.

The condition z ≥ 0 also implies that ATy = c− z ≤ c, i.e. y is a feasible
point for the dual maximization problem, and

〈b, y〉 = 〈y, b〉 = 〈(A−1
∗α )Tcα, b〉 = 〈cα, A−1

∗α b〉 = 〈cα, xα〉 = 〈c, x〉,
so if follows from the optimality criterion (Corollary 13.1.2) that y is an
optimal solution to the dual problem.
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Now suppose that zj > 0 for all j /∈ α. If x is a feasible point 6= x, then
xj0 > 0 for some index j0 /∈ α, and it follows that 〈z, x〉 =

∑
j /∈α zjxj ≥

zj0xj0 > 0. Hence, 〈c, x〉 = λ + 〈z, x〉 > λ = 〈c, x〉, by Lemma 13.4.1 (iii).
This proves that the minimum point is unique.

(ii a) According to Theorem 13.3.5, xt is a solution to the equation Ax = b
for all real numbers t, and if v ≤ 0 then xt = x − tv ≥ x ≥ 0 for t ≥ 0. So
the points xt are feasible for all t ≥ 0 if v ≤ 0, and by Lemma 13.4.1 (iv),

lim
t→∞
〈c, xt〉 = λ+ lim

t→∞
zkt = −∞.

The objective function is thus not bounded below.
Suppose that the dual maximization problem has a feasible point y. Then,

〈b, y〉 ≤ 〈c, xt〉 for all t ≥ 0, by the weak duality theorem, and this is contra-
dictory since the right hand side tends to −∞ as t→∞. So it follows that
the dual maximization problem has no feasible points.

(ii b) By Corollary 13.3.6, α′ is a feasible basic solution with xτ as the cor-
responding basic solution, and the inequality 〈c, x′〉 ≤ 〈c, x〉 now follows
directly from Lemma 13.4.1 (iv), because τ ≥ 0.

Theorem 13.4.2 gives rise to the following algorithm for solving the stan-
dard problem

min 〈c, x〉
s.t. Ax = b, x ≥ 0.

The simplex algorithm

Given a feasible basic index set α.

1. Compute the matrix A−1
∗α , the corresponding feasible basic solution x,

i.e. xα = A−1
∗α b and xj = 0 for j /∈ α, and the number λ = 〈cα, xα〉.

Repeat steps 2–8 until a stop occurs.

2. Compute the vector y = (A−1
∗α )Tcα and the numbers zj = cj − 〈A∗j, y〉

for j /∈ α.

3. Stopping criterion: quit if zj ≥ 0 for all j /∈ α.
Optimal solution: x. Optimal value: λ. Optimal dual solution: y.

4. Choose otherwise an index k such that zk < 0, compute the corre-
sponding search vector v, i.e. vα = A−1

∗αA∗k, vk = −1 and vj = 0 for
j /∈ α ∪ {k}, and put I+ = {j ∈ α | vj > 0}.

5. Stopping criterion: quit if I+ = ∅.
Optimal value: −∞.

6. Define otherwise τ = min{xj/vj | j ∈ I+} and determine an index r so
that αr ∈ I+ and xαr/vαr = τ .
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7. Put α′ = αr̂[k] and compute the inverse A−1
∗α′ = Er̂[vα]−1A−1

∗α .

8. Update: α := α′, A−1
∗α := A−1

∗α′ , x := x− τv, and λ := λ+ τzk.

Before we can call the above procedure an algorithm in the sense of a
mechanical calculation that a machine can perform, we need to specify how
to choose k in step 4 in the case when zj < 0 for several indices j, and r in
step 6 when xj/vj = τ for more than one index j ∈ I+.

A simple rule that works well most of the time, is to select the index j
that minimizes zj (and if there are several such indices the least of these) as
the index k, and the smallest of all indices i for which xαi/vαi = τ as the
index r. We shall return to the choice of k and r later; for the immediate
discussion of the algorithm, it does not matter how to make the choice.

We also need a method to find an initial feasible basic index set to start
the simplex algorithm from. We shall treat this problem and solve it in
Section 13.6.

Now suppose that we apply the simplex algorithm to an LP problem
in standard form, starting from a feasible basic index set. It follows from
Theorem 13.4.2 that the algorithm delivers an optimal solution if it stops
during step 3, and that the objective function is unbounded from below if
the algorithm stops during step 5.

So let us examine what happens if the algorithm does not stop. Since
a feasible basic index set is generated each time the algorithm comes to
step 7, we will obtain in this case an infinite sequence α1, α2, α3, . . . of feasible
basic index sets with associated feasible basic solutions x1, x2, x3, . . .. As the
number of different basic index sets is finite, some index set αp has to be
repeated after a number of additional, say q, iterations. This means that αp =
αp+q and xp = xp+q and in turn implies that the sequence αp, αp+1, . . . , αp+q−1

is repeated periodically in all infinity. We express this by saying that the
algorithm cycles. According to (ii)

¯
in Theorem 13.4.2,

〈c, xp〉 ≥ 〈c, xp+1〉 ≥ · · · ≥ 〈c, xp+q〉 = 〈c, xp〉,
and this implies that

〈c, xp〉 = 〈c, xp+1〉 = · · · = 〈c, xp+q−1〉.
The number τ is hence equal to 0 for all the iterations of the cycle, and
this implies that the basic solutions xp, xp+1, . . . , xp+q−1 are identical and
degenerate. If the simplex algorithm does not stop, but continues indefinitely,
it is so because the algortihm has got stuck in a degenerate basic solution.

The following theorem is now an immediate consequence of the above
discussion.
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Theorem 13.4.3. The simplex algorithm stops when applied to an LP prob-
lem in which all feasible basic solutions are non-degenerate.

Cycling can occur, and we shall give an example of this in the next sec-
tion. Theoretically, this is a bit troublesome, but cycling seems to be a rare
phenomenon in practical problems and therefore lacks practical significance.
The small rounding errors introduced during the numerical treatment of an
LP problem also have a beneficial effect since these errors usually turn de-
generate basic solutions into non-degenerate solutions and thereby tend to
prevent cycling. There is also a simple rule for the choice of indices k and r,
Bland’s rule, which prevents cycling and will be described in the next section.

Example

Example 13.4.1. We now illustrate the simplex algorithm by solving the
minimization problem

min x1 − x2 + x3

s.t.


−2x1 + x2 + x3 ≤ 3
−x1 + x2− 2x3 ≤ 3
2x1−x2 + 2x3 ≤ 1, x ≥ 0.

We start by writing the problem in standard form by introducing three
slack variables:

min x1 − x2 + x3

s.t.


−2x1 + x2 + x3 +x4 = 3
−x1 + x2− 2x3 +x5 = 3
2x1−x2 + 2x3 +x6 = 1, x ≥ 0.

Using matrices, this becomes

min cTx
s.t. Ax = b, x ≥ 0

with

A =

−2 1 1 1 0 0
−1 1 −2 0 1 0

2 −1 2 0 0 1

 , b =

3
3
1

 and

cT =
[

1 −1 1 0 0 0
]
.
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We note that we can start the simplex algorithm with

α = (4, 5, 6), A−1
∗α =

1 0 0
0 1 0
0 0 1

−1

=

1 0 0
0 1 0
0 0 1

 , xα =

3
3
1

 ,
λ = 〈cα, xα〉 = cTαxα =

[
0 0 0

] 3
3
1

 = 0.

1st iteration:

y = (A−1
∗α )Tcα =

1 0 0
0 1 0
0 0 1

0
0
0

 =

0
0
0


z1,2,3 = c1,2,3 − (A∗1,2,3)Ty =

 1
−1

1

−
−2 −1 2

1 1 −1
1 −2 2

0
0
0

 =

 1
−1

1

 .
Since z2 = −1 < 0, we have to select k = 2 and then

vα = A−1
∗αA∗k =

1 0 0
0 1 0
0 0 1

 1
1
−1

 =

 1
1
−1

 , v2 = −1

I+ = {j ∈ α | vj > 0} = {4, 5}
τ = min{xj/vj | j ∈ I+} = min{x4/v4, x5/v5} = min{3/1, 3/1} = 3

for α1 = 4, i.e.

r = 1

α′ = αr̂[k] = (4, 5, 6)1̂[2] = (2, 5, 6)

Er̂[vα]−1 =

 1 0 0
1 1 0
−1 0 1

−1

=

 1 0 0
−1 1 0

1 0 1


A−1
∗α′ = Er̂[vα]−1A−1

∗α =

 1 0 0
−1 1 0

1 0 1

 1 0 0
0 1 0
0 0 1

 =

 1 0 0
−1 1 0

1 0 1


x′α′ = xα′ − τvα′ =

0
3
1

− 3

−1
1
−1

 =

3
0
4


λ′ = λ+ τzk = 0 + 3 (−1) = −3.

Update: α := α′, A−1
∗α := A−1

∗α′ , xα := x′α′ and λ := λ′.
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2nd iteration:

y = (A−1
∗α )Tcα =

 1 −1 1
0 1 0
0 0 1

−1
0
0

 =

−1
0
0


z1,3,4 = c1,3,4 − (A∗1,3,4)Ty =

1
1
0

−
−2 −1 2

1 −2 2
1 0 0

−1
0
0

 =

−1
2
1

 .
Since z1 = −1 < 0,

k = 1

vα = A−1
∗αA∗k =

 1 0 0
−1 1 0

1 0 1

−2
−1

2

 =

−2
1
0

 , v1 = −1

I+ = {j ∈ α | vj > 0} = {5}
τ = x5/v5 = 0/1 = 0 for α2 = 5, i.e.

r = 2

α′ = αr̂[k] = (2, 5, 6)2̂[1] = (2, 1, 6)

Er̂[vα]−1 =

1 −2 0
0 1 0
0 0 1

−1

=

1 2 0
0 1 0
0 0 1


A−1
∗α′ = Er̂[vα]−1A−1

∗α =

1 2 0
0 1 0
0 0 1

  1 0 0
−1 1 0

1 0 1

 =

−1 2 0
−1 1 0

1 0 1


x′α′ = xα′ − τvα′ =

3
0
4

− 0

−2
−1

0

 =

3
0
4


λ′ = λ+ τzk = −3 + 0 (−1) = −3.

Update: α := α′, A−1
∗α := A−1

∗α′ , xα := x′α′ and λ := λ′.

3rd iteration:

y = (A−1
∗α )

T
cα =

−1 −1 1
2 1 0
0 0 1

−1
1
0

 =

 0
−1

0


z3,4,5 = c3,4,5 − (A∗3,4,5)Ty =

1
0
0

−
 1 −2 2

1 0 0
0 1 0

 0
−1

0

 =

−1
0
1

 .
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Since z3 = −1 < 0,

k = 3

vα = A−1
∗αA∗k =

−1 2 0
−1 1 0

1 0 1

 1
−2

2

 =

−5
−3

3

 , v3 = −1

I+ = {j ∈ α | vj > 0} = {6}
τ = x6/v6 = 4/3 for α3 = 6, i.e.

r = 3

α′ = αr̂[k] = (2, 1, 6)3̂[3] = (2, 1, 3)

Er̂[vα]−1 =

 1 0 −5
0 1 −3
0 0 3

−1

=

1 0 5
3

0 1 1
0 0 1

3


A−1
∗α′ = Er̂[vα]−1A−1

∗α =

1 0 5
3

0 1 1
0 0 1

3

−1 2 0
−1 1 0

1 0 1

 =

 2
3

2 5
3

0 1 1
1
3

0 1
3


x′α′ = xα′ − τvα′ =

3
0
0

− 4

3

−5
−3
−1

 =

 29
3

4
4
3


λ′ = λ+ τzk = −3 +

4

3
(−1) = −13

3
.

Update: α := α′, A−1
∗α := A−1

∗α′ , xα := x′α′ and λ := λ′.

4th iteration:

y = (A−1
∗α )

T
cα =

 2
3

0 1
3

2 1 0
5
3

1 1
3

−1
1
1

 =

−1
3

−1
−1

3


z4,5,6 = c4,5,6 − (A∗4,5,6)Ty =

0
0
0

−
1 0 0

0 1 0
0 0 1

−1
3

−1
−1

3

 =

 1
3

1
1
3

 .
The solution x = (4, 29

3
, 4

3
, 0, 0, 0) is optimal with optimal value −13

3
since

z4,5,6 > 0. The original minimization problem has the same optimal value, of
course, and (x1, x2, x3) = (4, 29

3
, 4

3
) is the optimal solution.

The version of the simplex algorithm that we have presented is excellent
for computer calculations, but it is unnecessarily complicated for calculations
by hand. Then it is better to use the tableau form which we utilized in
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Section 13.2, even if this entails performing unnecessary calculations. To the
LP problem

min 〈c, x〉
s.t. Ax = b, x ≥ 0

we associate the following simplex tableau:

(13.9)
A b E

cT 0 0T

We have included the column on the far right of the table only to explain
how the tableau calculations work; it will be omitted later on.

Let α be a feasible basic index set with x as the corresponding basic
solution. The upper part [A b E ] of the tableau can be seen as a matrix,
and by multiplying this matrix from the left by A−1

∗α , we obtain the following
new tableau:

A−1
∗αA A−1

∗α b A−1
∗α

cT 0 0T

Now subtract the upper part of this tableau multiplied from the left by
cTα from the bottom row of the tableau. This results in the tableau

A−1
∗αA A−1

∗α b A−1
∗α

cT − cTαA−1
∗αA −cTαA−1

∗α b −cTαA−1
∗α

Using the notation introduced in the definition of the simplex algorithm,
we have A−1

∗α b = xα, cTαA
−1
∗α = ((A−1

∗α )Tcα)T = yT, cT−cTαA−1
∗αA = cT−yTA = zT

and cTαA
−1
∗α b = cTαxα = 〈cα, xα〉 = λ, which means that the above tableau can

be written in the form

(13.10)
A−1
∗αA xα A−1

∗α

zT −λ −yT

Note that the columns of the unit matrix appear as columns in the matrix
A−1
∗αA, because column number αj in A−1

∗αA is identical with unit matrix
column E∗j. Moreover, zαj = 0.

When performing the actual calculations, we use Gaussian elimination to
get from tableau (13.9) to tableau (13.10).
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If zT ≥ 0, which we can determine with the help of the bottom line in
(13.10), then x is an optimal solution, and we can also read off the optimal
solution y to the dual maximization problem. (The matrix A will in many
cases contain the columns of the unit matrix, and if so then it is of course
possible to read off the solution to the dual problem in the final simplex
tableau without first having to add the unit matrix on the right side of
tableau (13.9).)

If zT 6≥ 0, then we choose a column index k with zk < 0, and consider the
corresponding column a = A−1

∗αA∗k (= vα) in the upper part of the tableau.

The minimization problem is unbounded if a ≤ 0. In the opposite case,
we choose an index i = r that minimizes xαi/ai (= xαi/vαi) among all ratios
with positive ai. This means that r is the index of a row with the least ratio
xαi/ai among all rows with positive ai. Finally, we transform the simplex
tableau by pivoting around the element at location (r, k).

Example 13.4.2. We solve Example 13.4.1 again − this time by performing
all calculations in tabular form. Our first tableau has the form

−2 1 1 1 0 0 3
−1 1 −2 0 1 0 3

2 −1 2 0 0 1 1
1 −1 1 0 0 0 0

and in this case it is of course not necessary to repeat the columns of the
unit matrix in a separate part of the tableau in order also to solve the dual
problem.

The basic index set α = (4, 5, 6) is feasible, and since A∗α = E and cTα =[
0 0 0

]
, we can directly read off zT =

[
1 −1 1 0 0 0

]
and −λ = 0

from the bottom line of the tableau.

The optimality criterion is not satisfied since z2 = −1 < 0, so we proceed
by choosing k = 2. The positive ratios of corresponding elements in the
right-hand side column and the second column are in this case the same and
equal to 3/1 for the first and the second row. Therefore, we can choose r = 1
or r = 2, and we decide to use the smaller of the two numbers, i.e. we put
r = 1. The tableau is then transformed by pivoting around the element at
location (1, 2). By then continuing in the same style, we get the following
sequence of tableaux:
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−2 1 1 1 0 0 3
1 0 −3 −1 1 0 0
0 0 3 1 0 1 4
−1 0 2 1 0 0 3

α = (2, 5, 6), k = 1, r = 2

0 1 −5 −1 2 0 3
1 0 −3 −1 1 0 0
0 0 3 1 0 1 4
0 0 −1 0 1 0 3

α = (2, 1, 6), k = 3, r = 3

0 1 0 2
3

2 5
3

29
3

1 0 0 0 1 1 4

0 0 1 1
3

0 1
3

4
3

0 0 0 1
3

1 1
3

13
3

α = (2, 1, 3)

The optimality criterion is now satisfied with x = (4, 29
3
, 4

3
, 0, 0, 0) as op-

timal solution and −13
3

as optimal value. The dual problem has the optimal
solution (−1

3
,−1,−1

3
).

Henceforth, we will use the tableau variant of the simplex algorithm to
account for our calculations, because it is the most transparent method.

The optimality condition in step 2 of the simplex algorithm is a sufficient
condition for optimality, but the condition is not necessary. A degenerate
basic solution can be optimal without the optimality condition being satisfied.
Here is a trivial example of this.

Example 13.4.3. The problem

min −x2

s.t. x1 + x2 = 0, x ≥ 0

has only one feasible point, x = (0, 0), which is therefore optimal. There are
two feasible basic index sets, α = (1) and α′ = (2), both with (0, 0) as the
corresponding degenerate basic solution.

The optimality condition is not fulfilled at the basic index set α, because
y = 1 · 0 = 0 and z2 = −1− 1 · 0 = −1 < 0. At the other basic index set α′,
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y = 1 · (−1) = −1 and z2 = 0− 1 · (−1) = 1 > 0, and the optimality criterion
is now satisfied.

The corresponding simplex tableaux are

1 1 0
0 −1 0

α = (1)

and 1 1 0
1 0 0

α = (2)

We shall now study a simple example with a non-unique optimal solution.

Example 13.4.4. The simplex tableaux associated with the problem

min x1 + x2

s.t.

{
x1 + x2−x3 = 1

2x2−x3 +x4 = 1, x ≥ 0

are as follows:

1 1 −1 0 1
0 2 −1 1 1
1 1 0 0 0

α = (1, 4)

1 1 −1 0 1
0 2 −1 1 1
0 0 1 0 −1

α = (1, 4)

The optimality condition is met; x = (1, 0, 0, 1) is an optimal solution,
and the optimal value is 1. However, coefficient number 2 in the last row,
i.e. z2, is equal to 0, so we can therefore perform another iteration of the
simplex algorithm by choosing the second column as the pivot column and
the second row as the pivot row, i.e. k = 2 and r = 2. This gives rise to the
following new tableau:

1 0 −1
2
−1

2
1
2

0 1 −1
2

1
2

1
2

0 0 1 0 −1

α = (1, 2)

The optimality condition is again met, now with x̂ = (1
2
, 1

2
, 0, 0) as optimal

solution. Since the set of optimal solutions is convex, each point on the line
segment between x̂ and x is also an optimal point.
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13.5 Bland’s anti cycling rule

We begin with an example of Kuhn showing that cycling can occur in de-
generate LP problems if the column index k and the row index r are not
properly selected.

Example 13.5.1. Consider the problem

min −2x1 − 3x2 + x3 + 12x4

s.t.


−2x1− 9x2 + x3 + 9x4 +x5 = 0

1
3
x1 + x2− 1

3
x3− 2x4 +x6 = 0

2x1 + 3x2− x3− 12x4 +x7 = 2, x ≥ 0.

We use the simplex algorithm with the additional rule that the column index
k should be chosen so as to make zk as negative as possible and the row index
r should be the least among all allowed row indices. Our first tableau is

−2 −9 1 9 1 0 0 0
1
3

1 −1
3
−2 0 1 0 0

2 3 −1 −12 0 0 1 2

−2 −3 1 12 0 0 0 0

with α = (5, 6, 7) as feasible basic index set. According to our rule for the
choice of of k, we must choose k = 2. There is only one option for the
row index r, namely r = 2, so we use the element located at (2, 2) as pivot
element and obtain the following new tableau

1 0 −2 −9 1 9 0 0
1
3

1 −1
3
−2 0 1 0 0

1 0 0 −6 0 −3 1 2

−1 0 0 6 0 3 0 0

with α = (5, 2, 7). This time k = 1, but there are two row indices i with
the same least value of the ratios xαi/vαi , namely 1 and 2. Our additional
rule tells us to choose r = 1. Pivoting around the element at location (1, 1)
results in the next tableau

1 0 −2 −9 1 9 0 0

0 1 1
3

1 −1
3
−2 0 0

0 0 2 3 −1 −12 1 2

0 0 −2 −3 1 12 0 0

with α = (1, 2, 7), k = 4, r = 2.
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The algorithms goes on with the following sequence of tableaux:

1 9 1 0 −2 −9 0 0

0 1 1
3

1 −1
3
−2 0 0

0 −3 1 0 0 −6 1 2

0 3 −1 0 0 6 0 0

α = (1, 4, 7), k = 3, r = 1

1 9 1 0 −2 −9 0 0

−1
3
−2 0 1 1

3
1 0 0

−1 −12 0 0 2 3 1 2

1 12 0 0 −2 −3 0 0

α = (3, 4, 7), k = 6, r = 2

−2 −9 1 9 1 0 0 0

−1
3
−2 0 1 1

3
1 0 0

0 −6 0 −3 1 0 1 2

0 6 0 3 −1 0 0 0

α = (3, 6, 7), k = 5, r = 1

−2 −9 1 9 1 0 0 0
1
3

1 −1
3
−2 0 1 0 0

2 3 −1 −12 0 0 1 2

−2 −3 1 12 0 0 0 0

α = (5, 6, 7)

After six iterations we are back to the starting tableau. The simplex
algorithm cycles!

We now introduce a rule for the choice of indices k and r that prevents
cycling.

Bland’s rule: Choose k in step 4 of the simplex algorithm so that

k = min{j | zj < 0}

and r in step 6 so that

αr = min{j ∈ I+ | xj/vj = τ}.
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Example 13.5.2. Consider again the minimization problem in the previous
example and now use the simplex algorithm with Bland’s rule. This results
in the following sequence of tableaux:

−2 −9 1 9 1 0 0 0
1
3

1 −1
3
−2 0 1 0 0

2 3 −1 −12 0 0 1 2

−2 −3 1 12 0 0 0 0

α = (5, 6, 7), k = 1, r = 2

0 −3 −1 −3 1 6 0 0

1 3 −1 −6 0 3 0 0

0 −3 1 0 0 −6 1 2

0 3 −1 0 0 6 0 0

α = (5, 1, 7), k = 3, r = 3

0 −6 0 −3 1 0 0 2

1 0 0 −6 0 −3 1 2

0 −3 1 0 0 −6 1 2

0 0 0 0 0 12 1 2

α = (5, 1, 3)

The optimality criterion is met with x = (2, 0, 2, 0, 2, 0, 0) as optimal
solution and −2 as optimal value.

Theorem 13.5.1. The simplex algorithm always stops if Bland’s rule is used.

Proof. We prove the theorem by contradiction. So suppose that the simplex
algorithm cycles when applied to some given LP problem, and let x be the
common basic solution during the iterations of the cycle.

Let C denote the set of indices k of the varibles xk that change from being
basic to being free during the iterations of the cycle. Since these variables
have to return as basic variables during the cycle, C is of course also equal
to the set of indices of the variables xk that change from being free to being
basic during the cycle. Moreover, xk = 0 for all k ∈ C.

Let

q = max{j | j ∈ C},
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and let α be the basic index set which is in use during the iteration in the
cycle when the variabel xq changes from being basic to being free, and let xk
be the free variable that replaces xq. The index q is in other words replaced
by k in the basic index set that follows after α. The corresponding search
vector v and reduced cost vector z satisfy the inequalities

zk < 0 and vq > 0,

and
zj ≥ 0 for j < k.

since the index k is chosen according to Bland’s rule. Since k ∈ C, we also
have k < q, because of the definition of q.

Let us now consider the basic index set α′ that belongs to an iteration
when xq returns as a basic variables after having been free. Because of Bland’s
rule for the choice of incoming index, in this case q, the corresponding reduced
cost vector z′ has to satisfy the following inequalities:

(13.11) z′j ≥ 0 for j < q and z′q < 0.

Especially, thus z′k ≥ 0.
Since Av = 0, vk = −1 and vj = 0 for j /∈ α ∪ {k}, and zj = 0 for j ∈ α,

it follows from Lemma 13.4.1 that∑
j∈α

z′jvj − z′k = 〈z′, v〉 = 〈c, v〉 = 〈z, v〉 =
∑
j∈α

zjvj + zkvk = −zk > 0,

and hence ∑
j∈α

z′jvj > z′k ≥ 0.

There is therefore an index j0 ∈ α such that z′j0vj0 > 0. Hence z′j0 6= 0,
which means that j0 can not belong to the index set α′. The variable xj0 is
in other words basic during one iteration of the cycle and free during another
iteration. This means that j0 is an index in the set C, and hence j0 ≤ q, by
the definition of q. The case j0 = q is impossible since vq > 0 and z′q < 0.
Thus j0 < q, and it now follows from (13.11) that z′j0 > 0. This implies in
turn that vj0 > 0, because the product z′j0vj0 is positive. So j0 belongs to the
set I+ = {j ∈ α | vj > 0}, and since xj0/vj0 = 0 = τ , it follows that

min{j ∈ I+ | xj/vj = τ} ≤ j0 < q.

The choice of q thus contradicts Bland’s rule for how to choose index to leave
the basic index set α, and this contradiction proves the theorem.

Remark. It is not necessary to use Bland’s rule all the time in order to prevent
cycling; it suffices to use it in iterations with τ = 0.
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13.6 Phase 1 of the simplex algorithm

The simplex algorithm assumes that there is a feasible basic index set to start
from. For some problems we will automatically get one when the problem is
written in standard form. This is the case for problems of the type

min 〈c, x〉
s.t. Ax ≤ b, x ≥ 0

where A is an m× n-matrix and the right-hand side vector b is nonnegative.
By introducing m slack variables sn+1, sn+2, . . . , sn+m and defining

s = (sn+1, sn+2, . . . , sn+m),

we obtain the standard problem

min 〈c, x〉
s.t. Ax+ Es = b, x, s ≥ 0,

and it is now obvious how to start; the slack variables will do as basic vari-
ables, i.e. α = (n + 1, n + 2, . . . , n + m) is a feasible basic index set with
x = 0, s = b as the corresponding basic solution.

In other cases, it is not at all obvious how to find a feasible basic index set
to start from, but one can always generate such a set by using the simplex
algorithm on a suitable artificial problem.

Consider an arbitrary standard LP problem

min 〈c, x〉
s.t. Ax = b, x ≥ 0,

where A is an m× n-matrix. We can assume without restriction that b ≥ 0,
for if any bj is negative, we just multiply the corresponding equation by −1.

We begin by choosing an m× k-matris B so that the matrix

A′ =
[
A B

]
gets rank equal to m and the system

A′
[
x
y

]
= Ax+By = b

gets an obvious feasible basic index set α0. The new y-variables are called
artificial variables, and we number them so that y = (yn+1, yn+2, . . . , yn+k).

A trivial way to achieve this is to choose B equal to the unit matrix E
of order m, for α0 = (n + 1, n + 2, . . . , n + m) is then a feasible basic index
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set with (x, y) = (0, b) as the corresponding feasible basic solution. Often,
however, A already contains a number of unit matrix columns, and then it
is sufficient to add the missing unit matrix columns to A.

Now let
1 =

[
1 1 . . . 1

]T
be the k× 1-matrix consisting of k ones, and consider the following artificial
LP problems:

min 〈1, y〉 = yn+1 + · · ·+ yn+k

s.t. Ax+By = b, x, y ≥ 0
.

The optimal value is obviously ≥ 0, and the value is equal to zero if and only
if there is a feasible solution of the form (x, 0), i.e. if and only if there is a
nonnegative solution to the system Ax = b.

Therefore, we solve the artificial problem using the simplex algorithm with
α0 as the first feasible basic index set. Since the objective function is bounded
below, the algorithm stops after a finite number of iterations (perhaps we
need to use Bland’s supplementary rule) in a feasible basic index set α, where
the optimality criterion is satisfied. Let (x, y) denote the corresponding basic
solution.

There are now two possibilities.

Case 1. The artificial problem’s optimal value is greater than zero.

In this case, the original problem has no feasible solutions.

Case 2. The artificial problem’s value is equal to zero.

In this case, y = 0 and Ax = b.
If α ⊆ {1, 2, . . . , n}, then α is also a feasible basic index set of the matrix

A, and we can start the simplex algorithm on our original problem from α
and the corresponding feasible basic solution x.

If α 6⊆ {1, 2, . . . , n}, we set

α′ = α ∩ {1, 2, . . . , n}.

The matrix columns {A∗k | k ∈ α′} are now linearly independent, and we
can construct an index set β ⊇ α′, which is maximal with respect to the
property that the columns {A∗k | k ∈ β} are linearly independent.

If rankA = m, then β will consist of m elements, and β is then a basic
index set of the matrix A. Since xj = 0 for all j /∈ α′, and thus especially
for all j /∈ β, it follows that x is the basic solution of the system Ax = b
that corresponds to the basic index set β. Hence, β is a feasible basic index
set for our original problem. We can also note that x is a degenerate basic
solution.
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If rankA < m, then β will consist of just p = rankA elements, but we
can now delete m − p equations from the system Ax = b without changing
the set of solutions. This results in a new equivalent LP problem with a
coefficient matrix of rank p, and β is a feasible basic index set with x as the
corresponding basic solution in this problem.

To solve a typical LP problem, one thus normally needs to use the simplex
algorithm twice. In Phase 1, we use the simplex algorithm to generate a
feasible basic index set α for the original LP problem by solving an artificial
LP problem, and in phase 2, the simplex algorithm is used to solve the
original problem starting from the basic index set α.

Example 13.6.1. We illustrate the technique on the simple problem

min x1 + 2x2 + x3 − 2x4

s.t.


x1 +x2 + x3− x4 = 2

2x1 +x2−x3 + 2x4 = 3
x1, x2, x3, x4 ≥ 0.

Phase 1 consists in solving the artificial problem

min y5 + y6

s.t.


x1 +x2 + x3− x4 + y5 = 2

2x1 +x2−x3 + 2x4 + y6 = 3
x1, x2, x3, x4, y5, y6 ≥ 0.

The computations are shown in tabular form, and the first simplex tableau
is the following one.

1 1 1 −1 1 0 2
2 1 −1 2 0 1 3
0 0 0 0 1 1 0

We begin by eliminating the basic variables from the objective function
and then obtain the following sequence of tableaux:

1 1 1 −1 1 0 2

2 1 −1 2 0 1 3

−3 −2 0 −1 0 0 −5

α = (5, 6), k = 1, r = 2
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0 1
2

3
2
−2 1 −1

2
1
2

1 1
2
−1

2
1 0 1

2
3
2

0 −1
2
−3

2
2 0 3

2
−1

2

α = (5, 1), k = 3, r = 1

0 1
3

1 −4
3

2
3
−1

3
1
3

1 2
3

0 1
3

1
3

1
3

5
3

0 0 0 0 1 1 0

α = (3, 1)

The above final tableau for the artificial problem shows that α = (3, 1)
is a feasible basic index set for the original problem with x = (5

3
, 0, 1

3
, 0) as

corresponding basic solution. We can therefore proceed to phase 2 with the
following tableau as our first tableau.

0 1
3

1 −4
3

1
3

1 2
3

0 1
3

5
3

1 2 1 −2 0

By eliminating the basic variables from the objective function, we obtain
the following tableau:

0 1
3

1 −4
3

1
3

1 2
3

0 1
3

5
3

0 1 0 −1 −2

α = (3, 1), k = 4, r = 2

One iteration is enough to obtain a tableau satisfying the optimality criterion.

4 3 1 0 7

3 2 0 1 5

3 3 0 0 3

α = (3, 4)

The optimal value is thus equal to −3, and x = (0, 0, 7, 5) is the optimal

solution.



274 13 The simplex algorithm

Since the volume of work grows with the number of artificial variables,
one should not introduce more artificial variables than necessary. The mini-
mization problem

min 〈c, x〉
s.t. Ax ≤ b, x ≥ 0

requires no more than one artificial variable. By introducing slack variables
s = (sn+1, sn+2, . . . , sn+m), we first obtain an equivalent standard problem

min 〈c, x〉
s.t. Ax+ Es = b, x, s ≥ 0

.

If b ≥ 0, this problem can be solved, as we have already noted, without
artificial variables. Let otherwise i0 be the index of the most negative coor-
dinate of the right-hand side b, and subtract equation no. i0 in the system
Ax + Es = b from all other equations with negative right-hand side, and
change finally the sign of equation no. i0.

The result is a system of equations of the form A′x + E ′s = b′, which is
equivalent to the system Ax+Es = b and where b′ ≥ 0 and all the columns of
the matrix E ′, except column no. i0, are equal to the corresponding columns
of the unit matrix E. Phase 1 of the simplex algorithm applied to the problem

min 〈c, x〉
s.t. A′x+ E ′s = b′, x, s ≥ 0

therefore requires only one artificial variable.

Existence of optimal solutions and the duality theorem

The simplex algorithm is of course first and foremost an efficient algorithm
for solving concrete LP problems, but we can also use it to provide alternative
proofs of important theoretical results. These are corollaries to the following
theorem.

Theorem 13.6.1. Each standard LP problem with feasible points has a fea-
sible basic index set where one of the two stopping criteria in the simplex
algorithm is satisfied.

Proof. Bland’s rule ensures that phase 1 of the simplex algorithm stops with
a feasible basic index set from where to start phase 2, and Bland’s rule also
ensures that this phase stops in a feasible basic index set, where one of the
two stopping criteria is satisfied.
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As first corollary we obtain a new proof that every LP problem with finite
value has optimal solutions (Theorem 12.1.1).

Corollary 13.6.2. Each linear minimization problem with feasible solutions
and downwards bounded objective function has an optimal solution.

Proof. Since each LP problem can be replaced by an equivalent LP problem
in standard form, it is sufficient to consider such problems. The only way
for the simplex algorithm to stop, when the objective function is bounded
below, is to stop at a basic solution which satisfies the optimality criterion.
So it follows at once from the above theorem that there exists an optimal
solution if the objective function is bounded below and the set of feasible
solutions is nonempty.

We can also give an algorithmic proof of the Duality theorem.

Corollary 13.6.3 (Duality theorem). If the linear optimization problem

min 〈c, x〉
s.t. Ax = b, x ≥ 0

has feasible solutions, then it has the same optimal value as the dual maxi-
mization problem

max 〈b, y〉
s.t. ATy ≤ c.

Proof. Let α be the feasible basic index set where the simplex algorithm
stops. If the optimality criterion is satisfied at α, then it follows from Theo-
rem 13.4.2 that the minimization problem and the dual maximization prob-
lem have the same finite optimal value. If instead the algorithm stops because
the objective function is unbounded below, then the dual problem has no fea-
sible points according to Theorem 13.4.2, and the value of both problems is
equal to −∞, by definition.

By writing general minimization problems in standard form, one can also
deduce the general form of the duality theorem from the above special case.

13.7 Sensitivity analysis

In Section 12.1, we studied how the optimal value and the optimal solution
depend on the coefficients of the objective function. In this section we shall
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study the same issue in connection with the simplex algorithm and also study
how the solution to the LP problem

(P) min 〈c, x〉
s.t. Ax = b, x ≥ 0

depends on the right-hand side b. In real LP problems, the coefficients of the
objective function and the constraints are often not exactly known, some of
them might even be crude estimates, and it is then of course important to
know how sensitive the optimal solution is to errors in input data. And even
if the input data are accurate, it is of course interesting to know how the
optimum solution is affected by changes in one or more of the coefficients.

Let α be a basic index set of the matrix A, and let x(b) denote the
corresponding basic solution to the system Ax = b, i.e.

x(b)α = A−1
∗α b and x(b)j = 0 for all j /∈ α.

Suppose that the LP problem (P) has an optimal solution for certain
given values of b and c, and that this solution has been obtained because the
simplex algorithm stopped at the basic index set α. For that to be the case,
the basic solution x(b) has to be feasible, i.e.

(i) A−1
∗α b ≥ 0,

and the optimality criterion z ≥ 0 in the simplex algorithm has to be satisfied.
Since

z = c− ATy and y = (A−1
∗α )Tcα,

we have z = c − (A−1
∗αA)Tcα, which means that the optimality criterion can

be written as

(ii) z(c) = c− (A−1
∗αA)Tcα ≥ 0.

Conversely, x(b) is an optimal solution to the LP problem (P) for all b
and c that satisfy the conditions (i) and (ii), because the optimality criterion
in the simplex algorithm is then satisfied.

Condition (i) is a system of homogeneous linear inequalities in the vari-
ables b1, b2, . . . , bm, and it defines a polyhedral cone Bα in Rm, while (ii)
is a system of homogeneous linear inequalities in the variables c1, c2, . . . , cn
and defines a polyhedral cone Cα in Rn. In summary, we have the following
result:

x(b) is an optimal solution to the LP problem (P) for all b ∈ Bα and all
c ∈ Cα.
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Now suppose that we have solved the problem (P) for given values of b
and c with x = x(b) as optimal solution and λ as optimal value. Condition
(ii) determines how much we are allowed to change the coefficients of the
objective function without changing the optimal solution; x is still an optimal
solution to the perturbed problem

(P′) min 〈c+ ∆c, x〉
s.t. Ax = b, x ≥ 0

if z(c+ ∆c) = z(c) + z(∆c) ≥ 0, i.e. if

(13.12) ∆c− (A−1
∗αA)T(∆c)α ≥ −z(c).

The optimal value is of course changed to λ+ 〈∆c, x〉.
Inequality (13.12) defines a polyhedron in the variables ∆c1, ∆c2, . . . ,

∆cn. If for instance ∆cj = 0 for all j except j = k, i.e. if only the ck-
coefficient of the objective function is allowed to change, then inequality
(13.12) determines a (possibly unbounded) closed interval [−dk, ek] around 0
for ∆ck.

If instead we change the right-hand side of the constraints replacing the
vector b by b+∆b, then x(b+∆b) becomes an optimal solution to the problem

min 〈c, x〉
s.t. Ax = b+ ∆b, x ≥ 0

as long as the solution is feasible, i.e. as long as A−1
∗α (b + ∆b) ≥ 0. After

simplification, this results in the condition

A−1
∗α (∆b) ≥ −x(b)α,

which is a system of linear inequalities that determines how to choose ∆b. If
∆bi = 0 for all indices except i = k, then the set of solutions for ∆bk is an
interval around 0 of the form [−dk, ek].

The printouts of softwares for the simplex algorithm generally contain
information on these intervals.

Example 13.7.1. A person is studying the diet problem

min 〈c, x〉
s.t. Ax ≥ b, x ≥ 0

in a specific case with six foods and four nutrient requirements. The fol-
lowing computer printout is obtained when cT = (1, 2, 3, 4, 1, 6) and bT =
(10, 15, 20, 18).
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Optimal value: 8.52

Optimal solution:

Food 1: 5.73
Food 2: 0.00
Food 3: 0.93
Food 4: 0.00
Food 5: 0.00
Food 6: 0.00

Sensitivity report

Variable Value Objective- Allowable Allowable
coeff. decrease increase

Food 1: 5.73 1.00 0.14 0.33
Food 2: 0.00 2.00 1.07 ∞
Food 3: 0.93 3.00 2.00 0.50
Food 4: 0.00 4.00 3.27 ∞
Food 5: 0.00 1.00 0.40 ∞
Food 6: 0.00 6.00 5.40 ∞

Constraint Final Shadow Bounds Allowable Allowable
value price r.h. side decrease increase

Nutrient 1: 19.07 0.00 10.00 ∞ 9.07
Nutrient 2: 31.47 0.00 15.00 ∞ 16.47
Nutrient 3: 20.00 0.07 20.00 8.00 7.00
Nutrient 4: 18.00 0.40 18.00 4.67 28.67

The sensitivity report shows that the optimal solution remains unchanged
as long as the price of food 1 stays in the interval [5.73 − 0.14, 5.73 + 0.33],
ceteris paribus. A price change of z units in this range changes the optimal
value by 5.73 z units.

A price reduction of food 4 with a maximum of 3.27, or an unlimited
price increase of the same food, ceteris paribus, does not affect the optimal
solution, nor the optimal value.

The set of price changes that leaves the optimal solution unchanged is
a convex set, since it is a polyhedron according to inequality (13.12). The
optimal solution of our example is therefore unchanged if for example the
prices of foods 1, 2 and 3 are increased by 0.20, 1.20 and 0.10, respectively,
because ∆c = (0.20, 1.20, 0.10, 0, 0, 0) is a convex combination of allowable
increases, since

0.20

0.33
+

1.20

∞
+

0.10

0.50
≤ 1.
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The sensitivity report also shows how the optimal solution is affected
by certain changes in the right-hand side b. The optimal solution remains
unchanged, for example, if the need for nutrient 1 would increase from 10
to 15, since the constraint is not binding and the increase 5 is less than the
permitted increase 9.07.

The sensitivity report also tells us that the new optimal solution will still
be derived from the same basic index set as above, if b4 is increased by say 20
units from 18 to 38, an increase that is within the scope of the permissible.
So in this case, the optimal diet will also only consist of foods 1 and 3, but
the optimal value will increase by 20 · 0.40 to 16.52 since the shadow price of
nutrient 4 is equal to 0.40.

13.8 The dual simplex algorithm

The simplex algorithm, applied to a problem

min 〈c, x〉
s.t. Ax = b, x ≥ 0

with a bounded optimal value, starts from a given feasible basic index set
α0 and then generates a finite sequence (αk, xk, yk)pk=0 of basic index sets αk,
corresponding basic solutions xk and vectors yk with the following properties:

(i) The basic solutions xk are extreme points of the polyhedron

X = {x ∈ Rn | Ax = b, x ≥ 0}
of feasible solutions.

(ii) The line segments [xk, xk+1] are edges of the polyhedron X.

(iii) The objective function values (〈c, xk〉)pk=0 form a decreasing sequence.

(iv) 〈b, yk〉 = 〈c, xk〉 for all k.

(v) The algorithm stops after p iterations when the optimality criterion is
met, and yp is then an extreme point of the polyhedron

Y = {y ∈ Rm | ATy ≤ c}.
(vi) xp is an optimal solution, and yp is an optimal solution to the dual

problem
max 〈b, y〉
s.t. ATy ≤ c.

(vii) The vectors yk do not, however, belong to Y for 0 ≤ k ≤ p− 1.

The optimal solution xp is obtained by moving along edges of the poly-
hedron X until an extreme point has been reached that also corresponds to
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an extreme point of the polyhedron Y . Instead, we could move along edges
of the polyhedron Y , and this observation leads to the following method for
solving the minimization problem.

The dual simplex algorithm

Given a basic index set α such that z = c− ATy ≥ 0, where y = (A−1
∗α )Tcα.

Repeat steps 1–4 until a stop occurs.

1. Compute the basic solution x corresponding to α.

2. Stopping criterion: quit if x ≥ 0.
Optimal solution: x. Optimal dual solution: y.
Also quit if any of the constraint equations has the form a′i1x1 +a′i2x2 +
· · · + a′inxn = b′i with b′i > 0 and a′ij ≤ 0 for all j, because then there
are no feasible solutions to the primal problem.

3. Generate a new basic index set α′ by replacing one of the indices of α
in such a way that the new reduced cost vector z′ remains nonnegative
and 〈b, y′〉 ≥ 〈b, y〉, where y′ = (A−1

∗α′)
Tcα′ .

4. Update: α := α′, y := y′.

We refrain from specifying the necessary pivoting rules. Instead, we con-
sider a simple example.

Example 13.8.1. We shall solve the minimization problem

min x1 + 2x2 + 3x3

s.t.


2x1 + x3 ≥ 9
x1 + 2x2 ≥ 12

x2 + 2x3 ≥ 15, x ≥ 0

by using the dual simplex algorithm, and we begin by reformulating the
problem in standard form as follows:

min x1 + 2x2 + 3x3

s.t.


2x1 + x3−x4 = 9
x1 + 2x2 −x5 = 12

x2 + 2x3 −x6 = 15, x ≥ 0.

The corresponding simplex tableau now looks like this:

2 0 1 −1 0 0 9
1 2 0 0 −1 0 12
0 1 2 0 0 −1 15
1 2 3 0 0 0 0
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For comparison, we also state the corresponding dual maximization prob-
lem:

max 9y1 + 12y2 + 15y3

s.t.


2y1 + y2 ≤ 1

2y2 + y3 ≤ 2
y1 + 2y3 ≤ 3, y ≥ 0.

We can start the dual simplex algorithm from the basic index set α =
(4, 5, 6), and as usual, we have underlined the basic columns. The cor-
responding basic solution x is not feasible since the coordinates of xα =
(−9,−12,−15) are negative. The bottom row [ 1 2 3 0 0 0 ] of the tableau
is the reduced cost vector zT = cT − yTA. The row vector yT = cTαA

−1
∗α =[

0 0 0
]

can also be read in the bottom row; it is found below the matrix
−E, and y belongs to the polyhedron Y of feasible solutions to the dual
problem, since zT ≥ 0.

We will now gradually replace one element at a time in the basic index
set. As pivot row r, we choose the row that corresponds to the most negative
coordinate of xα, and in the first iteration, this is the third row in the above
simplex tableau. To keep the reduced cost vector nonnegative, we must select
as pivot column a column k, where the matrix element ark is positive and
the ratio zk/ark is as small as possible. In the above tableau, this is the third
column, so we pivot around the element at location (3, 3). This leads to the
following tableau:

2 −1
2

0 −1 0 1
2

3
2

1 2 0 0 −1 0 12

0 1
2

1 0 0 −1
2

15
2

1 1
2

0 0 0 3
2
−45

2

In this new tableau, α = (4, 5, 3), xα = (−3
2
,−12, 15

2
) and y = (0, 0, 3

2
).

The most negative element of xα is to be found in the second row, and the
least ratio zk/a

′
2k with a positive denominator a′2k is obtained for k = 2.

Pivoting around the element at location (2, 2) leads to the following simplex
tableau:

9
4

0 0 −1 −1
4

1
2

9
2

1
2

1 0 0 −1
2

0 6

−1
4

0 1 0 1
4
−1

2
9
2

3
4

0 0 0 1
4

3
2
−51

2
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Now, α = (4, 2, 3), xα = (−9
2
, 6, 9

2
) and y = (0, 1

4
, 3

2
). This time, we should

select the element in the first row and the first column as pivot element, which
leads to the next tableau.

1 0 0 −4
9
−1

9
2
9

2

0 1 0 2
9
−4

9
−1

9
5

0 0 1 −1
9

2
9
−4

9
5

0 0 0 1
3

1
3

4
3
−27

Here, α = (1, 2, 3), xα = (2, 5, 5) and y = (1
3
, 1

3
, 4

3
), and the optimality

criterion is met since xα ≥ 0. The optimal value is 27 and (2, 5, 5, 0, 0, 0)
is the optimal point. The dual maximization problem attains its maximum
at (1

3
, 1

3
, 4

3
). The optimal solution to our original minimization problem is of

course x = (2, 5, 5).

13.9 Complexity

How many iterations are needed to solve an LP problem using the simplex
algorithm? The answer will depend, of course, on the size of the problem.
Experience shows that the number of iterations largely grows linearly with
the number of rows m and sublinearly with the number of columns n for
realistic problems, and in most real problems, n is a small multiple of m,
usually not more than 10m. The number of iterations is therefore usually
somewhere between m and 4m, which means that the simplex algorithm
generally performs very well.

The worst case behavior of the algorithm is bad, however (for all known
pivoting rules). Klee and Minty has constructed an example where the num-
ber of iterations grows exponentially with the size of the problem.

Example 13.9.1 (Klee and Minty, 1972). Consider the following LP problem
in n variables and with n inequality constraints:

max 2n−1x1 + 2n−2x2 + · · ·+ 2xn−1 + xn

s.t.



x1 ≤ 5
4x1 + x2 ≤ 25
8x1 + 4x2 + x3 ≤ 125
...

...
2nx1 + 2n−1x2 + . . . + 4xn−1 +xn≤ 5n

The polyhedron of feasible solutions has in this case 2n extreme points.



13.9 Complexity 283

Suppose that we apply the simplex algorithm to the equivalent standard
problem, in each iteration choosing as pivot column the column with the most
negative value of the reduced cost. If we start from the feasible basic solution
that corresponds to x = 0, then we have to go through all the 2n feasible
basic solutions before we finally reach the optimal solution (0, 0, . . . , 5n). The
number of iterations is therefore equal to 2n and thus increases exponentially
with n.

An algorithm for solving a problem in n variables is called strictly polyno-
mial if there exists a positive integer k such that the number of elementary
arithmetic operations in the algorithm grows with n as at most O(nk). In
many algorithms, the number of operations also depends on the size of the
input data. An algorithm is called polynomial if the number of arithmetic
operations is growing as a polynomial in L, where L is the number of bi-
nary bits needed to represent all input (i.e. the matrices A, b and c in linear
programming).

Gaussian elimination is a strictly polynomial algorithm, because a system
of linear equations with n equations and n unknowns is solved with O(n3)
arithmetic operations.

Klee–Minty’s example and other similar examples demonstrate that the
simplex algorithm is not strictly polynomial. But all experience shows that
the simplex algorithm works very well, even if the worst case behavior is bad.
This is also supported by probabilistic analyzes, made by Borgwardt (1987),
Smale (1983), Adler and Megiddo (1985), among others. Such an analysis
shows, for example, that (a variant of) the simplex algorithm, given a certain
special probability distribution of the input data, on average converges after
O(m2) iterations, where m is the number of constraints.

The existence of a polynomial algorithm that solves LP problems (with
rational coefficients as input data) was first demonstrated in 1979 by Leonid
Khachiyan. His so-called ellipsoid algorithm reduces LP problems to the
problem of finding a solution to a system Ax > b of strict inequalities with a
bounded set of solutions, and the algorithm generates a sequence of shrinking
ellipsoids, all guaranteed to contain all the solutions to the system. If the
center of an ellipsoid satisfies all inequalities of the system, then a solution
has been found, of course. Otherwise, the process stops when a generated
ellipsoid has too small volume to contain all solutions, if there are any, with
the conclusion that there are no solutions.

LP problems in standard form with n variables and input size L are solved
by the ellipsoid method in O(n4L) arithmetic operations. However, in spite
of this nice theoretical result, it was soon clear that the ellipsoid method
could not compete with the simplex algorithm on real problems of moderate
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size due to slow convergence. (The reason for this is, of course, that the
implicit constant in the O-estimate is very large.)

A new polynomial algorithm was discovered in 1984 by Narendra Kar-
markar. His algorithm generates a sequence of points, which lie in the interior
of the set of feasible points and converge towards an optimal point. The algo-
rithm uses repeated centering of the generated points by a projective scaling
transformation. The theoretical complexity bound of the original version of
the algorithm is also O(n4L).

Karmarkar’s algorithm turned out to be competitive with the simplex
algorithm on practical problems, and his discovery was the starting point for
an intensive development of alternative interior point methods for LP prob-
lems and more general convex problems. We will study such an algorithm in
Chapter 18.

It is still an open problem whether there exists any strictly polynomial
algorithm for solving LP problems.

Exercises

13.1 Write the following problems in standard form.

a) min 2x1 − 2x2 + x3

s.t.


x1 + x2− x3 ≥ 3
x1 + x2− x3 ≤ 2

x1, x2, x3 ≥ 0

b) min x1 + 2x2

s.t.


x1 + x2≥ 1

x2≥−2
x1 ≥ 0.

13.2 Find all nonnegative basic solutions to the following systems of equations.

a)

{
5x1 + 3x2 + x3 = 40
x1 + x2 + x3 = 10

b)

{
x1− 2x2− x3 + x4 = 3

2x1 + 5x2− 3x3 + 2x4 = 6.

13.3 State the dual problem to

min x1 + x2 + 4x3

s.t.

{
x1 − x3 = 1
x1 + 2x2 + 7x3 = 7, x ≥ 0

and prove that (1, 3, 0) is an optimal solution and that (1
2 ,

1
2) is an optimal

solution to the dual problem.

13.4 Solve the following LP problems using the simplex algorithm.

a) min −x4

s.t.


x1 + x4 = 1

x2 + 2x4 = 2
x3− x4 = 3, x ≥ 0
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b) max 2x1 − x2 + x3 − 3x4 + x5

s.t.


x1 + 2x4− x5 = 15

x2 + x4 + x5 = 12
x3− 2x4 + x5 = 9, x ≥ 0

c) max 15x1 + 12x2 + 14x3

s.t.


3x1 + 2x2 + 5x3 ≤ 6
x1 + 3x2 + 3x3 ≤ 3

5x3 ≤ 4, x ≥ 0

d) max 2x1 + x2 + 3x3 + x4 + 2x5

s.t.


x1 + 2x2 + x3 + x5 ≤ 10

x2 + x3 + x4 + x5 ≤ 8
x1 + x3 + x4 ≤ 5, x ≥ 0

e) min x1 − 2x2 + x3

s.t.


x1 + x2− 2x3 ≤ 3
x1− x2 + x3 ≤ 2
−x1− x2 + x3 ≤ 0, x ≥ 0

f) min x1 − x2 + 2x3 − 3x4

s.t.

{
2x1 + 3x2 + x3 = 2
x1 + 3x2 + x3 + 5x4 = 4, x ≥ 0.

13.5 Carry out in detail all the steps of the simplex algorithm for the problem

min −x2 + x4

s.t.


x1 + x4 + x5 = 1

x2 − 2x4− x5 = 1
x3 + 2x4 + x5 = 3, x ≥ 0.

Is the optimal solution unique?

13.6 Use artificial variables to solve the LP problem

max x1 + 2x2 + 3x3 − x4

s.t.


x1 + 2x2 + 3x3 = 15

2x1 + x2 + 5x3 = 20
x1 + 2x2 + x3 + x4 = 10, x ≥ 0.

13.7 Use the simplex algorithm to show that the following systems of equalities
and inequalities are consistent.

a)

{
3x1 + x2 + 2x3 + x4 + x5 = 2
2x1− x2 + x3 + x4 + 4x5 = 3, x ≥ 0

b)


x1− x2 + 2x3 + x4 ≥ 6

−2x1 + x2− 2x3 + 7x4 ≥ 1
x1− x2 + x3− 3x4 ≥ −1, x ≥ 0.
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13.8 Solve the LP problem

min x1 + 2x2 + 3x3

s.t.


2x1 + x3 ≥ 3
x1 + 2x2 ≥ 4

x2 + 2x3 ≥ 5, x ≥ 0.

13.9 Write the following problem in standard form and solve it using the simplex
algorithm.

min 8x1 − x2

s.t.


3x1 + x2 ≥ 1
x1− x2 ≤ 2
x1 + 2x2 = 20, x ≥ 0.

13.10 Solve the following LP problems using the dual simplex algorithm.

a) min 2x1 + x2 + 3x3

s.t.


x1 + x2 + x3 ≥ 2

2x1− x2 ≥ 1
x2 + 2x3 ≥ 2, x ≥ 0

b) min x1 + 2x2

s.t.


x1 − 2x3 ≥−5

−2x1 + 3x2− x3 ≥ −4
−2x1 + 5x2− x3 ≥ 2, x ≥ 0

c) min 3x1 + 2x2 + 4x3

s.t.

{
4x1 + 2x3 ≥ 5
x1 + 3x2 + 2x3 ≥ 4, x ≥ 0.

13.11 Suppose b2 ≥ b1 ≥ 0. Show that x =
(
b1,

1
2(b2 − b1), 0

)
is an optimal

solution to the problem

min x1 + x2 + 4x3

s.t.

{
x1 − x3 = b1
x1 + 2x2 + 7x3 = b2, x ≥ 0.

13.12 Investigate how the optimal solution to the LP problem

max 2x1 + tx2

s.t.

{
x1 + x2 ≤ 5

2x1 + x2 ≤ 7, x ≥ 0

varies as the real parameter t varies.
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13.13 A shoe manufacturer produces two shoe models A and B. Due to limited
supply of leather, the manufactured number of pairs xA and xB of the two
models must satisfy the inequalities

xA ≤ 1000, 4xA + 3xB ≤ 4100, 3xA + 5xB ≤ 5000.

The sale price of A and B is 500 SEK and 350 SEK, respectively per pair. It
costs 200 SEK to manufacture a pair of shoes of model B. However, the cost
of producing a pair of shoes of model A is uncertain due to malfunctioning
machines, and it can only be estimated to be between 300 SEK and 410
SEK. Show that the manufacturer may nevertheless decide how many pairs
of shoes he shall manufacture of each model to maximize his profit.

13.14 Joe wants to meet his daily requirements of vitamins P, Q and R by only
living on milk and bread. His daily requirement of vitamins is 6, 12 and 4
mg, respectively. A liter of milk costs 7.50 SEK and contains 2 mg of P, 2 mg
of Q and nothing of R; a loaf of bread costs 20 SEK and contains 1 mg of P,
4 mg of Q and 4 mg of R. The vitamins are not toxic, so a possible overdose
does not harm. Joe wants to get away as cheaply as possible. Which daily
bill of fare should he choose? Suppose that the price of milk begins to rise.
How high can it be without Joe having to change his bill of fare?

13.15 Using the assumptions of Lemma 13.4.1, show that the reduced cost zk
is equal to the direction derivative of the objective function 〈c, x〉 in the
direction −v.

13.16 This exercise outlines an alternative method to prevent cycling in the sim-
plex algorithm. Consider the problem

(P) min 〈c, x〉
s.t. Ax = b, x ≥ 0

and let α be an arbitrary feasible basic index set with corresponding basic
solution x. For each positive number ε, we define new vectors x(ε) ∈ Rn

and b(ε) ∈ Rm as follows:

x(ε)α = xα + (ε, ε2, . . . , εm) and x(ε)j = 0 for all j /∈ α,

b(ε) = Ax(ε).

Then x(ε) is obviously a nonnegative basic solution to the system Ax = b(ε)
with α as the corresponding basic index set, and the coordinates of the vector
b(ε) are polynomials of degree m in the variable ε.

a) Prove that all basic solutions to the system Ax = b(ε) are non-degenerate
except for finitely many numbers ε > 0. Consequently, there is a number
ε0 > 0 so that all basic solution are non-degenerate if 0 < ε < ε0.
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b) Prove that if 0 < ε < ε0, then all feasible basic index sets for the problem

(Pε) min 〈c, x〉
s.t. Ax = b(ε), x ≥ 0

are also feasible basic index sets for the original problem (P).

c) The simplex algorithm applied to problem (Pε) will therefore stop at a
feasible basic index set β, which is also feasible for problem (P), provided
ε is a sufficiently small number. Prove that β also satisfies the stopping
condition for problem (P).

Cycling can thus be avoided by the following method: Perturb the right-
hand side by forming x(ε) and the column matrix b(ε), where ε is a small
positive number. Use the simplex algorithm on the perturbed problem. The
algorithm stops at a basic index set β. The corresponding unperturbed
problem stops at the same basic index set.

13.17 Suppose that A is a polynomial algorithm for solving systems Cx ≥ b of
linear inequalities. When applied to a solvable system, the algorithm finds a
solution x and stops with the output A(C, b) = x. For unsolvable systems,
it stops with the output A(C, b) = ∅. Use the algorithm A to construct a
polynomial algorithm for solving arbitrary LP problems

min 〈c, x〉
s.t. Ax ≥ b, x ≥ 0.

13.18 Perform all the steps of the simplex algorithm for the example of Klee and
Minty when n = 3.
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Chapter 14

Descent methods

The most common numerical algorithms for minimization of differentiable
functions of several variables are so-called descent algorithms. A descent
algorithm is an iterative algorithm that from a given starting point gener-
ates a sequence of points with decreasing function values, and the process is
stopped when one has obtained a function value that approximates the min-
imum value good enough according to some criterion. However, there is no
algorithm that works for arbitrary functions; special assumptions about the
function to be minimized are needed to ensure convergence towards the min-
imum point. Convexity is such an assumption, which makes it also possible
in many cases to determine the speed of convergence.

This chapter describes descent methods in general terms, and we exem-
plify with the simplest descent method, the gradient descent method.

14.1 General principles

We shall study the optimization problem

(P) min f(x)

where f is a function which is defined and differentiable on an open subset
Ω of Rn. We assume that the problem has a solution, i.e. that there is an
optimal point x̂ ∈ Ω, and we denote the optimal value f(x̂) as fmin. A
convenient assumption which, according to Corollary 8.1.7, guarantees the
existence of a (unique) optimal solution is that f is strongly convex and has
some closed nonempty sublevel set.

Our aim is to generate a sequence x1, x2, x3, . . . of points in Ω from a
given starting point x0 ∈ Ω, with decreasing function values and with the
property that f(xk) → fmin as k →∞. In the iteration leading from the
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point xk to the next point xk+1, except when xk is already optimal, one first
selects a vector vk such that the one-variable function φk(t) = f(xk + tvk) is
strictly decreasing at t = 0. Then, a line search is performed along the half-
line xk + tvk, t > 0, and a point xk+1 = xk + hkvk satisfying f(xk+1) < f(xk)
is selected according to specific rules.

The vector vk is called the search direction, and the positive number
hk is called the step size. The algorithm is terminated when the difference
f(xk)− fmin is less than a given tolerance.

Schematically, we can describe a typical descent algorithm as follows:

Descent algorithm

Given a starting point x ∈ Ω.
Repeat

1. Determine (if f ′(x) 6= 0) a search direction v and a step size h > 0 such
that f(x+ hv) < f(x).

2. Update: x := x+ hv.

until stopping criterion is satisfied.

Different strategies for selecting the search direction, different ways to
perform the line search, as well as different stop criteria, give rise to different
algorithms, of course.

Search direction

Permitted search directions in iteration k are vectors vk which satisfy the
inequality

〈f ′(xk), vk〉 < 0,

because this ensures that the function φk(t) = f(xk + tvk) is decreasing at
the point t = 0, since φ′k(0) = 〈f ′(xk), vk〉. We will study two ways to select
the search direction.

The gradient descent method selects vk = −f ′(xk), which is a permissible
choice since 〈f ′(xk), vk〉 = −‖f ′(xk)‖2 < 0. Locally, this choice gives the
fastest decrease in function value.

Newton’s method assumes that the second derivative exists, and the search
direction at points xk where the second derivative is positive definite is

vk = −f ′′(xk)−1f ′(xk).

This choice is permissible since 〈f ′(xk), vk〉 = −〈f ′(xk), f ′′(xk)−1f ′(xk)〉 < 0.
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Line search

Given the search direction vk there are several possible strategies for selecting
the step size hk.

1. Exact line search. The step size hk is determined by minimizing the one-
variable function t 7→ f(xk+tvk). This method is used for theoretical studies
of algorithms but almost never in practice due to the computational cost of
performing the one-dimensional minimization.

2. The step size sequence (hk)
∞
k=1 is given a priori, for example as hk = h or

as hk = h/
√
k + 1 for some positive constant h. This is a simple rule that is

often used in convex optimization.

3. The step size hk at the point xk is defined as hk = ρ(xk) for some given
function ρ. This technique is used in the analysis of Newton’s method for
self-concordant functions.

4. Armijo’s rule. The step size hk at the point xk depends on two parameters
α, β ∈]0, 1[ and is defined as

hk = βm,

where m is the smallest nonnegative integer such that the point xk + βmvk
lies in the domain of f and satisfies the inequality

(14.1) f(xk + βmvk) ≤ f(xk) + αβm〈f ′(xk), vk〉.

Such an m certainly exists, since βn → 0 as n→∞ and

lim
t→0

f(xk + tvk)− f(xk)

t
= 〈f ′(xk), vk〉 < α 〈f ′(xk), vk〉.

The number m is determined by simple backtracking: Start with m = 0
and examine whether xk + βmvk belongs to the domain of f and inequality
(14.1) holds. If not, increase m by 1 and repeat until the conditions are
fulfilled. Figure 14.1 illustrates the process.

The decrease in iteration k of function value per step size, i.e. the ratio
(f(xk)−f(xk+1))/hk, is for convex functions less than or equal to−〈f ′(xk), vk〉
for any choice of step size hk. With step size hk selected according to Armijo’s
rule the same ratio is also ≥ −α〈f ′(xk), vk〉. With Armijo’s rule, the decrease
per step size is, in other words, at least α of what the maximum might be.
Typical values of α in practical applications lie in the range between 0.01
and 0.3.

The parameter β determines how many backtracking steps are needed.
The larger β, the more backtracking steps, i.e. the finer the line search. The
parameter β is often chosen between 0.1 and 0.8.
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βm
β2 1β t

f(xk)
f(xk + tvk)

f(xk) + t〈f ′(xk), vk〉 f(xk) + αt〈f ′(xk), vk〉

Figure 14.1. Armijo’s rule: The step size is hk = βm,
where m is the smallest nonnegative integer such that
f(xk + βmvk) ≤ f(xk) + αβm〈f ′(xk), vk〉.

Armijo’s rule exists in different versions and is used in several practical
algorithms.

Stopping criteria

Since the optimum value is generally not known beforehand, it is not pos-
sible to formulate the stopping criterion directly in terms of the minimum.
Intuitively, it seems reasonable that x should be close to the minimum point
if the derivative f ′(x) is comparatively small, and the next theorem shows
that this is indeed the case, under appropriate conditions on the objective
function.

Theorem 14.1.1. Suppose that the function f : Ω → R is differentiable, µ-
strongly convex and has a minimum at x̂ ∈ Ω. Then, for all x ∈ Ω

f(x)− f(x̂) ≤ 1

2µ
‖f ′(x)‖2 and(i)

‖x− x̂‖ ≤ 1

µ
‖f ′(x)‖.(ii)

Proof. Due to the convexity assumption,

(14.2) f(y) ≥ f(x) + 〈f ′(x), y − x〉+ 1
2
µ‖y − x‖2

for all x, y ∈ Ω. The right-hand side of inequality (14.2) is a convex quadratic
function in the variable y, which is minimized by y = x− µ−1f ′(x), and the
minimum is equal to f(x)− 1

2
µ−1‖f ′(x)‖2. Hence,

f(y) ≥ f(x)− 1
2
µ−1‖f ′(x)‖2

for all y ∈ Ω, and we obtain the inequality (i) by choosing y as the minimum
point x̂.
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Now, replace y with x and x with x̂ in inequality (14.2). Since f ′(x̂) = 0,
the resulting inequality becomes

f(x) ≥ f(x̂) + 1
2
µ‖x− x̂‖2,

which combined with inequality (i) gives us inequality (ii).

We now return to the descent algorithm and our discussion of the the
stopping criterion. Let

S = {x ∈ Ω | f(x) ≤ f(x0)},

where x0 is the selected starting point, and assume that the sublevel set S
is convex and that the objective function f is µ-strongly convex on S. All
the points x1, x2, x3, . . . that are generated by the descent algorithm will of
course lie in S since the function values are decreasing. Therefore, it follows
from Theorem 14.1.1 that f(xk) < fmin + ε if ‖f ′(xk)‖ < (2µε)1/2.

As a stopping criterion, we can thus use the condition

‖f ′(xk)‖ ≤ η,

which guarantees that f(xk) − fmin ≤ η2/2µ and that ‖xk − x̂‖ ≤ η/µ. A
problem here is that the convexity constant µ is known only in rare cases.
So the stopping condition ‖f ′(xk)‖ ≤ η can in general not be used to give
precise bounds on f(xk) − fmin. But Theorem 14.1.1 verifies our intuitive
feeling that the difference between f(x) and fmin is small if the gradient of f
at x is small enough.

Convergence rate

Let us say that a convergent sequence x0, x1, x2, . . . of points with limit x̂
converges at least linearly if there is a constant c < 1 such that

(14.3) ‖xk+1 − x̂‖ ≤ c‖xk − x̂‖

for all k, and that the convergence is at least quadratic if there is a constant
C such that

(14.4) ‖xk+1 − x̂‖ ≤ C‖xk − x̂‖2

for all k. We also say that the convergence is no better than linear and no
better than quadratic if

lim
k→∞

‖xk+1 − x̂‖
‖xk − x̂‖α

> 0

for α = 1 and α = 2, respectively.
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Note that inequality (14.3) implies that the sequence (xk)
∞
0 converges to

x̂, because it follows by induction that

‖xk − x̂‖ ≤ ck‖x0 − x̂‖

for all k.
Similarly, inequality (14.4) implies that the sequence (xk)

∞
0 convergences

to x̂ if the starting point x0 satisfies the condition ‖x0 − x̂‖ < C−1, because
we now have

‖xk − x̂‖ ≤ C−1
(
C‖x0 − x̂‖

)2k

for all k.
If an iterative method, when applied to functions in a given class of

functions, always generates sequences that are at least linearly (quadratic)
convergent and there is a sequence which does not converge better than
linearly (quadratic), then we say that the method is linearly (quadratic)
convergent for the function class in question.

14.2 The gradient descent method

In this section we analyze the gradient descent algorithm with constant step
size. The iterative formulation of the variant of the algorithm that we have
in mind looks like this:

Gradient descent algorithm with constant step size

Given a starting point x and a step size h.
Repeat

1. Compute the search direction v = −f ′(x).
2. Update: x := x+ hv.

until stopping criterion is satisfied.

The algorithm converges linearly to the minimum point for strongly con-
vex functions with Lipschitz continuous derivatives provided that the step
size is small enough and the starting point is chosen sufficiently close to the
minimum point. This is the main content of the following theorem (and
Example 14.2.1).

Theorem 14.2.1. Let f be a function with a local minimum point x̂, and
suppose that there is an open neighborhood U of x̂ such that the restriction f |U
of f to U is µ-strongly convex and differentiable with a Lipschitz continuous
derivative and Lipschitz constant L. The gradient descent algorithm with
constant step size h then converges at least linearly to x̂ provided that the
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step size is sufficiently small and the starting point x0 lies sufficiently close
to x̂.

More precisely: If the ball centered at x̂ and with radius equal to ‖x0− x̂‖
lies in U and if h ≤ µ/L2, and (xk)

∞
0 is the sequence of points generated by

the algorithm, then xk lies in U and

‖xk+1 − x̂‖ ≤ c‖xk − x̂‖,

for all k, where c =
√

1− hµ.

Proof. Suppose inductively that the points x0, x1, . . . , xk lie in U and that
‖xk − x̂‖ ≤ ‖x0 − x̂‖. Since the restriction f |U is assumed to be µ-strongly
convex and since f ′(x̂) = 0,

〈f ′(xk), xk − x̂〉 = 〈f ′(xk)− f ′(x̂), xk − x̂〉 ≥ µ‖xk − x̂‖2

according to Theorem 7.3.1, and since the derivative is assumed to be Lips-
chitz continuous, we also have the inequality

‖f ′(xk)‖ = ‖f ′(xk)− f ′(x̂)‖ ≤ L‖xk − x̂‖.

By combining these two inequalities, we obtain the inequality

〈f ′(xk), xk − x̂〉 ≥ µ‖xk − x̂‖2 =
µ

2
‖xk − x̂‖2 +

µ

2
‖xk − x̂‖2

≥ µ

2
‖xk − x̂‖2 +

µ

2L2
‖f ′(xk)‖2.

Our next point xk+1 = xk − hf ′(xk) therefore satisfies the inequality

‖xk+1 − x̂‖2 = ‖xk − hf ′(xk)− x̂‖2 = ‖(xk − x̂)− hf ′(xk)‖2

= ‖xk − x̂‖2 − 2h〈f ′(xk), xk − x̂〉+ h2‖f ′(xk)‖2

≤ ‖xk − x̂‖2 − hµ‖xk − x̂‖2 − h µ
L2
‖f ′(xk)‖2 + h2‖f ′(xk)‖2

= (1− hµ)‖xk − x̂‖2 + h
(
h− µ

L2

)
‖f ′(xk)‖2.

Hence, h ≤ µ/L2 implies that ‖xk+1 − x̂‖2 ≤ (1 − hµ)‖xk − x̂‖2, and
this proves that the inequality of the theorem holds with c =

√
1− hµ < 1,

and that the induction hypothesis is satisfied by the point xk+1, too, since
it lies closer to x̂ than the point xk does. So the gradient descent algorithm
converges at least linearly for f under the given conditions on h and x0.

We can obtain a slightly sharper result for µ-strongly convex functions
that are defined on the whole Rn and have a Lipschitz continuous derivative.
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Theorem 14.2.2. Let f be a function in the class Sµ,L(Rn). The gradient
descent method, with arbitrary starting point x0 and constant step size h,
generates a sequence (xk)

∞
0 of points that converges at least linearly to the

function’s minimum point x̂, if

0 < h ≤ 2

µ+ L
.

More precisely,

(14.5) ‖xk − x̂‖ ≤
(

1− 2hµL

µ+ L

)k/2
‖x0 − x̂‖.

Moreover, if h =
2

µ+ L
then

‖xk − x̂‖ ≤
(Q− 1

Q+ 1

)k
‖x0 − x̂‖ and(14.6)

f(xk)− fmin ≤
L

2

(Q− 1

Q+ 1

)2k

‖x0 − x̂‖2,(14.7)

where Q = L/µ is the condition number of the function class Sµ,L(Rn).

Proof. The function f has a unique minimum point x̂, according to Corollary
8.1.7, and

‖xk+1 − x̂‖2 = ‖xk − x̂‖2 − 2h〈f ′(xk), xk − x̂〉+ h2‖f ′(xk)‖2,

just as in the proof of Theorem 14.2.1. Since f ′(x̂) = 0, it now follows from
Theorem 7.4.4 (with x = x̂ and v = xk − x̂) that

〈f ′(xk), xk − x̂〉 ≥
µL

µ+ L
‖xk − x̂‖2 +

1

µ+ L
‖f ′(xk)‖2,

which inserted in the above equation results in the inequality

‖xk+1 − x̂‖2 ≤
(

1− 2hµL

µ+ L

)
‖xk − x̂‖2 + h

(
h− 2

µ+ L

)
‖f ′(xk)‖2.

So if h ≤ 2/(µ+ L), then

‖xk+1 − x̂‖ ≤
(

1− 2hµL

µ+ L

)1/2

‖xk − x̂‖,

and inequality (14.5) now follows by iteration.
The particular choice of h = 2(µ + L)−1 in inequality (14.5) gives us

inequality (14.6), and the last inequality (14.7) follows from inequality (14.6)
and Theorem 1.1.2, since f ′(x̂) = 0.
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The rate of convergence in Theorems 14.2.1 and 14.2.2 depends on the
condition number Q ≥ 1. The smaller the Q, the faster the convergence.
The constants µ and L, and hence the condition number Q, are of course
rarely known in practical examples, so the two theorems have a qualitative
character and can rarely be used to predict the number of iterations required
to achieve a certain precision.

Our next example shows that inequality (14.6) can not be sharpened.

Example 14.2.1. Consider the function

f(x) = 1
2
(µx2

1 + Lx2
2),

where 0 < µ ≤ L. This function belongs to the class Sµ,L(R2), f ′(x) =
(µx1, Lx2), and x̂ = (0, 0) is the minimum point.

The gradient descent algorithm with constant step size h = 2(µ + L)−1,
starting point x(0) = (L, µ), and α = Q−1

Q+1
proceeds as follows

x(0) = (L, µ)

f ′(x(0)) = (µL, µL)

x(1) = x(0) − hf ′(x(0)) = α(L,−µ)

f ′(x(1)) = α(µL,−µL)

x(2) = x(1) − hf ′(x(1)) = α2(L, µ)

...

x(k) = αk(L, (−1)kµ)

Consequently,

‖x(k) − x̂‖ = αk
√
L2 + µ2 = αk‖x(0) − x̂‖,

so inequality (14.6) holds with equality in this case. Cf. with 14.2.

Finally, it is worth noting that 2(µ+L)−1 coincides with the step size that
we would obtain if we had used exact line search in each iteration step.

The gradient descent algorithm is not invariant under affine coordinate
changes. The speed of convergence can thus be improved by first making a
coordinate change that reduces the condition number.

Example 14.2.2. We continue with the function f(x) = 1
2
(µx2

1 +Lx2
2) in the

previous example. Make the change of variables y1 =
√
µx1, y2 =

√
Lx2,

and define the function g by

g(y) = f(x) = 1
2
(y2

1 + y2
2).
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1 5 10 15 x1

1

x2

Figure 14.2. Some level curves for the function f(x) = 1
2(x2

1 + 16x2
2)

and the progression of the gradient descent algorithm with x(0) = (16, 1)
as starting point. The function’s condition number Q is equal to 16, so
the convergence to the minimum point (0, 0) is relatively slow. The
distance from the generated point to the origin is improved by a factor
of 15/17 in each iteration.

The condition number Q of the function g is equal to 1, so the gradient
descent algorithm, started from an arbitrary point y(0), hits the minimum
point (0, 0) after just one iteration.

The gradient descent algorithm converges too slowly to be of practical use
in realistic problems. In the next chapter we shall therefore study in detail
a more efficient method for optimization, Newton’s method.

Exercises

14.1 Perform three iterations of the gradient descent algorithm with (1, 1) as
starting point on the minimization problem

minx2
1 + 2x2

2.

14.2 Let X = {x ∈ R2 | x1 > 1}, let x(0) = (2, 2), and let f : X → R be the
function defined by f(x) = 1

2x
2
1 + 1

2x
2
2.

a) Show that the sublevel set {x ∈ X | f(x) ≤ f(x(0))} is not closed.

b) Obviously, fmin = inf f(x) = 1
2 , but show that the gradient descent

method, with x(0) as starting point and with line search according to Armijo’s
rule with parameters α ≤ 1

2 and β < 1, generates a sequence x(k) = (ak, ak),
k = 0, 1, 2, . . . , of points that converges to the point (1, 1). So the function
values f(x(k)) converge to 1 and not to fmin.
[Hint: Show that ak+1 − 1 ≤ (1− β)(ak − 1) for all k.]

14.3 Suppose that the gradient descent algorithm with constant step size con-
verges to the point x̂ when applied to a continuously differentiable function
f . Prove that x̂ is a stationary point of f , i.e. that f ′(x̂) = 0.
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Newton’s method

In Newton’s method for minimizing a function f , the search direction at
a point x is determined by minimizing the function’s Taylor polynomial of
degree two, i.e. the polynomial

P (v) = f(x) +Df(x)[v] + 1
2
D2f(x)[v, v] = f(x) + 〈f ′(x), v〉+ 1

2
〈v, f ′′(x)v〉,

and since P ′(v) = f ′(x) + f ′′(x)v, we obtain the minimizing search vector as
a solution to the equation

f ′′(x)v = −f ′(x).

Each iteration is of course more laborious in Newton’s method than in
the gradient descent method, since we need to compute the second derivative
and solve a quadratic equation to determine the search vector. However, as
we shall see, this is more than compensated by a much faster convergence to
the minimum value.

15.1 Newton decrement and Newton direc-

tion

Since the search directions in Newton’s method are obtained by minimizing
quadratic polynomials, we start by examining when such polynomials have
minimum values, and since convexity is a necessary condition for quadratic
polynomials to be bounded below, we can restrict ourself to the study of
convex quadratic polynomials.

Theorem 15.1.1. A quadratic polynomial

P (v) = 1
2
〈v, Av〉+ 〈b, v〉+ c

301
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in n variables, where A is a positive semidefinite symmetric operator, is
bounded below on Rn if and only if the equation

(15.1) Av = −b

has a solution.
The polynomial has a minimum if it is bounded below, and v̂ is a minimum

point if and only if Av̂ = −b.
If v̂ is a minimum point of the polynomial P , then

(15.2) P (v)− P (v̂) = 1
2
〈v − v̂, A(v − v̂)〉

for all v ∈ Rn.
If v̂1 and v̂2 are two minimum points, then 〈v̂1, Av̂1〉 = 〈v̂2, Av̂2〉.

Remark. Another way to state that equation (15.1) has a solution is to say
that the vector −b, and of course also the vector b, belongs to the range of
the operator A. But the range of an operator on a finite dimensional space is
equal to the orthogonal complement of the null space of the operator. Hence,
equation (15.1) is solvable if and only if

Av = 0⇒ 〈b, v〉 = 0.

Proof. First suppose that equation (15.1) has no solution. Then, by the
remark above there exists a vector v such that Av = 0 and 〈b, v〉 6= 0. It
follows that

P (tv) = 1
2
〈v,Av〉t2 + 〈b, v〉t+ c = 〈b, v〉t+ c

for all t ∈ R, and since the t-coefficient is nonzero, we conclude that the
polynomial P (t) is unbounded below.

Next suppose that Av̂ = −b. Then

P (v)− P (v̂) = 1
2
(〈v, Av〉 − 〈v̂, Av̂〉) + 〈b, v〉 − 〈b, v̂〉

= 1
2
(〈v, Av〉 − 〈v̂, Av̂〉)− 〈Av̂, v〉+ 〈Av̂, v̂〉

= 1
2
(〈v, Av〉+ 〈v̂, Av̂〉 − 〈Av̂, v〉 − 〈v̂, Av〉)

= 1
2
〈v − v̂, A(v − v̂)〉 ≥ 0

for all v ∈ Rn. This proves that the polynomial P (t) is bounded below, that
v̂ is a minimum point, and that the equality (15.2) holds.

Since every positive semidefinite symmetric operator A has a unique pos-
itive semidefinite symmetric square root A1/2, we can rewrite equality (15.2)
as follows:

P (v) = P (v̂) + 1
2
〈A1/2(v − v̂), A1/2(v − v̂)〉 = P (v̂) + 1

2
‖A1/2(v − v̂)‖2.
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If v is another minimum point of P , then P (v) = P (v̂), and it follows that

A1/2(v − v̂) = 0.

Consequently, A(v − v̂) = A1/2(A1/2(v − v̂)) = 0, i.e. Av = Av̂ = −b. Hence,
every minimum point of P is obtained as a solution to equation (15.1).

Finally, if v̂1 and v̂2 are two minimum points of the polynomial, then
Av̂1 = Av̂2 (= −b), and it follows that 〈v̂1, Av̂1〉 = 〈v̂1, Av̂2〉 = 〈Av̂1, v̂2〉 =
〈Av̂2, v̂2〉 = 〈v̂2, Av̂2〉.

The problem to solve a convex quadratic optimization problem in Rn is
thus reduced to solving a quadratic system of linear equations in n variables
(with a positive semidefinite coefficient matrix), which is a rather trivial
numerical problem that can be performed with O(n3) arithmetic operations.

We are now ready to define the main ingredients of Newton’s method.

Definition. Let f : X → R be a twice differentiable function with an open
subset X of Rn as domain, and let x ∈ X be a point where the second
derivative f ′′(x) is positive semidefinite.

By a Newton direction ∆xnt of the function f at the point x we mean a
solution v to the equation

f ′′(x)v = −f ′(x).

Remark. It follows from the remark after Theorem 15.1.1 that there exists a
Newton direction at x if and only if

f ′′(x)v = 0⇒ 〈f ′(x), v〉 = 0.

The nonexistence of Newton directions at x is thus equivalent to the existence
of a vector w such that f ′′(x)w = 0 and 〈f ′(x), w〉 = 1.

The Newton direction ∆xnt is of course uniquely determined as

∆xnt = −f ′′(x)−1f ′(x)

if the second derivative f ′′(x) is non-singular, i.e. positive definite.
A Newton direction ∆xnt is according to Theorem 15.1.1, whenever it

exists, a minimizing vector for the Taylor polynomial

P (v) = f(x) + 〈f ′(x), v〉+ 1
2
〈v, f ′′(x)v〉,

and the difference P (0)− P (∆xnt) is given by

P (0)− P (∆xnt) = 1
2
〈0−∆xnt, f

′′(x)(0−∆xnt)〉 = 1
2
〈∆xnt, f

′′(x)∆xnt〉.
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Using the Taylor approximation f(x+ v) ≈ P (v), we conclude that

f(x)− f(x+ ∆xnt) ≈ P (0)− P (∆xnt) = 1
2
〈∆xnt, f

′′(x)∆xnt〉.

Hence, 1
2
〈∆xnt, f

′′(x)∆xnt〉 is (for small ∆xnt) an approximation of the de-
crease in function value which is obtained by replacing f(x) with f(x+∆xnt).
This motivates our next definition.

Definition. The Newton decrement λ(f, x) of the function f at the point x
is a quantity defined as

λ(f, x) =
√
〈∆xnt, f ′′(x)∆xnt〉

if f has a Newton direction ∆xnt at x, and as

λ(f, x) = +∞
if there is no Newton direction at x.

Note that the definition is independent of the choice of Newton direction
at x in case of nonuniqueness of Newton direction. This follows immediately
from the last statement in Theorem 15.1.1.

In terms of the Newton decrement, we thus have the following approxi-
mation

f(x)− f(x+ ∆xnt) ≈ 1
2
λ(f, x)2

for small values of ∆xnt.

By definition f ′′(x)∆xnt = −f ′(x), so it follows that the Newton decre-
ment, whenever finite, can be computed using the formula

λ(f, x) =
√
−〈∆xnt, f ′(x)〉.

In particular, if x is a point where the second derivative is positive definite,
then

λ(f, x) =
√
〈f ′′(x)−1f ′(x), f ′(x)〉.

Example 15.1.1. The convex one-variable function

f(x) = − lnx, x > 0

has Newton decrement

λ(f, x) =
√
〈x2(−x−1),−x−1〉 =

√
(−x) · (−x−1) = 1

at all points x > 0.
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At points x with a Newton direction it is also possible to express the
Newton decrement in terms of the Euclidean norm ‖·‖ as follows, by using
the fact that f ′′(x) har a positive definite symmetric square root:

λ(f, x) =
√
〈f ′′(x)1/2∆xnt, f ′′(x)1/2∆xnt〉 = ‖f ′′(x)1/2∆xnt‖.

The improvement in function value obtained by taking a step in the Newton
direction ∆xnt is thus proportional to ‖f ′′(x)1/2∆xnt‖2 and not to ‖∆xnt‖2,
a fact which motivates our introduction of the following seminorm.

Definition. Let f : X → R be a twice differentiable function with an open
subset X of Rn as domain, and let x ∈ X be a point where the second
derivative f ′′(x) is positive semidefinite. The function ‖·‖x : Rn → R+,
defined by

‖v‖x =
√
〈v, f ′′(x)v〉 = ‖f ′′(x)1/2v‖

for all v ∈ Rn, is called the local seminorm at x of the function f .

It is easily verified that ‖·‖x is indeed a seminorm on Rn. Since

{v ∈ Rn | ‖v‖x = 0} = N (f ′′(x)),

where N (f ′′(x)) is the null space of f ′′(x), ‖·‖x is a norm if and only if the
positive definite second derivative f ′′(x) is nonsingular, i.e. positive definite.

At points x with a Newton direction, we now have the following simple
relation between direction and decrement:

λ(f, x) = ‖∆xnt‖x.

Example 15.1.2. Let us study the Newton decrement λ(f, x) when f is a
convex quadratic polynomial, i.e. a function of the form

f(x) = 1
2
〈x,Ax〉+ 〈b, x〉+ c

with a positive semidefinite operator A. We have f ′(x) = Ax+ b, f ′′(x) = A
and ‖v‖x =

√
〈v, Av〉, so the seminorms ‖·‖x are the same for all x ∈ Rn.

If ∆xnt is a Newton direction of f at x, then

A∆xnt = −(Ax+ b),

by definition, and it follows that A(x + ∆xnt) = −b. This implies that the
function f is bounded below, according to Theorem 15.1.1.

So if f is not bounded below, then there are no Newton directions at any
point x, which means that λ(f, x) = +∞ for all x.
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Conversely, assume that f is bounded below. Then there exists a vector
v0 such that Av0 = −b, and it follows that

f ′′(x)(v0 − x) = Av0 − Ax = −b− Ax = −f ′(x).

The vector v0 − x is in other words a Newton direction of f at the point x,
which means that the Newton decrement λ(f, x) is finite at all points x and
is given by

λ(f, x) = ‖v0 − x‖x.
If f is bounded below without being constant, then necessarily A 6= 0 and

we can choose a vector w such that ‖w‖x =
√
〈w,Aw〉 = 1. Let xk = kw+v0,

where k is a positive number. Then

λ(f, xk) = ‖v0 − xk‖xk = k‖w‖xk = k,

and we conclude from this that supx∈Rn λ(f, x) = +∞.
For constant functions f , the case A = 0, b = 0, we have ‖v‖x = 0 for all

x and v, and consequently λ(f, x) = 0 for all x.

In summary, we have obtained the following result:
The Newton decrement of downwards unbounded convex quadratic func-

tions (which includes all non-constant affine functions) is infinite at all points.
The Newton decrement of downwards bounded convex quadratic functions
f is finite at all points, but supx λ(f, x) = ∞, unless the function is con-
stant.

We shall give an alternative characterization of the Newton decrement,
and for this purpose we need the following useful inequality.

Theorem 15.1.2. Suppose λ(f, x) <∞. Then

|〈f ′(x), v〉| ≤ λ(f, x)‖v‖x
for all v ∈ Rn.

Proof. Since λ(f, x) is assumed to be finite, there exists a Newton direction
∆xnt at x, and by definition, f ′′(x)∆xnt = −f ′(x). Using the Cauchy–
Schwarz inequality we now obtain:

|〈f ′(x), v〉| = |〈f ′′(x)∆xnt, v〉| = |〈f ′′(x)1/2∆xnt, f
′′(x)1/2v〉|

≤ ‖f ′′(x)1/2∆xnt‖‖f ′′(x)1/2v‖ = λ(f, x)‖v‖x.

Theorem 15.1.3. Assume as before that x is a point where the second deriva-
tive f ′′(x) is positive semidefinite. Then

λ(f, x) = sup
‖v‖x≤1

〈f ′(x), v〉.
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Proof. First assume that λ(f, x) <∞. Then

〈f ′(x), v〉 ≤ λ(f, x)

for all vectors v such that ‖v‖x ≤ 1, according to Theorem 15.1.2. In the case
λ(f, x) = 0 the above inequality holds with equality for v = 0, so assume
that λ(f, x) > 0. For v = −λ(f, x)−1∆xnt we then have ‖v‖x = 1 and

〈f ′(x), v〉 = −λ(f, x)−1〈f ′(x),∆xnt〉 = λ(f, x).

This proves that λ(f, x) = sup‖v‖x≤1〈f ′(x), v〉 for finite Newton decrements
λ(f, x).

Next assume that λ(f, x) = +∞, i.e. that no Newton direction exists at
x. By the remark after the definition of Newton direction, there exists a
vector w such that f ′′(x)w = 0 and 〈f ′(x), w〉 = 1. It follows that ‖tw‖x =
t‖w‖x = t

√
〈w, f ′′(x)w〉 = 0 ≤ 1 and 〈f ′(x), tw〉 = t for all positive numbers

t, and this implies that sup‖v‖x≤1〈f ′(x), v〉 = +∞ = λ(f, x).

We sometimes need to compare ‖∆xnt‖, ‖f ′(x)‖ and λ(f, x), and we can
do so using the following theorem.

Theorem 15.1.4. Let λmin and λmax denote the smallest and the largest eigen-
value of the second derivative f ′′(x), assumed to be positive semidefinite, and
suppose that the Newton decrement λ(f, x) is finite. Then

λ
1/2
min‖∆xnt‖ ≤ λ(f, x) ≤ λ1/2

max‖∆xnt‖
and

λ
1/2
minλ(f, x) ≤ ‖f ′(x)‖ ≤ λ1/2

maxλ(f, x).

Proof. Let A be an arbitrary positive semidefinite operator on Rn with small-
est and largest eigenvalue µmin and µmax respectively. Then

µmin‖v‖ ≤ ‖Av‖ ≤ µmax‖v‖

for all vectors v.

Since λ
1/2
min and λ

1/2
max are the smallest and the largest eigenvalues of the

operator f ′′(x)1/2, we obtain the two inequalities of our theorem by applying
the general inequality to A = f ′′(x)1/2 and v = ∆xnt, and to A = f ′′(x)1/2

and v = f ′′(x)1/2∆xnt, noting that ‖f ′′(x)1/2∆xnt‖ = λ(f, x) and that

‖f ′′(x)1/2(f ′′(x)1/2∆xnt)‖ = ‖f ′′(x)∆xnt‖ = ‖f ′(x)‖.
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Theorem 15.1.4 is a local result, but if the function f is µ-strongly convex,
then λmin ≥ µ, and if the norm of the second derivative is bounded by
some constant M , then λmax = ‖f ′′(x)‖ ≤ M for all x in the domain of f .
Therefore, we get the following corollary to Theorem 15.1.4.

Corollary 15.1.5. If f : X → R is a twice differentiable µ-strongly convex
function, then

µ1/2‖∆xnt‖ ≤ λ(f, x) ≤ µ−1/2‖f ′(x)‖

for all x ∈ X. If moreover ‖f ′′(x)‖ ≤M , then

M−1/2‖f ′(x)‖ ≤ λ(f, x) ≤M1/2‖∆xnt‖.

The distance from an arbitrary point to the minimum point of a strongly
convex function with bounded second derivative can be estimated using the
Newton decrement, because we have the following result.

Theorem 15.1.6. Let f : X → R be a µ-strongly convex function, and sup-
pose that f has a minimum at the point x̂ and that ‖f ′′(x)‖ ≤ M for all
x ∈ X. Then

f(x)− f(x̂) ≤ M

2µ
λ(f, x)2

and

‖x− x̂‖ ≤
√
M

µ
λ(f, x).

Proof. The theorem follows by combining Theorem 14.1.1 with the estimate
‖f ′(x)‖ ≤M1/2λ(f, x) from Corollary 15.1.5.

The Newton decrement is invariant under surjective affine coordinate
transformations. A slightly more general result is the following.

Theorem 15.1.7. Let f be a twice differentiable function whose domain Ω is
a subset of Rn, let A : Rm → Rn be an affine map, and let g = f ◦ A. Let
furthermore x = Ay be a point in Ω, and suppose that the second derivative
f ′′(x) is positive semidefinite. The second derivative g′′(y) is then positive
semidefinite, and the Newton decrements of the two functions g and f satisfy
the inequality

λ(g, y) ≤ λ(f, x).

Equality holds if the affine map A is surjective.

Proof. The affine map can be written as Ay = Cy + b, where C is a linear
map and b is a vector, and the chain rule gives us the identities

〈g′(y), w〉 = 〈f ′(x), Cw〉 and 〈w, g′′(y)w〉 = 〈Cw, f ′′(x)Cw〉
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for arbitrary vectors w in Rm. It follows from the latter identity that the
second derivative g′′(y) is positive semidefinite if f ′′(x) is so, and that

‖w‖y = ‖Cw‖x.

An application of Theorem 15.1.3 now gives

λ(g, y) = sup
‖w‖y≤1

〈g′(y), w〉 = sup
‖Cw‖x≤1

〈f ′(x), Cw〉 ≤ sup
‖v‖x≤1

〈f ′(x), v〉 = λ(f, x).

If the affine map A is surjective, then C is a surjective linear map, and
hence v = Cw runs through all of Rn as w runs through Rm. In this case,
the only inequality in the above chain of equalities and inequalities becomes
an equality, which means that λ(g, y) = λ(f, x).

15.2 Newton’s method

The algorithm

Newton’s method for minimizing a twice differentiable function f is a descent
method, in which the search direction in each iteration is given by the Newton
direction ∆xnt at the current point. The stopping criterion is formulated in
terms of the Newton decrement; the algorithm stops when the decrement is
sufficiently small. In short, therefore, the algorithm looks like this:

Newton’s method

Given a starting point x ∈ dom f and a tolerance ε > 0.
Repeat

1. Compute a Newton direction ∆xnt and the Newton decrement λ(f, x)
at x.

2. Stopping criterion: stop if λ(f, x)2 ≤ 2ε.
3. Determine a step size h > 0.
4. Update: x := x+ h∆xnt.

The step size h is set equal to 1 in each iteration in the so-called pure
Newton method, while it is computed by line search with Armijo’s rule or
otherwise in damped Newton methods.

The stopping criterion is motivated by the fact that 1
2
λ(f, x)2 is an ap-

proximation to the decrease f(x)− f(x+ ∆xnt) in function value, and if this
decrease is small, it is not worthwhile to continue.

Newton’s method generally works well for functions which are convex in
a neighborhood of the optimal point, but it breaks down, of course, if it hits
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a point where the second derivative is singular and the Newton direction is
lacking. We shall show that the pure method, under appropriate conditions
on the objective function f , converges to the minimum point if the starting
point is sufficiently close to the minimum point. To achieve convergence for
arbitrary starting points, it is necessary to use methods with damping.

Example 15.2.1. When applied to a downwards bounded convex quadratic
polynomial

f(x) = 1
2
〈x,Ax〉+ 〈b, x〉+ c,

Newton’s pure method finds the optimal solution after just one iteration,
regardless of the choice of starting point x, because f ′(x) = Ax+b, f ′′(x) = A
and A∆xnt = −(Ax+ b), so the update x+ = x+ ∆xnt satisfies the equation

f ′(x+) = Ax+ + b = Ax+ A∆xnt + b = 0,

which means that x+ is the optimal point.

Invariance under change of coordinates

Unlike the gradient descent method, Newton’s method is invariant under
affine coordinate changes.

Theorem 15.2.1. Let f : X → R be a twice differentiable function with a
positive definite second derivative, and let (xk)

∞
0 be the sequence generated

by Newton’s pure algorithm with x0 as starting point. Let further A : Y → X
be an affine coordinate transformation, i.e. the restriction to Y of a bijective
affine map. Newton’s pure algorithm applied to the function g = f ◦ A with
y0 = A−1x0 as the starting point then generates a sequence (yk)

∞
0 with the

property that Ayk = xk for each k.
The two sequences have identical Newton decrements in each iteration,

and they therefore satisfy the stopping condition during the same iteration.

Proof. The assertion about the Newton decrements follows from Theorem
15.1.7, and the relationship between the two sequences follows by induction
if we show that Ay = x implies that A(y + ∆ynt) = x+ ∆xnt, where ∆xnt =
−f ′′(x)−1f ′(x) and ∆ynt = −g′′(y)−1g′(y) are the uniquely defined Newton
directions at the points x and y of the respective functions.

The affine map A can be written as Ay = Cy+b, where C is an invertible
linear map and b is a vector. If x = Ay, then g′(y) = CTf ′(x) and g′′(y) =
CTf ′′(x)C, by the chain rule. It follows that

C∆ynt = −Cg′′(y)−1g′(y) = −CC−1f ′′(x)−1(CT)−1CTf ′(x)

= −f ′′(x)−1f ′(x) = ∆xnt,
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and hence

A(y+∆ynt) = C(y+∆ynt)+b = Cy+b+C∆ynt = Ay+∆xnt = x+∆xnt.

Local convergence

We will now study convergence properties for the Newton method, starting
with the pure method.

Theorem 15.2.2. Let f : X → R be a twice differentiable, µ-strongly convex
function with minimum point x̂, and suppose that the second derivative f ′′ is
Lipschitz continuous with Lipschitz constant L. Let x be a point in X and
set

x+ = x+ ∆xnt,

where ∆xnt is the Newton direction at x. Then

‖x+ − x̂‖ ≤ L

2µ
‖x− x̂‖2.

Moreover, if the point x+ lies in X then

‖f ′(x+)‖ ≤ L

2µ2
‖f ′(x)‖2.

Proof. The smallest eigenvalue of the second derivative f ′′(x) is greater than
or equal to µ by Theorem 7.3.2. Hence, f ′′(x) is invertible and the largest
eigenvalue of f ′′(x)−1 is less than or equal to µ−1, and it follows that

(15.3) ‖f ′′(x)−1‖ ≤ µ−1.

To estimate the norm of x+ − x̂, we rewrite the difference as

x+ − x̂ = x+ ∆xnt − x̂ = x− x̂− f ′′(x)−1f ′(x)(15.4)

= f ′′(x)−1
(
f ′′(x)(x− x̂)− f ′(x)

)
= −f ′′(x)−1w

with

w = f ′(x)− f ′′(x)(x− x̂).

For 0 ≤ t ≤ 1 we then define the vektor w(t) as

w(t) = f ′(x̂+ t(x− x̂))− tf ′′(x)(x− x̂),

and note that w = w(1)− w(0), since f ′(x̂) = 0. By the chain rule,

w′(t) =
(
f ′′(x̂+ t(x− x̂))− f ′′(x)

)
(x− x̂),
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and by using the Lipschitz continuity of the second derivative, we obtain the
estimate

‖w′(t)‖ ≤ ‖f ′′(x̂+ t(x− x̂))− f ′′(x)‖ ‖x− x̂‖
≤ L‖x̂+ t(x− x̂)− x‖‖x− x̂‖ = L(1− t)‖x− x̂‖2.

Now integrate the above inequality over the interval [0, 1]; this results in the
inequality

‖w‖ =
∥∥∫ 1

0

w′(t) dt
∥∥ ≤ ∫ 1

0

‖w′(t)‖ dt ≤ L‖x− x̂‖2

∫ 1

0

(1− t) dt.(15.5)

=
1

2
L‖x− x̂‖2.

By combining equality (15.4) with the inequalities (15.3) and (15.5) we obtain
the estimate

‖x+ − x̂‖ = ‖f ′′(x)−1w‖ ≤ ‖f ′′(x)−1‖‖w‖ ≤ L

2µ
‖x− x̂‖2,

which is the first claim of the theorem.

To prove the second claim, we assume that x+ lies in X and consider for
0 ≤ t ≤ 1 the vectors

v(t) = f ′(x+ t∆xnt)− tf ′′(x)∆xnt,

noting that

v(1)− v(0) = f ′(x+)− f ′′(x)∆xnt− f ′(x) = f ′(x+) + f ′(x)− f ′(x) = f ′(x+).

Since v′(t) =
(
f ′′(x + t∆xnt) − f ′′(x)

)
∆xnt, it follows from the Lipschitz

continuity that

‖v′(t)‖ ≤ ‖f ′′(x+ t∆xnt)− f ′′(x)‖ ‖∆xnt‖ ≤ L‖∆xnt‖2t,

and by integrating this inequality, we obtain the desired estimate

‖f ′(x+)‖ =
∥∥∫ 1

0

v′(t) dt
∥∥ ≤ ∫ 1

0

‖v′(t)‖ dt ≤ L

2
‖∆xnt‖2 ≤ L

2µ2
‖f ′(x)‖2,

where the last inequality follows from Corollary 15.1.5.

One consequence of the previous theorem is that the pure Newton method
converges quadratically when applied to functions with a positive definite
second derivative that does not vary too rapidly in a neighborhood of the
minimum point, provided that the starting point is chosen sufficiently close
to the minimum point. More precisely, the following holds:
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Theorem 15.2.3. Let f : X → R be a twice differentiable, µ-strongly convex
function with minimum point x̂, and suppose that the second derivative f ′′

is Lipschitz continuous with Lipschitz constant L. Let 0 < r ≤ 2µ/L and
suppose that the open ball B(x̂; r) is included in X.

Newton’s pure method with starting point x0 ∈ B(x̂; r) will then generate
a sequence (xk)

∞
0 of points in Ω such that

‖xk − x̂‖ ≤
2µ

L

( L
2µ
‖x0 − x̂‖

)2k

for all k, and the sequence therefore converges to the minimum point x̂ as
k →∞.

The convergence is very rapid. For example,

‖xk − x̂‖ ≤
2µ

L
2−2k

if the initial point is chosen such that ‖x0− x̂‖ ≤ µ/L, and this implies that
‖xk − x̂‖ ≤ 10−19µ/L already for k = 6.

Proof. We keep the notation of Theorem 15.2.2 and then have xk+1 = x+
k , so

if xk lies in the ball B(x̂; r), then

(15.6) ‖xk+1 − x̂‖ ≤
L

2µ
‖xk − x̂‖2,

and this implies that ‖xk+1− x̂‖ < Lr2/2µ ≤ r, i.e. the point xk+1 lies in the
ball B(x̂; r). By induction, all points in the sequence (xk)

∞
0 lie in B(x̂; r), and

we obtain the inequality of the theorem by repeated application of inequality
(15.6).

Global convergence

Newton’s damped method converges, under appropriate conditions on the
objective function, for arbitrary starting points. The damping is required
only during an initial phase, because the step size becomes 1 once the al-
gorithm has produced a point where the gradient is sufficiently small. The
convergence is quadratic during this second stage.

The following theorem describes a convergence result for strongly convex
functions with Lipschitz continuous second derivative.
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Theorem 15.2.4. Let f : X → R be a twice differentiable, strongly convex
function with a Lipschitz continuous second derivative. Let x0 be a point in
X and suppose that the sublevel set

S = {x ∈ X | f(x) ≤ f(x0)}
is closed.

Then, f has a unique minimum point x̂, and Newton’s damped algorithm,
with x0 as initial point och with line search according to Armijo’s rule with
parameters 0 < α < 1

2
and 0 < β < 1, generates a sequence (xk)

∞
0 of points

in S that converges towards the minimum point.
After an initial phase with damping, the algorithm passes into a quadrat-

ically convergent phase with step size 1.

Proof. The existence of a unique minimum point is a consequence of Corol-
lary 8.1.7.

Suppose that f is µ-strongly convex and let L be the Lipschitz constant
of the second derivative. The sublevel set S is compact since it is bounded
according to Theorem 8.1.6. It follows that the distance from the set S to
the boundary of the open set X is positive. Fix a positive number r that is
less than this distance and also satisfies the inequality

r ≤ µ/L.

Given x ∈ S we now define the point x+ by

x+ = x+ h∆xnt,

where h is the step size according to Armijo’s rule. In particular, xk+1 = x+
k

for all k.
The core of the proof consists in showing that there are two positive

constants γ and η ≤ µr such that the following two implications hold for all
x ∈ S:

(i) ‖f ′(x)‖ ≥ η ⇒ f(x+)− f(x) ≤ −γ;

(ii) ‖f ′(x)‖ < η ⇒ h = 1 & ‖f ′(x+)‖ < η.

Suppose that we have managed to prove (i) and (ii). If ‖f ′(xk)‖ ≥ η for
0 ≤ k < m, then

fmin − f(x0) ≤ f(xm)− f(x0) =
m−1∑
k=0

(f(x+
k )− f(xk)) ≤ −mγ,

because of property (i). This inequality can not hold for all m, and hence
there is a smallest integer k0 such that ‖f ′(xk0)‖ < η, and this integer must
satisfy the inequality

k0 ≤
(
f(x0)− fmin

)
/γ.
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It now follows by induction from (ii) that the step size h is equal to 1 for
all k ≥ k0. The damped Newton algorithm is in other words a pure Newton
algorithm from iteration k0 and onwards. Because of Theorem 14.1.1,

‖xk0 − x̂‖ ≤ µ−1‖f ′(xk0)‖ < µ−1η ≤ r ≤ µL−1,

so it follows from Theorem 15.2.3 that the sequence (xk)
∞
0 converges to x̂,

and more precisely, that the estimate

‖xk+k0 − x̂‖ ≤
2µ

L

( L
2µ
‖xk0 − x̂‖

)2k

≤ 2µ

L
2−2k

holds for k ≥ 0.
It thus only remains to prove the existence of numbers η and γ with the

properties (i) and (ii). To this end, let

Sr = S +B(x; r);

the set Sr is a convex and compact subset of Ω, and the two continuous
functions f ′ and f ′′ are therefore bounded on Sr, i.e. there are constants K
and M such that

‖f ′(x)‖ ≤ K and ‖f ′′(x)‖ ≤M

for all x ∈ Sr. It follows from Theorem 7.4.1 that the derivative f ′ is Lipschitz
continuous on the set Sr with Lipschitz constant M , i.e.

‖f ′(y)− f ′(x)‖ ≤M‖y − x‖

for x, y ∈ Sr.
We now define our numbers η and γ as

η = min
{3(1− 2α)µ2

L
, µr
}

and γ =
αβcµ

M
η2, where c = min

{ 1

M
,
r

K

}
.

Let us first estimate the stepsize at a given point x ∈ S. Since

‖∆xnt‖ ≤ µ−1‖f ′(x)‖ ≤ µ−1K,

the point x + t∆xnt lies in i Sr and especially also in X if 0 ≤ t ≤ rµK−1.
The function

g(t) = f(x+ t∆xnt)

is therefore defined for these t-values, and since f is µ-strongly convex and
the derivative is Lipschitz continuous with constant M on Sr, it follows from
Theorem 1.1.2 and Corollary 15.1.5 that

f(x+ t∆xnt) ≤ f(x) + t〈f ′(x),∆xnt〉+ 1
2
M‖∆xnt‖2t2

≤ f(x) + t〈f ′(x),∆xnt〉+ 1
2
Mµ−1λ(f, x)2t2

= f(x) + t
(
1− 1

2
Mµ−1t

)
〈f ′(x),∆xnt〉.
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The number t̂ = cµ lies in the interval [0, rµK−1] and is less than or
equal to µM−1. Hence, 1 − 1

2
Mµ−1t̂ ≥ 1

2
≥ α, which inserted in the above

inequality gives

f(x+ t̂∆xnt) ≤ f(x) + αt̂ 〈f ′(x),∆xnt〉.
Now, let h = βm be the step size given by Armijo’s rule, which means that
the Armijo algorithm terminates in iteration m. Since it does not terminate
in iteration m− 1, we conclude that βm−1 > t̂, i.e.

h ≥ βt̂ = βcµ,

and this gives us the following estimate for the point x+ = x+ h∆xnt:

f(x+)− f(x) ≤ αh〈f ′(x),∆xnt〉 = −αhλ(f, x)2

≤ −αβcµλ(f, x)2 ≤ −αβcµM−1‖f ′(x)‖2 = −γη−2‖f ′(x)‖2.

So, if ‖f ′(x)‖ ≥ η then f(x+)− f(x) ≤ −γ, which is the content of implica-
tion (i).

To prove the remaining implication (ii), we return to the function g(t) =
f(x + t∆xnt), assuming that ‖f ′(x)‖ < η. The function is well-defined for
0 ≤ t ≤ 1, since

‖∆xnt‖ ≤ µ−1‖f ′(x)‖ < µ−1η ≤ r.

Moreover,

g′(t) = 〈f ′(x+ t∆xnt),∆xnt〉 and g′′(t) = 〈∆xnt, f
′′(x+ t∆xnt)∆xnt〉.

By Lipschitz continuity,

|g′′(t)− g′′(0)| = |〈∆xnt, f
′′(x+ t∆xnt)∆xnt〉 − 〈∆xnt, f

′′(x)∆xnt〉|
≤ ‖f ′′(x+ t∆xnt)− f ′′(x)‖ ‖∆xnt‖2 ≤ tL‖∆xnt‖3,

and it follows, since g′′(0) = λ(f, x)2 and ‖∆xnt‖ ≤ µ−1/2λ(f, x), that

g′′(t) ≤ λ(f, x)2 + tL‖∆xnt‖3 ≤ λ(f, x)2 + tLµ−3/2 λ(f, x)3.

By integrating this inequality over the interval [0, t], we obtain the inequality

g′(t)− g′(0) ≤ tλ(f, x)2 + 1
2
t2Lµ−3/2λ(f, x)3.

But g′(0) = 〈f ′(x),∆xnt〉 = −λ(f, x)2, so it follows that

g′(t) ≤ −λ(f, x)2 + tλ(f, x)2 + 1
2
t2Lµ−3/2λ(f, x)3,

and further integration results in the inequality

g(t)− g(0) ≤ −tλ(f, x)2 + 1
2
t2λ(f, x)2 + 1

6
t3Lµ−3/2λ(f, x)3.
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Now, take t = 1 to obtain

f(x+ ∆xnt) ≤ f(x)− 1
2
λ(f, x)2 + 1

6
Lµ−3/2λ(f, x)3(15.7)

= f(x)− λ(f, x)2
(

1
2
− 1

6
Lµ−3/2λ(f, x)

)
= f(x) + 〈f ′(x),∆xnt〉

(
1
2
− 1

6
Lµ−3/2λ(f, x)

)
.

Our assumption ‖f ′(x)‖ < η implies that

λ(f, x) ≤ µ−1/2‖f ′(x)‖ < µ−1/2η ≤ µ−1/2·3(1−2α)µ2L−1 = 3(1−2α)µ3/2L−1.

We conclude that
1
2
− 1

6
Lµ−3/2λ(f, x) > α,

which inserted into inequality (15.7) gives us the inequality

f(x+ ∆xnt) ≤ f(x) + α〈f ′(x),∆xnt〉,

which tells us that the step size h is equal to 1.
The iteration leading from x to x+ = x + h∆xnt is therefore performed

according to the pure Newton method. Due to the inequality

‖x− x̂‖ ≤ µ−1‖f ′(x)‖ < µ−1η ≤ r,

which holds by Theorem 14.1.1, x is a point in the ball B(x̂; r), so it follows
from the local convergence Theorem 15.2.2 that

(15.8) ‖f ′(x+)‖ ≤ L

2µ2
‖f ′(x)‖2.

Since η ≤ µr ≤ µ2/L,

‖f ′(x+)‖ < L

2µ2
η2 ≤ η

2
< η,

and the proof is now complete.

By iterating inequality (15.8), one obtains in fact the estimate

‖f ′(xk)‖ ≤
2µ2

L

( L

2µ2
‖f ′(xk0)‖

)2k−k0

<
2µ2

L
2−2k−k0

for k ≥ k0, and it now follows from Theorem 14.1.1 that

f(xk)− fmin <
2µ3

L2
2−2k−k0+1
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for k ≥ k0. Combining this estimate with the previously obtained bound
on k0, one obtains an upper bound on the number of iterations required to
estimate the minimum value fmin with a given accuracy. If

k >
f(x0)− fmin

γ
+ log2 log2

2µ3

L2ε
,

then surely f(xk)−fmin < ε. This estimate, however, is of no practical value,
because the constants γ, µ and L are rarely known in concrete cases.

Another shortcoming of the classical convergence analysis of Newton’s
method is that the convergence constants, unlike the algorithm itself, de-
pend on the coordinate system used. For self-concordant functions, it is
however possible to carry out the convergence analysis without any unknown
constants, as we shall do in Chapter 16.5.

15.3 Equality constraints

With only minor modifications, Newton’s algorithm also works well when
applied to convex optimization problems with constraints in the form of
affine equalities.

Consider the convex optimization problem

(P) min f(x)
s.t. Ax = b

where f : Ω→ R is a twice continuously differentiable convex function, Ω is
an open subset of Rn, and A is an m× n-matrix.

The problem’s Lagrange function L : Ω× Rm → R is given by

L(x, y) = f(x) + (Ax− b)Ty = f(x) + xTATy − bTy,

and according to the Karush–Kuhn–Tucker theorem (Theorem 11.2.1), a
point x̂ in Ω is an optimal solution if and only if there is a vector ŷ ∈ Rm

such that

(15.9)

{
f ′(x̂) +ATŷ= 0
Ax̂ = b.

Therefore, the minimization problem (P) is equivalent to the problem of
solving the system (15.9) of linear equations.

Example 15.3.1. When f is a convex quadratic function of the form

f(x) = 1
2
〈x, Px〉+ 〈q, x〉+ r,
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the linear system (15.9) becomes{
Px̂+ATŷ= −q
Ax̂ = b,

and this is a quadratic system of linear equations with a symmetric coefficient
matrix of order m+ n. The system has a unique solution if rankA = m and
N (A) ∩ N (P ) = {0}. See exercise 15.4. In particular, there is a unique
solution if the matrix P is positive definite and rankA = m.

We now return to the general convex minimization problem (P). Let X
denote the set of feasible points, so that

X = {x ∈ Ω | Ax = b}.

In optimization problems without any constraints, the descent direction
∆xnt at the point x is a vector which miminizes the Taylor polynom of degree
two of the function f(x+v), and the minimization is over all vectors v in Rn.
As a new point x+ with function value less than f(x) we select x+ = x+h∆xnt

with a suitable step size h. In constrained problems, the new point x+ has
to be a feasible point, of course, and this requires that A∆xnt = 0. The
minimization of the Taylor polynomial is therefore restricted to vectors v
that satisfy the condition Av = 0, and this means that we have to modify
our previous definition of Newton direction and decrement as follows for
constrained optimization problems.

Definition. In the equality constrained minimization problem (P), a vector
∆xnt is called a Newton direction at the point x ∈ X if there exists a vector
w ∈ Rm such that

(15.10)

{
f ′′(x)∆xnt +ATw=−f ′(x)

A∆xnt = 0.

The quantity

λ(f, x) =
√
〈∆xnt, f ′′(x)∆xnt〉

is called the Newton decrement.

It follows from Example 15.3.1 that the Newton direction ∆xnt (if it
exists) is an optimal solution to the minimization problem

min f(x) + 〈f ′(x), v〉+ 1
2
〈v, f ′′(x)v〉

s.t. Av = 0.
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And if (∆xnt, w) is a solution to the system (15.10), then

−〈f ′(x),∆xnt〉 = 〈f ′′(x)∆xnt + ATw,∆xnt〉
= 〈f ′′(x)∆xnt,∆xnt〉+ 〈w,A∆xnt〉
= 〈f ′′(x)∆xnt,∆xnt〉+ 〈w, 0〉 = 〈∆xnt, f

′′(x)∆xnt〉,

so it follows that

λ(f, x) =
√
−〈f ′(x),∆xnt〉,

just as for unconstrained problems.

The objective function is decreasing in the Newton direction, because

d

dt
f(x+ t∆xnt)

∣∣
t=0

= 〈f ′(x),∆xnt〉 = −λ(f, x)2 ≤ 0,

so ∆xnt is indeed a descent direction.

Let P (v) denote the Taylor polynomial of degree two of the function
f(x+ v). Then

f(x)− f(x+ ∆xnt) ≈ P (0)− P (∆xnt)

= −〈f ′(x),∆xnt〉 − 1
2
〈∆xnt, f

′′(x)∆xnt〉 = 1
2
λ(f, x)2,

just as in the unconstrained case.

With our modified definition of the Newton direction, we can now copy
Newton’s method verbatim for convex minimization problem of the type

min f(x)
s.t. Ax = b.

The algorithm looks like this:

Newton’s method

Given a starting point x ∈ Ω satisfying the constraint Ax = b, and a
tolerance ε > 0.

Repeat

1. Compute the Newton direction ∆xnt at x by solving the system of
equations (15.10), and compute the Newton decrement λ(f, x).

2. Stopping criterion: stop if λ(f, x)2 ≤ 2ε.

3. Compute a step size h > 0.

4. Update: x := x+ h∆xnt.
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Elimination of constraints

An alternative approach to the optimization problem

(P) min f(x)
s.t. Ax = b,

with x ∈ Ω as implicit condition and r = rankA, is to solve the system of
equations Ax = b and to express r variables as linear combinations of the
remaining n− r variables. The former variables can then be eliminated from
the objective function, and we obtain in this way an optimization problem in
n− r variables without explicit constraints, a problem that can be attacked
with Newton’s method. We will describe this approach in more detail and
compare it with the method above.

Suppose that the set X of feasible points is nonempty, choose a point
a ∈ X, and select an affine parametrization

x = ξ(z), z ∈ Ω̃

of X with ξ(0) = a. Since {x ∈ Rn | Ax = b} = a+N (A), we can write the
parametrization as

ξ(z) = a+ Cz

where C : Rp → Rn is an injective linear map, whose range V(C) coincides
with the null space N (A) of the map A, and p = n − rankA. The domain
Ω̃ = {z ∈ Rp | a+ Cz ∈ Ω} is an open convex subset of Rp.

A practical way to construct the parametrization is of course to solve the
system Ax = b by Gaussian elimination.

Let us finally define the function f̃ : Ω̃ → R by setting f̃(z) = f(ξ(z)).
The problem (P) is then equivalent to the convex optimization problem

(P̃) min f̃(z)

which has no explicit constraints.

Let ∆xnt be a Newton direction of the function f at the point x, i.e. a
vector that satisfies the system (15.10) for a suitably chosen vector w. We
will show that the function f̃ has a corresponding Newton direction ∆znt at
the point z = ξ−1(x), and that ∆xnt = C∆znt.

Since A∆xnt = 0 and N (A) = V(C), there is a unique vector v such that
∆xnt = Cv. By the chain rule, f̃ ′(z) = CTf ′(x) and f̃ ′′(z) = CTf ′′(x)C, so
it follows from the first equation in the system (15.10) that

f̃ ′′(z)v = CTf ′′(x)Cv = CTf ′′(x)∆xnt = −CTf ′(x)− CTATw

= −f̃ ′(z)− CTATw.
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A general result from linear algebra tells us that N (S) = V(ST)⊥ for
arbitrary linear maps S. Applying this result to the maps CT and A, and
using that V(C) = N (A), we obtain the equality

N (CT) = V(C)⊥ = N (A)⊥ = V(AT)⊥⊥ = V(AT),

which implies that CTATw = 0. Hence,

f̃ ′′(z)v = −f̃ ′(z),

and v is thus a Newton direction of the function f̃ at the point z. So, ∆znt = v
is the direction vector we are looking for.

The iteration step z → z+ = z + h∆znt in Newton’s method for the
unconstrained problem (P̃) takes us from the point z = ξ−1(x) in Ω̃ to the
point z+ whose image in X is

ξ(z+) = ξ(z + h∆znt) = a+ C(z + h∆znt) = a+ Cz + hC(∆znt)

= ξ(z) + h∆xnt = x+ h∆xnt,

and this is also the point we get by applying Newton’s method to the point
x in the constrained problem (P).

Also note that the Newton decrements are the same at corresponding
points, because

λ(f̃ , z)2 = −〈f̃ ′(z),∆znt〉 = −〈CTf ′(x),∆znt〉 = −〈f ′(x), C∆znt〉
= −〈f ′(x),∆xnt〉 = λ(f, x)2.

In summary, we have arrived at the following result.

Theorem 15.3.1. Let (xk)
∞
0 be a sequence of points obtained by Newton’s

method applied to the constrained problem (P). Newton’s method applied to
the problem (P̃), obtained by elimination of the constraints and with ξ−1(x0)
as initial point, will then generate a sequence (zk)

∞
0 with the property that

xk = ξ(zk) for all k.

Convergence analysis

No new convergence analysis is needed for the modified version of Newton’s
method, for we can, because of Theorem 15.3.1, apply the results of The-
orem 15.2.4. If the restriction of the function f : Ω → R to the set X of
feasible points is strongly convex and the second derivative is Lipschitz con-
tinuous, then the same also holds for the function f̃ : Ω̃ → R. (Cf. with
exercise 15.5.) Assuming x0 to be a feasible starting point and the sublevel
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set {x ∈ X | f(x) ≤ f(x0)} to be closed, the damped Newton algorithm will
therefore converge to the minimum point when applied to the constrained
problem (P). Close enough to the minimum point, the step size h will also
be equal to 1, and the convergence will be quadratic.

Exercises

15.1 Determine the Newton direction, the Newton decrement and the local norm
at an arbitrary point x > 0 for the function f(x) = x lnx− x.

15.2 Let f be the function f(x1, x2) = − lnx1 − lnx2 − ln(4 − x1 − x2) with
X = {x ∈ R2 | x1 > 0, x2 > 0, x1 + x2 < 4} as domain. Determine the
Newton direction, the Newton decrement and the local norm at the point x
when
a) x = (1, 1) b) x = (1, 2).

15.3 Determine a Newton direction, the Newton decrement and the local norm
for the function f(x1, x2) = ex1+x2 + x1 + x2 at an arbitrary point x ∈ R2.

15.4 Assume that P is a symmetric positive semidefinite n × n-matrix and that
A is an arbitrary m× n-matrix. Prove that the matrix

M =

[
P AT

A 0

]
is invertible if and only if rankA = m and N (A) ∩N (P ) = {0}.

15.5 Assume that the function f : Ω → R is twice differentiable and convex, let
x = ξ(z) = a+ Cz be an affine parametrization of the set

X = {x ∈ Ω | Ax = b},

and define the function f̃ by f̃(z) = f(ξ(z)), just as in Section 15.3. Let
further σ denote the smallest eigenvalue of the symmetric matrix CTC.

a) Prove that f̃ is µσ-strongly convex if the restriction of f to X is µ-strongly
convex.

b) Assume that the matrix A has full rank and that there are constants K
and M such that Ax = b implies∥∥∥∥[f ′′(x) AT

A 0

]−1∥∥∥∥ ≤ K and ‖f ′′(x)‖ ≤M.

Show that f̃ is µ-strongly convex with convexity constant µ = σK−2M−1.





Chapter 16

Self-concordant functions

Self-concordant functions were introduced by Nesterov and Nemirovski in
the late 1980s as a product of their analysis of the speed of convergence of
Newton’s method. Classic convergence results for two times continuously
differentiable functions assume that the second derivative is Lipschitz con-
tinuous, and the convergence rate depends on the Lipschitz constant. One
obvious weakness of these results is that the value of the Lipschitz constant,
unlike Newton’s method, is not invariant under affine coordinate transfor-
mations.

Suppose that a function f , which is defined on an open convex subset X
of Rn, has a Lipschitz continuous second derivative with Lipschitz constant
L, i.e. that

‖f ′′(y)− f ′′(x)‖ ≤ L‖y − x‖
for all x, y ∈ X. For the restriction φx,v(t) = f(x+ tv) of f to a line through
x with direction vector v, this means that

|φ′′x,v(t)−φ′′x,v(0)| = |〈v, (f ′′(x+tv)−f ′′(x))v〉| ≤ L‖x+tv−x‖‖v‖2 = L|t|‖v‖3.

So if the function f is three times differentiable, then consequently

|φ′′′x,v(0)| = lim
t→0

∣∣∣φ′′x,v(t)− φ′′x,v(0)

t

∣∣∣ ≤ L‖v‖3.

But

φ′′′x,v(0) =
n∑

i,j,k=1

∂3f(x)

∂xi∂xj∂xk
vivjvk = D3f(x)[v, v, v],

so a necessary condition for a three times differentiable function f to have a
Lipschitz continuous second derivative with Lipschitz constant L is that

(16.1) |D3f(x)[v, v, v]| ≤ L‖v‖3

325
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for all x ∈ X and all v ∈ Rn, and it is easy to show this is also a sufficient
condition.

The reason why the value of the Lipschitz constant is not affinely invariant
is that there is no natural connection between the Euclidean norm ‖·‖ and the
function f . The analysis of a function’s behavior is simplified if we instead use
a norm that is adapted to the form of the level surfaces, and for functions
with a positive semidefinite second derivative f ′′(x), such a (semi)norm is
the local seminorm ‖·‖x, introduced in the previous chapter and defined as
‖v‖x =

√
〈v, f ′′(x)v〉. Nesterov–Nemirovski’s stroke of genius consisted in

replacing ‖·‖ with the local seminorm ‖·‖x in the inequality (16.1). For the
function class obtained in this way, it is possible to describe the convergence
rate of Newton’s method in an affinely independent way and with absolute
constants.

16.1 Self-concordant functions

We are now ready for Nesterov–Nemirovski’s definition of self-concordance
and for a study of the basic properties of self-concordant functions.

Definition. Let f : X → R be a three times continuously differentiable func-
tion with an open convex subset X of Rn as domain. The function is called
self-concordant if it is convex, and the inequality

(16.2)
∣∣D3f(x)[v, v, v]

∣∣ ≤ 2
(
D2f(x)[v, v]

)3/2

holds for all x ∈ X and all v ∈ Rn.

Since D2f(x)[v, v] = ‖v‖2
x, where ‖·‖x is the local seminorm defined by

the function f at the point x, we can also write the defining inequality (16.2)
as ∣∣D3f(x)[v, v, v]

∣∣ ≤ 2‖v‖3
x,

and it is this shorter version that we will prefer, when we work with a single
function f .

Remark 1. There is nothing special about the constant 2 in inequality (16.2).
If f satisfies the inequality

∣∣D3f(x)[v, v, v]
∣∣ ≤ K‖v‖3

x, then the function
F = 1

4
K2f , obtained from f by scaling, is self-concordant. The choice of 2

as the constant facilitates, however, the wording of a number of results.

Remark 2. For functions f defined on subsets of the real axis and v ∈ R,
‖v‖2

x = f ′′(x)v2 and D3f(x)[v, v, v] = f ′′′(x)v3. Hence, a convex function
f : X → R is self-concordant if and only if
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|f ′′′(x)| ≤ 2f ′′(x)3/2

for all x ∈ X.

Remark 3. In terms of the restriction φx,v(t) = f(x+ tv) of the function f to
the line through x with direction v, we can equivalently write the inequality∣∣D3f(x+ tv)[v, v, v]

∣∣ ≤ 2‖v‖3
x+tv

as |φ′′′x,v(t)| ≤ 2φ′′x,v(t)
3/2. A three times continuously differentiable convex

function of several variables is therefore self-concordant if and only if all its
restrictions to lines are self-concordant.

Example 16.1.1. The convex function f(x) = − lnx is self-concordant on its
domain R++. Indeed, inequality (16.2) holds with equality for this function,
since f ′′(x) = x−2 and f ′′′(x) = −2x−3.

Example 16.1.2. Convex quadratic functions f(x) = 1
2
〈x,Ax〉 + 〈b, x〉 + c

are self-concordant since D3f(x)[v, v, v] = 0 for all x and v.
Hence, affine functions are self-concordant, and the function x 7→ ‖x‖2,

where ‖·‖ is the Euclidean norm, is self-concordant.

The expression

D3f(x)[u, v, w] =
n∑

i,k,k=1

∂3f(x)

∂xi∂xj∂xk
uivjwk

is a symmetric trilinear form in the variables u, v, and w, if the function f is
three times continuously differentiable in a neighborhood of the point x. For
self-concordant functions we have the following generalization of inequality
(16.2) in the definition of self-concordance.

Theorem 16.1.1. Suppose f : X → R is a self-concordant function. Then,∣∣D3f(x)[u, v, w]
∣∣ ≤ 2‖u‖x‖v‖x‖w‖x

for all x ∈ X and all vectors u, v, w in Rn.

Proof. The proof is based on a general theorem on norms of symmetric tri-
linear forms, which is proven in an appendix to this chapter.

Assume first that x is a point where the second derivative f ′′(x) is positive
definite. Then ‖·‖x is a norm with 〈u, v〉x = 〈u, f ′′(x)v〉 as the corresponding
scalar product. We can therefore apply Theorem 1 of the appendix to the
symmetric trilinear form D3f(x)[u, v, w] with ‖·‖x as the underlying norm,
and it follows that

sup
u,v,w 6=0

∣∣D3f(x)[u, v, w]
∣∣

‖u‖x‖v‖x‖w‖x
= sup

v 6=0

∣∣D3f(x)[v, v, v]
∣∣

‖v‖3
x

≤ 2,
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which is equivalent to the assertion of the theorem.
To cope with points where the second derivative is singular, we consider

for ε > 0 the scalar product

〈u, v〉x,ε = 〈u, f ′′(x)v〉+ ε〈u, v〉,

where 〈· , ·〉 is the usual standard scalar product, and the corresponding norm

‖v‖x,ε =
√
〈v, v〉x,ε =

√
‖v‖2

x + ε‖v‖2.

Obviously, ‖v‖x ≤ ‖v‖x,ε for all vectors v, and hence

|D3f(x)[v, v, v]| ≤ 2‖v‖3
x,ε

for all v, since f is self-concordant. It now follows from Theorem 1 in the
appendix that

|D3f(x)[u, v, w]| ≤ 2‖u‖x,ε‖v‖x,ε‖w‖x,ε
= 2
√

(‖u‖2
x + ε‖u‖2)(‖v‖2

x + ε‖v‖2)(‖w‖2
x + ε‖u‖w2),

and we get the sought-after inequality by letting ε→ 0.

Theorem 16.1.2. The second derivative f ′′(x) of a self-concordant function
f : X → R has the same null space N (f ′′(x)) at all points x ∈ X.

Proof. We recall that N (f ′′(x)) = {v | ‖v‖x = 0}.
Let x and y be two points in X. For reasons of symmetry, we only have

to show the inclusion N (f ′′(x)) ⊆ N (f ′′(y)).
Assume therefore that v ∈ N (f ′′(x)) and let xt = x + t(y − x). Since X

is an open convex set, there is certainly a number a > 1 such that the points
xt lie in X for 0 ≤ t ≤ a, and we now define a function g : [0, a] → R by
setting

g(t) = D2f(xt)[v, v] = ‖v‖2
xt .

Then g(0) = ‖v‖2
x = 0 and g(t) ≥ 0 for 0 ≤ t ≤ a, and since

g′(t) = D3f(xt)[v, v, y − x],

it follows from Theorem 16.1.1 that

|g′(t)| ≤ 2‖v‖2
xt‖y − x‖xt = 2g(t)‖y − x‖xt .

But the seminorm

‖y − x‖xt =
√
D2f(xt)[y − x, y − x]
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depends continuously on t, and it is therefore bounded above by some con-
stant C on the interval [0, a]. Hence,

|g′(t)| ≤ 2Cg(t)

for 0 ≤ t ≤ a. It now follows from Theorem 2 in the appendix to this chapter
that g(t) = 0 for all t, and in particular, g(1) = ‖v‖2

y = 0, which proves that
v ∈ N (f ′′(y)). This proves the inclusion N (f ′′(x)) ⊆ N (f ′′(y)).

Our next corollary is just a special case of Theorem 16.1.2, because f ′′(x)
is non-singular if and only if N (f ′′(x)) = {0}.

Corollary 16.1.3. The second derivative of a self-concordant function is ei-
ther non-singular at all points or singular at all points.

A self-concordant function will be called non-degenerate if its second
derivative is positive definite at all points, and by the above corollary, that
is the case if the second derivative is positive definite at one single point.

A non-degenerate self-concordant function is in particular strictly convex.

Operations that preserve self-concordance

Theorem 16.1.4. If f is a self-concordant function and α ≥ 1, then αf is
self-concordant.

Proof. If α ≥ 1, then α ≤ α3/2, and it follows that∣∣D3(αf)(x)[v, v, v]
∣∣ = α

∣∣D3f(x)[v, v, v]
∣∣ ≤ 2α

(
D2f(x)[v, v]

)3/2

≤ 2
(
αD2f(x)[v, v]

)3/2
= 2
(
D2(αf)(x)[v, v]

)3/2
.

Theorem 16.1.5. The sum f + g of two self-concordant functions f and g is
self-concordant on its domain.

Proof. We use the elementary inequality

a3/2 + b3/2 ≤ (a+ b)3/2,

which holds for all nonnegative numbers a, b (and is easily proven by squaring
both sides) and the triangle inequality to obtain∣∣D3(f + g)(x)[v, v, v]

∣∣ =
∣∣D3f(x)[v, v, v] +D3g(x)[v, v, v]

∣∣
≤ 2
(
D2f(x)[v, v]

)3/2
+ 2
(
D2g(x)[v, v]

)3/2

≤ 2
(
D2f(x)[v, v] +D2g(x)[v, v]

)3/2

= 2
(
D2(f + g)(x)[v, v]

)3/2
.



330 16 Self-concordant functions

Theorem 16.1.6. If the function f : X → R is self-concordant, where X
is an open convex subset of Rn, and A is an affine map from Rm to Rn,
then the composition g = f ◦ A is a self-concordant function on its domain
A−1(X).

Proof. The affine map A can be written as Ay = Cy+ b, where C is a linear
map and b is a vector. Let y be a point in A−1(X) and let u be a vector in
Rm, and write x = Ay och v = Cu. According to the chain rule,

D2g(y)[u, u] = D2f(Ay)[Cu,Cu] = D2f(x)[v, v] and

D3g(y)[u, u, u] = D3f(Ay)[Cu,Cu,Cu] = D3f(x)[v, v, v],

so it follows that∣∣D3g(y)[u, u, u]
∣∣ =

∣∣D3f(x)[v, v, v]
∣∣ ≤ 2

(
D2f(x)[v, v]

)3/2

= 2
(
D2g(y)[u, u]

)3/2
.

Example 16.1.3. It follows from Example 16.1.1 and Theorem 16.1.6 that
the function f(x) = − ln(b − 〈c, x〉) with domain {x ∈ Rn | 〈c, x〉 < b} is
self-concordant.

Example 16.1.4. Suppose that the polyhedron

X =

p⋂
j=1

{x ∈ Rn | 〈cj, x〉 ≤ bj}

has nonempty interior. The function f(x) = −
∑p

j=1 ln(bj − 〈cj, x〉), with
intX as domain, is self-concordant.

16.2 Closed self-concordant functions

In Section 6.7 we studied the recessive subspace of arbitrary convex functions.
The properties of the recessive subspace of a closed self-concordant function
is given by the following theorem.

Theorem 16.2.1. Suppose that f : X → R is a closed self-concordant func-
tion. The function’s recessive subspace Vf is then equal to the null space
N (f ′′(x) of the second derivative f ′′(x) at an arbitrary point x ∈ X. More-
over,

(i) X = X + Vf .

(ii) f(x+ v) = f(x) +Df(x)[v] for all vectors v ∈ Vf .

(iii) If λ(f, x) <∞, then f(x+ v) = f(x) for all v ∈ Vf .
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Proof. Assertions (i) and (ii) are true for the recessive subspace of an arbi-
trary differentiable convex function according to Theorem 6.7.1, so we only
have to prove the remaining assertions.

Let x be an arbitrary point in X and let v be an arbitrary vector in Rn,
and consider the restriction φx,v(t) = f(x + tv) of f to the line through x
with direction v. The domain of φx,v is an open interval I =]α, β[ around 0.

First suppose that v ∈ Vf . Then

φx,v(t) = f(x) + tDf(x)[v]

for all t ∈ I becuse of property (ii), and it follows that

‖v‖2
x = D2f(x)[v, v] = φ′′x,v(0) = 0,

i.e. the vector v belongs to the null space of f ′′(x). This proves the inclusion
Vf ⊆ N (f ′′(x)). Note that this inclusion holds for arbitrary twice differen-
tiable convex functions without any assumptions concerning self-concordance
and closedness.

To prove the converse inclusion N (f ′′(x)) ⊆ Vf , we instead assume that
v is a vector in N (f ′′(x)). Since N (f ′′(x+ tv)) = N (f ′′(x)) for all t ∈ I due
to Theorem 16.1.2, we now have

φ′′x,v(t) = D2f(x+ tv)[v, v] = ‖v‖2
x+tv = 0

for all t ∈ I, and it follows that

φx,v(t) = φx,v(0) + φ′x,v(0)t = f(x) +Df(x)[v] t.

If β <∞, then x+ βv is a boundary point of X and limt→β φx,v(t) <∞.
However, according to Corollary 8.2.2 this is a contradiction to f being a
closed function. Hence, β = ∞, and similarly, α = −∞. This means that
I =]−∞,∞[, and in particular, I contains the number 1. We conclude that
the point x+ v lies in X and that f(x+ v) = φx,v(1) = f(x) +Df(x)[v] for
all x ∈ X and all v ∈ N (f ′′(x)), and Theorem 6.7.1 now provides us with
the inclusion N (f ′′(x)) ⊆ Vf . Hence, Vf = N (f ′′(x)).

Finally, suppose that λ(f, x) < ∞. Then there exists, by definition, a
Newton direction at x, and this implies, according to the remark after the
definition of Newton direction, that the implication

f ′′(x)v = 0⇒ Df(x)[v] = 0

holds. Since Vf = N (f ′′(x)), it now follows from assertion (ii) that f(x+v) =
f(x) for all v ∈ Vf .
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The problem of minimizing a degenerate closed self-concordant function
f : X → R with finite Newton decrement λ(f, x) at all points x ∈ X can be
reduced to the problem of minimizing a non-degenerate closed self-concordant
function as follows.

Assume that the domain X is a subset of Rn, and let Vf denote the
recessive subspace of f . Put m = dimV ⊥f and let A : Rm → Rn be an

arbitrary injective linear map onto V ⊥f , and put X0 = A−1(X). The set X0

is then an open subset of Rm, and we obtain a function g : X0 → R by
defining g(y) = f(Ay) for y ∈ X0.

The function g is self-concordant according to Theorem 16.1.6, and since
(y, t) belongs to the epigraph of g if and only if (Ay, t) belongs to the epigraph
of f , it follows that g is also a closed function.

Suppose v ∈ N (g′′(y)). Since g′′(y) = ATf ′′(Ay)A,

〈Av, f ′′(Ay)Av〉 = 〈v,ATf ′′(Ay)Av〉 = 〈v, g′′(y)v〉 = 0,

which means that the vector Av belongs to N (f ′′(Ay)), i.e. to the recessive
subspace Vf . But Av also belongs to V ⊥f , by definition, and Vf∩V ⊥f = {0}, so
it follows that Av = 0. Hence v = 0, since A is an injective map. This proves
that N (g′′(y)) = {0}, which means that g is a non-degenerate function.

Each vector x ∈ X has a unique decomposition x = x1 +x2 with x1 ∈ V ⊥f
and x2 ∈ Vf , and x1 (= x − x2) lies in X according to Theorem 16.2.1.
Consequently, there is a unique point y ∈ X0 such that Ay = x1. Therefore,
g(y) = f(Ay) = f(x1) = f(x) by the same theorem.

The functions f and g thus have the same ranges, and ŷ is a minimum
point of g if and only if Aŷ is a minimum point of f , and thereby also all
points Aŷ + v with v ∈ Vf are minimum points of f .

We also note for future use that

λ(g, y) ≤ λ(f, Ay) = λ(f, Ay + v)

for all y ∈ X0 and all v ∈ Vf , according to Theorem 15.1.7. (In the present
case, the two Newton decrements are actually equal, which we leave as an
exercise to show.)

Corollary 16.2.2. A closed self-concordant function f : X → R is non-
degenerate if its domain X does not contain any line.

Proof. By Theorem 16.2.1, X = X + Vf . Hence, if f is degenerate, then
X contains all lines through points in X with directions given by nonzero
vectors in Vf . So the function must be non-degenerate if its domain does not
contain any lines.

Corollary 16.2.3. A closed self-concordant function is non-degenerate if and
only if it is strictly convex.
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Proof. The second derivative f ′′(x) of a non-degenerate self-concordant func-
tion f is positive definit for all x in its domain, and this implies that f is
strictly convex.

The recessive subspace Vf of a degenerate function f is non-trivial, and
the restriction φx,v(t) = f(x + tv) of f to a line with a direction given by a
nonzero vector v ∈ Vf is affine, according to Theorem 16.2.1. This prevents
f from being strictly convex.

16.3 Basic inequalities for the local seminorm

The graph of a convex function f lies above its tangent planes, and the
vertical distance between the point (y, f(y)) on the graph and the tangent
plane through the point (x, f(x) is greater than or equal to 1

2
µ‖y−x‖2 if f is

µ-strongly convex. The same distance is also bounded below if the function
is self-concordant, but now by an expression that is a function of the local
norm ‖y − x‖x. The actual function ρ is defined in the following lemma,
which also describes all the properties of ρ that we will need.

Lemma 16.3.1. Let ρ : ]−∞, 1[→ R be the function

ρ(t) = −t− ln(1− t).

(i) The function ρ is convex, strictly decreasing in the interval ]−∞, 0],
and strictly increasing in the interval [0, 1[, and ρ(0) = 0.

(ii) For 0 ≤ t < 1,

ρ(t) ≤ t2

2(1− t)
.

In particular, ρ(t) ≤ t2 if 0 ≤ t ≤ 1
2
.

(iii) If s < 1 and t < 1, then ρ(s) + ρ(t) ≥ −st.

(iv) If s ≥ 0, 0 ≤ t < 1 and ρ(−s) ≤ ρ(t), then s ≤ t

1− t
.

Proof. Assertion (i) follows easily by considering the sign of the derivative,
and assertion (ii) follows from the Taylor series expansion, which gives

ρ(t) = 1
2
t2 + 1

3
t3 + 1

4
t4 + · · · ≤ 1

2
t2(1 + t+ t2 + · · · ) = 1

2
t2(1− t)−1

for 0 ≤ t < 1.
To prove (iii), we use the elementary inequality x− ln(1 + x) ≥ 0 and

take x = st− s− t. This gives

st+ ρ(s) + ρ(t) = st− s− t− ln(1− s)− ln(1− t)
= st− s− t− ln(1 + st− s− t) ≥ 0.
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Since ρ is strictly decreasing in the interval ]−∞, 0], assertion (iv) will
follow once we show that ρ(−s) ≥ ρ(t) when s = t/(1 − t). To show this
inequality, let

g(t) = ρ
(
− t

1− t
)
− ρ(t)

for 0 ≤ t < 1. We simplify and obtain

g(t) = t− 1 + (1− t)−1 + 2 ln(1− t).
Since g(0) = 0 and g′(t) = 1 + (1 − t)−2 − 2(1 − t)−1 = t2(1 − t)−2 ≥ 0,
we conclude that g(t) ≥ 0 for all t ∈ [0, 1[, and this completes the proof of
assertion (iv).

The next theorem is used to estimate differences of the form ‖w‖y−‖w‖x,
Df(y)[w]−Df(x)[w], and f(y)−f(x)−Df(x)[y−x] in terms of ‖w‖x, ‖y−x‖x
and the function ρ.

Theorem 16.3.2. Let f : X → R be a closed self-concordant function, and
suppose that x is a point in X and that ‖y − x‖x < 1. Then, y is also a
point in X, and the following inequalities hold for the vector v = y − x and
arbitrary vectors w:

‖v‖x
1 + ‖v‖x

≤ ‖v‖y ≤
‖v‖x

1− ‖v‖x
(16.3)

‖v‖2
x

1 + ‖v‖x
≤ Df(y)[v]−Df(x)[v] ≤ ‖v‖2

x

1− ‖v‖x
(16.4)

ρ(−‖v‖x) ≤ f(y)− f(x)−Df(x)[v] ≤ ρ(‖v‖x)(16.5)

(1− ‖v‖x)‖w‖x ≤ ‖w‖y ≤
‖w‖x

1− ‖v‖x
(16.6)

Df(y)[w]−Df(x)[w] ≤ D2f(x)[v, w] +
‖v‖2

x‖w‖x
1− ‖v‖x

≤ ‖v‖x‖w‖x
1− ‖v‖x

.(16.7)

The left parts of the three inequalities (16.3), (16.4) and (16.5) are also
satisfied with v = y − x for all y ∈ X.

Proof. We leave the proof that y belongs toX to the end and start by showing
that the inequalities (16.3–16.7) hold under the additional assumption y ∈ X.

I. We begin with inequality (16.6). If ‖w‖x = 0, then ‖w‖z = 0 for all
z ∈ X, according to Theorem 16.1.2. Hence, the inequality holds in this case.
Therefore, let w be an arbitrary vector with ‖w‖x 6= 0, let xt = x+ t(y− x),
and define the function ψ by

ψ(t) = ‖w‖−1
xt =

(
D2f(xt)[w,w]

)−1/2
.
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The function ψ is defined on an open interval that contains the interval [0, 1],
ψ(0) = ‖w‖−1

x and ψ(1) = ‖w‖−1
y . It now follows, using Theorem 16.1.1, that

|ψ′(t)| = 1

2

∣∣(D2f(xt)[w,w]
)−3/2

D3f(xt)[w,w, v]
∣∣(16.8)

=
1

2
‖w‖−3

xt

∣∣D3f(xt)[w,w, v]
∣∣ ≤ 1

2
‖w‖−3

xt · 2‖w‖
2
xt‖v‖xt

= ‖w‖−1
xt ‖v‖xt = ψ(t)‖v‖xt .

If ‖v‖x = 0, then ‖v‖z = 0 for all z ∈ X, and hence ψ′(t) = 0 for
0 ≤ t ≤ 1. This implies that ψ(1) = ψ(0), i.e. that ‖w‖y = ‖w‖x. The
inequalities (16.3) and (16.6) are thus satisfied in the case ‖v‖x = 0.

Assume henceforth that ‖v‖x 6= 0, and first take w = v in the definition of
the function ψ. In this special case, inequality (16.8) simplifies to |ψ′(t)| ≤ 1
for t ∈ [0, 1], and hence ψ(0) − 1 ≤ ψ(1) ≤ ψ(0) + 1, by the mean-value
theorem. The right part of this inequality means that ‖v‖−1

y ≤ ‖v‖−1
x + 1,

which after rearrangement gives the left part of inequality (16.3). Note, that
this is true even in the case ‖v‖x ≥ 1.

Correspondingly, the left part of the same inequality gives rise to the right
part of inequality (16.3), now under the assumption that ‖v‖x < 1.

To prove inequality (16.6), we return to the function ψ with a general w.
Since ‖tv‖x = t‖v‖x < 1 for 0 ≤ t ≤ 1, it follows from the already proven
inequality (16.3) (with xt = x+ tv instead of y) that

‖v‖xt =
1

t
‖tv‖xt ≤

1

t
· ‖tv‖x

1− ‖tv‖x
=

‖v‖x
1− t‖v‖x

.

Insert this estimate into (16.8); this gives us the following inequality for the
derivative of the function lnψ(t):

|(lnψ(t))′| = |ψ
′(t)|
ψ(t)

= ‖v‖xt ≤
‖v‖x

1− t‖v‖x
.

Let us now integrate this inequality over the interval [0, 1]; this results in the
estimate∣∣ln ‖w‖y

‖w‖x
∣∣ =

∣∣ln ψ(0)

ψ(1)

∣∣ =
∣∣lnψ(1)− lnψ(0)

∣∣ =
∣∣∣∫ 1

0

(lnψ(t))′ dt
∣∣∣

≤
∫ 1

0

‖v‖x
1− t‖v‖x

dt = − ln(1− ‖v‖x),

which after exponentiation yields

1− ‖v‖x ≤
‖w‖y
‖w‖x

≤ (1− ‖v‖x)−1,

and this is inequality (16.6).
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II. To prove the inequality (16.4), we define

φ(t) = Df(xt)[v],

where xt = x+ t(y − x), as before. Then

φ′(t) = D2f(xt)[v, v] = ‖v‖2
xt = t−2‖tv‖2

xt ,

so by using inequality (16.3), we obtain the inequality

‖v‖2
x

(1 + t‖v‖x)2
=

1

t2
‖tv‖2

x

(1 + ‖tv‖x)2
≤ φ′(t) ≤ 1

t2
‖tv‖2

x

(1− ‖tv‖x)2
=

‖v‖2
x

(1− t‖v‖x)2

for 0 ≤ t ≤ 1. The left part of this inequality holds with v = y − x for all
y ∈ X, and the right part holds if ‖v‖x < 1, and by integrating the inequality
over the interval [0,1], we arrive at inequality (16.4).

III. To prove inequality (16.5), we start with the function

Φ(t) = f(xt)−Df(x)[v] t,

noting that

Φ(1)− Φ(0) = f(y)− f(x)−Df(x)[v]

and that

Φ′(t) = Df(xt)[v]−Df(x)[v].

By replacing y with xt in inequality (16.4) , we obtain the following inequality

t‖v‖2
x

1 + t‖v‖x
≤ Φ′(t) ≤ t‖v‖2

x

1− t‖v‖x
,

where the right part holds only if ‖v‖x < 1. By integrating the above in-
equality over the interval [0, 1], we obtain

ρ(−‖v‖x) =

∫ 1

0

t‖v‖2
x

1 + t‖v‖x
dt ≤ Φ(1)− Φ(0) ≤

∫ 1

0

t‖v‖2
x

1− t‖v‖x
dt = ρ(‖v‖x),

i.e. inequality (16.5).

IV. The proof of inequality (16.7) is analogous to the proof of inequality
(16.4), but this time our function φ is defined as

φ(t) = Df(xt)[w].
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Now, φ′(t) = D2f(xt)[w, v] and φ′′(t) = D3f(xt)[w, v, v], so it follows from
Theorem 16.1.1 and inequality (16.6) that

|φ′′(t)| ≤ 2‖w‖xt‖v‖2
xt ≤ 2

‖w‖x‖v‖2
x

(1− t‖v‖x)3
.

By integrating this inequality over the interval [0, s], where s ≤ 1, we get the
estimate

φ′(s)− φ′(0) ≤
∫ s

0

|φ′′(t)| dt ≤ 2‖w‖x
∫ s

0

‖v‖2
x dt

(1− t‖v‖x)3

= ‖w‖x
[ ‖v‖x

(1− s‖v‖x)2
− ‖v‖x

]
,

and another integration over the interval [0, 1] results in the inequality

φ(1)− φ(0)− φ′(0) ≤
∫ 1

0

(φ′(s)− φ′(0)) ds ≤ ‖w‖x‖v‖
2
x

1− ‖v‖x
,

which is the left part of inequality (16.7).

By the Cauchy–Schwarz inequality,

D2f(x)[v, w] = 〈v, f ′′(x)w〉 = 〈f ′′(x)1/2v, f ′′(x)1/2w〉
≤ ‖f ′′(x)1/2v‖‖f ′′(x)1/2w‖ = ‖v‖x‖w‖x,

and we obtain the right part of inequality (16.7) by replacing D2f(x)[v, w]
with its majorant ‖v‖x‖w‖x.

V. It now only remains to prove that the condition ‖y−x‖x < 1 implies that
the point y lies in X.

Assume the contrary. i.e. that there is a point y outside X such that
‖y − x‖x < 1. The line segment [x, y] then intersects the boundary of X in
a point x + tv, where t is a number in the interval ]0, 1]. The function ρ is
increasing in the interval [0, 1[, and hence ρ(t‖v‖x) ≤ ρ(‖v‖x) if 0 ≤ t < t. It
therefore follows from inequality (16.5) that

f(x+ tv) ≤ f(x)+tDf(x)[v]+ρ(t‖v‖x) ≤ f(x)+ |Df(x)[v]|+ρ(‖v‖x) < +∞

for all t in the interval [0, t[. However, this is a contradiction, because
limt→t f(x+ tv) = +∞, since f is a closed function and x+ tv is a boundary
point. Thus, y is a point in X.
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16.4 Minimization

This section focuses on minimizing self-concordant functions, and the results
are largely based on the following theorem, which also plays a significant role
in our study of Newton’s algorithm in the next section.

Theorem 16.4.1. Let f : X → R be a closed self-concordant function, sup-
pose that x ∈ X is a point with finite Newton decrement λ = λ(f, x), let
∆xnt be a Newton direction at x, and define

x+ = x+ (1 + λ)−1∆xnt.

The point x+ is then a point in X and

f(x+) ≤ f(x)− ρ(−λ).

Remark. So a minimum point x̂ of f must satisfy the inequality

f(x̂) ≤ f(x)− ρ(−λ)

for all x ∈ X with finite Newton decrement λ.

Proof. The vector v = (1 + λ)−1∆xnt has local seminorm

‖v‖x = (1 + λ)−1‖∆xnt‖x = λ(1 + λ)−1 < 1,

so it follows from Theorem 16.3.2 that the point x+ = x + v lies in X and
that

f(x+) ≤ f(x) +Df(x)[v] + ρ(‖v‖x) = f(x) +
1

1 + λ
〈f ′(x),∆xnt〉+ ρ(

λ

1 + λ
)

= f(x)− λ2

1 + λ
− λ

1 + λ
− ln

1

1 + λ
= f(x)− λ+ ln(1 + λ)

= f(x)− ρ(−λ).

Theorem 16.4.2. The Newton decrement λ(f, x) of a downwards bounded
closed self-concordant function f : X → R is finite at each point x ∈ X and
infx∈X λ(f, x) = 0.

Proof. Let v be an arbitrary vector in the recessive subspace Vf = N (f ′′(x)).
Then

f(x+ tv) = f(x) + t〈f ′(x), v〉

for all t ∈ R according to Theorem 16.2.1, and since f is supposed to be
bounded below, this implies that 〈f ′(x), v〉 = 0. This proves the implication

f ′′(x)v = 0⇒ 〈f ′(x), v〉 = 0,
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which means that there exists a Newton direction at the point x. Hence,
λ(f, x) is a finite number.

If there is a positive number δ such that λ(f, x) ≥ δ for all x ∈ X, then
repeated application of Theorem 16.4.1, with an arbitrary point x0 ∈ X
as starting point, results in a sequence (xk)

∞
0 of points in X, defined as

xk+1 = x+
k and satisfying the inequality

f(xk) ≤ f(x0)− kρ(−δ)

for all k. Since ρ(−δ) > 0, this contradicts our assumption that f is bounded
below. Thus, infx∈X λ(f, x) = 0.

Theorem 16.4.3. All sublevel sets of a non-degenerate closed self-concordant
function f : X → R are compact sets if λ(f, x0) < 1 for some point x0 ∈ X.

Proof. The sublevel sets are closed since the function is closed, and to prove
that they are also bounded it is enough to prove that the particular sublevel
set S = {x ∈ X | f(x) ≤ f(x0)} is bounded, because of Theorem 6.8.3.

So, let x be an arbitrary point in S, and write r = ‖x − x0‖x0 and
λ0 = λ(f, x0) for short. Then

f(x) ≥ f(x0) +Df(x0)[x− x0] + ρ(−r),

according to Theorem 16.3.2, and

Df(x0)[x− x0] = 〈f ′(x0), x− x0〉 ≥ −λ(f, x0)‖x− x0‖x0 = −λ0r,

by Theorem 15.1.2. Combining these two inequalities we obtain the inequal-
ity

f(x0) ≥ f(x) ≥ f(x0)− λ0r + ρ(−r),
which simplifies to

r − ln(1 + r) = ρ(−r) ≤ λ0r.

Hence,

(1− λ0)r ≤ ln(1 + r)

and it follows that r ≤ r0, r0 being the unique positive root of the equation
(1 − λ0)r = ln(1 + r). The sublevel set S is thus included in the ellipsoid
{x ∈ Rn | ‖x− x0‖x0 ≤ r0}, and it is therefore a bounded set.

Theorem 16.4.4. A closed self-concordant function f : X → R has a mini-
mum point if λ(f, x0) < 1 for some point x0 ∈ X.

Proof. If in addition f is non-degenerate, then S = {x ∈ X | f(x) ≤ f(x0)}
is a compact set according to the previous theorem, so the restriction of
f to the sublevel set S attains a mininum, and this minimum is clearly a
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global minimum of f . The minimum point is furthermore unique, since non-
degenerate self-concordant functions are strictly convex.

If f is degenerate, then there is a non-degenerate closed self-concordant
function g : X0 → R with the same range as f , according to the discussion
following Theorem 16.2.1. The relationship between the two functions has
the form g(y) = f(Ay + v), where A is an injective linear map and v is
an arbitrary vector in the recessive subspace Vf . To the point x0 there
corresponds a point y0 ∈ X0 such that Ay0 + v = x0 for some v ∈ Vf , and
λ(g, y0) ≤ λ(f, x0) < 1. By the already proven part of the theorem, g has
a minimum point ŷ, and this implies that all points in the set Aŷ + Vf are
minimum points of f .

Theorem 16.4.5. Every downwards bounded closed self-concordant function
f : X → R has a minimum point.

Proof. It follows from Theorem 16.4.2 that there is a point x0 ∈ X such that
λ(f, x0) < 1, so the theorem is a corollary of Theorem 16.4.4.

Our next theorem describes how well a given point approximates the
minimum point of a closed self-concordant function.

Theorem 16.4.6. Let f : X → R be a closed self-concordant function with
a minimum point x̂. If x ∈ X is an arbitrary point with Newton decrement
λ = λ(f, x) < 1, then

ρ(−λ) ≤ f(x)− f(x̂) ≤ ρ(λ),(16.9)

λ

1 + λ
≤ ‖x− x̂‖x ≤

λ

1− λ
,(16.10)

‖x− x̂‖x̂ ≤
λ

1− λ
.(16.11)

Remark. Since ρ(t) ≤ t2 if t ≤ 1
2
, we conclude from inequality (16.9) that

f(x)− fmin ≤ λ(f, x)2

as soon as λ(f, x) ≤ 1
2
.

Proof. To simplify the notation, let v = x− x̂ and r = ‖v‖x.
The left part of inequality (16.9) follows directly from the remark after

Theorem 16.4.1. To prove the right part of the same inequality, we recall the
inequality

(16.12) 〈f ′(x), v〉 ≤ λ(f, x)‖v‖x = λr,
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which we combine with the left part of inequality (16.5) in Theorem 16.3.2
and inequality (iii) in Lemma 16.3.1. This results in the following chain of
inequalities:

f(x̂) = f(x− v) ≥ f(x) + 〈f ′(x),−v〉+ ρ(−‖−v‖x)
= f(x)− 〈f ′(x), v〉+ ρ(−r)
≥ f(x)− λr + ρ(−r) ≥ f(x)− ρ(λ),

and the proof of inequality (16.9) is now complete.
Since x− v = x̂ and f ′(x̂) = 0, it follows from inequality (16.12) and the

left part of inequality (16.4) that

λr ≥ 〈f ′(x), v〉 = 〈f ′(x− v),−v〉 − 〈f ′(x),−v〉 ≥ ‖−v‖2
x

1 + ‖−v‖x
=

r2

1 + r
,

and by solving the inequality above with respect to r, we obtain the right
part of inequality (16.10).

The left part of the same inequality obviously holds if r ≥ 1. So assume
that r < 1. Due to inequality (16.7),

〈f ′(x), w〉 = 〈f ′(x− v),−w〉 − 〈f ′(x),−w〉 ≤ ‖−v‖x‖−w‖x
1− ‖−v‖x

=
r

1− r
‖w‖x,

and hence
λ = sup

‖w‖x≤1

〈f ′(x), w〉 ≤ r

1− r
,

which gives the left part of inequality (16.10).

To prove the remaining inequality (16.11), we use the left part of inequal-
ity (16.5) with y replaced by x and x replaced by x̂, which results in the
inequality

ρ(−‖x− x̂‖x̂) ≤ f(x)− f(x̂).

According to the already proven inequality (16.9), f(x)− f(x̂) ≤ ρ(λ), so it
follows that ρ(−‖x − x̂‖x̂) ≤ ρ(λ), and by Lemma 16.3.1, this means that

‖x− x̂‖x̂ ≤
λ

1− λ
.

Theorem 16.4.7. Let f be a closed self-concordant function whose domain
X is a subset of Rn, and suppose that

ν = sup{λ(f, x) | x ∈ X} < 1.

Then X is equal to the whole space Rn, and f is a constant function.
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Proof. It follows from Theorem 16.4.4 that f has a minimum point x̂ and
from inequality (16.9) in Theorem 16.4.6 that

ρ(−ν) ≤ f(x)− f(x̂) ≤ ρ(ν)

for all x ∈ X. Thus, f is a bounded function, and since f is closed, this
implies that X is a set without boundary points. Hence, X = Rn.

Let v be an arbitrary vector in Rn. By applying inequality (16.11) with
x = x̂+ tv, we obtain the inequality

t‖v‖x̂ = ‖x− x̂‖x̂ ≤
λ(f, x)

1− λ(f, x)
≤ ν

1− ν
for all t > 0, and this implies that ‖v‖x̂ = 0. The recessive subspace Vf of
f is in other words equal to Rn, so f is a constant function according to
Theorem 16.2.1.

16.5 Newton’s method for self-concordant func-

tions

In this section we show that Newton’s method converges when the objec-
tive function f : X → R is closed, self-concordant and bounded below. We
shall also give an estimate of the number of iterations needed to obtain the
minimum with a given accuracy ε − an estimate that only depends on ε
and the difference between the minimum value and the function value at
the starting point. The algorithm starts with a damped phase, which re-
quires no line search as the step length at the point x can be chosen equal to
1/(1+λ(f, x)), and then enters into a pure phase with quadratic convergence,
when the Newton decrement is sufficiently small.

The damped phase

During the damped phase, the points xk in Newton’s algorithm are generated
recursively by the equation

xk+1 = xk +
1

1 + λk
vk,

where λk = λ(f, xk) is the Newton decrement at xk and vk is a Newton
direction at the same point, i.e

f ′′(xk)vk = −f ′(xk).
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According to Theorem 16.4.1, if the starting point x0 is a point in X, then
all generated points xk will lie in X and

f(xk+1)− f(xk) ≤ ρ(−λk).

If δ > 0 and λk ≥ δ, then ρ(−λk) ≥ ρ(−δ), because the function ρ(t)
is decreasing for för t < 0. So if xN is the first point of the sequence that
satisfies the inequality λN = λ(f, xN) < δ, then

fmin − f(x0) ≤ f(xN)− f(x0) =
N−1∑
k=0

(f(xk+1)− f(xk))

≤ −
N−1∑
k=0

ρ(−λk) ≤ −
N−1∑
k=0

ρ(−δ) = −Nρ(−δ),

which implies that att N ≤ (f(x0)− fmin)/ρ(−δ). This proves the following
theorem.

Theorem 16.5.1. Let f : X → R be a closed, self-concordant and downwards
bounded function. Using Newton’s damped algorithm with step size as above,
we need at most ⌊f(x0)− fmin

ρ(−δ)

⌋
iterations to generate a point x with Newton decrement λ(f, x) < δ from an
arbitrary starting point x0 in X.

Local convergence

We now turn to the study of Newton’s pure method for starting points that
are sufficiently close to the minimum point x̂. For a corresponding analysis
of Newton’s damped method we refer to exercise 16.6.

Theorem 16.5.2. Let f : X → R be a closed self-concordant function, and
suppose that x ∈ X is a point with Newton decrement λ(f, x) < 1. Let ∆xnt

be a Newton direction at x, and let

x+ = x+ ∆xnt.

Then, x+ is a point in X and

λ(f, x+) ≤
( λ(f, x)

1− λ(f, x)

)2

.
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Proof. The conclusion that x+ lies in X follows from Theorem 16.3.2, because
‖∆xnt‖x = λ(f, x) < 1. To prove the inequality for λ(f, x+), we first use
inequality (16.7) of the same theorem with v = x+ − x = ∆xnt and obtain

〈f ′(x+), w〉 ≤ 〈f ′(x), w〉+ 〈f ′′(x)∆xnt, w〉+
λ(f, x)2‖w‖x
1− λ(f, x)

= 〈f ′(x), w〉+ 〈−f ′(x), w〉+
λ(f, x)2‖w‖x
1− λ(f, x)

=
λ(f, x)2‖w‖x
1− λ(f, x)

.

But

‖w‖x ≤
‖w‖x+

1− λ(f, x)
,

by inequality (16.6), so it follows that

〈f ′(x+), w〉 ≤ λ(f, x)2‖w‖x+
(1− λ(f, x))2

,

and this implies that

λ(f, x+) = sup
‖w‖x+≤1

〈f ′(x+), w〉 ≤ λ(f, x)2

(1− λ(f, x))2
.

We are now able to prove the following convergence result for Newton’s
pure method.

Theorem 16.5.3. Suppose that f : X → R is a closed self-concordant func-
tion and that x0 is a point in X with Newton decrement

λ(f, x0) ≤ δ < λ = 1
2
(3−

√
5) = 0.381966 . . . .

Let the sequence (xk)
∞
0 be recursively defined by

xk+1 = xk + vk,

where vk is a Newton direction at the point xk.

The sequence (f(xk))
∞
0 converges to the minimum value fmin of the func-

tion f , and if ε > 0 then

f(xk)− fmin < ε

for k > A + log2(log2B/ε), where A and B are constants that only depend
on δ.

Moreover, if f is a non-degenerate function, then (xk)
∞
0 converges to the

unique minimum point of f .
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Proof. The critical number λ is a root of the equation (1 − λ)2 = λ, and if
0 ≤ λ < λ then λ < (1− λ)2.

Let K(λ) = (1 − λ)−2; the function K is increasing in the interval [0, λ[
and K(λ)λ < 1. It therefore follows from Theorem 16.5.2 that the following
inequality is true for all points x ∈ X with λ(f, x) ≤ δ < λ:

λ(f, x+) ≤ K(λ(f, x))λ(f, x)2 ≤ K(δ)λ(f, x)2 ≤ K(δ)δλ(f, x) ≤ λ(f, x) ≤ δ.

Now, let λk = λ(f, xk). Due to the inequality above, it follows by induc-
tion that λk ≤ δ and that

λk+1 ≤ K(δ)λ2
k

for all k, and the latter inequality in turn implies that

λk ≤ K(δ)−1
(
K(δ)λ0

)2k ≤ (1− δ)2
(
K(δ)δ)2k .

Hence, λk tends to 0 as k → ∞, because K(δ)δ < 1. By the remark
following Theorem 16.4.6,

f(xk)− fmin ≤ λ2
k,

if λk ≤ 1
2
, so we conclude that

lim
k→∞

f(xk) = fmin.

To prove the remaining error estimate, we can without loss of generaliza-
tion assume that ε < δ2, because if ε > δ2 then already

f(x0)− fmin ≤ λ(f, x0)2 ≤ δ2 < ε.

Let A and B be the constants defined by

A = − log2

(
−2 log2(K(δ)δ)

)
and B = (1− δ)4.

Then 0 < B ≤ 1, and log2(log2B/ε) is a well-defined number, since B/ε ≥
(1− δ)4/δ2 = (K(δ)δ)−2 > 1. If k > A+ log2(log2B/ε), then

λ2
k ≤ (1− δ)4

(
K(δ)δ

)2k+1

< ε,

and consequently f(xk)− fmin ≤ λ2
k < ε.

If f is a non-degenerate function, then f has a unique minimum point x̂,
and it follow from inequality (16.11) in Theorem 16.4.6 that

‖xk − x̂‖x̂ ≤
λk

1− λk
→ 0, as k →∞.

Since ‖·‖x̂ is a proper norm, this means that xk → x̂.
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When δ = 1/3, the values of the constants in Theorem 16.5.3 are A =
0.268 . . . and B = 16/81, and A + log2(log2B/ε) = 6.87 for ε = 10−30. So
with a starting point x0 satisfying λ(f, x0) < 1/3, Newton’s algorithm will
produce a function value that approximates the minimum value with an error
less than 10−30 after at most 7 iterations.

Newton’s method for self-concordant functions

By combining Newton’s damped method with 1/(1+λ(f, x)) as damping fac-
tor and Newton’s pure method, we arrive at the following variant of Newton’s
method.

Newton’s method

Given a positive number δ < 1
2
(3−

√
5), a starting point x0 ∈ X, and a

tolerance ε > 0.

1. Initiate: x := x0.
2. Compute the Newton decrement λ = λ(f, x).
3. Go to line 8 if λ < δ else continue.
4. Compute a Newton direction ∆xnt at the point x.
5. Update: x := x+ (1 + λ)−1∆xnt.
6. Go to line 2.
7. Compute the Newton decrement λ = λ(f, x).
8. Stopping criterion: stop if λ <

√
ε. x is an approximate optimal point.

9. Compute a Newton direction ∆xnt at the point x.
10. Update: x := x+ ∆xnt.
11. Go to line 7.

Assuming that f is closed, self-concordant and downwards bounded, the
damped phase of the algorithm, i.e. steps 2–6, continues during at most

b(f(x0)− fmin)/ρ(−δ)c
iterations, and the pure phase 7–11 ends according to Theorem 16.5.3 after
at most dA + log2(log2B/ε)e iterations. Therefore, we have the following
result.

Theorem 16.5.4. If the function f is closed, self-concordant and bounded
below, then the above Newton method terminates at a point x satisfying
f(x) < fmin + ε after at most

b(f(x0)− fmin))/ρ(−δ)c+ dA+ log2(log2B/ε)e

iterations, where A and B are the constants of Theorem 16.5.3.
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In particular, 1/ρ(−δ) = 21.905 when δ = 1/3, and the second term can
be replaced by the number 7 when ε ≥ 10−30. Thus, at most

b22(f(x0)− fmin)c+ 7

iterations are required to find an approximation to the minimum value that
meets all practical requirements by a wide margin.

Exercises

16.1 Show that the function f(x) = x lnx− lnx is self-concordant on R++.

16.2 Suppose fi : Xi → R are self-concordant functions for i = 1, 2, . . . ,m, and
let X = X1×X2×· · ·×Xm. Prove that the function f : X → R, defined by

f(x1, x2, . . . , xm) = f1(x1) + f2(x2) + · · ·+ fm(xm)

for x = (x1, x2, . . . , xm) ∈ X, is self-concordant.

16.3 Suppose that f : R++ → R is a three times continuously differentiable,
convex function, and that

|f ′′′(x)| ≤ 3
f ′′(x)

x
for all x.

a) Prove that the function

g(x) = − ln(−f(x))− lnx,

with {x ∈ R++ | f(x) < 0} as domain, is self-concordant.

[Hint: Use that 3a2b+ 3a2c+ 2b3 + 2c3 ≤ 2(a2 + b2 + c2)3/2 if a, b, c ≥ 0.]

b) Prove that the function

F (x, y) = − ln(y − f(x))− lnx

is self-concordant on the set {(x, y) ∈ R2 | x > 0, y > f(x)}.
16.4 Show that the following functions f satisfy the conditions of the previous

exercise:

a) f(x) = − lnx b) f(x) = x lnx c) f(x) = −xp, where 0 < p ≤ 1.

16.5 Let us write x′ for (x1, x2, . . . , xn−1) when x = (x1, x2, . . . , xn), and let ‖·‖
denote the Euclidean norm in Rn−1. Let X = {x ∈ Rn | ‖x′‖ < xn}, and
define the function f : X → R by f(x) = − ln(x2

n − ‖x′‖2). Prove that the
following identity holds for all v ∈ Rn:

D2f(x)[v, v] =
1

2

(
Df(x)[v]

)2
+ 2

(x2
n − ‖x′‖2)(‖x′‖2‖v′‖2 − 〈x′, v′〉2) + (vn‖x′‖2 − xn〈x′, v′〉)2

(x2
n − ‖x′‖2)2‖x′‖2

,
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and use it to conclude that f is a convex function and that λ(f, x) = 2 for
all x ∈ X.

16.6 Convergence for Newton’s damped method.
Suppose that the function f : X → R is closed and self-concordant, and
define for points x ∈ X with finite Newton decrement the point x+ by

x+ = x+
1

1 + λ(f, x)
∆xnt,

where ∆xnt is a Newton direction at x.

a) Then x+ is a point in X, according to Theorem 16.3.2. Show that

λ(f, x+) ≤ 2λ(f, x)2,

and hence that λ(f, x+) ≤ λ(f, x) if λ(f, x) ≤ 1
2 .

b) Suppose x0 is a point in X with Newton decrement λ(f, x0) ≤ 1
4 , and

define the sequence (xk)
∞
0 recursively by xk+1 = x+

k . Show that

f(xk)− fmin ≤ 1
4 ·
(

1
2

)2k+1

,

and hence that f(xk) converges quadratically to fmin.

Appendix

We begin with a result on tri-linear forms which was needed in the proof
of the fundamental inequality

∣∣D3f(x)[u, v, w]
∣∣ ≤ 2‖u‖x‖v‖x‖w‖x for self-

concordant functions.
Fix an arbitrary scalar product 〈· , ·〉 on Rn and let ‖·‖ denote the cor-

responding norm, i.e. ‖v‖ = 〈v, v〉1/2. If φ(u, v, w) is a symmetric tri-linear
form on Rn × Rn × Rn, we define its norm ‖φ‖ by

‖φ‖ = sup
u,v,w 6=0

|φ(u, v, w)|
‖u‖‖v‖‖w‖

.

The numerator and the denominator in the expression for ‖φ‖ are homoge-
neous of the same degree 3, hence

‖φ‖ = sup
(u,v,w)∈S3

|φ(u, v, w)|,

where S denotes the unit sphere in Rn with respect to the norm ‖·‖, i.e.

S = {u ∈ Rn | ‖u‖ = 1}.
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It follows from the norm definition that

|φ(u, v, w)| ≤ ‖φ‖‖u‖‖v‖‖w‖

for all vectors u, v, w in Rn.
Since tri-linear forms are continuous and the unit sphere is compact, the

least upper bound ‖φ‖ is attained at some point (u, v, w) ∈ S3, and we will
show that the least upper bound is indeed attained at some point where
u = v = w. This is the meaning of the following theorem.

Theorem 1. Suppose that φ(u, v, w) is a symmetric tri-linear form. Then

‖φ‖ = sup
u,v,w 6=0

|φ(u, v, w)|
‖u‖‖v‖‖w‖

= sup
v 6=0

|φ(v, v, v)|
‖v‖3

.

Remark. The theorem is a special case of the corresponding result for sym-
metric m-multilinear forms, but we only need the case m = 3. The general
case is proved by induction.

Proof. Let

‖φ‖′ = sup
v 6=0

|φ(v, v, v)|
‖v‖3

= sup
‖v‖=1

|φ(v, v, v)|.

We claim that ‖φ‖ = ‖φ‖′. Obviously, ‖φ‖′ ≤ ‖φ‖, so we only have to prove
the converse inequality ‖φ‖ ≤ ‖φ‖′.

To prove this inequality, we need the corresponding result for symmetric
bilinear forms ψ(u, v). To such a form there is associated a symmetric linear
operator (matrix) A such that ψ(u, v) = 〈Au, v〉, and if e1, e2, . . . , en is an
ON-basis of eigenvectors of A and λ1, λ2, . . . , λn denote the corresponding
eigenvalues with λ1 as the one with the largest absolute value, and if u, v ∈ S
are vectors with coordinates u1, u2, . . . , un and v1, v2, . . . , vn with respect to
the given ON-basis, then

|ψ(u, v)| = |
n∑
i=1

λiuivi| ≤
n∑
i=1

|λi||ui||vi| ≤ |λ1|
n∑
i=1

|ui||vi|

≤ |λ1|
( n∑
i=1

u2
i

)1/2( n∑
i=1

v2
i

)1/2

= |λ1| = |ψ(e1, e1)|,

which proves that sup(u,v)∈S2 |ψ(u, v)| = supv∈S |ψ(v, v)|.
We now return to the tri-linear form φ(u, v, w). Let (û, v̂, ŵ) be a point

in S3 where the least upper bound defining ‖φ‖ is attained, i.e.

‖φ‖ = φ(û, v̂, ŵ),
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and consider the function

ψ(u, v) = φ(u, v, ŵ);

this is a symmetric bilinear form on Rn × Rn and

sup
(u,v)∈S2

|ψ(u, v)| = ‖φ‖.

But as already proven,

sup
(u,v)∈S2

|ψ(u, v)| = sup
v∈S
|ψ(v, v)|.

Therefore, we conclude that we can withour restriction assume that û = v̂.

We have in other words shown that the set

A = {(v, w) ∈ S2 | |φ(v, v, w)| = ‖φ‖}
is nonempty. The set A is a closed subset of S2, and hence the number

α = max{〈v, w〉 | (v, w) ∈ A}

exists, and obviously 0 ≤ α ≤ 1.
Due to tri-linearity,

φ(u+ v, u+ v, w)− φ(u− v, u− v, w) = 4φ(u, v, w).

So if u, v, w are arbitrary vectors in S, i.e. vectors with norm 1, then

4|φ(u, v, w)| ≤ |φ(u+ v, u+ v, w)|+ |φ(u− v, u− v, w)|
≤ |φ(u+ v, u+ v, w)|+ ‖φ‖‖u− v‖2‖w‖
= |φ(u+ v, u+ v, w)| − ‖φ‖‖u+ v‖2 + ‖φ‖(‖u+ v‖2 + ‖u− v‖2)

= |φ(u+ v, u+ v, w)| − ‖φ‖‖u+ v‖2 + ‖φ‖(2‖u‖2 + 2‖v‖2)

= |φ(u+ v, u+ v, w)| − ‖φ‖‖u+ v‖2 + 4‖φ‖.

Now choose (v, w) ∈ A such that 〈v, w〉 = α. By the above inequality, we
then have

4‖φ‖ = 4|φ(v, v, w)| = 4|φ(v, w, v)|
≤ |φ(v + w, v + w, v)| − ‖φ‖‖v + w‖2 + 4‖φ‖,

and it follows that

|φ(v + w, v + w, v)| ≥ ‖φ‖‖v + w‖2.

Note that ‖v + w‖2 = ‖v‖2 + ‖w‖2 + 2〈v, w〉 = 2 + 2α > 0. Therefore, we
can form the vector z = (v + w)/‖v + w‖ and write the above inequality as

|φ(z, z, v)| ≥ ‖φ‖,
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which implies that

(16.13) |φ(z, z, v)| = ‖φ‖

since z and v are vectors in S. We conclude that the pair (z, v) is an element
of the set A, and hence

α ≥ 〈z, v〉 =
〈v, v〉+ 〈w, v〉
‖v + w‖

=
1 + α√
2 + 2α

=

√
1 + α

2
.

This inequality forces α to be greater than or equal to 1. Hence α = 1 and

〈z, v〉 = 1 = ‖z‖‖v‖.

So Cauchy–Schwarz’s inequality holds with equality in this case, and this
implies that z = v. By inserting this in equality (16.13), we obtain the
inequality

‖φ‖′ ≥ φ(v, v, v) = ‖φ‖,

and the proof of the theorem is now complete.

Our second result in this appendix is a uniqueness theorem for functions
that satisfy a special differential inequality.

Theorem 2. Suppose that the function y(t) is continuously differentiable in
the interval I = [0, b[, that y(t) ≥ 0, y(0) = 0 and y′(t) ≤ Cy(t)α for some
given constants C > 0 and α ≥ 1. Then, y(t) = 0 in the interval I.

Proof. Let a = sup{x ∈ I | y(t) = 0 for 0 ≤ t ≤ x}. We will prove that a = b
by showing that the assumption a < b gives rise to a contradiction.

By continuity, y(a) = 0. Choose a point c ∈]a, b[ and let

M = max{y(t) | a ≤ t ≤ c}.
Then choose a point d such that a < d < c and d − a ≤ 1

2
C−1M1−α. The

maximum of the function y(t) on the interval [a, d] is attained at some point
e, and by the least upper bound definition of the point a, we have y(e) > 0.
Of course, we also have y(e) ≤M , so it follows that

y(e) = y(e)− y(a) =

∫ e

a

y′(t) dt ≤ C

∫ e

a

y(t)α dt

≤ C(d− a)y(e)α ≤ C(d− a)Mα−1y(e) ≤ 1

2
y(e),

which is a contradiction.





Chapter 17

The path-following method

In this chapter, we describe a method for solving the optimization problem

min f(x)
s.t. x ∈ X

when X is a closed subset of Rn with nonempty interior and f is a con-
tinuous function which is differentiable in the interior of X. We assume
throughout that X = cl(intX). Pretty soon, we will restrict ourselves to
convex problems, i.e. assume that X is a convex set and f is a convex func-
tion, in which case, of course, automatically X = cl(intX) for all sets with
nonempty interior.

Descent methods require that the function f is differentiable in a neigh-
borhood of the optimal point, and if the optimal point lies on the boundary
of X, then we have a problem. One way to attack this problem is to choose
a function F : intX → R with the property that F (x) → +∞ as x goes
to boundary of X and a parameter µ > 0, and to minimize the function
f(x) + µF (x) over intX. This function’s minimum point x̂(µ) lies in the
interior of X, and since f(x) + µF (x) → f(x) as µ → 0, we can hope that
the function value f(x̂(µ)) should be close to the minimum value of f , if the
parameter µ is small enough. The function F acts as a barrier that prevents
the approximating minimum point from lying on the boundary.

The function µ−1f(x)+F (x) has of course the same minimum point x̂(µ)
as f(x)+µF (x), and for technical reasons it works better to have the param-
eter in front of the objective function f than in front of the barrier function
F . Henceforth, we will therefore instead, with new notation, examine what
happens to the minimum point x̂(t) of the function Ft(x) = tf(x) + F (x),
when the parameter t tends to +∞.

353
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17.1 Barrier and central path

Barrier

We begin with the formal definition of a barrier.

Definition. Let X be a closed convex set with nonempty interior. A barrier
to the set X is a differentiable function F : intX → R with the property that
limk→∞ F (xk) = +∞ for all sequences (xk)

∞
1 that converge to a boundary

point of X.
If a barrier function has a unique minimum point, then this point is called

the analytic center of the set X (with respect to the barrier).

Remark 1. A convex function with an open domain goes to∞ at the bound-
ary if and only if it is a closed function. Hence, if F : intX → R is convex
and differentiable, then F is a barrier to X if and only if F is closed.

Remark 2. A strictly convex barrier function to a compact convex set has
a unique minimum point in the interior of the set. So compact convex sets
with nonempty interiors have analytic centers with respect to strictly convex
barriers.

Now, let F be a barrier to the closed convex set X, and suppose that we
want to minimize a given function f : X → R. For each real number t ≥ 0
we define the function Ft : intX → R by

Ft(x) = tf(x) + F (x).

In particular, F0 = F . The following theorem is the basis for barrier-based
interior-point methods for minimization.

Theorem 17.1.1. Suppose that f : X → R is a continuous function, and let
F be a downwards bounded barrier to the set X. Suppose that the functions
Ft have minimum points x̂(t) in the interior of X for each t > 0. Then,

lim
t→+∞

f(x̂(t)) = inf
x∈X

f(x).

Proof. Let vmin = infx∈X f(x) and M = infx∈intX F (x). (We do not exclude
the possibility that vmin = −∞, but M is of course a finite number.)

Choose, given η > vmin, a point x∗ ∈ intX such that f(x∗) < η. Then

vmin ≤ f(x̂(t)) ≤ f(x̂(t)) + t−1(F (x̂(t))−M) = t−1
(
Ft(x̂(t))−M

)
≤ t−1

(
Ft(x

∗)−M
)

= f(x∗) + t−1(F (x∗)−M).

Since the right hand side of this inequality tends to f(x∗) as t → +∞, it
follows that vmin ≤ f(x̂(t)) < η for all sufficiently large numbers t, and this
proves the theorem.
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In order to use the barrier method, one needs of course an appropriate
barrier to the given set. For sets of the type

X = {x ∈ Ω | gi(x) ≤ 0, i = 1, 2, . . . ,m}

we will use the logarithmic barrier function

(17.1) F (x) = −
m∑
i=1

ln(−gi(x)).

Note that the barrier function F is convex if all functions gi : Ω → R are
convex. In this case, X is a convex set, and the interior of X is nonempty if
Slater’s condition is satisfied, i.e. if there is a point x ∈ Ω such that gi(x) < 0
for all i.

Other examples of barriers are the exponential barrier function

F (x) =
m∑
i=1

e−1/gi(x)

and the power function barriers

F (x) =
m∑
i=1

(−gi(x))−p,

where p > 0.

Central path

Definition. Let F be a barrier to the set X and suppose that the functions
Ft have unique minimum points x̂(t) ∈ intX for all t ≥ 0. The curve
{x̂(t) | t ≥ 0} is called the central path for the problem minx∈X f(x).

Note that x̂(0) is the analytic center of X with respect to the barrier F ,
so the central path starts at the analytic center.

Since the gradient is zero at an optimal point, we have

(17.2) tf ′(x̂(t)) + F ′(x̂(t)) = 0

for all points on the central path. The converse is true if the objective
function f and the barrier function F are convex, i.e. x̂(t) is a point on the
central path if and only if equation (17.2) is satisfied.

The logarithmic barrier F to X = {x ∈ Ω | gi(x) ≤ 0, i = 1, 2, . . . ,m}
has derivative

F ′(x) = −
m∑
i=1

1

gi(x)
g′i(x),
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x1

x2

x̂

Figure 17.1. The central path associated with the problem of mini-
mizing the function f(x) = x1ex1+x2 over X = {x ∈ R2 | x2

1 + x2
2 ≤ 1}

with barrier function F (x) = (1 − x2
1 − x2

2)−1. The minimum point is
x̂ = (−0.5825, 0.8128).

so the central path equation (17.2) has in this case the following form for
t > 0:

(17.3) f ′(x̂(t))− 1

t

m∑
i=1

1

gi(x̂(t))
g′i(x̂(t)) = 0.

Let us now consider a convex optimization problem of the following type:

(P) min f(x)
s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m

We assume that Slater’s condition is satisfied and that the problem has an
optimal solution x̂.

The corresponding Lagrange function L is given by

L(x, λ) = f(x) +
m∑
i=1

λigi(x),

and it follows from equation (17.3) that L′x(x̂(t), λ̂) = 0, if λ̂ ∈ Rm
+ is the

vector defined by

λ̂i = − 1

tgi(x̂(t))
.

Since the Lagrange function is convex in the variable x, we conclude that
x̂(t) is a minimum point for the function L(· , λ̂). The value at λ̂ of the
dual function φ : Rm

+ → R to our minimization problem (P) is therefore by
definition

φ(λ̂) = L(x̂(t), λ̂) = f(x̂(t))−m/t.
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x11

x2
x̂

x̂F

Figure 17.2. The central path for the LP problem minx∈X 2x1 − 3x2

with X = {x ∈ R2 | x2 ≥ 0, x2 ≤ 3x1, x2 ≤ x1 + 1, x1 + x2 ≤ 4}
and logarithmic barrier. The point x̂F is the analytic center of X, and
x̂ = (1.5, 2.5) is the optimal solution.

By weak duality, φ(λ̂) ≤ f(x̂), so it follows that

f(x̂(t))−m/t ≤ f(x̂).

We have thus arrived at the following approximation theorem, which for
convex problems with logarithmic barrier provides more precise information
than Theorem 17.1.1.

Theorem 17.1.2. The points x̂(t) on the central path for the convex mini-
mization problem (P) with optimal solution x̂ and logarithmic barrier satisfy
the inequality

f(x̂(t))− f(x̂) ≤ m

t
.

Note that the estimate of the theorem depends on the number of con-
straints but not on the dimension.

17.2 Path-following methods

A strategy for determining the optimal value of the convex optimization
problem

(P) min f(x)
s.t. gi(x) ≤ 0, i = 1, 2, . . . ,m

for twice continuously differentiable objective and constraint functions with
an error that is less than or equal to ε, would in light of Theorem 17.1.2
be to solve the optimization problem minFt(x) with logarithmic barrier F
for t = m/ε, using for example Newton’s method. The strategy works for
small problems and with moderate demands on accuracy, but better results
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are obtained by solving the problems minFt(x) for an increasing sequence of
t-values until t ≥ m/ε.

A simple version of the barrier method or the path-following method, as
it is also called, therefore looks like this:

Path-following method

Given a starting point x = x0 ∈ intX, a real number t = t0 > 0, an update
parameter α > 1 and a tolerance ε > 0.

Repeat

1. Compute x̂(t) by minimizing Ft = tf + F with x as starting point

2. Update: x := x̂(t).

3. Stopping criterion: stop if m/t ≤ ε.

4. Increase t: t := αt.

Step 1 is called an outer iteration or a centering step because it is about
finding a point on the central path. To minimize the function Ft, Newton’s
method is used, and the iterations of Newton’s method to compute x̂(t) with
x as the starting point are called inner iterations.

It is not necessary to compute x̂(t) exactly in the outer iterations; the
central path serves no other function than to lead to the optimal point x̂,
and good approximations to points on the central path will also give rise to
a sequence of points which converges to x̂.

The computational cost of the method obviously depends on the total
number of outer iterations that have to be performed before the stopping
criterion is met, and on the number of inner iterations in each outer iteration.

The update parameter α

The parameter α (and the initial value t0) determines the number of outer
iterations required to reach the stopping criterion t ≥ m/ε. If α is small, i.e.
close to 1, then many outer iterations are needed, but on the other hand,
each outer iteration requires few inner iterations since the minimum point
x = x̂(t) of the function Ft is then a very good starting point in Newton’s
algorithm for the problem of minimizing the function Fαt.

For large α values the opposite is true; few outer iterations are needed,
but each outer iteration now requires more Newton steps as the starting point
x̂(t) is farther from the minimum point x̂(αt).

From experience, it turns out, however, that the above two effects tend
to offset each other. The total number of Newton steps is roughly constant
over a wide range of α, and values of α between 10 and 20 usually work well.
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The initial value t0

The choice of the starting value t0 is also significant. A small value requires
many outer iterations before the stopping criterion is met. A large value,
on the other hand, requires many inner iterations in the first outer iteration
before a sufficiently good approximation to the point x̂(t0) on the central
path has been found. Since f(x̂(t0)) − f(x̂) ≈ m/t0, it may be reasonable
to choose t0 so that m/t0 is of the same magnitude as f(x0) − f(x̂). The
problem, of course, is that the optimal value f(x̂) is not known a priori, so
it is necessary to use a suitable estimate. If, for example, a feasible point λ
for the dual problem is known and φ is the dual function, then φ(λ) can be
used as an approximation of f(x̂), and t0 = m/(f(x0)− φ(λ)) can be taken
as initial t-value.

The starting point x0

The starting point x0 must lie in the interior of X, i.e. it has to satisfy all
constraints with strict inequality. If such a point is not known in advance,
one can use the barrier method on an artificial problem to compute such
a point, or to conclude that the original problem has no feasible points.
The procedure is called phase 1 of the path-following method and works as
follows.

Consider the inequalities

(17.4) gi(x) ≤ 0, i = 1, 2, . . . ,m

and suppose that the functions gi : Ω→ R are convex and twice continuously
differentiable. To determine a point that satisfies all inequalities strictly or
to determine that there is no such point, we form the optimization problem

(17.5) min s
s.t. gi(x) ≤ s, i = 1, 2, . . . ,m

in the variables x and s. This problem has strictly feasible points, because we
can first choose x0 ∈ Ω arbitrarily and then choose s0 > maxi gi(x0), and we
obtain in this way a point (x0, s0) ∈ Ω×R that satisfies the constraints with
strict inequalities. The functions (x, s) 7→ gi(x) − s are obviously convex.
We can therefore use the path-following method on the problem (17.5), and
depending on the sign of the problem’s optimal value vmin, we get three cases.

vmin < 0: The system (17.4) has strictly feasible solutions. Indeed, if (x, s)
is a feasible point for the problem (17.5) with s < 0, then gi(x) < 0
for all i. This means that it is not necessary to solve the optimization
problem (17.5) with great accuracy. The algorithm can be stopped as
soon as it has generated a point (x, s) with s < 0.
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vmin > 0: The system (17.4) is infeasible. Also in this case, it is not necessary
to solve the problem with great accuracy. We can stop as soon as we
have found a feasible point for the dual problem with a positive value
of the dual function, since this implies that vmin > 0.

vmin = 0: If the greatest lower bound vmin = 0 is attained, i.e. if there is
a point (x̂, ŝ) with ŝ = 0, then the system (17.4) is feasible but not
strictly feasible. The system (17.4) is infeasible if vmin is not attained.
In practice, it is of course impossible to determine exactly that vmin = 0;
the algorithm terminates with the conclusion that |vmin| < ε for some
small positive number ε, and we can only be sure that the system
gi(x) < −ε is infeasible and that the system gi(x) ≤ ε is feasible.

Convergence analysis

At the beginning of outer iteration number k, we have t = αk−1t0 . The
stopping criterion will be triggered as soon as m/(αk−1t0) ≤ ε, i.e. when
k− 1 ≥ (log(m/(εt0))/ logα. The number of outer iterations is thus equal to⌈ log(m/(εt0)

logα

⌉
+ 1

(for ε ≤ m/t0).
The path-following method therefore works, provided that the minimiza-

tion problems

(17.6) min tf(x) + F (x)
s.t. x ∈ intX

can be solved for t ≥ t0. Using Newton’s method, this is true, for example,
if the objective functions satisfy the conditions of Theorem 15.2.4, i.e. if Ft
is strongly convex, has a Lipschitz continuous derivative and the sublevel set
corresponding to the starting point is closed.

A question that remains to be resolved is whether the problem (17.6)
gets harder and harder, that is requires more innner iterations, when t grows.
Practical experience shows that this is not so− in most problems, the number
of Newton steps seems to be roughly constant when t grows. For problems
with self-concordant objective and barrier functions, it is possible to obtain
exact estimates of the total number of iterations needed to solve the opti-
mization problem (P) with a given accuracy, and this will be the theme in
Chapter 18.



Chapter 18

The path-following method
with self-concordant barrier

18.1 Self-concordant barriers

Definition. Let X be a closed convex subset of Rn with nonempty interior
intX, and let ν be a nonnegative number. A function f : intX → R is called
a self-concordant barrier to X with parameter ν, or shorter a ν-self-concordant
barrier, if the function is closed, self-concordant and non-constant, and the
Newton decrement satisfies the inequality

(18.1) λ(f, x) ≤ ν1/2

for all x ∈ intX.

It follows from Theorem 15.1.2 and Theorem 15.1.3 that inequality (18.1)
holds if and only if

|〈f ′(x), v〉| ≤ ν1/2‖v‖x
for all vectors v ∈ Rn, or equivalently, if and only if(

Df(x)[v]
)2 ≤ ν D2f(x)[v, v]

for all v ∈ Rn.

A closed self-concordant function f : Ω → R with the property that
supx∈Ω λ(f, x) < 1 is necessarily constant and the domain Ω is equal to Rn,
according to Theorem 16.4.7. The parameter ν of a self-concordant barrier
must thus be greater than or equal to 1.

Example 18.1.1. The function f(x) = − lnx is a 1-self-concordant barrier
to the interval [0,∞[, because f is closed and self-concordant and λ(f, x) = 1
for all x > 0.
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Example 18.1.2. Convex quadratic functions

f(x) = 1
2
〈x,Ax〉+ 〈b, x〉+ c

are self-concordant on Rn, but they do not function as self-concordant barri-
ers, because supλ(f, x) =∞ for all non-constant convex quadratic functions
f , according to Example 15.1.2.

We will show later that only subsets of halfspaces can have self-concordant
barriers, so there is no self-concordant barrier to the whole Rn.

Example 18.1.3. Let g(x) be a non-constant convex, quadratic function.
The function f , defined by

f(x) = − ln(−g(x)),

is a 1-self-concordant barrier to the set X = {x ∈ Rn | g(x) ≤ 0}.

Proof. Let g(x) = 1
2
〈x,Ax〉 + 〈b, x〉 + c, let v be an arbitrary vector in Rn,

and set

α = − 1

g(x)
Dg(x)[v] and β = − 1

g(x)
D2g(x)[v, v] = − 1

g(x)
〈v, Av〉,

where x is an arbitrary point in the interior of X. Note that β ≥ 0 and that
D3g(x)[v, v, v] = 0. It therefore follows from the differentiation rules that

Df(x)[v] = − 1

g(x)
Dg(x)[v] = α,

D2f(x)[v, v] =
1

g(x)2

(
Dg(x)[v]

)2 − 1

g(x)
D2g(x)[v, v] = α2 + β ≥ 0,

D3f(x)[v, v, v] = − 2

g(x)3

(
Dg(x)[v]

)3
+

3

g(x)2
D2g(x)[v, v]Dg(x)[v]

− 1

g(x)
D3g(x)[v, v, v] = 2α3 + 3αβ.

The function f is convex since its second derivative is positive semidef-
inite, and it is closed since f(x) → +∞ as g(x) → 0. By squaring it is
easy to show that the inequality |2α3 + 3αβ| ≤ 2(α2 + β)3/2 holds for all
α ∈ R and all β ∈ R+, and obviously α2 ≤ α2 + β. This means that∣∣D3f(x)[v, v, v]

∣∣ ≤ 2
(
D2f(x)[v, v]

)3/2
and that (Df(x)[v])2 ≤ D2f(x)[v, v].

So f is 1-self-concordant.
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The following three theorems show how to build new self-concordant bar-
riers from given ones.

Theorem 18.1.1. If f is a ν-self-concordant barrier to the set X and α ≥ 1,
then αf is an αν-self-concordant barrier to X.

Proof. The proof is left as a simple exercise.

Theorem 18.1.2. If f is a µ-self-concordant barrier to the set X and g is a
ν-self-concordant barrier to the set Y , then the sum f+g is a self-concordant
barrier with parameter µ + ν to the intersection X ∩ Y . And f + c is a µ-
self-concordant barrier to X for each constant c.

Proof. The sum f + g is a closed convex function, and it is self-concordant
on the set int(X ∩ Y ) according to Theorem 16.1.5. To prove that the sum
is a self-concordant barrier with parameter (µ + ν), we assume that v is an
arbitrary vector in Rn and write a = D2f(x)[v, v] and b = D2g(x)[v, v]. We
then have, by definition,(

Df(x)[v]
)2 ≤ µa and

(
Dg(x)[v]

)2 ≤ νb,

and using the inequality 2
√
µνab ≤ νa + µb between the geometric and the

arithmetic mean, we obtain the inequality(
D(f + g)(x)[v]

)2
=
(
Df(x)[v]

)2
+
(
Dg(x)[v]

)2
+ 2Df(x)[v] ·Dg(x)[v]

≤ µa+ νb+ 2
√
µaνb ≤ µa+ νb+ νa+ µb

= (µ+ ν)(a+ b) = (µ+ ν)D2(f + g)(x)[v, v],

which means that λ(f + g, x) ≤ (µ+ ν)1/2.
The assertion about the sum f + c is trivial, since λ(f, x) = λ(f + c, x)

for constants c.

Theorem 18.1.3. Suppose that A : Rm → Rn is an affine map and that f is
a ν-self-concordant barrier to the subset X of Rn. The composition g = f ◦A
is then a ν-self-concordant barrier to the inverse image A−1(X).

Proof. The proof is left as an exercise.

Example 18.1.4. It follows from Example 18.1.1 and Theorems 18.1.2 and
18.1.3 that the function

f(x) = −
m∑
i=1

ln(bi − 〈ai, x〉)

is an m-self-concordant barrier to the polyhedron

X = {x ∈ Rn | 〈ai, x〉 ≤ bi, i = 1, 2, . . . ,m}.
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Theorem 18.1.4. If f is a ν-self-concordant barrier to the set X, then

〈f ′(x), y − x〉 ≤ ν

for all x ∈ intX and all y ∈ X.

Remark. It follows that a set with a self-concordant barrier must be a subset
of some halfspace. Indeed, a set X with a ν-self-concordant barrier is a subset
of the closed halfspace {y ∈ Rn | 〈c, y〉 ≤ ν + 〈c, x0〉}, where x0 ∈ intX is an
arbitrary point with c = f ′(x0) 6= 0.

Proof. Fix x ∈ intX and y ∈ X, let xt = x+ t(y−x) and define the function
φ by setting φ(t) = f(xt). Then φ is certainly defined on the open interval
]α, 1[ for some negative number α, since x is an iterior point. Moreover,

φ′(t) = Df(xt)[y − x],

and especially, φ′(0) = Df(x)[y − x] = 〈f ′(x), y − x〉. We will prove that
φ′(0) ≤ ν.

If φ′(0) ≤ 0, then we are done, so assume that φ′(0) > 0. By ν-self-
concordance,

φ′′(t) = D2f(xt)[y − x, y − x] ≥ ν−1
(
Df(xt)[y − x]

)2
= ν−1φ′(t)2 ≥ 0.

The derivative φ′ is thus increasing, and this implies that φ′(t) ≥ φ′(0) > 0
for t ≥ 0. Furthermore,

d

dt

(
− 1

φ′(t)

)
=
φ′′(t)

φ′(t)2
≥ 1

ν

for all t in the interval [0, 1[, so by integrating the last mentioned inequality
over the interval [0, β], where β < 1, we obtain the inequality

1

φ′(0)
>

1

φ′(0)
− 1

φ′(β)
=

∫ β

0

d

dt

(
− 1

φ′(t)

)
dt ≥ β

ν
.

Hence, φ′(0) < ν/β for all β < 1, which implies that φ′(0) ≤ ν.

Theorem 18.1.5. Suppose that f is a ν-self-concordant barrier to the set X.
If x ∈ intX, y ∈ X and 〈f ′(x), y − x〉 ≥ 0, then

‖y − x‖x ≤ ν + 2
√
ν.

Remark. If x ∈ intX is a minimum point, then 〈f ′(x), y − x〉 = 0 for all
points y ∈ X, since f ′(x) = 0. Hence, ‖y − x‖x ≤ ν + 2

√
ν for all y ∈ X if x

is a minimum point.
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Proof. Let r = ‖y−x‖x. If r ≤
√
ν, then there is nothing to prove, so assume

that r >
√
ν, and consider for α =

√
v/r the point z = x + α(y − x), which

lies in the interior of X since α < 1. By using Theorem 18.1.4 with z instead
of x, the assumption 〈f ′(x), y − x〉 ≥ 0, Theorem 16.3.2 and the equalities
y − z = (1− α)(y − x) and z − x = α(y − x), we obtain the following chain
of inequalities and equalities:

ν ≥ 〈f ′(z), y − z〉 = (1− α)〈f ′(z), y − x〉 ≥ (1− α)〈f ′(z)− f ′(x), y − x〉

=
1− α
α
〈f ′(z)− f ′(x), z − x〉 ≥ 1− α

α
· ‖z − x‖

2
x

1 + ‖z − x‖x

=
(1− α)α‖y − x‖2

x

1 + α‖y − x‖x
=
r
√
ν − ν

1 +
√
ν
.

The inequality between the extreme ends simplifies to r ≤ ν + 2
√
ν, which

is the desired inequality.

Given a self-concordant funktion f with the corresponding local seminorm
‖·‖x, we set

E(x; r) = {y ∈ Rn | ‖y − x‖x ≤ r}.

If f is non-degenerate, then ‖·‖x is a norm at each point x ∈ intX, and the
set E(x; r) is a closed ellipsoid in Rn with axis directions determined by the
eigenvectors of the second derivative f ′′(x).

For non-degenerate self-concordant barriers we now have the following
corollary to Theorem 18.1.5.

Theorem 18.1.6. Suppose that f is a non-degenerate ν-self-concordant bar-
rier to the closed convex set X. Then f attains a minimum if and only if X
is a bounded set. The minimum point x̂f ∈ intX is unique in that case, and

E(x̂f ; 1) ⊆ X ⊆ E(x̂f ; ν + 2
√
ν).

Remark. A closed self-concordant function whose domain does not contain
any line, is automatically non-degenerate, so it is not necessary to state
explicitly that a self-concordant barrier to a compact set should be non-
degenerate.

Proof. The sublevel sets of a closed convex function are closed, so if X is
a bounded set, then each sublevel set {x ∈ intX | f(x) ≤ α} is both closed
and bounded, and this implies that f has a minimum, and the minimum
point of a non-degenerate convex function is necessarily unique.

Conversely, assume that f has a minimum point x̂f . Then by the remark
following Theorem 18.1.5, ‖y − x̂f‖x̂f ≤ ν + 2

√
ν for all y ∈ X, and this
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amounts to the right inclusion in Theorem 18.1.6, which implies, of course,
that X is a bounded set.

The remaining left inclusion follows from Theorem 16.3.2, which implies
that the open ellipsoid {y ∈ Rn | ‖y − x‖x < 1} is a subset of intX for each
choice of x ∈ intX. The closure E(x; 1) is therefore a subset of X, and we
obtain the left inclusion by choosing x = x̂f .

Given a self-concordant barrier to a set X we will need to compare the
local seminorms ‖v‖x and ‖v‖y of a vector at different points x and y, and in
order to achieve this we need a measure for the distance from y to x relative
the distance from y to the boundary of X along the half-line from x through
x. The following definition provides us with the relevant measure.

Definition. Let X be a closed convex subset of Rn with nonempty interior.
For each y ∈ intX we define a function πy : Rn → R+ by setting

πy(x) = inf{t > 0 | y + t−1(x− y) ∈ X}.

Obviously, πy(y) = 0. To determine πy(x) if x 6= y, we consider the half-
line from y through x; if the half-line intersects the boundary of X in a point
z, then πy(x) = ‖x − y‖/‖z − y‖ (with respect to arbitrary norms), and if
the entire half-line lies in X, then πy(x) = 0. We note that πy(x) < 1 for
interior points x, that πy(x) = 1 for boundary points x, and that πy(x) > 1
for points outside X.

We could also have defined the function πy in terms of the Minkowski
functional that was introduced in Section 6.10, because

πy(x) = φ−y+X(x− y),

where φ−y+X is the Minkowski functional of the set −y +X.
The following simple estimate of πy(x) will be needed later on.

Theorem 18.1.7. Let X be a compact convex set, let x and y be points in
the interior of X, and suppose that

B(x, r) ⊆ X ⊆ B(0;R),

where the balls are given with respect to an arbitrary norm ‖·‖. Then

πy(x) ≤ 2R

2R + r
.

Proof. The inequality is trivially true if x = y, so suppose that x 6= y. The
half-line from y through x intersects the boundary of X in a point z and
‖z − y‖ = ‖z − x‖+ ‖x− y‖. Furthermore, ‖z − x‖ ≥ r and ‖x− y‖ ≤ 2R,
so it follows that

πy(x) =
‖x− y‖
‖z − y‖

=
(

1 +
‖z − x‖
‖x− y‖

)−1

≤
(

1 +
r

2R

)−1

=
2R

2R + r
.
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The direction derivative 〈f ′(x), v〉 of a ν-self-concordant barrier function
f is bounded by

√
ν‖v‖x, by definition. Our next theorem shows that the

same direction derivative is also bounded by a constant times ‖v‖y, if y is an
arbitrary point in the domain of f . The two local norms ‖v‖x and ‖v‖y are
also compared.

Theorem 18.1.8. Let f be a ν-self-concordant barrier to X, and let x and y
be two points in the interior of X. Then, for all vectors v

|〈f ′(x), v〉| ≤ ν

1− πy(x)
‖v‖y(18.2)

and

‖v‖x ≤
ν + 2

√
ν

1− πy(x)
‖v‖y.(18.3)

Proof. The two inequalities hold if y = x since

|〈f ′(x), v〉| ≤
√
ν‖v‖x ≤ ν‖v‖x

and πx(x) = 0. They also hold if ‖v‖y = 0, i.e. if the vector v belongs to the
recessive subspace of f , because then ‖v‖x = 0 and 〈f ′(x), v〉 = 0. Assume
henceforth that y 6= x and that ‖v‖y 6= 0.

First consider the case ‖v‖y = 1, and let s be an arbitrary number greater
than ν + 2

√
ν. Then, by Theorems 16.3.2 and 18.1.5, we conclude that

(i) The two points y ± v lie in X.

(ii) At least one of the two points x± s

‖v‖x
v lies outside X.

By the definition of πy(x) there is a vector z ∈ X such that

x = y + πy(x)(z − y),

and since

x± (1− πy(x))v = πy(x)z + (1− πy(x))(y ± v),

it follows from convexity that

(iii) The two points x± (1− πy(x))v lie in X.

It now follows from (iii) and Theorem 18.1.4 that

〈f ′(x),±v〉 =
1

1− πy(x)
〈f ′(x), x± (1− πy(x))v − x〉 ≤ ν

1− πy(x)
,

which means that
|〈f ′(x), v〉| ≤ ν

1− πy(x)
.
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This proves inequality (18.2) for vectors v with ‖v‖y = 1, and if v is an
arbitrary vector with ‖v‖y 6= 0, we obtain inequality (18.2) by replacing v in
the inequality above with v/‖v‖y.

By combining the two assertions (ii) and (iii) we conclude that

1− πy(x) <
s

‖v‖x
,

i.e. that

‖v‖x <
s

1− πy(x)
=

s

1− πy(x)
‖v‖y,

and since this holds for all s > ν + 2
√
ν, it follows that

‖v‖x ≤
ν + 2

√
ν

1− πy(x)
‖v‖y.

This proves inequality (18.3) in the case ‖v‖y = 1, and since the inequality
is homogeneous, it holds in general.

Definition. Let ‖·‖x be the local seminorm at x which is associated with the
two times differentiable convex function f : X → R, where X is a subset
of Rn. The corresponding dual local norm is the function ‖·‖∗x : Rn → R,
which is defined by

‖v‖∗x = sup
‖w‖x≤1

〈v, w〉

for all v ∈ Rn.

The dual norm is easily verified to be subadditive and homogeneous, i.e.
‖v + w‖∗x ≤ ‖v‖∗x + ‖w‖∗x and ‖λv‖∗x = |λ|‖v‖∗x for all v, w ∈ Rn and all real
numbers λ, but ‖·‖∗x is a proper norm on the whole of Rn only for points x
where the second derivative f ′′(x) is positive definite, because ‖v‖∗x =∞ if v
is a nonzero vector in the null space N (f ′′(x)) since ‖tv‖x = 0 for all t ∈ R
and 〈v, tv〉 = t‖v‖2 →∞ as t→∞. However, ‖·‖∗x is always a proper norm
when restricted to the subspace N (f ′′(x))⊥. See exercise 18.2.

By Theorem 15.1.3, we have the following expression for the Newton
decrement λ(f, x) in terms of the dual local norm:

λ(f, x) = ‖f ′(x)‖∗x.

The following variant of the Cauchy–Schwarz inequality holds för the local
seminorm.

Theorem 18.1.9. Assume that ‖v‖∗x <∞. Then

|〈v, w〉| ≤ ‖v‖∗x‖w‖x

for all vectors w.
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Proof. If ‖w‖x 6= 0 then ±w/‖w‖x are two vectors with local seminorm equal
to 1, so it follows from the definition of the dual norm that

± 1

‖w‖x
〈v, w〉 = 〈v,±w/‖w‖x〉 ≤ ‖v‖∗x,

and we obtain the sought inequality after multiplication by ‖w‖x.
If instead ‖w‖x = 0, then ‖tw‖x = 0 for all real numbers t, and it follows

from the supremum definition that t〈v, w〉 = 〈v, tw〉 ≤ ‖v‖∗x < ∞ for all t.
This being possible only if 〈v, w〉 = 0, we conclude that the inequality applies
in this case, too.

Later we will need various estimates of ‖v‖∗x. Our first estimate is in
terms of the width in different directions of the set X, and this motivates
our next definition.

Definition. Given a nonempty subset X of Rn, let VarX : Rn → R be the
function defined by

VarX(v) = sup
x∈X
〈v, x〉 − inf

x∈X
〈v, x〉.

VarX(v) is obviously a finite number for each v ∈ Rn if the set X is
bounded, and if v is a unit vector, then VarX(v) measures the width of the
set X in the direction of v.

Our next theorem shows how to estimate ‖·‖∗x using VarX .

Theorem 18.1.10. Suppose that f : X → R is a closed self-concordant func-
tion with a bounded open convex subset X of Rn as domain, and let ‖·‖∗x be
the dual local norm associated with the function f at the point x ∈ X. Then

‖v‖∗x ≤ VarX(v)

for all v ∈ Rn.

Proof. It follows from the previous theorem that y is a point in clX if x is a
point in X and ‖y − x‖x ≤ 1. Hence,

‖v‖∗x = sup
‖w‖x≤1

〈v, w〉 = sup
‖y−x‖x≤1

〈v, y − x〉 ≤ sup
y∈clX

〈v, y − x〉 = sup
y∈X
〈v, y − x〉

= sup
y∈X
〈v, y〉 − 〈v, x〉 ≤ sup

y∈X
〈v, y〉 − inf

y∈X
〈v, y〉 = VarX(v).

We have previously defined the analytic center of a closed convex set X
with respect to a given barrier as the unique minimum point of the barrrier,
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provided that there is one. According to Theorem 18.1.6, every compact
convex set with nonempty interior has an analytic center with respect to any
given ν-self-concordant barrier. We can now obtain an upper bound on the
dual local norm ‖v‖∗x at an arbitrary point x in terms of the parameter ν and
the value of the dual norm at the analytic center.

Theorem 18.1.11. Let X be a compact convex set, and let x̂f be the analytic
center of the set with respect to a ν-self-concordant barrier f . Then, for each
vector v ∈ Rn and each x ∈ intX,

‖v‖∗x ≤ (ν + 2
√
ν)‖v‖ ∗x̂f .

Proof. Let B1 = E(x; 1) and B2 = E(x̂f ; ν + 2
√
ν). Theorems 16.3.2 and

18.1.6 give us the inclusions B1 ⊆ X ⊆ B2, so it follows from the definition
of the dual local norm that

‖v‖∗x = sup
‖w‖x≤1

〈v, w〉 = sup
y∈B1

〈v, y − x〉 ≤ sup
y∈B2

〈v, y − x〉

= 〈v, x̂f − x〉+ sup
y∈B2

〈v, y − x̂f〉 = 〈v, x̂f − x〉+ sup
‖w‖x̂f≤ν+2

√
ν

〈v, w〉

= 〈v, x̂f − x〉+ (ν + 2
√
ν)‖v‖ ∗x̂f .

Since ‖−v‖∗x = ‖v‖∗x, we may now without loss of generality assume that
〈v, x̂f − x〉 ≤ 0, and this gives us the required inequality.

18.2 The path-following method

Standard form

Let us say that a convex optimization problem is in standard form if it is
presented in the form

min 〈c, x〉
s.t. x ∈ X

where X is a compact convex set with nonempty interior and X is equipped
with a ν-self-concordant barrier function F .

Remark. One can show that every compact convex set X has a barrier func-
tion, but for a barrier function to be useful in a practical optimization prob-
lem, it has to be explicitly given so that it is possible to efficiently calculate
its partial first and second derivatives.
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The assumption that the set X is bounded is not particularly restric-
tive for problems with finite optimal values, for we can always modify such
problems by adding artificial, very big bounds on the variables.

We also recall that an arbitrary convex problem can be transformed into
an equivalent convex problem with a linear objective function by an epigraph
formulation. (See Chapter 9.3.)

Example 18.2.1. Each LP problem with finite optimal value can be written
in standard form after suitable transformations. By first identifying the affine
hull of the polyhedron of feasible points with Rn for an appropriate n, we
can without restriction assume that the polyhedron has a nonempty interior,
and by adding big bounds on the variables, if necessary, we can also assume
that our polyhedron X of feasible points is compact. And with X written in
the form

(18.4) X = {x ∈ Rn | 〈ci, x〉 ≤ bi, i = 1, 2, . . . ,m},

we get an m-self-concordant barrier F to X, by defining

F (x) = −
m∑
i=1

ln(bi − 〈ci, x〉)

Example 18.2.2. Convex quadratic optimization problems, i.e. problems of
the type

min g(x)
s.t. x ∈ X

where g is a convex quadratic function and X is a bounded polyhedron in Rn

with nonempty interior, can be transformed, using an epigraph formulation
and an artificial bound M on the new variable s, to problems of the form

min s
s.t. (x, s) ∈ Y

where Y = {(x, s) ∈ Rn × R | x ∈ X, g(x) ≤ s ≤ M} is a compact convex
set with nonempty interior. Now assume that the polyhedron X is given by
equation (18.4) as an intersection of closed halfspaces. Then the function

F (x, s) = −
m∑
i=1

ln(bi − 〈ci, x〉)− ln(s− g(x))− ln(M − s)

is an (m+ 2)-self-concordant barrier to Y according to Example 18.1.3.
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Central path

We will now study the path-following method for the standard problem

(SP) min 〈c, x〉
s.t. x ∈ X

where X is a compact convex subset of Rn with nonempty interior, and F
is a ν-self-concordant barrier to X. The finite optimal value of the problem
is denoted by vmin.

For t ≥ 0 we define functions Ft : intX → R by

Ft(x) = t〈c, x〉+ F (x).

The functions Ft are closed and self-concordant, and since the set X is com-
pact, each function Ft has a unique minimum point x̂(t). The central path
{x̂(t) | t ≥ 0} is in other words well-defined, and its points satisfy the equa-
tion

(18.5) tc+ F ′(x̂(t)) = 0,

and the starting point x̂(0) is by definition the analytic center x̂F of X with
respect to the given barrier F .

We will use Newton’s method to determine the minimum point x̂(t),
and for that reason we need to calculate the Newton step and the Newton
decrement with respect to the function Ft at points in the interior of X.

Since F ′′t (x) = F ′′(x), the local norm ‖v‖x of a vector v with respect to
the function Ft is the same for all t ≥ 0, namely

‖v‖x =
√
〈v, F ′′(x)v〉.

In contrast, Newton steps and Newton decrements depend on t; the Newton
step at the point x is equal to −F ′′(x)−1F ′t(x) for the function Ft, and the
decrement is given by

λ(Ft, x) =
√
〈F ′t(x), F ′′(x)−1F ′t(x)〉 = ‖F ′′(x)−1F ′t(x)‖x.

The following theorem is used to formulate the stopping criterion in the
path-following method.

Theorem 18.2.1. (i) The points x̂(t) on the central path of the optimization
problem (SP) satisfy the inequality

〈c, x̂(t)〉 − vmin ≤
ν

t
.
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(ii) Moreover, the inequality

〈c, x〉 − vmin ≤
ν + κ(1− κ)−1

√
ν

t
.

holds for t > 0 and all point x ∈ intX satisfying the condition

λ(Ft, x) ≤ κ < 1.

Proof. (i) Because of equation (18.5), c = −t−1F ′(x̂(t)), and it therefore
follows from Theorem 18.1.4 that

〈c, x̂(t)〉 − 〈c, y〉 =
1

t
〈F ′(x̂(t)), y − x̂(t)〉 ≤ ν

t

for all y ∈ X. We obtain inequality (i) by choosing y as an optimal solution
to the problem (SP).

(ii) Since 〈c, x〉− vmin = (〈c, x〉− 〈c, x̂(t)〉) + (〈c, x̂(t)〉− vmin), it suffices, due
to the already proven inequality, to show that

(18.6) 〈c, x〉 − 〈c, x̂(t)〉 ≤ κ

1− κ
·
√
ν

t

if x ∈ intX and λ(Ft, x) ≤ κ < 1. But it follows from Theorem 16.4.6 that

‖x− x̂(t)‖x̂(t) ≤
λ(Ft, x)

1− λ(Ft, x)
≤ κ

1− κ
,

so by using that tc = −F ′(x̂(t)) and that F is ν-self-concordant, we get the
following chain of equalities and inequalities:

t(〈c, x〉 − 〈c, x̂(t)〉) = −〈F ′(x̂(t)), x− x̂(t)〉 ≤ ‖F ′(x̂(t))‖∗x̂(t)‖x− x̂(t)‖x̂(t)

= λ(F, x̂(t))‖x− x̂(t)‖x̂(t) ≤
√
ν

κ

1− κ
,

which proves inequality (18.6).

Algorithm

The path-following algorithm for solving the standard problem

(SP) min 〈c, x〉
s.t. x ∈ X

works in brief as follows.

We start with a parameter value t0 > 0 and a point x0 ∈ intX, which
is close enough to the point x̂(t0) on the central path. ”Close enough” is
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expressed in terms of the Newton decrement λ(Ft0 , x0), which must be suffi-
ciently small.

Then we update the parameter t by defining t1 = αt0 for a suitable α > 1
and minimize the function Ft1 using the damped Newton method with x0 as
the starting point. Newton’s method is terminated when it has reached a
point x1, which is sufficiently close to the minimum point x̂(t1) of Ft1 .

The procedure is then repeated with t2 = αt1 as new parameter and with
x1 as starting point in Newton’s method for minimization of the function Ft2 ,
etc. As a result we obtain a sequence t0, x0, t1, x1, t2, x2, . . . of parameter
values and points, and the procedure is terminated when tk has become
sufficiently large with xk as an approximate optimal point.

From this sketchy description of the algorithm it is clear that we need two
parameters, one parameter α to describe the update of t, and one parameter
κ to define the stopping criterion in Newton’s method. We shall estimate the
total number of inner iterations, and the estimate will be the simplest and
most obvious if one writes the update parameter α in the form α = 1+γ/

√
ν.

The following precise formulation of the path-following algorithm there-
fore contains the parameters γ and κ. The addition ’phase 2’ is due to the
need for an additional phase to generate feasible initial values x0 and t0.

Path-following algorithm, phase 2

Given an update parameter γ > 0, a neighborhood parameter 0 < κ < 1, a
tolerance ε > 0, a starting point x0 ∈ intX, and a starting value t0 > 0
such that λ(Ft0 , x0) ≤ κ.

1. Initiate: x := x0 and t := t0.
2. Stopping criterion: stop if εt ≥ ν + κ(1− κ)−1

√
ν.

3. Increase t: t := (1 + γ/
√
ν)t.

4. Update x by using Newton’s damped method on the function Ft with the
current x as starting point:

(i) Compute the Newton decrement λ = λ(Ft, x).
(ii) quit Newton’s method if λ ≤ κ, and go to line 2.

(iii) Compute the Newtonstep ∆xnt = −F ′′(x)−1F ′t(x).
(iv) Uppdate: x := x+ (1 + λ)−1∆xnt

(v) Go to (i).

We can now show the following convergence result.

Theorem 18.2.2. Suppose that the above path-following algorithm is applied
to the standard problem (SP) with a ν-self-concordant barrier F . Then the
algorithm stops with a point x ∈ intX which satisfies

〈c, x〉 − vmin ≤ ε.
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For each outer iteration, the number of inner iterations in Newton’s al-
gorithm is bounded by a constant K, and the total number of inner iterations
in the path-following algorithm is bounded by

C
√
ν ln

( ν

t0ε
+ 1
)

,

where the constants K and C only depend on κ and γ.

Proof. Let us start by examining the inner loop 4 of the algorithm.
Each time the algorithm passes by line 2, it does so with a point x in

intX, which belongs to a t-value with Newton decrement λ(Ft, x) ≤ κ.
In step 4, the function Fs, where s = (1 + γ/

√
ν)t, is then minimized

using Newton’s damped method with y0 = x as the starting point. The
points yk, k = 1, 2, 3, . . . , generated by the method lie in intX accord-
ing to Theorem 16.3.2, and the stopping condition λ(Fs, yk) ≤ κ implies,
according to Theorem 16.5.1, that the algorithm terminates after at most⌊(
Fs(x)− Fs(x̂(s))

)
/ρ(−κ)

⌋
iterations, where ρ is the function

ρ(u) = −u− ln(1− u).

We shall show that there is a constant K, which only depends on the param-
eters κ and γ, so that ⌊

Fs(x)− Fs(x̂(s))

ρ(−κ)

⌋
≤ K,

and for that reason we need to estimate the difference Fs(x)−Fs(x̂(s)), which
we do in the next lemma.

Lemma 18.2.3. Suppose that λ(Ft, x) ≤ κ < 1. Then, for all s > 0

Fs(x)− Fs(x̂(s)) ≤ ρ(κ) +
κ
√
ν

1− κ
·
∣∣s
t
− 1
∣∣+ ν ρ(1− s/t).

Proof of the lemma. We start by writing

(18.7) Fs(x)− Fs(x̂(s)) =
(
Fs(x)− Fs(x̂(t))

)
+
(
Fs(x̂(t))− Fs(x̂(s))

)
.

By using the equality tc = −F ′(x̂(t)) and the inequality

|〈F ′(x̂(t)), v〉| ≤ λ(F, x̂(t))‖v‖x̂(t) ≤
√
ν‖v‖x̂(t),

we obtain the following estimate of the first difference in the right-hand side
of (18.7):

Fs(x)− Fs(x̂(t)) = Ft(x)− Ft(x̂(t)) + (s− t)〈c, x− x̂(t)〉(18.8)

= Ft(x)− Ft(x̂(t))− (s/t− 1)〈F ′(x̂(t)), x− x̂(t)〉
≤ Ft(x)− Ft(x̂(t)) + |s/t− 1|

√
ν ‖x− x̂(t)‖x̂(t).
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By Theorem 16.4.6,

Ft(x)− Ft(x̂(t)) ≤ ρ(λ(Ft, x)) ≤ ρ(κ)
and

‖x− x̂(t)‖x̂(t) ≤
λ(Ft, x)

1− λ(Ft, x)
≤ κ

1− κ
.

Therefore, it follows from inequality (18.8) that

(18.9) Fs(x)− Fs(x̂(t)) ≤ ρ(κ) +
∣∣s
t
− 1
∣∣ · κ√ν

1− κ
.

It remains to estimate the second difference

φ(s) = Fs(x̂(t))− Fs(x̂(s))(18.10)

= s〈c, x̂(t)〉 − s〈c, x̂(s)〉+ F (x̂(t))− F (x̂(s))

in the right-hand side of (18.7).
The function x̂(s) is continuously differentiable. This follows from the

implicit function theorem, because x̂(s) satisfies the equation

sc+ F ′(x̂(s)) = 0,

and the second derivative F ′′(x) is continuous and non-singular everywhere.
By implicit differentiation,

c+ F ′′(x̂(s))x̂′(s) = 0,

which means that
x̂′(s) = −F ′′(x̂(s))−1c.

It now follows from equation (18.10) that the difference φ(s) is continuously
differentiable with derivative

φ′(s) = 〈c, x̂(t)〉 − 〈c, x̂(s)〉 − s〈c, x̂′(s)〉 − 〈F ′(x̂(s), x̂′(s)〉
= 〈c, x̂(t)− x̂(s)〉 − s〈c, x̂′(s)〉+ s〈c, x̂′(s)〉
= 〈c, x̂(t)− x̂(s)〉,

and a further differentiation gives

φ′′(s) = −〈c, x̂′(s)〉 = 〈c, F ′′(x̂(s))−1c〉
= 〈s−1F ′(x̂(s)), s−1F ′′(x̂(s))−1F ′(x̂(s))〉
= s−2〈F ′(x̂(s)), F ′′(x̂(s))−1F ′(x̂(s))〉 = s−2λ(F, x̂(s))2 ≤ νs−2.
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Now note that φ(t) = φ′(t) = 0. By integrating the inequality for φ′′(s)
over the interval [t, u], we therefore obtain the following estimate for u ≥ t:

φ′(u) = φ′(u)− φ′(t) ≤
∫ u

t

νs−2 ds = ν(t−1 − u−1).

Integrating once more over the interval [t, s] results in the inequality

Fs(x̂(t))− Fs(x̂(s)) = φ(s) =

∫ s

t

φ′(u) du ≤ ν

∫ s

t

(t−1 − u−1) du(18.11)

= ν
(s
t
− 1− ln

s

t

)
= ν ρ(1− s/t)

for s ≥ t. The same conclusion is also reached for s < t by first integrating the
inequality for φ′′(s) over the interval [u, t], and then the resulting inequality
for φ′(u) over the interval [s, t].

The inequality in the lemma is now finally a consequence of equation
(18.7) and the estimates (18.9) and (18.11).

Continuation of the proof of Theorem 18.2.2. By using the lemma’s estimate
of the difference Fs(x) − Fs(x̂(s)) when s = (1 + γ/

√
ν)t, we obtain the

inequality⌊
Fs(x)− Fs(x̂(s))

ρ(−κ)

⌋
≤
⌊
ρ(κ) + γκ(1− κ)−1 + ν ρ(−γν−1/2)

ρ(−κ)

⌋
,

and ν ρ(−γν−1/2) ≤ 1
2
γ2, because ρ(u) = −u − ln(1 − u) ≤ 1

2
u2 for u < 0.

The number of inner iterations in each outer iteration is therefore bounded
by the constant

K =

⌊
ρ(κ) + γκ(1− κ)−1 + 1

2
γ2

ρ(−κ)

⌋
,

which only depends on the parameters κ and γ. For example, K = 5 if
κ = 0.4 and γ = 0.32.

We now turn to the number of outer iterations. Set

β(κ) = ν + κ(1− κ)−1
√
ν.

Suppose that the stopping condition εt ≥ β(κ) is triggered during iteration
number k when t = (1 + γ/

√
ν)kt0. Because of Theorem 18.2.1, the current

point x then satisfies the condition

〈c, x〉 − vmin ≤ ε,

which shows that x approximates the minimum point with prescribed accu-
racy.
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Since k is the least integer satisfying the inequality (1 + γ/
√
ν)k ≥

β(κ)/t0ε, we have

k =

⌈
ln(β(κ)/t0ε)

ln(1 + γ/
√
ν)

⌉
.

To simplify the denominator, we use the fact that ln(1 + γx) is a concave
function. This implies that ln(1 + γx) ≥ x ln(1 + γ) if 0 ≤ x ≤ 1, and hence

ln(1 + γ/
√
ν) ≥ ln(1 + γ)√

ν
.

Furthermore, β(κ) = ν+κ(1−κ)−1
√
ν ≤ ν+κ(1−κ)−1ν = (1−κ)−1ν. This

gives us the estimate

k ≤
⌈√

ν ln((1− κ)−1ν/t0ε)

ln(1 + γ)

⌉
≤ K ′

√
ν ln
( ν

t0ε
+ 1
)

for the number of outer iterations with a constant K ′ that only depends
on κ and γ, and by multiplying this with the constant K we obtain the
corresponding estimate for the total number of inner iterations.

Phase 1

In order to use the path-following algorithm, we need a t0 > 0 and a point
x0 ∈ intX with Newton decrement λ(Ft0 , x0) ≤ κ to start from. Since the
central path begins in the analytic center x̂F of X and λ(F, x̂F ) = 0, it can
be expected that (x0, t0) is good enough as a starting pair if only x0 is close
enough to x̂F and t0 > 0 is sufficiently small. Indeed, this is true, and we
shall show that one can generate such a pair by solving an artificial problem,
given that one knows a point x ∈ intX.

Therefore, let Gt : intX → R, where 0 ≤ t ≤ 1, be the functions defined
by

Gt(x) = −t〈F ′(x), x〉+ F (x).

The functions Gt are closed and self-concordant, and they have unique min-
imum points x(t).

Note that G0 = F , and hence x(0) = x̂F . Since G′t(x) = −tF ′(x) +F ′(x),
G′1(x) = 0, and this means that x is the minimum point of the function G1.
Hence, x(1) = x. The curve {x(t) | 0 ≤ t ≤ 1} thus starts in the analytic
center x̂F and ends in the given point x. By using the path-following method,
now following the curve backwards, we will therefore obtain a suitable starting
point for phase 2 of the algorithm.
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We use Newton’s damped method to minimize Gt and note that G′′t = F ′′

for all t, so the local norm with respect to the function Gt coincides with the
local norm with respect to the function F , and we can thus unambiguously
use the symbol ‖·‖x for the local norm at the point x.

The algorithm for determining a starting pair (x0, t0) now looks like this.

Path-following algorithm, phase 1

Given x ∈ intX, and parameters 0 < γ < 1
2

√
ν and 0 < κ < 1.

1. Initiate: x := x and t := 1.
2. Stopping criterion: stop if λ(F, x) < 3

4
κ and set x0 = x.

3. Decrease t: t := (1− γ/
√
ν)t.

4. Update x by using Newton’s damped method on the function Gt with the
current x as starting point:

(i) Compute λ = λ(Gt, x).
(ii) quit Newton’s method if λ ≤ κ/2, and go to line 2.
(iii) Compute the Newton step ∆xnt = −F ′′(x)−1G′t(x).
(iv) Update: x := x+ (1 + λ)−1∆xnt.
(v) Go to (i).

When the algorithm has stopped with a point x0, we define t0 by setting

t0 = max{t | λ(Ft, x0) ≤ κ}.

The number of iterations in phase 1 is given by the following theorem.

Theorem 18.2.4. Phase 1 of the path-following algorithm stops with a point
x0 ∈ intX after at most

C
√
ν ln
( ν

1− πx̂F (x)
+ 1
)

inner iterations, where the constant C only depends on κ and γ, the number
t0 satisfies the conditions λ(Ft0 , x0) ≤ κ and t0 ≥ κ/4 VarX(c).

Proof. We start by estimating the number of inner iterations in each outer
iteration; this number is bounded by the quotient

Gs(x)−Gs(x(s))

ρ(−κ/2)
,

where s = (1− γ/
√
ν)t, and Lemma 18.2.3 gives us the majorant

ρ(κ/2) +
κ
√
ν

2− κ
· γ√

ν
+ ν ρ(γ/

√
ν)
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for the numerator of the quotient. By Lemma 16.3.1, νρ(γ/
√
ν) ≤ γ2, so the

number of inner iterations in each outer iteration is bounded by the constant

ρ(κ/2) + κ(2− κ)−1γ + γ2

ρ(−κ/2)
.

We now consider the outer iterations. Since F ′ = G′t + tF ′(x),

λ(F, x) = ‖F ′(x)‖∗x = ‖G′t(x) + tF ′(x)‖∗x ≤ ‖G′t(x)‖∗x + t‖F ′(x)‖∗x(18.12)

= λ(Gt, x) + t‖F ′(x)‖∗x.

It follows from Theorem 18.1.11 that

‖F ′(x)‖∗x ≤ (ν + 2
√
ν)‖F ′(x)‖∗x̂F ≤ 3ν‖F ′(x)‖∗x̂F ,

and from Theorem 18.1.8 that

‖F ′(x)‖∗x̂F = sup
‖v‖x̂F≤1

〈F ′(x), v〉 ≤ ν

1− πx̂F (x)
.

Hence

(18.13) ‖F ′(x)‖∗x ≤
3ν2

1− πx̂F (x)
.

During outer interation number k, we have t = (1 − γ/
√
ν)k and the point

x satisfies the condition λ(Gt, x) ≤ κ/2 when Newton’s method stops. So
it follows from inequality (18.12) and the estimate (18.13) that the stopping
condition λ(F, x) < 3

4
κ in line 2 of the algorithm is fulfilled if

1

2
κ+

3ν2

1− πx̂F (x)
(1− γ/

√
ν)k ≤ 3

4
κ,

i.e. if

k ln(1− γ/
√
ν) < − ln

( 12κ−1ν2

1− πx̂F (x

)
.

By using the inequality ln(1 − x) ≤ −x, which holds for 0 < x < 1, we see
that the stopping condition is fulfilled for

k >

√
ν

γ
ln
( 12κ−1ν2

1− πx̂F (x

)
.

So the number of outer iterations is less than

K
√
ν ln
( ν

1− πx̂F (x)
+ 1
)
,
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where the constant K only depends on κ and γ, and this proves the estimate
of the theorem, since the number of inner iterations in each outer iteration
is bounded by a constant, which only depends on κ and γ.

The definition of t0 implies that κ = λ(Ft0 , x0), so we get the following
inequalities with the aid of Theorem 18.1.10:

κ = λ(Ft, x0) = ‖F ′t(x0)‖∗x0 = ‖t0c+ F ′(x0)‖∗x0 ≤ t0‖c‖∗x0 + ‖F ′(x0)‖∗x0
= t0‖c‖∗x0 + λ(F, x0) ≤ t0 VarX(c) +

3

4
κ.

It follows that
t0 ≥

κ

4 VarX c
.

The following complexity result is now obtained by combining the two
phases of the path-following algorithm.

Theorem 18.2.5. A standard problem (SP) with ν-self-concordant barrier,
tolerance level ε > 0 and starting point x ∈ intX can be solved with at most

C
√
ν ln(νΦ/ε+ 1)

Newton steps, where

Φ =
VarX(c)

1− πx̂F (x)

and the constant C only depends on γ and κ.

Proof. Phase 1 provides a starting point x0 and an initial value t0 for phase 2,
satisfying the condition t0 ≥ κ/(4 VarX(c)). The number of inner iterations
in phase 2 is therefore bounded by

O(1)
√
ν ln
(4ν VarX(c)

κε
+ 1
)

= O(1)
√
ν ln
(ν VarX(c)

ε
+ 1
)
.

So the total number of inner iterations in the two phases is

O(1)
√
ν ln
( ν

1− πx̂F (x)
+ 1
)

+O(1)
√
ν ln
(ν VarX(c)

ε
+ 1
)

= O(1)
√
ν ln(νΦ/ε+ 1).

Remark. The algorithms in this section provide nice theoretical complexity
results, but they are not suitable for practical use. The main limitation is
the low updating factor (1 + O(1)ν−1/2) of the penalty parameter t, which
implies that the total number of Newton steps will be proportional to

√
ν.
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For an LP problem with n = 1000 variables and m = 10000 inequalities, one
would need to solve hundreds of linear equations with 1000 variables, which
requires far more time than what is needed by the simplex algorithm. In
the majority of outer iterations, one can, however, in practice increase the
penalty parameter much faster than what is needed for the theoretical worst
case analysis, without necessarily having to increase the number of Newton
steps to maintain proximity to the central path. There are good practical
implementations of the algorithm that use various dynamic strategies to con-
trol the penalty parameter t, and as a result only a moderate total number
of Newton steps is needed, regardless of the size of the problem.

18.3 LP problems

We now apply the algorithm in the previous section on LP problems. Con-
sider a problem of the type

(18.14) min 〈c, x〉
s.t. Ax ≤ b

where A = [aij] is an m× n-matrix. We assume that the polyhedron

X = {x ∈ Rn | Ax ≤ b}
of feasible points is bounded and has a nonempty interior. The boundedness
assumption implies that m > n.

The ith row of the matrix A is denoted by ai, that is ai = [ai1 ai2 . . . ain].
The matrix product aix is thus well-defined.

As a barrier to the set X we use the m-self-concordant function

F (x) = −
m∑
i=1

ln(bi − aix).

The path-following algorithm started from an arbitrary point x ∈ intX
results in an ε-solution, i.e. a point with a value of the objective function
that approximates the optimal value with an error less than ε, after at most

O(1)
√
m ln(mΦ/ε+ 1)

inner iterations, where

Φ =
VarX(c)

1− πx̂F (x)
.
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We now estimate the number of arithmetic operations (additions, sub-
tractions, multiplications and divisions) that are required during phase 2 of
the algorithm to obtain this ε-solution.

For each inner iteration of the Newton algorithm, we first have to compute
the gradient and the hessian of the barrier function at the current point x,
i.e.

F ′(x) =
m∑
i=1

aTi
bi − aix

och F ′′(x) =
m∑
i=1

aTi ai
(bi − aix)2

.

This can be done with O(mn2) arithmetic operations. The Newton direction
∆xnt at x is obtained as solution to the quadratic system

F ′′(x)∆xnt = −(tc+ F ′(x))

of linear equations, and using Gaussian elimination, we find the solution after
O(n3) arithmetic operations. Finally, O(n) additional arithmetic operations,
including one square root extraction, are needed to compute the Newton
decrement λ = λ(Ft, x) and the new point x+ = x+ (1 + λ)−1∆xnt.

The corresponding estimate of the number of operations is also true for
phase 1 of the algorithm.

The gradient and hessian computation is the most costly of the above
computations since m > n. The total number of arithmetic operations in
each iteration is therefore O(mn2), and by multiplying with the number of
inner iterations, the overall arithmetic cost of the path-following algorithm
is estimated to be no more than O(m3/2n2) ln(mΦ/ε+ 1) operations.

The resulting approximate minimum point x̂(ε) is an interior point of the
polyhedron X, but the minimum is of course attained at an extreme point
on the the boundary of X. However, there is a simple procedure, called
purification and described below, which starting from x̂(ε) finds an extreme
point x̂ of X after no more than O(mn2) arithmetic operations and with an
objective function value that does not exceed the value at x̂(ε). This means
that we have the following result.

Theorem 18.3.1. For the LP problem (18.14) at most

O(m3/2n2) ln(mΦ/ε+ 1)

arithmetic operations are needed to find an extreme point x̂ of the polyhedron
of feasible points that approximates the minimum value with an error less
than ε.
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Purification

The proof of the following theorem describes an algorithm for how to generate
an extreme point with a value of the objective function that does not exceed
the value at a given interior point of the polyhedron of feasible points.

Theorem 18.3.2. Let

min 〈c, x〉
s.t. Ax ≤ b

be an LP problem with n variables and m constraints, and suppose that the
polyhedron X of feasible points is line-free and that the objective function
is bounded below on X. For each point of X we can generate an extreme
point of X with a value of the objective function that does not exceed the
value at the given point with an algorithm using at most O(mn2) arithmetic
operations.

Proof. The idea is very simple: Follow a half-line from the given point x(0)

with non-increasing function values until hitting upon a point x(1) in a face
F1 of the polyhedron X. Then follow a half-line in the face F1 with non-
increasing function values until hitting upon a point x(2) in the intersection
F1 ∩ F2 of two faces, etc. After n steps, one has reached a point x(n) in the
intersection of n (independent) faces, i.e. an extreme point, with a function
value that is less than or equal to the value at the starting point.

To estimate the number of arithmetic operation we have to study the
above procedure in a little more detail.

We start by defining v(1) = e1 if c1 < 0, v(1) = −e1 if c1 > 0, and
v(1) = ±e1 if c1 = 0, where the sign in the latter case should be chosen so
that the half-line x(0)+tv(1), t ≥ 0, intersects the boundary of the polyhedron;
this is possible since the polyhedron is assumed to be line-free. In the first two
cases, the half-line also intersects the boundary of the polyhedron, because
〈c, x(0) + tv(1)〉 = 〈c, x(0)〉 − t|c1| tends to −∞ as t tends to ∞ and the
objective function is assumed to be bounded below on X. The intersection
point x(1) = x(0) + t1v

(1) between the half-line and the boundary of X can be
computed with O(mn) arithmetic operations, since we only have to compute
the vectors b − Ax(0) and Av(1), and quotients between their coordinates in
order to find the nonnegative parameter value t1.

After renumbering the equations, we may assume that the point x(1) lies
in the hyperplane a11x1 + a12x2 + · · · + a1nxn = b1. We now eliminate the
variable x1 from the constraints and the objective function, which results in
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a system of the form

(18.15)


x1 + a′12x2 + · · ·+ a′1nxn = b′1

A′

x2
...
xn

 ≤ b′

where A′ is an (m− 1)× (n− 1)-matrix, and in a new objective function

c′2x2 + · · ·+ c′nxn + d′,

which is the restriction of the original objective function to the current face.
The number of operations required to perform the eliminations is O(mn).

After O(mn) operations we have thus managed to find a point x(1) in
a face F1 of X with an objectiv function value 〈c, x(1)〉 = 〈c, x(0)〉 − t1|c1|
not exceeding 〈c, x(0)〉, and determined the equation of the face and the
restriction of the objective function to the face. We now have a problem of
lower dimension n− 1 and with m− 1 constraints.

We continue by choosing a descent vector v(2) for the objective function
that is parallel to the face F1, and we achieve this by defining v(2) so that
v

(2)
2 = ±1, v

(2)
3 = · · · = v

(2)
n = 0 (and v

(2)
1 = −a′12v

(2)
2 ), where the sign of v

(2)
2

should be chosen so that the objective function is non-decreasing along the
half-line x(1) + tv(2), t ≥ 0, and the half-line instersects the relative boundary
of F1. This means that v

(2)
2 = 1 if c′2 < 0 and v

(2)
2 = −1 if c′2 > 0, while

the sign of v
(2)
2 is determined by the requirement that the half-line should

intersect the boundary in the case c′2 = 0.

We then determine the intersection between the half-line x(1)+tv(2), t ≥ 0,
and the relative boundary of F1, which occurs in one of the remaining hyper-
planes. If this hyperplane is the hyperplane a′21x2 + · · ·+ a′2nxn = b′2, say, we
eliminate the variable x2 from the remaining constraints and the objective
function. All this can be done with at most O(mn) operations and results in
a point x(2) in the intersection of two faces, and the new value of the objective
function is 〈c, x(2)〉 = 〈c, x(1)〉 − t2|c′2| ≤ 〈c, x(1)〉.

After n iterations, which together require at most nO(mn) = O(mn2)
arithmetic operations, we have reached an extreme point x̂ = x(n) with a
function value that does not exceed the value at the starting point x(0). The
coordinates of the extreme point are obtained by solving a triangular system
of equations, which only requires O(n2) operations. The total number of
operations is thus O(mn2).
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Example 18.3.1. We exemplify the purification algorithm with the LP prob-
lem

min −2x1 + x2 + 3x3

s.t.


−x1 + 2x2 + x3 ≤ 4
−x1 + x2 + x3 ≤ 2
x1− 2x2 ≤ 1
x1− x2− 2x3 ≤ 1

Starting from the interior point x(0) = (1, 1, 1) with objectiv function
value cTx(0) = 2, we shall find an extreme point with a lower value.

Since c1 = −2 < 0, we begin by choosing v(1) = (1, 0, 0) and by determin-
ing the point of intersection between the half-line x = x(0)+tv(1) = (1+t, 1, 1),
t ≥ 0, and the boundary of the polyhedron of feasible points. We find that the
point x(1) = (3, 1, 1), corresponding to t = 2, satisfies all constraints and the
third constraint with equality. So x(1) lies in the face obtained by intersecting
the polyhedron X with the supporting hyperplane x1 − 2x2 = 1. We elimi-
nate x1 from the objectiv function and from the remaining constraints using
the equation of this hyperplane, and consider the restriction of the objective
function to the corresponding face, i.e. the function f(x) = −3x2 + 3x3 − 2
restricted to the polyhedron given by the system

x1− 2x2 = 1
x3 ≤ 5

− x2 + x3 ≤ 3
x2− 2x3 ≤ 0

The x2-coefficient of our new objective function is negative, so we follow
the half-line x2 = 1 + t, x3 = 1, t ≥ 0, in the hyperplane x1− 2x2 = 1 until it
hits a new supporting hyperplane, which occurs for t = 1, when it intersects
the hyperplane x2 − 2x3 = 0 in the point x(2) = (5, 2, 1). Elimination of x2

results in the objective function f(x) = −3x3 − 2 and the system
x1− 2x2 = 1

x2− 2x3 = 0
x3 ≤ 5

− x3 ≤ 3

Our new half-line in the face F1∩F2 is given by the equation x3 = 1+t, t ≥ 0,
and the halfline intersects the third hyperplane x3 = 5 when t = 4, i.e. in a
point with x3-coordinate equal to 5. Back substitution gives x(3) = (21, 10, 5),
which is an extreme point with objective function value equal to −17.
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18.4 Complexity

By the complexity of a problem we here mean the number of arithmetic
operations needed to solve it, and in this section we will study the complexity
of LP problems with rational coefficients. The solution of an LP problem
consists by definition of the problem’s optimal value and, provided the value
is finite, of an optimal point. All known estimates of the complexity depend
not only on the number of variables and constraints, but also on the size of
the coefficients, and an appropriate measure of the size of a problem is given
by the number of binary bits needed to represent all its coefficients.

Definition. The input length of a vector x = (x1, x2, . . . , xn) in Rn is the
integer `(x) defined as

`(x) =
n∑
j=1

dlog2(|xj|+ 1)e.

The number of digits in the binary expansion of a positive integer z is
equal to dlog2(|z| + 1)e. The binary representation of a negative integer
z requires one bit more in order to take care of the sign, and so does the
representation of z = 0. The number of bits to represent an arbitrary vector
x in Rn with integer coordinates is therefore at most `(x) + n.

The norm of a vector can be estimated using the input length, and we
shall need the following simple estimate in the two cases p = 1 and p = 2.

Lemma 18.4.1. ‖x‖p ≤ 2`(x) for all x ∈ Rn and all p ≥ 1.

Proof. The inequality is a consequence of the following trivial inequalities∑n
j=1 aj ≤

∏n
j=1(aj + 1), ap + 1 ≤ (a + 1)p and log2(a + 1) ≤ dlog2(a + 1)e,

which hold for nonnegative numbers a, aj, and imply that

‖x‖pp =
n∑
j=1

|xj|p ≤
n∏
j=1

(|xj|p + 1) ≤
n∏
j=1

(|xj|+ 1)p ≤ 2p `(x).

We will now study LP problems of the type

(LP) min 〈c, x〉
s.t. Ax ≤ b

where all coefficients of the m× n-matrix A = [aij] and of the vectors b and
c are integers. Every LP problem with rational coefficients can obviously be
replaced by an equivalent problem of this type after multiplication with a
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suitable least common denominator. The polyhedron of feasible points will
be denoted by X so that

X = {x ∈ Rn | Ax ≤ b}.

Definition. The two integers

`(X) = `(A) + `(b) and L = `(X) + `(c) +m+ n,

where `(A) denotes the input length of the matrix A, considered as a vector
in Rmn, are called the input length of the polyhedron X and the input length
of the given LP problem (LP), respectively.†

The main result of this section is the following theorem, which implies
that there is a solution algorithm that is polynomial in the input length of
the LP problem.

Theorem 18.4.2. There is an algorithm which solves the LP problem (LP)
with at most O((m+ n)7/2L) arithmetic operations.

Proof. I. We begin by noting that we can without restriction assume that
the polyhedron X of feasible points is line-free. Indeed, we can, if necessary
replace the problem (LP) with the equivalent and line-free LP problem

min 〈c, x+〉 − 〈c, x−〉

s.t.


Ax+ − Ax−≤ b

−x+≤ 0
−x−≤ 0.

This LP problem in n′ = 2n variables and with m′ = m+ 2n constraints has
input length

L′ = 2`(A) + 2n+ `(b) + 2`(c) +m′ + n′

≤ 2(`(A) + `(b) + `(c) +m+ n) + 4n = 2L+ 4n ≤ 6L,

so any algorithm that solves this problem with O((m′ + n′)7/2L′) operations
also solves problem (LP) with O((m + n)7/2L) operations since m′ + n′ ≤
4(m+ n) and L′ ≤ 6L.

From now on, we therefore assume that X is a line-free polyhedron, and
for nonempty polyhedra X this implies that m ≥ n and that X has at least
one extreme point.

†Since `(X) + mn + m bits are needed to represent all coefficients of the polyhedron
X and L + mn bits are needed to represent all coefficients of the given LP problem, it
would be more logical to call these numbers the input length of the polyhedron and of the
LP problem, respectively. However, the forthcoming calculations will be simpler with our
conventions.
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The assertion of the theorem is also trivially true for LP problems with
only one variable, so we assume that m ≥ n ≥ 2. Finally, we can naturally
assume that all the rows of the matrix A are nonzero, for if the kth row is
identically zero, then the corresponding constraint can be deleted if bk ≥ 0,
while the polyhedron X of feasible point is empty if bk < 0. In the future,
we can thus make use of the inequalities

`(X) ≥ `(A) ≥ m ≥ n ≥ 2 and L ≥ `(X) +m+ n ≥ `(X) + 4.

II. Under the above assumptions, we will prove the theorem by showing:

1. With O(m7/2L) operations, one can determine whether the optimal
value of the problem is +∞, −∞ or finite, i.e. whether there are any
feasible points or not, and if there are feasible points whether the ob-
jective functions is bounded below or not.

2. Given that the optimal value is finite, one can then determine an opti-
mal solution with O(m3/2n2L) operations.

Since the proof of statement 1 uses the solution of an appropriate auxiliary
LP problem with finite value, we begin by showing statement 2.

III. As a first building block we need a lemma that provides information
about the extreme points of the polyhedron X in terms of its input length.

Lemma 18.4.3. (i) Let x̂ be an extreme point of the polyhedron X. Then,
the following inequality holds for all nonzero coordinates x̂j:

2−`(X) ≤ |x̂j| ≤ 2`(X).

Thus, all extreme points of X lie in the cube {x ∈ Rn | ‖x‖∞ ≤ 2`(X)}.

(ii) If x̂ and x̃ are two extreme points of X and 〈c, x̂〉 6= 〈c, x̃〉, then

|〈c, x̂〉 − 〈c, x̃〉| ≥ 4−`(X).

Proof. To prove the lemma, we begin by recalling Hadamard’s inequality for
k× k-matrices C = [cij] with columns C∗1, C∗2, . . . , C∗k, and which reads as
follows:

|detC| ≤
k∏
j=1

‖C∗j‖2 =
k∏
j=1

( k∑
i=1

c2
ij

)1/2
.

The inequality is geometrically obvious − the left-hand side |detC| is the
volume of a (hyper)parallelepiped, spanned by the matrix columns, while the
right-hand side is the volume of a (hyper)cuboid whose edges are of the same
length as the edges of the parallelepiped.



390 18 The path-following method with self-concordant barrier

By combining Hadamard’s inequality with Lemma 18.4.1, we obtain the
inequality

|detC| ≤
k∏
j=1

2`(C∗j) = 2`(C).

If C is a quadratic submatrix of the matrix
[
A b

]
, then obviously `(C) ≤

`(A) + `(b) = `(X), and it follows from the above inequality that

(18.16) |detC| ≤ 2`(X).

Now let x̂ be an extreme point of the polyhedron X. According to The-
orem 5.1.1, there is a set {i1, i2, . . . , in} of row indices such that the extreme
point x̂ is obtained as the unique solution to the equation system

n∑
j=1

aijxj = bi, i = i1, i2, . . . , in.

By Cramer’s rule, we can write the solution in the form

x̂j =
∆j

∆
,

where ∆ is the determinant of the coefficient matrix and ∆j is the determi-
nant obtained by replacing column number j in ∆ with the right-hand side
of the equation system. The determinants ∆ and ∆j are integers, and their
absolute values are at most equal to 2`(X), because of inequality (18.16). This
leads to the following estimates for all nonzero coordinates x̂j, i.e. for all j
with ∆j 6= 0:

|x̂j| = |∆j|/|∆| ≤ 2`(X)/1 = 2`(X) and |x̂j| = |∆j|/|∆| ≥ 1/2`(X) = 2−`(X),

which is assertion (i) of the lemma.

(ii) The value of the objective function at the extreme point x̂ is

〈c, x̂〉 =
( n∑
j=1

cj∆j

)
/∆ = T/∆,

where the numerator T is an integer. If x̃ is another extreme point, then of
course we also have 〈c, x̃〉 = T ′/∆′ for some integer T ′ and determinant ∆′

with |∆′| ≤ 2`(X). It follows that the difference

〈c, x̃〉 − 〈c, x̂〉 = (T∆′ − T ′∆)/∆∆′

is either equal to zero or, if the numerator is nonzero, an integer with absolute
value ≥ 1/|∆∆′| ≥ 4−`(X).
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IV. We shall use the path-following method, but this assumes that the poly-
hedron of feasible points is bounded and that there is an inner point from
which to start phase 1. To get around this difficulty, we consider the following
auxiliary problems in n+ 1 variables and m+ 2 linear constraints:

(LPM) min 〈c, x〉+Mxn+1

s.t.


Ax+ (b− 1)xn+1 ≤ b

xn+1 ≤ 2
−xn+1 ≤ 0.

Here, M is a positive integer, 1 denotes the vector (1, 1, . . . , 1) in Rm, and
x is as before the n-tuple (x1, x2, . . . , xn).

Let X ′ denote the polyhedron of feasible points for the problem (LPM).
Since (x, xn+1) = (0, 1) satisfies all constraints with strict inequality, (0, 1) is
an inner point in X ′.

We obtain the following estimates for the input length `(X ′) of the poly-
hedron X ′ and the input lenght L(M) of problem (LPM):

`(X ′) = `(A) +
m∑
i=1

⌈
log2

(
|bi − 1|+ 1

)⌉
+ 1 + 1 + `(b) + 2(18.17)

≤ `(X) + 4 +
m∑
i=1

(
1 +

⌈
log2

(
1 + |bi

)⌉)
= `(X) + 4 +m+ `(b) ≤ 2`(X) + 4 ≤ 2L− 4,

L(M) = `(X ′) + `(c) + dlog2(M + 1)e+m+ n+ 3(18.18)

≤ 2`(X) + 2`(c) + dlog2Me+m+ n+ 8

= 2L+ dlog2Me − (m+ n) + 8 ≤ 2L+ dlog2Me+ 4.

The reason for studying our auxiliary problem (LPM) is given in the
following lemma.

Lemma 18.4.4. Assume that problem (LP) has a finite value. Then:

(i) Problem (LPM) has a finite value for each integer M > 0.

(ii) If (x̂, 0) is an optimal solution to problem (LPM), then x̂ is an optimal
solution to the original problem (LP).

(iii) Assume that M ≥ 24L and that the extreme point (x̂, x̂n+1) of X ′ is an
optimal solution to problem (LPM). Then, x̂n+1 = 0, so x̂ is an optimal
solution to problem (LP).

Proof. (i) The assumption of finite value means that the polyhedron X is
nonempty and that the objective function 〈c, x〉 is bounded below on X, and
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by Theorem 12.1.1, this implies that the vector c lies in the dual cone of the
recession cone reccX. Since

reccX ′ = {(x, xn+1) | Ax+ (b− 1)xn+1 ≤ 0, xn+1 = 0}
= reccX × {0},

the dual cone of reccX ′ is equal to (reccX)+ × R. We conclude that the
vector (c,M) lies in the dual cone (reccX ′)+, which means that the objective
function of problem (LPM) is bounded below on the nonempty set X ′. Hence,
our auxiliary problem has a finite value.

The polyhedron X ′ is line-free, since

linX ′ = {(x, xn+1) | Ax+ (b− 1)xn+1 = 0, xn+1 = 0}
= linX × {0} = {(0, 0)}.

(ii) The point (x, 0) is feasible for problem (LPM) if and only if x belongs
to X, i.e. is feasible for our original problem (LP). So if (x̂, 0) is an optimal
solution to the auxiliary problem, then in particular

〈c, x̂〉 = 〈c, x̂〉+M · 0 ≤ 〈c, x〉+M · 0 = 〈c, x〉
for all x ∈ X, which shows that x̂ is an optimal solution to problem (LP).

(iii) Assume that (x̂, x̂n+1) is an extreme point of the polyhedron X ′ and
an optimal solution to problem (LPM). By Lemma 18.4.3, applied to the
polyhedron X ′, and the estimate (18.17), we then have the inequality

(18.19) ‖x̂‖∞ ≤ 2`(X
′) ≤ 22`(X)+4 ≤ 22L−4,

so it follows by using Lemma 18.4.1 that

|〈c, x̂〉| ≤
n∑
j=1

|cj||x̂j| ≤ ‖c‖1‖x̂‖∞ ≤ 2`(c) · 22`(X)+4 ≤ 22`(X)+2`(c)+4

≤ 22L−2m−2n+4 ≤ 22L−4.

Assume that x̂n+1 6= 0. Then x̂n+1 ≥ 2−`(X
′) ≥ 2−2L, according to

Lemma 18.4.3. The optimal value v̂M of the auxiliary problem (LPM) there-
fore satisfies the inequality

v̂M = 〈c, x̂〉+Mx̂n+1 ≥Mx̂n+1 − |〈c, x̂〉| ≥M · 2−2L − 22L−4.

Let now x be an arbitrary extreme point of X. Since (x, 0) is a feasible point
for problem (LPM) and since ‖x‖∞ ≤ 2`(X) by lemma 18.4.3, the optimal
value v̂M must also satisfy the inequality

v̂M ≤ 〈c, x〉+M · 0 ≤ |〈c, x〉| ≤ ‖c‖1 · ‖x‖∞ ≤ 2`(c)+`(X) = 2L−m−n ≤ 2L−4.
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By combining the two inequalities for v̂M , we obtain the inequality

2L−4 ≥M · 2−2L − 22L−4,

which implies that

M ≤ 23L−4 + 24L−4 < 24L.

So if M ≥ 24L, then x̂n+1 = 0.

V. We are now ready for the main step in the proof of Theorem 18.4.2.

Lemma 18.4.5. Suppose that problem (LP) has a finite value. The path-
following algorithm, applied to the problem (LPM) with ‖x‖∞ ≤ 22L as an
additional constraint, M = 24L, ε = 2−4L, and (0, 1) as starting point for
phase 1, and complemented with a subsequent purification operation, gener-
ates an optimal solution to problem (LP) after at most O(m3/2n2L) aritmetic
operations.

Proof. It follows from the previous lemma and the estimate (18.19) that
the LP problem (LPM) has an optimal solution (x̂, 0) which satisfies the
additional constraint ‖x̂‖∞ ≤ 22L if M = 24L. The LP problem obtained
from (LPM) by adding the 2n constraints

xj ≤ 22L and −xj ≤ 22L, j = 1, 2, . . . , n,

therefore has the same optimal value as (LPM).
The extended problem has m+2n+2 = O(m) linear constraints, and the

point z = (x, xn+1) = (0, 1) is an interior point of the compact polyhedron
of feasible points, which we denote by Z. By Theorem 18.3.1, the path-
following algorithm with ε = 2−4L and z as the starting point therefore stops
after O((m+2n+2)3/2n2) ln((m+2n+2)Φ/ε+1) = O(m3/2n2) ln(m24LΦ+1)
arithmetic operations at a point in the polyhedron X ′ and with a value of
the objective function that approximates the optimal value v̂M with an error
less than 2−4L.

Purification according to the method in Theorem 18.3.2 leads to an ex-
treme point (x̂, x̂n+1) of X ′ with a value of the objective function less than
v̂M + 2−4L, and since 2−4L = 4−2L < 4−`(X

′), it follows from Lemma 18.4.3
that (x̂, x̂n+1) is an optimal solution to (LPM). By Lemma 18.4.4, this implies
that x̂ is an optimal solution to the original problem (LP).

The purification process requires O(mn2) arithmetic operations, so the
total arithmetic cost is

O(mn2) +O(m3/2n2) ln(m24LΦ + 1) = O(m3/2n2) ln(m24LΦ + 1)

operations. It thus only remains to prove that ln(m24LΦ + 1) = O(L), and
since m ≤ L, this will follow if we show that ln Φ = O(L).
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By definition,

Φ = VarZ(c,M) · 1

1− πẑF (z)
,

where ẑF is the analytic center of Z with respect to the relevant logarithmic
barrier F . The absolute value of the objective function at an arbitrary point
(x, xn+1) ∈ Z can be estimated by

|〈c, x〉+Mxn+1| ≤ ‖c‖1‖x‖∞ + 2M ≤ 2`(c)+2L + 2 · 24L ≤ 24L+2,

and the maximal variation of the function is at most twice this value. Hence,

VarZ(c,M) ≤ 24L+3.

The second component of Φ is estimated using Theorem 18.1.7. Let
B∞(a, an+1; r) denote the closed ball of radius r in Rn+1 = Rn × R with
center at the point (a, an+1) and with distance given by the maximum norm,
i.e.

B∞(a, an+1; r) = {(x, xn+1) ∈ Rn × R | ‖x− a‖∞ ≤ r, |xn+1 − an+1| ≤ r}.

The polyhedron Z is by definition included in the ball B∞(0, 0; 22L). On
the other hand, the tiny ball B∞(z ; 2−L) is included in Z, for if ‖x‖∞ ≤ 2−L

and |xn+1 − 1| ≤ 2−L, then

n∑
j=1

aijxj + (bi − 1)xn+1 − bi =
n∑
j=1

aijxj + bi(xn+1 − 1)− xn+1

≤
n∑
j=1

|aij||xj|+ |bi||xn+1 − 1| − xn+1 ≤ 2−L
( n∑
j=1

|aij|+ |bi|
)
− (1− 2−L)

≤ 2−L+`(X) + 2−L − 1 ≤ 2−4 + 2−L − 1 < 0,

which proves that the ith inequality of the system Ax+(b−1)xn+1 ≤ b holds
with strict inequality for i = 1, 2, . . . ,m, and the remaining inequalities that
define the polyhedron Z are obviously strictly satisfied.

It therefore follows from Theorem 18.1.7 that

πẑF (z) ≤ 2 · 22L

2 · 22L + 2−L
,

and that consequently

1

1− πẑF (z)
≤ 2 · 23L + 1 < 23L+2.

This implies that Φ ≤ 24L+3 · 23L+2 = 27L+5. Hence, ln Φ = O(L), which
completes the proof of the lemma.
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VI. It remains to show that O(m7/2L) operations are sufficient to decide
whether the optimal value of the original problem (LP) is +∞, −∞ or finite.

To decide whether the value is +∞ or not, i.e. whether the polyhedron
X is empty or not, we consider the artificial LP problem

min xn+1

s.t.

{
Ax− 1xn+1 ≤ b

−xn+1 ≤ 0

This problem has feasible points since (0, t) satisfies all constraints for suf-
ficiently large positive numbers t. The optimal value of the problem is ap-
parently greater than or equal to zero, and it is equal to zero if and only if
X 6= ∅.

So we can decide whether the polyhedron X is empty or not by deter-
mining an optimal solution to the artificial problem. The input length of
this problem is `(X) + 2m + n + 4, and since this number is ≤ 2L, it fol-
lows from Lemma 18.4.5 that we can decide whether X is empty or not with
O(m3/2n2L) aritmethic operations.

Note that we do not need to solve the artificial problem exactly. If the
value is greater than zero, then, because of Lemma 18.4.3, it is namely greater
than or equal to 2−2L. It is therefore sufficient to determine a point that
approximates the value with an error of less than 2−2L to know if the value
is zero or not.

VII. If the polyhedron X is nonempty, we have as the next step to decide
whether the objective function is bounded below. This is the case if and
only if the dual problem to problem (LP) has feasible points, and this dual
maximization problem is equivalent to the minimization problem

min 〈−b, y〉

s.t.


ATy ≤ c
−ATy ≤−c
−y ≤ 0,

which is a problem with m variables, 2n+m (= O(m)) constraints and input
length

2`(A) +m+ 2`(c) + `(b) +m+ (2n+m) ≤ 2L+m ≤ 3L.

So it follows from step VI that we can decide whether the dual problem has
any feasible points with O(m7/2L) operations.

The proof of Theorem 18.4.2 is now complete.
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Exercises

18.1 Show that if the functions fi are νi-self-concordant barriers to the subsets
Xi of Rni , then f(x1, . . . , xm) = f1(x1) + · · ·+ fm(xm) is a (ν1 + · · ·+ νm)-
self-concordant barrier to the product set X1 × · · · ×Xm.

18.2 Prove that the dual local norm ‖v‖∗x that is associated with the function f
is finite if and only if v belongs to N (f ′′(x))⊥, and that the restriction of
‖·‖∗x to N (f ′′(x))⊥ is a proper norm.

18.3 Let X be a closed proper convex cone with nonempty interior, let ν ≥ 1 be
a real number, and suppose that the function f : intX → R is closed and
self-concordant and that f(tx) = f(x)− ν ln t for all x ∈ intX and all t > 0.
Prove that

a) f ′(tx) = t−1f ′(x) b) f ′(x) = −f ′′(x)x c) λ(f, x) =
√
ν.

The function f is in other words a ν-self-concordant barrier to X.

18.4 Show that the nonnegative orthant X = Rn
+, ν = n and the logarithmic

barrier f(x) = −
∑n

i=1 lnxi fulfill the assumptions of the previous exercise.

18.5 Let X = {(x, xn+1) ∈ Rn × R | xn+1 ≥ ‖x‖2}.
a) Show that the function f(x) = − ln(x2

n+1 − (x2
1 + · · · + x2

n)) is self-
concordant on intX.

b) Show that X, ν = 2 and f fulfill the assumptions of exercise 18.3. The
function f is thus a 2-self-concordant barrier to X.

18.6 Suppose that the function f : R++ → R is convex, three times continuously
differentiable and that

|f ′′′(x)| ≤ 3
f ′′(x)

x
for all x > 0. The function

F (x, y) = − ln(y − f(x))− lnx

with X = {(x, y) ∈ R2 | x > 0, y > f(x)} as domain is self-concordant
according to exercise 16.3. Show that F is a 2-self-concordant barrier to the
closure clX.

18.7 Prove that the function

F (x, y) = − ln(y − x lnx)− lnx

is a 2-self-concordant barrier to the epigraph

{(x, y) ∈ R2 | y ≥ x lnx, x ≥ 0}.
18.8 Prove that the function

G(x, y) = − ln(ln y − x)− ln y

is a 2-self-concordant barrier to the epigraph {(x, y) ∈ R2 | y ≥ ex}.



Bibliografical and historical
notices

Basic references in convex analysis are the books by Rockafellar [1] from 1970
and Hiriart-Urutty–Lemarechal [1] from 1993. Almost all results from Chap-
ters 1–10 of this book can be found in one form or another in Rockafellar’s
book, which also contains a historical overview with references to the original
works in the field.

A more accessible book on the same subject is Webster [1]. Among
textbooks in convexity with an emphasis on polyhedra, one should mention
Stoer–Witzgall [1] and the more combinatorially oriented Grünbaum [1].

A modern textbook on convex optimization is Boyd–Vandenberghe [1],
which in addition to theory and algorithms also contains lots of interesting
applications from a variety of fields.

Part 1

The general convexity theory was founded around the turn of the century
1900 by Hermann Minkowski [1, 2] as a byproduct of his number theoretic
studies. Among other things, Minkowski introduced the concepts of sepa-
ration and extreme point, and he showed that every compact convex set is
equal to the convex hull of its extreme points and that every polyhedron is
finitely generated, i.e. one direction of Theorem 5.3.1 − the converse was
noted later by Weyl [1].

The concept of dual cone was introduced by Steinitz [1], who also showed
basic results about the recession cone.

The theory of linear inequalities is surprisingly young − a special case
of Theorem 3.3.7 (Exercise 3.11a) was proved by Gordan [1], the algebraic
version of Farkas’s lemma, i.e. Corollary 3.3.3, can be found in Farkas [1],
and a closely related result (Exercise 3.11b) is given by Stiemke [1]. The
first systematic treatment of the theory is given by Weyl [1] and Motzkin [1].
Significant contributions have also been provided by Tucker [1]. The proof

397
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in Chapter 3 of Farkas’s lemma has a geometrical character; an alternative
algebraic induction proof of the lemma has been given by Kuhn [1].

Extreme points and faces are treated in detail in Klee [1,2].
Jensen [1] studied convex functions of one real variable and showed that

convex functions with R as domain are continuous and have one-sided deriva-
tives everywhere. Jensen’s inequality, however, was shown earlier for func-
tions with positive second derivative by Hölder [1].

The conjugate function was introduced by Fenchel [1], and a modern
treatment of the theory of convex cones, sets and functions can be found
in Fenchel [2], which among other things contains original results about the
closure of convex functions and about the subdifferential.

Part II

The earliest known example of linear programming can be found in Fourier’s
works from the 1820s (Fourier [1]) and deals with the problem of determining
the best, with respect to the maximum norm, fit to an overdetermined system
of linear equations. Fourier reduced this problem to minimizing a linear form
over a polyhedron, and he also hinted a method, equivalent to the simplex
algorithm, to compute the minimum.

It was to take until the 1940s before practical problems on a larger scale
began to be formulated as linear programming. The transportation prob-
lem was formulated by Hitchcock [1], who also gave a constructive solution
method, and the diet problem was studied by Stigler [1], who, however, failed
to compute the exact solution. The Russian mathematician and economist
Kantorovich [1] had some years before formulated and solved LP problems
in production planning, but his work was not noticed outside the USSR and
would therefore not influence the subsequent development.

The need for mathematical methods for solving military planning prob-
lems had become apparent during the Second World War, and in 1947 a
group of mathematicians led by George Dantzig and Marshall Wood worked
at the U.S. Department of the Air Force with such problems. The group’s
work resulted in the realization of the importance of linear programming,
and the first version of the simplex algorithm was described by Dantzig [1]
and Wood–Dantzig [1].

The simplex algorithm is contemporary with the first computers, and
this suddenly made it possible to treat large problems numerically and con-
tributed to a breakthrough for linear programming. A conference on linear
programming, arranged by Tjalling Koopmans 1949 in Chicago, was also an
important step in the popularization of linear programming. During this
conference, papers on linear programming were presented by economists,
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mathematicians, and statisticians. The papers were later published in Koop-
mans [1], and this book became the start for a rapidly growing literature on
linear programming.

The theory of convex programs has its roots in a paper by Kuhn–Tucker
which deals with necessary and sufficient conditions for optimality in non-
linear problems. Kuhn–Tucker [1] noted the connection between Lagrange
multipliers and saddle points, and they focused on the role of convexity. A
related result with Lagrange multiplier conditions had otherwise been shown
before by John [1] for general differentiable constraints, and KKT conditions
are present for the first time in an unpublished master’s thesis by Karush [1].
Theorem 11.2.1 can be found in Uzawa [1].

The duality theorem in linear programming was known as a result of game
theory by John von Neumann, but the first published proof of this theorem
appears in Gale–Kuhn–Tucker [1].

There are numerous textbooks on linear programming. Two early such
books, written by pioneers in the field, are Dantzig [4], which in addition to
the mathematical material also contains a thorough historical overview, many
applications and an extensive bibliography, and Gale [1], which provides a
concise but mathematically rigorous presentation of linear programming with
an emphasis on economic applications. More recent books are Chvatal [1]
and Luenberger [1].

Part III

Dantzig’s [2] basic article 1951 treated the non-degenerate case of the simplex
algorithm, and the possibility of cycling in the degenerate case caused initially
some concern. The first example with cycling was constructed by Hoffman [1],
but even before this discovery Charnes [1] had proposed a method for avoiding
cycling. Other such methods were then given by Dantzig–Orden–Wolfe [1]
and Wolfe [2]. Bland’s [1] simple pivoting rule is relatively recent.

It is easy to modify the simplex algorithm so that it is directly applicable
to LP problems with bounded variables, which was first noted by Charnes–
Lemke [1] and Dantzig [3].

The dual simplex algorithm was developed by Beale [1] and Lemke [1].
The currently most efficient variants of the simplex algorithm are primal-dual
algorithms.

Convex quadratic programs can be solved by a variant of the simplex
algorithm, formulated by Wolfe [1].

Khachiyan’s [1] complexity results was based on the ellipsoid algorithm,
which was first proposed by Shor [1] as a method in general convex optimiza-
tion. See Bland–Goldfarb–Todd [1] for an overview of the ellipsoid method.
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Many variants of Karmarkar’s [1] algorithm were developed after his pub-
lication in 1984. Algorithms for LP problems with O(n3L) as complexity
bound are described by Gonzaga [1] and Ye [1].

Part IV

Newton’s method is a classic iterative algorithm for finding critical points
of differentiable functions. Local quadratic convergence for functions with
Lipschitz continuous, positive definite second derivatives in a neighborhood
of the critical point was shown by Kantorovich [2].

Barrier methods for solving nonlinear optimization problems were first
used during the 1950s. The central path with logarithmic barriers was stud-
ied by Fiacco and McCormick, and their book on sequential minimization
techniques − Fiacco–McCormick [1], first published in 1968 − is the stan-
dard work in the field. The methods worked well in practice, for the most
part, but there were no theoretical complexity results. They lost in popularity
in the 1970s and then experienced a renaissance in the wake of Karmarkar’s
discovery.

Karmarkar’s [1] polynomial algorithm for linear programming proceeds
by mapping the polyhedron of feasible points and the current approximate
solution xk onto a new polyhedron and a new point x′k which is located near
the center of the new polyhedron, using a projective scaling transformation.
Thereafter, a step is taken in the transformed space which results in a point
xk+1 with a lower objective function value. The progress is measured by
means of a logarithmic potential function.

It was soon noted that Karmarkar’s potential-reducing algorithm was
akin to previously studied path-following methods, and Renegar [1] and Gon-
zaga [1] managed to show that the path-following method with logarithmic
barrier is polynomial for LP problems.

A general introduction to linear programming and the algorithm devel-
opment in the area until the late 1980s (the ellipsoid method, Karmarkar’s
algorithm, etc.) is given by Goldfarb–Todd [1]. An overview of potential-
reducing algorithms is given by Todd [1], while Gonzaga [2] describes the
evolution of path-following algorithms until 1992.

A breakthrough in convex optimization occurred in the late 1980s, when
Yurii Nesterov discovered that Gonzaga’s and Renegar’s proof only used two
properties of the logarithmic barrier function, namely, that it satisfies the two
differential inequalities, which with Nesterov’s terminology means that the
barrier is self-concordant with finite parameter ν. Since explicit computable
self-concordant barriers exist for a number of important types of convex
sets, the theoretical complexity results for linear programming could now be
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extended to a large class of convex optimization problems, and Nemirovskii
together with Nesterov developed algorithms for convex optimization based
on self-concordant barriers. See Nesterov–Nesterovski [1].
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i Oeuvres de Fourier II, 1890.

Gale, D.

[1] The Theory of Linear Economic Models. McGraw–Hill, 1960.

Gale, D., Kuhn, H.W. & Tucker, A.W.

[1] Linear programming and the theory of games. Pages 317–329 in Koop-
mans, T.C. (ed.), Activity Analysis of Production and Allocation, John
Wiley & Sons, 1951.

Goldfarb, D.G. & Todd, M.J.

[1] Linear programming. Chapter 2 in Nemhauser, G.L. et al. (eds.), Hand-
books in Operations Research and Management Science, vol. 1: Opti-
mization, North-Holland, 1989.

Gonzaga, C.C.

[1] An algorithm for solving linear programming problems in O(n3L) oper-
ations. Pages 1–28 in Megiddo, N. (ed.), Progress in Mathematical Pro-
gramming: Interior-Point and Related Methods, Springer-Verlag, 1988.

[2] Path-Following Methods for Linear Programming, SIAM Rev. 34 (1992),
167–224.



References 403

Gordan, P.
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Answers and solutions to the
exercises

Chapter 2

2.2 a) {x ∈ R2 | 0 ≤ x1 + x2 ≤ 1, x1, x2 ≥ 0}
b) {x ∈ R2 | ‖x‖ ≤ 1}
c) R2

++ ∪ {(0, 0)}
2.3 E.g. {(0, 1)} ∪ (R× {0}) in R2.

2.4 {x ∈ R3
++ | x2

3 ≤ x1x2}
2.5 Use the triangle inequality(∑n

1 (xj + yj)
2
)1/2 ≤

(∑n
1 x

2
j

)1/2
+
(∑n

1 y
2
j

)1/2

to show that the set is closed under addition of vectors. Or use the
perspective map; see example 2.3.4.

2.6 Follows from the fact that −ek is a conic combination of the vectors
e0, e1, . . . , en.

2.7 Let X be the halfspace {x ∈ Rn | 〈c, x〉 ≥ 0}. Each vector x ∈ X is a
conic combination of c and the vector y = x − 〈c, x〉‖c‖−2c, and y lies
in the (n− 1)-dimensional subspace Y = {x ∈ Rn | 〈c, x〉 = 0}, which
is generated by n vectors as a cone according to the previous exercise.
Hence, x is a conic combination of these n vectors and c.

2.8 The intersection between the cone X and the unit circle is a closed
circular arc with endpoints x and y, say. The length of the arc is either
less than π, equal to π, or equal to 2π. The cone X is proper and
generated by the two vectors x and y in the first case. It is equal to a
halfspace in the second case and equal to R2 in the third case, and it
is generated by three vectors in both these cases.

2.9 Use exercise 2.8.

2.10 a) reccX = {x ∈ R2 | x1 ≥ x2 ≥ 0}, linX = {(0, 0)}
b) reccX = linX = {(0, 0)}

407
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2.10 c) reccX = {x ∈ R3 | 2x1 + x2 + x3 ≤ 0, x1 + 2x2 + x3 ≤ 0},
linX = {(t, t,−3t) | t ∈ R}

d) reccX={x ∈ R3 | x1 ≥ |x2|},
linX={x ∈ R3 | x1 = x2 = 0}.

2.12 b) (i) c(X) = {x ∈ R2 | 0 ≤ 1
3
x1 ≤ x2 ≤ 1

2
x1} = cl(c(X))

(ii) c(X) = {x ∈ R2 | 0 < x2 ≤ 1
2
x1} ∪ {(0, 0)},

cl(c(X) = {x ∈ R2 | 0 ≤ x2 ≤ 1
2
x1},

(iii) c(X) = {x ∈ R3 | x1x3 ≥ x2
2, x3 > 0} ∪ {(0, 0, 0)},

cl(c(X)) = c(X) ∪ {(x1, 0, 0) | x1 ≥ 0}.
c) c(X) = {(x, xn+1) ∈ Rn × R | ‖x‖ ≤ xn+1}.

2.14 Let zn = xn + yn, n = 1, 2, . . . be a convergent sequence of points in
X + Y with xn ∈ X and yn ∈ Y for all n and limit z0. The sequence
(yn)∞1 ha a convergent subsequence (ynk)

∞
k=1 with limit y0 ∈ Y , since Y

is compact. The corresponding subsequence (znk − ynk)∞k=1 of points in
X converges to z0 − y0, and the limit point belongs to X since X is a
closed set. Hence, z0 = (z0 − y0) + y0 lies in X + Y , and this means
that X + Y is a closed set.

Chapter 3

3.1 E.g. {x ∈ R2 | x2 ≤ 0} and {x ∈ R2 | x2 ≥ ex1}.
3.2 Follows from Theorem 3.1.3 for closed sets and from Theorem 3.1.5 for

open sets.

3.4 a) R+ × R b) {0} × R c) {0} × R+ d) R+ × R+

e) {x ∈ R2 | x2 ≥ x1 ≥ 0}
3.6 a) X = X++ = {x ∈ R2 | x1 + x2 ≥ 0, x2 ≥ 0},

X+ = {x ∈ R2 | x2 ≥ x1 ≥ 0}
b) X = X++ = R2, X+ = {(0, 0)}
c) X = R2

++ ∪ {(0, 0)}, X+ = X++ = R2
+

3.7 (i) ⇒ (iii): Since −aj /∈ conA, there is, for each j, a vector cj such
that −〈cj, aj〉 < 0 and 〈cj, x〉 ≥ 0 for all x ∈ conA, which implies that
〈cj, aj〉 > 0 and 〈cj, ak〉 ≥ 0 for all k. It follows that c = c1+c2+· · ·+cm
works.

(iii) ⇒ (ii): Suppose that 〈c, aj〉 > 0 for all j. Then
∑m

1 λjaj = 0
implies 0 = 〈c, 0〉 =

∑m
1 λj 〈c, aj〉, so if λj ≥ 0 for all j then λj 〈c, aj〉 =

0 for all j, with the conclusion that λj = 0 for all j.

(ii) ⇒ (i): If there is a vector x such that x =
∑m

1 λjaj and −x =∑m
1 µjaj with nonnegative scalars λj, µj, then by addition we obtan
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the equality
∑m

1 (λj + µj)aj = 0 with the conclusions λj + µj = 0,
λj = µj = 0 and x = 0.

3.8 No solution.

3.10 Solvable for α ≤ −2, −1 < α < 1 and α > 1.

3.11 a) The systems (S) and (S∗) are equivalent to the systems
Ax≥ 0
−Ax≥ 0
Ex≥ 0
1Tx> 0

and

{
AT(y′ − y′′) + Ez + 1t= 0

y′, y′′, z ≥ 0, t > 0,

respectively (with y corresponding to y′′ − y′). The assertion therefore
follows from Theorem 3.3.7.

b) The systems (S) and (S∗) are equivalent to the systems
Ax≥ 0
−Ax≥ 0
Ex> 0

and

{
AT(y′ − y′′) + Ez= 0
y′, y′′, z ≥ 0, z 6= 0,

respectively. Now apply Theorem 3.3.7.

3.12 By Theorem 3.3.7, the system is solvable if and only if the dual system
AT(y′ − y′′) + z + u= 0

A(w + u) = 0
y′, y′′, z, w, u ≥ 0, u 6= 0

has no solution. It follows from the two equations of the dual system
that:

0 = −(w + u)TAT = −(w + u)TAT(y′ − y′′) = (w + u)T(z + u)

= wTz + wTu+ uTz + uTu,

and all the four terms in the last sum are nonnegative. We conclude
that uTu = 0, and hence u = 0. So the dual system has no solution.

Chapter 4

4.1 a) extX = {(1, 0), (0, 1)} b) extX = {(0, 0), (1, 0), (0, 1), (1
2
, 1)}

c) extX = {(0, 0, 1), (0, 0,−1)} ∪ {(x1, x2, 0) | (x1 − 1)2 + x2
2 = 1} \

{(0, 0, 0)}
4.2 Suppose x ∈ cvxA \A; then x = λa+ (1− λ)y where a ∈ A, y ∈ cvxA

and 0 < λ < 1. It follows that x /∈ ext(cvxA).
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4.3 We have extX ⊆ A, according to the previous exercise. Suppose that
a ∈ A \ extX. Then a = λx1 + (1 − λ)x2, where x1, x2 ∈ X, x1 6= x2

and 0 < λ < 1. We have xi = µia + (1 − µi)yi, where 0 ≤ µi < 1 and
yi ∈ cvx(A \ {a}). It now follows from the equality

a = (1− λµ1 − (1− λ)µ2)−1(λ(1− µ1)y1 + (1− λ)(1− µ2)y2),

that a lies in cvx(A \ {a}).Therefore, cvx(A \ {a}) = cvxA = X, which
contradicts the minimality of A. Hence, extX = A.

4.4 The set X \ {x0} is convex if and only if ]a, b[⊆ X \ {x0} for all a, b ∈
X \ {x0}, i.e. if and only if x0 /∈ ]a, b[ for all a, b ∈ X \ {x0}, i.e. if and
only if x0 ∈ extX.

4.5 E.g. the set in exercise 4.1 c).

4.6 a) Follows directly from Theorem 4.1.3.

b) The extreme point (1, 0) of
{
x ∈ R2 | x2 ≤

√
1− x2

1 , |x1| ≤ 1
}

is
not exposed.

4.7 b) A zero-dimensional general face is an extreme point, and a zero-
dimensional exposed face is an exposed point. Hence, exercise 4.6 b)
contains an example of a general face which is not an exposed face.

c) Suppose that a, b ∈ X and that the open line segment ]a, b[ intersects
F ′. Since F ′ ⊆ F , the same line segment also intersects F , so it follows
that a, b ∈ F . But since F ′ is a general face of F , it follows that
a, b ∈ F ′. So F ′ is indeed a general face of X.
The set X in exercise 4.6 b) has F = {1}×]−∞, 0] as an exposed face,
and F ′ = {(1, 0)} is an exposed face of F but not of X.

d) Fix a point x0 ∈ F ∩ rintC. To each x ∈ C there is a point y ∈ C
such that x0 lies on the open line segment ]x, y[, and it now follows
from the definition of a general face that x ∈ F .

e) Use the result in d) on the set C = X ∩ clF . Since rintC contains
rintF as a subset, F ∩ rintC 6= ∅, so it follows that C ⊆ F . The
converse inclusion is of course trivial.

f) Use the result in d) with F = F1 och C = F2, which gives us the
inclusion F2 ⊆ F1. The converse inclusion is obtained analogously.

g) If F is a general face and F ∩ rintX 6= ∅, then X ⊆ F by d) above.
For faces F 6= X we therefore have F ∩ rintX = ∅, which means that
F ⊆ rbdryX.

Chapter 5

5.1 a) (−2
3
, 4

3
), and (4,−1) b) (−2

3
, 4

3
), (4,−1), and(−3,−1)

c) (0, 0, 0), (2, 0, 0), (0, 2, 0), (0, 0, 4), and (4
3
, 4

3
, 0)



Answers and solutions to the exercises 411

5.1 d) (0, 4, 0, 0), (0, 5
2
, 0, 0), (3

2
, 5

2
, 0, 0), (0, 1, 1, 0), and (0, 5

2
, 0, 3

2
)

5.2 The extreme rays are generated by (−2, 4, 3), (1, 1, 0), (4,−1, 1), and
(1, 0, 0).

5.3 C =

 1 −2 1
−1 2 3
−3 2 5


5.4 a) A = {(1, 0), (0, 1)}, B = {(−2

3
, 4

3
), (4,−1)}

b) A = ∅, B = {(−2
3
, 4

3
), (4,−1), (−3,−1)}

c) A = {(1, 1,−3), (−1,−1, 3), (4,−7,−1), (−7, 4,−1)},
B = {(0, 0, 0), (2, 0, 0), (0, 2, 0), (0, 0, 4), (4

3
, 4

3
, 0)}

d) A = ∅,
B = {(0, 4, 0, 0), (0, 5

2
, 0, 0), (3

2
, 5

2
, 0, 0), (0, 1, 1, 0), (0, 5

2
, 0, 3

2
)}.

5.5 The inclusion X = cvxA+conB ⊆ conA+conB = con(A∪B) implies
that conX ⊆ con(A ∪ B). Obviously, A ⊆ cvxA ⊆ X. Since cvxA
is a compact set, reccX = conB, so using the assumption 0 ∈ X, we
obtain the inclusion B ⊆ conB ⊆ X. Thus, A∪B ⊆ X, and it follows
that con(A ∪B) ⊆ conX.

Chapter 6

6.1 E.g. f1(x) = x− |x| and f2(x) = −x− |x|.
6.3 a ≥ 5 and a > 5, respectively.

6.4 Use the result of exercise 2.1.

6.5 Follows from f(x) = max(xi1 + xi2 + · · · + xik), where the maximum
is taken over all subsets {i1, i2, . . . , ik} of {1, 2, . . . , n} consisting of k
elements.

6.6 The inequality is trivial if x1 + x2 + · · ·+ xn = 0, and it is obtained by
adding the n inequalities

f(xi) ≤
xi

x1 + · · ·+ xn
f(x1 + · · ·+ xn) +

(
1− xi

x1 + · · ·+ xn

)
f(0)

if x1 + · · ·+ xn > 0.

6.7 Choose

c =
f(x2)− f(x1)

‖x2 − x1‖2
(x1 − x2),

to obtain f(x1) + 〈c, x1〉 = f(x2) + 〈c, x2〉. By quasiconvexity,

f(λx1 + (1− λ)x2) + 〈c, λx1 + (1− λ)x2〉 ≤ f(x1) + 〈c, x1〉,
which simplifies to

f(λx1 + (1− λ)x2) ≤ λf(x1) + (1− λ)f(x2).
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6.8 Let f : Rn × R→ R be the function defined by

f(x, t) =

{
t if (x, t) ∈ C,

+∞ if (x, t) /∈ C.

Then inf{t ∈ R | (x, t) ∈ C} = inf{f(x, t) | t ∈ R}, and Theorem 6.2.6
now follows from Corollary 6.2.7.

6.9 Choose, given x, y ∈ X, sequences (xk)
∞
1 , (yk)

∞
1 of points xk, yk ∈ intX

such that xk → x and yk → y as k →∞. Since the points λxk+(1−λ)yk
belong to intX,

f(λxk + (1− λ)yk) ≤ λf(xk) + (1− λ)f(yk),

and since f is continuous on X, we now obtain the desired inequality
f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) by passing to the limit.

6.10 Let m = inf{f(x) | x ∈ rint(dom f)} and fix a relative interior point x0

of dom f . If x ∈ dom f is arbitrary and 0 < λ < 1, then λx+ (1− λ)x0

is a relative interior point of dom f , and it follows that

m ≤ f(λx+ (1− λ)x0) ≤ λf(x) + (1− λ)f(x0).

The inequality f(x) ≥ m now follows by letting λ→ 1.

6.11 Minimum 8 at x = (1
8
, 2).

6.12 a) ‖x‖p b) max(x1, 0).

Chapter 7

7.2 Yes.

7.5 Let J be a subinterval of I. If f ′+(x) ≥ 0 for all x ∈ J , then

f(y)− f(x) ≥ f ′+(x)(y − x) ≥ 0

for all y > x in the interval J , i.e. f is increasing on J . If instead
f ′+(x) ≤ 0 for all x ∈ J , then f(y) − f(x) ≥ f ′+(x)(y − x) ≥ 0 for all
y < x, i.e. f is decreasing on J .
Since the right derivative f ′+(x) is increasing on I, there are three dif-
ferent cases to consider. Either f ′+(x) ≥ 0 for all x ∈ I, and f is then
increasing on I, or f ′+(x) ≤ 0 for all x ∈ I, and f is then decreasing
on I, or there is a point c ∈ I such that f ′+(x) ≤ 0 to the left of c and
f ′+(x) > 0 to the right of c, and f is in this case decreasing to the left
of c and increasing to the right of c.

7.6 a) The existence of the limits is a consequence of the results of the
previous exercise.

b) Consider the epigraph of the extended function.
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7.7 Follows directly from exercise 7.6 b).

7.8 Suppose that f ∈ F . Let x0 ∈ Rn be an arbitrary point, and consider
the function g(x) = f(x)− 〈f ′(x0), x− x0〉. The function g belongs to
F and g′(x0) = 0. It follows that g(x) ≥ g(x0) for all x, which means
that f(x) ≥ f(x0) + 〈f ′(x0), x − x0〉 for all x. Hence, f is convex by
Theorem 7.2.1.

7.9 φ(t) = f(x + tv) = f(x) + t〈f ′(x), v〉 for v ∈ Vf by Theorem 6.7.1.
Differentiate two times to obtain D2f(x)[v, v] = φ′′(0) = 0, with the
conlusion that f ′′(x)v = 0.

7.13 By combining Theorem 7.3.1 (i) with x replaced by x̂ and v = x−x̂ with
the Cauchy-Schwarz inequality, we obtain the inequality µ‖x − x̂‖2 ≤
〈f ′(x), x− x̂〉 ≤ ‖f ′(x)‖‖x− x̂‖.

Chapter 8

8.1 Suppose that f is µ-strongly convex, where µ > 0, and let c be a
subgradient at 0 of the convex function g(x) = f(x) − 1

2
µ‖x‖2. Then

f(x) ≥ f(0) + 〈c, x〉 + 1
2
µ‖x‖2 for all x, and the right-hand side tends

to ∞ as ‖x‖ → ∞. Alternatively, one could use Theorem 8.1.6.

8.2 The line segment [−e1, e2], where e1 = (1, 0) and e2 = (0, 1).

8.3 a) B2(0; 1) = {x | ‖x‖2 ≤ 1} b) B1(0; 1) = {x | ‖x‖1 ≤ 1}
c) B∞(0; 1) = {x | ‖x‖∞ ≤ 1}.

8.4 a) dom f ∗ = {a}, f ∗(a) = b
b) dom f ∗ = {x | x < 0}, f ∗(x) = −1− ln(−x)
c) dom f ∗ = R+, f ∗(x) = x lnx− x, f ∗(0) = 0
d) dom f ∗ = R, f ∗(x) = ex−1

e) dom f ∗ = R−, f ∗(x) = −2
√
−x.

Chapter 9

9.1 min 5000x1 + 4000x2 + 3000x3 + 4000x4

s.t.


−x1 + 2x2 + 2x3 + x4 ≥ 16
4x1 + x2 + 2x4 ≥ 40
3x1 + x2 + 2x3 + x4 ≥ 24, x ≥ 0

9.2 max v

s.t.


2x1 + x2− 4x3 ≥ v
x1 + 2x2− 2x3 ≥ v

−2x1− x2 + 2x3 ≥ v
x1 + x2 + x3 = 1, x ≥ 0
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9.3 The row player should choose row number 2 and the column player
column number 1.

9.4 Payoff matrix:
Sp E Ru E Ru 2

Sp E −1 1 −1
Ru E 1 −1 −2
Sp 2 −1 2 2

The column players problem can be formulated as

min u

s.t.


−y1 + y2 + y3 ≤ u
y1− y2− 2y3 ≤ u
−y1 + 2y2 + 2y3 ≤ u
y1 + y2 + y3 = 1, y ≥ 0

9.5 a) (4
5
, 13

15
)

9.6 a) max r

s.t.


−x1 + x2 + r

√
2 ≤ 0

x1− 2x2 + r
√

5 ≤ 0

x1 + x2 + r
√

2 ≤ 1

b) max r

s.t.


−x1 + x2 + 2r≤ 0
x1− 2x2 + 3r≤ 0
x1 + x2 + 2r≤ 1

Chapter 10

10.1 φ(λ) = 2λ− 1
2
λ2

10.2 The dual functions φa and φb of the two problems are given by:

φa(λ) = 0 for all λ ≥ 0 and φb(λ) =


0 if λ = 0,

λ− λ lnλ if 0 < λ < 1,

1 if λ ≥ 1.

10.5 The inequality gi(x0) ≥ gi(x̂)+〈g′i(x̂), x0− x̂〉 = 〈g′i(x̂), x0− x̂〉 holds for
all i ∈ I(x̂). It follows that 〈g′i(x̂), x̂−x0〉 ≥ −gi(x0) > 0 for i ∈ Ioth(x̂),
and 〈g′i(x̂), x̂− x0〉 ≥ −gi(x0) ≥ 0 for i ∈ Iaff(x̂).

10.6 a) vmin = −1 for x = (−1, 0) b) vmax = 2 + π
4

for x = (1, 1)

c) vmin = −1
3

for x = ±( 2√
6
,− 1√

6
) d) vmax = 1

54
for x = (1

6
, 2, 1

3
)

Chapter 11

11.1 λ̂ = 2b

11.3 b) Let L : Ω × Λ → R and L1 : (R × Ω) × (R+ × Λ) → R be
the Lagrange functions of the problems (P) and (P′), respectively, and
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let φ and φ1 be the corresponding dual functions. The two Lagrange
functions are related as follows:

L1(t, x, λ0, λ) = (1− λ0)(t− f(x)) + L(x, λ).

The Lagrange function L1 is for fixed (λ0, λ) ∈ R+×Λ bounded below
if and only if λ0 = 1 and λ ∈ domφ. Hence, domφ1 = {1} × domφ.
Moreover, φ1(1, λ) = φ(λ) for all λ ∈ domφ.

11.4 Let I be the index set of all non-affine constraints, and let k be the
number of elements of I. Slater’s condition is satisfied by the point
x = k−1

∑
i∈I xi.

11.5 Let b(1) and b(2) be two points in U , and let 0 < λ < 1. Choose, given
ε > 0, feasible points x(i) for the problems (Pb(i)) so that f(x(i)) <
vmin(b(i)) + ε. The point x = λx(1) + (1 − λ)x(2) is feasible for the
problem (Pb), where b = λb(1) + (1− λ)b(2). Therefore,

vmin(λb(1) + (1− λ)b(2)) ≤ f(x) ≤ λf(x(1)) + (1− λ)f(x(2))

< λvmin(b(1)) + (1− λ)vmin(b(2)) + ε,

and since ε > 0 is arbitrary, this shows that the function vmin is convex
on U .

11.6 a) vmin = 2 for x = (0, 0) b) vmin = 2 for x = (0, 0)

c) vmin = ln 2−1 for x = (− ln 2, 1
2
) d) vmin = −5 for x = (−1,−2)

e) vmin = 1 for x = (1, 0) f) vmin = 2 e1/2 + 1
4

for x = (1
2
, 1

2
)

11.7 vmin = 2− ln 2 for x = (1, 1)

11.9 min 50x2
1 + 80x1x2 + 40x2

2 + 10x2
3

s.t.

{
0.2x1 + 0.12x2 + 0.04x3 ≥ 0.12
x1 + x2 + x3 = 1, x ≥ 0

Optimum for x1 = x3 = 0.5 miljon dollars.

Chapter 12

12.1 All nonempty sets X(b) = {x | Ax ≥ b} of feasible points have the
same recession cone, since reccX(b) = {x | Ax ≥ 0} if X(b) 6= ∅.
Therefore, it follows from Theorem 12.1.1 that the optimal value v(b)
is finite if X(b) 6= ∅. The convexity of the optimal value function v is a
consequence of the same theorem, because

v(b) = min{〈−b, y〉 | ATy ≤ c, y ≥ 0},

according to the duality theorem.



416 Answers and solutions to the exercises

12.2 E.g. min x1 − x2

s.t.

{
−x1 ≥ 1

x2 ≥ 1, x ≥ 0

and max y1 + y2

s.t.

{
−y1 ≤ 1

y2 ≤ −1, y ≥ 0

12.5 vmax =


t− 3

t+ 1
for x =

(
− 2

t+ 1
,
t− 1

t+ 1

)
if t < −2,

5 for x = (2, 3) if t ≥ −2.

Chapter 13

13.1 a) min 2x1 − 2x2 + x3

s.t.


x1 +x2−x3− s1 = 3
x1 +x2−x3 + s2 = 2

x1, x2, x3, s1, s2 ≥ 0

b) min x1 + 2x′2 − 2x′′2

s.t.


x1 +x′2−x′′2 − s1 = 1

x′2−x′′2 − s2 = −2
x1, x

′
2, x
′′
2, s1, s2 ≥ 0

13.2 a) (5, 5, 0) and (71
2
, 0, 21

2
) b) (3, 0, 0, 0) and (0, 0, 0, 3)

13.3 max y1 + 7y2

s.t.


y1 + y2 ≤ 1

2y2 ≤ 1
−y1 + 7y2 ≤ 4

13.4 a) vmin = −1 for x = (0, 0, 4, 1) b) vmax = 56 for x = (24, 0, 0, 1, 11)

c) vmax = 306
7

for x = (15
7
, 3

7
, 0) d) vmax = 23 for x = (2, 0, 3, 0, 5)

e) vmin = −∞ f) vmin = −113
15

for x = (0, 2
3
, 0, 2

5
)

13.5 vmin = −2 is attained at all points on the line segment between the
points (0, 3, 1, 1, 0) and (0, 2, 2, 0, 1).

13.6 vmax = 15 for x = (21
2
, 21

2
, 21

2
, 0)

13.8 vmin = 9 for x = (2
3
, 12

3
, 12

3
)

13.9 vmin = −403
5

for x = (−33
5
, 114

5
)

13.10 a) vmin = 41
4

for x = (3
4
, 1

2
, 3

4
) b) vmin = 4

5
for x = (0, 2

5
, 0)

c) vmin = 5 7
12

for x = (11
4
, 11

12
, 0)

13.12 vmax =


7 for x = (31

2
, 0) if t ≤ 1,

4 + 3t for x = (2, 3) if 1 < t < 2,

5t for x = (0, 5) if t ≥ 2.

13.13 500 pairs of model A and 700 pairs of model B.

13.14 4 liters of milk and 1 loaf. The milk price could rise to 10 SEK/l.
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13.17 First, use the algorithm A on the system consisting of the linear in-
equalities Ax ≥ b, x ≥ 0, ATy ≤ c, y ≥ 0, 〈c, x〉 ≤ 〈b, y〉. If the
algorithm delivers a solution (x, y), then x is an optimal solution to the
minimization problem because of the complementarity theorem.
If the algorithm instead shows that the system has no solution, then we
use the algorithm on the system Ax ≥ b, x ≥ 0 to determine whether
the minimization problem has feasible points or not. If this latter sys-
tem has feasible points, then it follows from our first investigation that
the dual problem has no feasible points, and we conclude that the ob-
jective function is unbounded below, because of the duality theorem.

Chapter 14

14.1 x1 = (4
9
,−1

9
), x2 = ( 2

27
, 2

27
), x3 = ( 8

243
,− 2

243
).

14.3 hf ′(xk) = f(xk) − f(xk+1) → f(x̂) − f(x̂) = 0 and hf ′(xk) → hf ′(x̂).
Hence, f ′(x̂) = 0.

Chapter 15

15.1 ∆xnt = −x lnx, λ(f, x) =
√
x lnx, ‖v‖x = |v|/

√
x.

15.2 a) ∆xnt = (1
3
, 1

3
), λ(f, x) =

√
1
3
, ‖v‖x = 1

2

√
5v2

1 + 2v1v2 + 5v2
2

b) ∆xnt = (1
3
,−2

3
), λ(f, x) =

√
1
3
, ‖v‖x = 1

2

√
8v2

1 + 8v1v2 + 5v2
2.

15.3 ∆xnt = (v1, v2), where v1 + v2 = −1− e−(x1+x2),

λ(f, x) = e(x1+x2)/2 + e−(x1+x2)/2, ‖v‖x = e(x1+x2)/2|v1 + v2|.
15.4 If rankA < m, then rankM < m + n, and if N (A) ∩ N (P ) contains

a nonzero vector x, then M

[
x
0

]
=

[
0
0

]
. Hence, the matrix M has no

inverse in these cases.
Conversely, suppose that rankA = m, i.e. that N (AT) = {0}, and
that N (A) ∩ N (P ) = {0}. We show that the coefficient matrix M is
invertible by showing that the homogeneous system{

Px+ATy = 0
Ax = 0

has no other solutions than the trivial one, x = 0 and y = 0.
By multiplying the first equation from the left by xT we obtain

0 = xTPx+ xTATy = xTPx+ (Ax)Ty = xTPx,

and since P is positive semidefinite, it follows that Px = 0. The first
equation now gives ATy = 0. Hence, x ∈ N (A)∩N (P ) and y ∈ N (AT),
which means that x = 0 and y = 0.
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15.5 a) By assumption, 〈v, f ′′(x)v〉 ≥ µ‖v‖2 if Av = 0. Since AC = 0, we
conclude that

〈w, f̃ ′′(z)w〉 = 〈w,CTf ′′(x)Cw〉 = 〈Cw, f ′′(x)Cw〉 ≥ µ‖Cw‖2

= µ〈w,CTCw〉 ≥ µσ‖w‖2

for all w ∈ Rp, which shows that the function f̃ is µσ-strongly convex.

b) The assertion follows from a) if we show that the restriction of f to
X is a K−2M−1-strongly convex function. So assume that x ∈ X and
that Av = 0. Then [

f ′′(x) AT

A 0

] [
v
0

]
=

[
f ′′(x)v

0

]
and due to the bound on the norm of the inverse matrix, we conclude
that

‖v‖ ≤ K‖f ′′(x)v‖.
The positive semidefinite second derivative f ′′(x) has a positive semidef-
inite square root f ′′(x)1/2 and ‖f ′′(x)1/2‖ = ‖f ′′(x)‖1/2 ≤ M1/2. It
follows that

‖f ′′(x)v‖2 = ‖f ′′(x)1/2f ′′(x)1/2v‖2 ≤ ‖f ′′(x)1/2‖2‖f ′′(x)1/2v‖2

≤M‖f ′′(x)1/2v‖2 = M〈v, f ′′(x)v〉,

which inserted in the above inequality results in the inequality

〈v, f ′′(x)v〉 ≥ K−2M−1‖v‖2.

Chapter 16

16.2 Let Pi denote the projection of Rn1 × · · · × Rnm onto then ith factor
Rni . Then f(x) =

∑m
i=1 fi(Pix), so it follows from Theorems 16.1.5

and 16.1.6 that f is self-concordant.

16.3 a) The function g is convex, since g′′(x) =
f ′(x)2

f(x)2
− f ′′(x)

f(x)
+

1

x2
≥ 0.

g′′′(x) = −f
′′′(x)

f(x)
+ 3

f ′(x)f ′′(x)

f(x)2
− 2

f ′(x)3

f(x)3
− 2

x3
implies that

|g′′′(x)| ≤ 3
f ′′(x)

x|f(x)|
+ 3
|f ′(x)|f ′′(x)

f(x)2
+ 2
|f ′(x)|3

|f(x)|3
+ 2

1

x3
.

The inequality |g′′′(x)| ≤ 2g′′(x)3/2, which proves that the function g
is self-concordant, is now obtained by choosing a =

√
f ′′(x)/|f(x)|,

b = |f ′(x)|/|f(x)| and c = 1/x in the equality

3a2b+ 3a2c+ 2b3 + 2c3 ≤ 2(a2 + b2 + c2)3/2.
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To prove this inequality, we can due to homogeneity assume that

a2 + b2 + c2 = 1.

Inserting a2 = 1 − b2 − c2 into the inequality, we can rewrite it as
(b+ c)(3− (b+ c)2) ≤ 2, which holds since x(3− x2) ≤ 2 for x ≥ 0.

16.3 b) Let φ(t) = F (x0 +αt, y0 +βt) be the restriction of F to an arbitrary
line through the point (x0, y0) in domF . We will prove that φ is self-
concordant, and we have to treat the cases α = 0 and α 6= 0 separately.
If α = 0, then φ(t) = − ln(βt + a) + b, where a = y0 − f(x0) and
b = − lnx0, so φ is self-concordant in this case.
To prove the case α 6= 0, we note that f(x) − Ax − B satisfies the
assumptions of the exercise for each choice of the constants A and
B, and hence h(x) = − ln(Ax + B − f(x)) − lnx is self-concordant
according to the result in a). But φ(t) = h(αt + x0), where A = β/α
and B = y0 − βx0/α. Thus, φ is self-concordant.

16.6 a) Set λ = λ(f, x) and use the inequalities (16.7) and (16.6) in Theorem
16.3.2 with y = x+ and v = x+ − x = (1 + λ)−1∆xnt. This results in
the inequality

〈f ′(x+), w〉 ≤ 〈f ′(x), w〉+
1

1 + λ
〈f ′′(x)∆xnt, w〉+

λ2‖w‖x
(1 + λ)2(1− λ/(1 + λ))

= 〈f ′(x), w〉 − 1

1 + λ
〈f ′(x), w〉+

λ2

1 + λ
‖w‖x

=
λ

1 + λ
〈f ′(x), w〉+

λ2

1 + λ
‖w‖x

≤ λ

1 + λ
λ‖w‖x +

λ2

1 + λ
‖w‖x =

2λ2

1 + λ
‖w‖x

≤ 2λ2‖w‖x+
(1 + λ)(1− λ/(1 + λ))

= 2λ2‖w‖x+

with λ(f, x+) ≤ 2λ2 as conclusion.

Chapter 18

18.1 Follows from Theorems 18.1.3 and 18.1.2.

18.2 To prove the implication ‖v‖∗x < ∞ ⇒ v ∈ N (f ′′(x))⊥ we write v
as v = v1 + v2 with v1 ∈ N (f ′′(x)) and v2 ∈ N (f ′′(c))⊥, noting that
‖v1‖x = 0. Hence ‖v‖2

1 = 〈v1, v1〉 = 〈v, v1〉 ≤ ‖v‖∗x‖v1‖x = 0, and we
conclude that v1 = 0. This proves that v belongs to N (f ′′(x))⊥.

Given v ∈ N (f ′′(x))⊥ there exists a vector u such that v = f ′′(x)u. We
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shall prove that ‖v‖∗x = ‖u‖x. From this follows that ‖v‖∗x < ∞ and
that ‖·‖∗x is a norm on the subspace N (f ′′(x))⊥ of Rn.
Let w ∈ Rn be arbitrary. By Cauchy–Schwarz’s inequality,

〈v, w〉 = 〈f ′′(x)u,w〉 = 〈f ′′(x)1/2u, f ′′(x)1/2w〉
≤ ‖f ′′(x)1/2u‖‖f ′′(x)1/2w‖ = ‖u‖x‖v‖x,

and this implies that ‖v‖∗x ≤ ‖u‖x. Suppose v 6= 0. Then u does not
belong to N (f ′′(x)), which means that ‖u‖x 6= 0, and for w = u/‖u‖x
we get the identity

〈v, w〉 = ‖u‖−1
x 〈f ′′(x)1/2u, f ′′(x)1/2u〉 = ‖u‖−1

x ‖f ′′(x)1/2u‖2 = ‖u‖x,

which proves that ‖v‖∗x = ‖u‖x. If on the other hand v = 0, then u is
a vector in N (f ′′(x)) so we have ‖v‖∗x = ‖u‖x in this case, too.

18.3 a) Differentiate the equality f(tx) = f(x)− ν ln t with respect to x.

b) Differentiate the equality obtained in a) with respect to t and then
take t = 1.

c) Since X does not contain any line, f is a non-degenerate self-concor-
dant function, and it follows from the result in b) that x is the unique
Newton direction of f at the point x. By differentiating the equality
f(tx) = f(x)−ν ln t with respect to t and then putting t = 1, we obtain
〈f ′(x), x〉 = −ν. Hence

ν = −〈f ′(x), x〉 = −〈f ′(x),∆xnt〉 = λ(f, x)2.

18.5 Define g(x, xn+1) = (x2
1 + · · ·+ x2

n)− x2
n+1 = ‖x‖2 − x2

n+1, so that

f(x) = − ln(−g(x, xn+1)),

and let w = (v, vn+1). Then

Dg = Dg(x, xn+1)[w] = 2(〈v, x〉 − xn+1vn+1),

D2g = D2g(x, xn+1)[w,w] = 2(‖v‖2 − v2
n+1),

D3g = D3g(x, xn+1)[w,w,w] = 0,

Df = Df(x, xn+1)[w] = −1

g
Dg

D2f = D2f(x, xn+1)[w,w] =
1

g2

(
(Dg)2 − gD2g

)
,

D3f = D3f(x, xn+1)[w,w,w] =
1

g3

(
−2(Dg)3 + 3gDgD2g

)
.

Consider the difference

∆ = (Dg)2−gD2g = 4(〈x, v〉−xn+1vn+1)2+2(x2
n+1−‖x‖2)(‖v‖2−v2

n+1).
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Since xn+1 > ‖x‖, we have ∆ ≥ 0 if |vn+1| ≤ ‖v‖. So suppose that
|vn+1| > ‖v‖. Then

|xn+1vn+1 − 〈x, v〉| ≥ xn+1|vn+1| − |〈x, v〉|
≥ xn+1|vn+1| − ‖x‖‖v‖ ≥ 0,

and it follows that

∆ ≥ 4(xn+1|vn+1| − ‖x‖‖v‖)2 + 2(x2
n+1 − ‖x‖2)(‖v‖2 − v2

n+1)

= 2(xn+1|vn+1| − ‖x‖‖v‖)2 + 2(xn+1‖v‖ − ‖x‖|vn+1|)2 ≥ 0.

This shows that D2f = ∆/g2 ≥ 0, so f is a convex function.

To prove that the function is self-concordant, we shall show that

4(D2f)3 − (D3f)2 ≥ 0.

After simplification we obtain

4(D2f)3 − (D3f)2 = g−4(D2g)2(3(Dg)2 − 4gD2g),

and the problem has now been reduced to showing that the difference

∆′ = 3(Dg)2 − 4gD2g

= 12(〈x, v〉 − xn+1vn+1)2 + 8(x2
n+1 − ‖x‖2)(‖v‖2 − v2

n+1)

is nonnegative. This is obvious if |vn+1| ≤ ‖v‖, and if |vn+1| > ‖v‖ then
we get in a similar way as above

∆′ ≥ 12(xn+1|vn+1| − ‖x‖‖v‖)2 + 8(x2
n+1 − ‖x‖2)(‖v‖2 − v2

n+1)

= 4(xn+1|vn+1| − ‖x‖‖v‖)2 + 8(xn+1‖v‖ − ‖x‖|vn+1|)2 ≥ 0.

18.6 Let w = (u, v) be an arbitrary vector in R2. Writing a = 1/(y− f(x)),
b = −1/x, A = f ′(x) and B = f ′′(x) for short, where a > 0 and B ≥ 0,
we obtain

DF (x, y)[w] = (aA+ b)u− av
D2F (x, y)[w,w] = (aB + a2A2 + b2)u2 − 2a2Auv + a2v2,

and

2D2F (x, y)[w,w]−
(
DF (x, y)[w]

)2

= a2A2u2 + b2u2 + a2v2 + 2abuv − 2a2Auv − 2abAu2 + 2aBu2

= (aAu− bu− av)2 + 2aBu2 ≥ 0.

So F is a 2-self-concordant function.

18.7 Use the previous exercise with f(x) = x lnx.
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18.8 Taking f(x) = − lnx in exercise 18.5, we see that

F (x, y) = − ln(lnx+ y)− lnx

is a 2-self-concordant barrier to the closure of the region −y < lnx.
Since G(x, y) = F (y,−x), it then follows from Theorem 18.1.3 that G
is a 2-self-concordant barrier to the region y ≥ ex.
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