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Abstract

We prove that both Mickelsson step algebras and Orthogonal Gelfand-Zetlin al-
gebras are twisted generalized Weyl algebras. Using an analogue of the Shapovalov
form we construct all weight simple graded modules and some classes of simple weight
modules over a twisted generalized Weyl algebra, improving the results from [MT1],
where a particular class of algebras was considered and only special modules were
classified.

1 Introduction

In the representation theory of infinite-dimensional associative algebras the description of
all representations is usually rather difficult and therefore the investigations are naturally
restricted to some special classes, for example, the so-called weight modules (with respect
to a fixed subalgebra). A naive visualization of such module is usually the lattice of its
weights together with the action of the generators of our algebra on weight components
(subspaces). This inspired two of us to introduce in [MT2] a construction of associative al-
gebras, called twisted generalized Weyl construction (TGWC in the sequel), which “agrees”
with the picture described above. The construction generalizes the notion of twisted gen-
eralized Weyl algebra (TGWA) from [MT1] and the earlier notion of generalized Weyl
algebra, originally defined by Bavula (see [B] and references therein). As it was shown
in [MT1, MT2], many known algebras like certain (quantized) universal enveloping alge-
bras, (quantized) Weyl algebras, (quantized) CCR-algebra and others can be realized via
TGWC.

Another motivation for TGWC was a question of Yu.Drozd to find a natural general-
ization of the Bavula’s construction, which covers, in particular, the universal enveloping
algebras of semi-simple complex Lie algebras. An evidence that some TGWC-obtained
algebras are close to the enveloping algebras was established in [MT1, Example 2], where
certain similarity between the supports of weight modules was obtained.

The aim of this paper is to deeper this connection. There are two classes of associative
algebras, known to be closely related to U(gl(n, C)). The first one is the class of Mickelsson
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step algebras ([Mi] or [Z, Chapter 4]), connected with highest weight U(gl(n, C))-modules.
The second one is the class of orthogonal Gelfand-Zetlin algebras (OGZ-algebras), defined
in [Ma] using the formulae from the famous Gelfand-Zetlin construction of simple finite-
dimensional U(gl(n, C))-modules. We prove that Mickelsson algebras as well as a certain
extension of OGZ algebras are TGWAs. Hence, we give a partial answer to the mentioned
question of Drozd using the fact that U(gl(n,C)) is an OGZ algebra.

The paper is organized as follows: In Section 2 we define all main objects of our interest,
namely TGWC and TGWA in Subsection 2.1, Mickelsson algebras in Subsection 2.2 and
extended OGZ algebras in Subsection 2.3. In Sections 3 and 4 we show how to obtain
respectively extended OGZ algebras and Mickelsson algebras via the twisted generalized
Weyl construction. In Section 5 we prove that these algebras are in fact twisted generalized
Weyl algebras using an analogue of the Shapovalov form on TGWC. In Section 6 we apply
the Shapovalov form to construct weight simple graded modules over a TGWA in an
abstract situation, extending the results from [MT1]. These results can be easily used to
construct certain simple weight modules over Mickelsson step algebras and extended OGZ
algebras. Finally, in Section 7 we reduce the classification of simple weight modules over a
TGWA to the classification of simple modules over a certain subalgebra and invistigate the
structure of the last one in several cases. In particular, we give some sufficient condition
for this subalgebra to be commutative and show that its graded elements always commute
or anticommute (in the case when the basic ring is a domain).

2 Preliminaries

2.1 TGWC and TGWA

Fix a positive integer, k, and set Ny = {1,2,...,k}. Let R be a ring with a unit element,
{o;|1 < i < n} a set of pairwise commuting automorphisms of R and M a matrix,
(#i,5)i,jen, , whose entries are invertible elements from the center of R, stable under all o;
(e.g. m;; =1 for all 7, 7). Fix central elements 0 # ¢; € R, i € N, satisfying the following
relations:

tity = pigpiio; (t)o; (i), 4,5 € No,i # j.

Define A to be a unital R-algebra generated over R by indetermines X;, Y;, i € N,
subject to the relations

e X;r =0;(r)X; for any r € R, i € Ng;

e Yir=0;(r)Y; for any r € R, i € Ny;

o XiY; =p,;;Y; X, for any 4,5 € Ng, 1 # 7;
o VX, =1,1€N;;

X1Y; = O'Z'(tz'), 1€ Nk.



We will say that A is obtained from R, M, {o;} and {t;} by twisted generalized Weyl
construction.

Algebra A possesses a natural structure of Z*-graded algebra by setting deg R = 0,
deg X; = g;, degY; = —g;, i € N;, where g;, i € N, are the standard generators of Z*. For
a graded A-module M we set grsupp M = {g € Z*| M, # 0}.

Let now R be commutative. The twisted generalized Weyl algebra A= A(R,04,... 0,
t1,...,t) of rank k is defined as the quotient ring A/I, where I is the (unique) maximal
graded two-sided ideal of A intersecting R trivially.

Denote by 9% the set of maximal ideals m C R. For m € 9% and an .A-module (A-
module) V we set Vi, = {v € V|mv = 0}. An A-module (A-module), M, will be called
weight provided M = Y o My, For a weight module M we set supp M = {m € M | M, #
0}. We will also denote by W the group, generated by all g;. By definition, W is a
commutative group of finite rank.

Remark 1. We note that the definition above is more general than one used in [MT1].
In that paper there were some additional assumptions on {o;} and {t;} associated with
a biserial graph and all p;; were supposed to equal 1. It was already noticed in [MT2]
that these assumptions are superfluous for x-representations. However, the constructions
of simple weight modules over TGWAs from [MT1] heavily depend on these assumptions.
In Section 6 we present a construction of simple weight modules for TGWA in the present
setup, which covers all the results from [MT1].

We refer the reader to [MT1, MT2]| for further properties of TGWA and TGWC.

2.2 Mickelsson (step) algebras

In this Subsection we follow [Z, Chapter 4] and mostly use the same notation. With each
reductive pair (g, €) we are going to associate an associative algebra, operating on the set
of €-highest weight vectors of any g-module. For the further properties of these algebras
and their applications we refer to [vH, Mi, Z].

Let (g,%) be a reductive pair of complex finite-dimensional Lie algebras and A, =
Af U A; be the root system of € with respect to the Cartan subalgebra b, decomposed
into positive and negative roots. For a root, o, we will denote by X, the corresponding
element from a fixed Weyl-Chevalley basis. For any g-module V' we will denote by VT
the set {v € V|Xov = Oforalla € Af}. For the algebra n,, generated by all X,,
a € Af, we denote by I the left ideal U(g)n; of U(g) and set V(g,€) = U(g)/L,;.
Then the Mickelsson step algebra S(g, ), associated with (g, €), is defined as V (g, &)*. A
slightly more convenient algebra appears if we invert U(h). Let D(h) denote the fraction
field of U(h). Set U'(g) = Ulg) ®ugy D(b), I}, = U'@)ns, V'(,8) = U'(g)/I, and
Z(g,8) =V'(g,0)".

Let g, = gl(n,C), b, be the Cartan subalgebra of diagonal matrices. In this paper
we will be interested in the algebra AZ, = Z(gl, ., gl, ® Cept1,n41). According to [Z,
Section 4.5] this algebra has the following presentation. It is generated (over the field
Dy 1 = D(byy1)) by elements z;, i € {+1,+2,..., £n} subject to the following relations:
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o 22; =0 j2i%, i+ J #0;

n
RiR—j = E ﬂi,jz_ij + 7,1 = 1, 2, o, n

[hj,zi] = (€i —5n+1)(hj)zz~, 1=1,2,...,n,5=1,2,...,n+1;
[ ] [hj,Z_i] = (‘Sn—|—1 — ‘Si)(hj)z—ia 7= 1,2,...,n, ] = 1,2, .. .,TL+ 1,
where

me
Pi,j

Bij =0, %ig0ls Yi=0; Oints $ig=hi—hj+i—i, @ ;=pi;tl

Qij = Qj 1 <i<j<n; o =1,sign(i) # sign(j);

n

+
_ ¥i .
Yij = (1_902',]') 1; 51:‘:: H Z’k; €i(hj) :(Si’j,l,j :1,2,...,n+1.
k=ip1 Pik

2.3 (Extended) OGZ-algebras

Let F be an arbitrary field of characteristic zero. Fix n € N and r = (r1,rs,...,7,) € N
n

and set |r| = Z r;. Consider a vector space, £L = L(F,r), of dimension k. We will call the

i=1
elements of £ tableauzr and consider them as double indexed families

[l]:{lZ,J|Z:177n7]:1a:Tz}

The element 7 will be called the signature of [I]. We will denote by 6"/ = [§"7], 1 < i < n,
1 < j <y, the Kronecker tableau, i.e. d; ]- =1 and (5”9 = 0 for p # 4 or ¢ # j. Denote by
Lo the subset of £ that consists of all [{] satlsfylng the following conditions:

1. ll,jzo,jzl,...,Tl;
2. 0,;=0,5=1,...,7p;
3lw€Z,2§z§n—1,1§j§n

Fix some n € N and r = (r1,...,7,) € N*. Consider a field, A, of rational functions
in |r| variables \;;, 1 < i <mn, 1 <j <. Let [[] € L(A,7) be the tableau defined by
Li=Xj, 1 <i<mn,1<j<r;. Consider a vector space, M = M([[]), over A with the
base vy, [t] € [I] + Lo (here [t] is a formal index and thus M is infinite-dimensional over
A). For [t] €[]+ Ly, 2<i<mn—1and 1<j <r; denote

[ — i)




For 2 <i<n-—1,1<j < r; we define A-linear operators Xf] : M — M by ijv[t] =
afj([t])v[tH(;i,j] and H;; : M — M by H; vy = t;vy. It follows immediately from the
definition, that all polynomials in H; ; are invertible, so we can consider the localization ring
Q= 9Q(r) of C[H;;,1 <i<mn,1<j<r] with respect to the multiplicative set, generated
by Hij; — Hijy+mforalli=2,...,n—-1,7=1,...,1r;, m € Z. We define the extended
orthogonal Gelfand-Zetlin algebrald = U(r) of signature r, as the F-algebra, generated over
F by Q and ij, 2<3<n-1,1<j <r; Toobtain the original orthogonal Gelfand-Zetlin
algebra U of signature 7 — 1, one has to take r; = 0 (repeating the above definition) and
to consider a subalgebra of U, generated by XZ-jE = Z;’:l Xf] and symmetric polynomials
in H;;, 1 <j < for all i. In particular, it is known ([Ma, Section 4]) that U(gl(n,C))
is isomorphic to some OGZ algebra. The definition and properties of (extended) OGZ
algebras are closely related to generic Gelfand-Zetlin gl(n, C)-modules ([DFO]).

3 Extended OGZ-algebras via TGWC

Fix k € N. Let r = (k—1,k,k+ 1) and consider the corresponding extended OGZ-algebra
U = U(r). The aim of this Section is to show that U can be obtained using the twisted
generalized Weyl construction.

For i = 1,2,...,k set A; = X{i and B; = X,;. Fori = 1,2,...,k we define the
following elements of Q:

k+1 k—1
[[Hsy — Hap) [ [(Hry — Hai — 1)
T — _j:l 7j=1
[[(Hzy — Hai) | [(Hoyj — Hzi — 1)
J#i J#i
For i =1,2,...,k we also define the endomorphisms o; of Q as follows:

0i(Hy;) = Hyy —1;  03(Hyy) = Hyy, k#2o0rl#i.
Lemma 3.1. 1. {osli =1,2,...,k} are pairwise commuting automorphisms of Q.

2. T;T; = o, ' (Tj)o; *(T;) holds for any i # j € {1,2,...,k}.

J

Proof. One sees that the endomorphism of Q defined by setting o; '(Ha;) = Hoj; + 1
and o] '(Hy,;) = Hyy, k # 2 or | # i is inverse to oy, hence o; is an automorphism. The
commutativity of {o;} is obvious. One gets the second statement by direct calculation. [

Lemma 3.2. B;A; =T; and A;B; = 0;(T;) holds for any i =1,2,... k.
Proof. Straightforward calculation. O

Lemma 3.3. A;q = 0,(q)A; and Big=0;'(¢)B;, € Q, i=1,2,... k.



Proof. It is sufficient to check that the equalities hold on the basis of M([l]). Let vy be a
basis element. We have

k+1
[t — t20)
=1
Aiquig = q(t11, - - - taps)Aivgg = —q(ta, - - at3,k+1)J—U[t]+[62'i}
[ 12 — 1)
J#i
and
k+1 k+1
[t —t20) [t —t20)
o) Awyy = —0i(a) | T Vg | = 0i(a) (V1)) =
i 1 = —0; T Y[z =3 0; 1+[624]) =
[t — t20) [ty — t20)
i J#i
k+1
[ 155 — ta)
=1
= _J—q(tl,l, - ,tQ,Z’_l, tz,i —141, tQ,i+1, A ,t3,k+1)v[t]+[52,i],
[t — t20)
J#i
as desired. The second equality follows by similar arguments. O

Lemma 3.4. A;B; = B;jA; foranyi,j =1,2,...,k, i # j.

Proof. As above, we check the equalities on the basis. We have

k—1
[t = t25)
AZ'B'Ut = lZl—Ai(vt_ §2,0 ) =
= T =ty
i
k+1 k-1
[[(ts0 — t22) [t = t2)
=1 =1
= - : Vi[5 (524
(toy —tog = 1) ] (b0 — t20) ] (tos — tay)
i) I



and

k+1

H(tS,l —t2;)

BjAﬂ)[t] = —ZZI—Bj(U[t]+[52”']) =
H(tz,l —t94)

1£i
k—1 k+1
[t —t2) [[(ts0 — 1)
= = = U]~ [6%:]+6%+4]
= — . t]—[82:3]+[§2:2] -
(tog — tag +1) [ (g —t2g) | [ (20 — t20)
1£i,j 1£i

Clearly, the results are the same.

We define the elements s; ; € Q, 4,5 = 1,2,..., k as follows:

_ Hayj— Hy;—1
Sij = — . .
Hy;—Hy; +1

Lemma 3.5. A;A; =s; ;A;A; and B;B; = si_,lejBi foralli,j=1,2,... )k, 1 #j.
Proof. We again will check only the first equality, applying it to the basis elements.

k+1

H(t3,l —t7)

Aidjoy = — AV i) =
[ (t20 —t25)

I
k+1 k+1
[ (ts0 = t20) [0 —t25)
=1 =1
- : Ul {52164
(tog —toi+ 1) [ [ (bog —t2) [ [(2n — t2y)
iy i
and analogously
k+1 k+1
[1(ts0 = t25) [T (ts0 —t20)
I=1 =1
sijAjAivgy = si; ' Vlt]+(6291+[5%4]-
(toi —to; + 1) [] (b = t2y) ] (ton — t2s)
iy 1£i

One has that the results are the same, completing the proof.

Let A be the TGWC, associated with Q, {u;; = 1}, {o:}, {Ti}.
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Theorem 3.1. U is isomorphic to the quotient of A modulo the ideal I, generated by all

Proof. From Lemmas 3.3-3.5 it follows that there is a natural epimorphism ¢ : A — U
such that ¢(q) = ¢, ¢ € Q; p(X;) = A4; and p(Y;) = B; for all i = 1,2,...,k. We have
only to prove that the kernel of ¢ coincides with I. Clearly ¢(I) = 0. Set

. XL 1>0 ol = AL lzo_
N B 7 I A - A R
Let = € A be such that ¢(z) = 0. Because of the relations in A we can write:

s+I= D g2t ZF+ 1

I,k €Z 4
Applying ¢, we get
(p(.T) = Z qh,---,lkC{l ce Cllck =0

U1, R €Z

Applying this equality to vy we see that the later holds if and only if all ¢;, ... ;, = 0, which
forces © € I. This completes the proof. O

Remark 2. All the arguments and results of this Section remain valid for (extended) OGZ-
algebras, associated with the quantum algebra U,(gl,,), see [MT3, Section 5].

4 Mickelsson algebras via TGWC

The aim of this Section is to show how to construct Mickelsson algebras using the twisted
generalized Weyl construction. We will use the presentation of AZ,, given in Subsection 2.2.
It will be more transparent to rewrite the weight conditions in the following detailed form:

zihy = hjzi,j #i,n+1; 2z hj=hjz ] #i,n+1;
zihi = (hi — 1)2; z ihi = (hi + 1)z (1)
Zihpi1 = (hp1 + 1) 23 2 ihni1 = (hny1 — 1)z

We set t; = z_;z; and denote by R the algebra, generated by ¢1,...,%, over the field D, ;.
Lemma 4.1. The algebra R is commutative.

Proof. First we will show that the elements ¢, commute pairwise. As z; and z; commute if
¢ and j have different signs, we have #;t; = 2_;2z:i2_j2; = 2_2_j2i2) = Qi _j2_;2_;004 ;2 %.

From the definition we get o; ; = ozj_z-l =a; _; and hence
) )
+
Pij Pi,j
titj = +’] Z_jZ_,‘—’]ZjZZ‘.
Wi j Pi,j



From (1) it follows that z_sp;; = ¢} ;2_; and thus z_;0 0, i = (o, + 1)(f;) 2. We
get

+ +
by Pii Wi i Pt
ity = 22 ZjZ = 32— T 2-i%j% =

P Pig P P

_|_

Pi,j Pij
_|_

Pi,j Pij

R_jR_jRj2; = R_jR_jRjR; = tjti.

To complete the proof, it is sufficient to check that h;t; = ¢;h; for all i = 1,2,...,n,
j=1,2,...,n+1. By (1), we have h;jt; = hjz_;z; = z_;zih; = t;h; if j # i,n + 1;
hit; = hiz_izi = z_i(hi — 1)2; = 2_iz;hi = t;h; and b1ty = hpg12-52i = 2-i(hpy1 + 1)z =
Z—izihn—f—l = tihn—f—l- O

Define the endomorphisms o;, ¢t = 1,2,...,n of R as follows:
oi(hi) =he, k#i,n+1; oi(hi) =hi—1; 0i(hnt1) = hny1 +1;
_ Pij

n
oi(ty) = —"—t;, j<i; oity) =2ty >4 oi(t) =Y Bists + %
@i — 1 ¥i,j k=1

We remark that o;(t;) = z;z_; directly by the definition.
Lemma 4.2. Each endomorphism o; is in fact an automorphism of R.

Proof. Define the endomorphism o; " as follows:

Ufl(hk):hk, k#i,n+1; U-fl(hi)ZhH‘l; O-'il(hn—kl):hn—l—l_l;

2 2

U-_l(tj) = SDZ’.tj, 7 <1 O'i_l(tj) = wi’jtj, 7 >1;

i o +
d ivj
_ 1 _
o7 (t:) = o~ (5a) (tz' — o7 (Z Bigte — %)) :
i ki

One can easily check that o; 00, ' = 0, *

o 0; is the identity, completing the proof. O
Lemma 4.3. 1. zir = o0;(r)z; forallr € R, 1 =1,2,...,n.

2. z_r =0, (r)z_; forallr € R, i=1,2,...,n.

3. tit; =07 (tj)o; ' (t:), i # j.

Proof. From (1) it follows that the first two statements hold for » € D, 1. So, it is enough
to check it for all tj. Let j 75 1. We have Zz'tj = ZiR_jRj = Z_jRizj = 204G 22 =
Jj’l(ai,j)tjzi and z jt; = a;_jt;z ;. For j <i we have oy ; = ¢;;/¢; ; and hence

) o hi—hjt—i Pis
1 Y = .1 ) J :i
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For j > i we have oy ; = ¢;;/i; and hence

hi—hi+j—i+1 g
oﬁ(ai,»:a-l( i=hi+j it )J—
hi—hj+j—1i Pij

J

Moreover, o j = aj; = ¢; /i for j <iand a; ;= a;}} = (p,-,j/goz'-fj for j > 4. Finally,
n

for r = t; we have zit; = z;z ;2; = 0;(t;)z; and, expressing t; from z;z ; = Zﬂi,ktk + v
k=1

and using the definition of o' (see the proof of Lemma 4.2), we get,

1
Zoiti = 2 (— (Zzzz - Zﬁz’,ktk - %)) =
bt ki
1
=o' (_) ti—o;! Zﬂi,ktk — % Z_i = o, Ntz
Bii o

The first and the second statements are proved.
The last statement follows immediately from the definition of ;! and Lemma 4.1. [

Proposition 4.1. The automorphisms {o;,i = 1,2,...,n} are pairwise commuting.

Proof. We have to prove that o;(0;(r)) = o;(0;(r)) holds for all r € R and all i,j =
1,2,...,n. It is easy to see that the equality holds for r € D,, 1. Let r = t;, k #4,j. Set
Tik = gp;,k/((p;,k — 1) for k < j and Tik = ng’k/(p;k for k > _] Then O'j(tk) = Tj,ktk; _] 75 k
and we have

0i(0j(te)) = 0i(rjnte) = 1jk0i(tr) = rjxrinte =
= riplikte = rigoj(te) = 0j(rigty) = 0;(0i(ty))-

To complete the proof we have only to consider the (most non-trivial) case r = ¢;. First
we assume ¢ < j. By the definition of o’s we have

+ n
Pi,j Pi,j
oio;(ts)) =01 | 2=t | = 22 | Y Birte +i | (2)
i1

-+
Pij k=1

oj(oi(t:) = > 0 (Biw)oj(te) + o5 (v) = Sy + Sa + 05(Bi5)0i (L) + 0 (), (3)

k=1
j—1 n
where S; = Zaj(ﬂi,k)aj(tk) and Sy = Z 0;(Bik)o;(te). We want to rewrite our ex-
k=1 k=j+1

pressions for S; and Ss.
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Recall that §; ; = d; 7i 10, . By the definition of §’s and v’s we have o;(7ix) = i, and

oo (11 Zf;ri) SI e () - M1 - 2
b I=i+1

I=i+1 . Qoz,l SOZ:] l=it+1 Soz,l (Pi,] (lpz,]@z,]
i 16
+ n n + + +
0;(0%) = o, ﬁ Phyl H . sok,, - 11 Pri Pt 1 ong(Pr + 1)5+,
J\% J + ( + )2 k
I=k+1 Pkl + kl I=k+1 Pkl Pk,j Pk,
#J I#j
And therefore
(ig)*eri(pi; +1)
(/BZ k) + T \2 ﬂi,k"
O ()
¥, i

Since o0j(t;) = tx, we obtain

- k=
@jk_l @1?;’"‘1

QOZ’] Z gozjgpkyj ﬂz’ tk;

(pla.] k=1 gpzvj(pk,.j

Similarly, we get the following new expression for Ss:

(p'L,‘] Z (‘Ola](‘okﬂﬂ
%, k k-

(pw k=j+1 P k,J

n

j 1
Further, as 0;(0;") = Lt — 5o e have
I=j+1 P J
- (%J) _ (=D 1 ij O
oBis) = 0307 )osug)os(o) = Filgr LD Lt
R P el ig 0 i
Finally,
(i,4)?

oi(vi) = 05(6; @i pni1) = 05(6; )oj(@ins1) = i (Pimy1 — 1)

-+
¥i,jPi,j

Inserting the obtained expressions to (3), and using ¢; ; = 0 we get

o;(0:(t:)) = 24 Z PigPhig, pty, + LA Z LiiPhi g ity —

(pl,] k=1 SDZ;J k:j 1.7 k=j+1 ()Oz,](pk,]
_Pij 9 ¥4,
- L 6Z (Z ﬁ],ktk + 7]) + (—ZJ) 6 (QO,L n+1 1) =
@i, J(‘DZ,J J k=1 1,5 74,5
90 , Pi,jPk,j P i,
Z] (Z -/ ]ﬂl, k'k — Zﬂ]’ k' — — 5— .7 + Zj(s ((pzn-}-l 1)) * (4)
901,] =1 Qoz,ﬁok,g 0349 =1 ¥i,j9; i\j
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Now we use

% ]- 7 _ 5 _ 1

(ngpk,y ¥i,i9 me (pk,a 9% i 5]’ (‘Okﬂ
1 676) igPri— P PijPhi — Pr PijPhj — Pr
= - F ¥ = ﬂz k— = ﬂz k 1 1 =
Pij Pk, Pk.j Pi ,ﬁ@k,g (pij — (kg +1)
= By Vi,jPk,j — SDIJ{,,' — B,
ik — (org— @i+ 1) "
and
67 ©;, o; Gij ey —
- 5o Vi + 2]6 (QOZ ;n+1 1) = — 5 6] j,n—f—l + Lé ((pz’,n—f—l - 1) =
(pm J (] ¥i,j9; 1,J
=67 @i (i, 41 - 1) - Pint1 — 5 PijPiny1 — (%‘fnﬂ - w;n+l) — ©jn+1 _
Pij ' Pij
_ so (pig—1)  _ _
bij

to get from (4) the following:

0j (Gi (tz) (pl’] (Z ﬂz ktk + 7’&) .

SOZ,] k=1

Now from (2) we have o;(0,(t;)) = 0,(0;(t;)) for i < j. The case j < i can be treated using
the same arguments, completing the proof. O

Let B denote the TGWC, associated with R, {y;; = 1}, {03}, {t:}.

Theorem 4.1. AZ, is isomorphic to the quotient of B modulo the ideal J, generated by

gDWXXZ,1<z<]<nom,dYY PiyY, 1<i<j<n.

1,J 1,J

X, X; —

Proof. From Lemmas 4.1-4.3 and Proposition 4.1 it follows that there is a natural epi-
morphism ¢ : B — AZ, such that o(r) = r, 7 € R; ¢(X;) = z; and ¢(Y;) = z_; for
all s = 1,2,...,n. We have only to prove that the kernel of ¢ coincides with .J, but this
follows immediately from the presentation of AZ,. O

The discussion above motivates the study of the following natural question: is it true
that R ~ D, 1[t1,...,t,]? It turns out that it is.

Proposition 4.2. The monomials t’flt;” .. .tﬁ“Zlefz ZFn where Z; = z; or Z; = z_s,
form a basis of AZ, over D1, in particular, R ~ Dy 1[t1, ..., t,].

Proof. Follows from the Diamond Lemma ([Be, Theorem 1.2]) by standard arguments. [
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5 Shapovalov forms on TGWC with applications to
A and B

Let A be the TGWC, associated with some R, M, {o;} and {¢t;}, i =1,2,...,n. Assume
that p; ; = p;; for all 7, j. Till the end of the paper we assume that R is a domain.

Lemma 5.1. There is a unique antiinvolution, *, on A such that (X;)* = Y; for any
i=1,2,...,n and (r)* =7 for any r € R.

Proof. The uniqueness is trivial as A is generated by R, all X; and all Y;. To prove the
existence we realize A as the quotient of the free associative R-algebra over {X;} U {Y;}
modulo the ideal I, generated by defining relations (see Subsection 2.1). Clearly, if y; ; =
i, the ideal I is stable under the corresponding antiinvolution on the free algebra, which
induces the necessary antiinvolution on A. O

Regard A as a Z"-graded algebra in a natural way and denote by p : A — Ay the
graded projection on the zero component. For u,v € A put F'(u,v) = p(u*v) € 49 = R
and F"(u,v) = p(uv*) € Ay = R. As we will see these forms are quite analogous to the
Shapovalov form ([S]), so we will call F! the left Shapovalov form on A and F" the right
Shapovalov form on A.

Lemma 5.2. 1. F'F:AxA— Rand F": Ax A — R are R-bilinear form.
2. F'(zu,v) = FY(u,z*v) and F"(u,vz) = F"(uz*,v) for all u,z,v € A.
3. FY(u,v) = F'(v,u) and F"(u,v) = F"(v,u) for all u,v € A.
4. F'(Ay, Ap) =0 and F"(Ay, Ap) =0 for any g # h € Z".
5

. The ideal, generated by the intersection of the kernels of F* and F" coincides with
the mazimal graded ideal of A intersecting R trivially.

Proof. The first and the forth statements are obvious. The second one follows from
F'(zu,v) = p((zu)*v) = p(u*z*v) = F'(u,z*v) and analogous arguments work for F".
To prove the third one we note that » = r* for any r € R = Ay. Hence p(z) = p(z*)
for any x € A and therefore F'(u,v) = p(u*v) = p(v*u) = F'(v,u). For F" one has
FT(u,v) = p(uv*) = p(vu*) = F"(v, u).

To prove the last statement we denote by I the maximal graded ideal of A intersecting
R trivially and by J the ideal, generated by the intersection of the kernels of F! and F".
Let v € I, deg(v) = g € Z". Then A_jv = 0 and vA_, = 0 as I N R = 0 and hence
F'(u,v) = p(u*v) = 0 and F"(v,u) = p(vu*) = 0 for any u € A,. This shows that I C J.
By the definition, J is a two-sided graded ideal of A. To prove J C I we need only to
show that J N R = 0. Assume that z;,2, € A are graded elements and u is a graded
element from the intersection of the kernels of F' and F". If deg(u) = ¢g then we have
uA_y = A_yu=0,as F(A_,,u) = F"(u,A_,) = 0. Suppose that 0 # r = zjuzy € R
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and consider the element t = 23z uxex € R. We have t = w(r)ziz, for some w € W. As
w is an automorphism, all ¢; # 0 and R is a domain, we get ¢ # 0. From the other hand,
t = xjz1(uzoxy), where 291 € A_,. This implies ¢ = 0, a contradiction. Thus J = [
completing the proof. O

From the proof above we immediately get the following.
Corollary 5.1. The intersection of the kernels of F* and F" coincides with I.
Corollary 5.2. The kernel of F' coincides with I (and coincides with the kernel of FT ).

Proof. For this it is enough to show that the kernel of F' is an ideal. It is a graded left
ideal, intersecting R trivially, because of the second statement of Lemma 5.2. To get that
it is a right ideal we use the last arguments from the proof of Lemma 5.2. Let u be a
graded element from the kernel of F! and assume that uz does not belong to this kernel
for some graded element © € A. Then there exists a graded element v € A such that
0 # vur = F'(v*,uz) = r € R. Now we consider the element v*vuzv € R and get the
same contradiction as in the proof of Lemma 5.2. O

In the sequel we will use only the left Shapovalov form F', which we will denote simply
by F' and will call it the Shapovalov form on A. Corollary 5.2 allows us to formulate the
following criterion for distinguishing a TGWA.

Corollary 5.3. Let A be as above and J be a graded two-sided ideal of A, stable under x.
Denote by F' the form induced by F' on the quotient A = A/J. Then A is isomorphic to
the TGWA A if and only if F is non-degenerate on A.

Proof. Follows immediately from Corollary 5.2 and the definition of a TGWA. U

Corollary 5.4. Let A be as above and J be a graded two-sided ideal of A, stable under x
and A = AJJ. Assume that and each Ay, g € Z" is a cyclic left R-module. Then A is a
TGWA.

Proof. Fix 0 # g = (91,92,---,9,) € Z". Fori = 1,2,....,nset Z; = X; and Z; ! = Y,
Then v, = Z{’l ... Z3" generates A, as a left R-module. For any r,7" € R the value
F'(rv,,r'v,) is a product of non-zero elements from R, hence non-zero. Now the statement
follows from Corollary 5.3. O

Corollary 5.5. The algebras A and B are TGWA.

Proof. First we remark that 1, ; = p1;, = 1 in all cases. In both cases the zero component
is a polynomial ring over a field, hence is a domain. From Theorems 3.1 and 4.1 it also
follows that all graded components are cyclic left modules over the zero component and
the statement follows from Corollary 5.4. O
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6 Application of the Shapovalov form to construction
of simple weight modules over a TGWA

Assume that we are in the situation of the _previous Section with Aand A being a TGWC
and a TGWA respectively. Let F (resp. F') denote the Shapovalov form on A (resp. A).
Our aim here is to use £ for construction of simple weight A-modules.

Consider A as a regular left A-module and fix an ideal, m, in R. Set N(m) = {z €
A|F(z,y) € m for any y € A}. Recall that 9 denotes the set of maximal ideals of R.

Lemma 6.1. 1. N(m) is a graded submodule of A;
2. N(m)o =m,
3. If m € M then M(m) = A/N(m) is a simple graded A-module.

Proof. Let x € N(m) and a € A. Then F(aa:, y) = ﬁ’(x, a*y) € m for any y € A and hence
ax € N(m). Therefore N(m) is a submodule of A. As F separates the graded components
of A, N (m) is automatically graded. This proves the first statement. As A is unital, the
second statement is obvious.

Finally, assume that m € 9. Let v € A, for some g € Z" such that its image in M (m),.
Then there exists a graded element, y € fl, such that F (y,v) ¢ m and hence the image of
y*v in R/m is also non-zero. As m is maximal, R/m is a field hence Av contains M (m)o,
which clearly generates M (m). This completes the proof. a

From Lemma 6.1 it also follows that N(m) is the maximal graded submodule of M (m)
whose intersection with M (m)o equals m. From this it follows that, up to a shift of grading,
all weight simple (Z"-) graded A-modules are exhausted by {M(m)}.

Corollary 6.1. Let m € M such that g(m) # m for any 0 # g € grsupp(M (m)). Then the
module M(m) is a simple weight A-module such that M (m)y # 0. Moreover, if g(m) # m
for any 0 # g € Z", then M (m) is the unique simple weight A-module such that M(m)y, =

M(m)o # 0.

Proof. As M(m) is generated by a weight element (any non-zero element from M (m)), it
is a weight module. Under our assumptions, R separates the graded components of M (m),
i.e. the graded decomposition of M(m) coincides with its weight decomposition. This
implies that M(m) is a simple A-module. In the case g(m) # m for any 0 # g € Z" it’s
uniqueness follows easily from general nonsense (see [DFO, Theorem 18] or Proposition 7.1
below). O

Remark 3. We have to note that Corollary 6.1 is an extension of [MT1, Theorems 1] and
a partial extension of [MT1, Theorem 2] to a wider class of TGWA. The direct construction
of modules used in [MT1, Theorem 1] can be applied only to TGWA considered in [MT1],
the later being associated with a biserial graph. In the present paper and in Corollary 6.1
we have remowved this restriction. This is important, as the natural presentation of both A
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and B obtained above does not fit in the framework of [MT1]. At the same time, the results
of this Section can be applied to both A and B. In the next Section we will also present a
construction of a new class of modules for TGWA.

7 Towards the classification of simple weight modules
over a TGWA

We assume that we are in the situation of Section 6 and retain the notation from it. Fix
m € M and set W(m) = {w € Z"|w(m) = m}. Then W (m) is an abelian group of finite
rank and we can fix a set of independent generators, {s1,...,sx} of W(m). Denote by
B = B(m) the graded subalgebra @®gcwm)A4y of A. Clearly R C B.

Lemma 7.1. A is a Z"/W (m)-graded left (right) B-module and Ay ~ B with respect to
this gradation.

Proof. Obvious. O

Proposition 7.1. The functor X — X, tnduces a natural bijection between simple weight
A-modules M such that My, # 0 and simple B-modules N such that mN = 0 (or, in other
words, with simple B/(m)-modules).

Proof. Let M be a simple weight A-module such that M, # 0. As w(m) = m for any
w € W(m), we get BM,, C M,,, hence our functor is well-defined. Assume that N C M,
is a non-zero B-submodule. Then AN is an A-submodule of M and (AN)y = N with
respect to Z"/W (m)-grading by Lemma 7.1 (this is equivalent to AN N M,, = N). The
last contradicts the simplicity of M.

Conversely, let N be a simple B-modules such that mN = 0. Then the A-module
M = A®pg N is clearly a weight A-module with supp(M) C W - m and it surjects on any
weight A-module V', generated by V,, such that V;; ~ N as a B-module. From Lemma 7.1 it
also follows that M, = N, in particular, M # 0. Denote by M’ the sum of all submodules
of M, whose intersection with M, is zero. Then M/M' is a simple weight A-module
and (M/M'"),, # 0. Now one sees that the constructed maps are inverse to each other,
completing the proof. O

By Proposition 7.1, the classification of simple weight A-modules is reduced to the
classification of modules over certain subalgebras of A. The simplest case, namely B = R,
can be treated by methods presented in Section 6. Below we will present some results on
the structure of B in some cases, when W (m) is non-trivial. In particular, we show that in
many cases this algebra is commutative. Denote by T the set of all [ such that g; occurs
in the reduced decomposition of some s; and by Wp the group, generated by all oy, [ € T'.
In the sequel we assume that for any » € R and any w € W (m) the actions of r and w(r)
on M(m) coincide (this is true, for example, in the case W ~ Z" /W (m)).
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Lemma 7.2. Assume that p;; =1 for all 1,5 and for any i,j there is no | such that the
generators s; and s; both contain gljEl in their reduced decomposition. Also assume that for
any | € T the element t; is invertible on M (m). Then B/(m) is commutative.

Proof. First we note that, under the conditions of the lemma, all w(t;), w € Wr are
invertible in B/(m).

It is sufficient to prove that A,; commutes with A, for any 4, j, which we fix throughout
the proof. Let s; = g;"" .. .g;:‘“gj_lll .. .gj;l“ and s; = gy ... gy'gn " ... gr,". Denote X(s;) =
XM UXMe X(s) = Xt X, Y(s) = Y)Y, Visy) = Y@ X, Under the

conditions of lemma we have that all lower indices of X’s and Y’s are different. Set

— M1 Mg _ ~a ct _ h ly _ Q1 dp
OX(si) = Oy -0y OX(s;) = Op, - Oy, Oy(s;)) = 0jy ...0; and oy(s;) = of ...op,. We

Ju P
divide the proof into a sequence of steps.
Step 1. First we prove the equalities

Oy o) (X (50) X (50)) 0 ) (Y ()Y (57)")
UX(S)(X(SZ) X (50))0 x5y (X (55)"X (57)) 5
oy (Y (8)Y (51) oy, (V(s))Y (7)) = V(si)Y (Si)*Y(Sj)Y(Sj)*;
Ty s (X(Sy) X ()0 (5, (Y (5:)Y (51)")

We will prove only the first one and all other can be done analogously. We start with
Y (s;)X(si) = X(s:)Y(s;). Multiplying with Y(s;)* from both sides and by X (s;)* from
the left we get

X(5:)"Y (55)7Y (55) X (5:)Y (55)" = X (5)"Y (55)" X (5:) Y (57)Y (s5)"
Hence

X(5:) X ()Y ()" 05k (07 (¥ ()Y (7)) = ¥ (5;)" X (5:) X ()Y (5,)Y (5,)".
Therefore
Y (87) 70y (5;) (X (50) X (8))0x (51 (03 (5;) (Y (55) Y (55))) = Y (55)"X ()" X (53)Y (57) Y (55)"-

Now we can multiply the last equality with Y (s;) from the left. The element Y (s;)Y (s;)*
decomposes into a product of w(t;), I € T, w € Wyp. As these elements are invertible in
B/(m), we get the desired equality as soon as o;gsj)(Y(sj)*Y(sj)) =Y (s;)Y(s;)*. The last
follows from the equalities

fl —l -1 —(lg—1)

T4 dl fo-- 05 ' (tjdgjd (tjd) - 05, ! (tjd)) )
l lu l
3311 oot (0, ()%, (1) - (1))
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checked by direct calculation.
Step 2. We proceed with the following equalities:

X ()X (57) X (50)" X (s3) = X () X (50) 0 ;) (X (50) X (s2));
X (50) X (57) 0y 5y (X (55)" X (7)) = X (57) X (1) X (5;)" X (s);
Y(5)Y (5))0v(sn (Y ()Y (5:)7) = Y (55)Y (56)ov () (0w sy (Y (1) Y (50)"));
Y (5)Y (55)0v (s (0v(s) (Y (55)Y (55)7)) = Y (57)Y (8:)av s) (Y (7)Y (55)")
and again will prove only the first one. We have X (s;)*X (s;) = X (s;)X (s;)*. Multiplying

with X (s;) from both sides and moving X (s;)* X (s;) we get the necessary equality.
Step 3. Finally, we have:

V()X ()Y (55) X (55) = Y (s2)Y (57) X (s0) X (s55) = Y (5)Y (ss) -
0y (5;) (O (s0) (Y (50)Y (50)")) (v () (Y (5:) Y (5)")) ' X (55) X () X (s55)" X (s5) -
(0 sy (X (57) X (57))) ™ = Y (57)Y (50) X (55) X (1) = ¥ (5,) X (55)Y (s:) X (s:)

O

Lemma 7.3. Assume that of(m) =m, k € N, all t; are invertible on M(m) and p; j = 1
for all i,j. Then for any a € A and any v € M(m) the equality a(X*(v)) = XF(a(v))
holds. In particular, the map v — XF(v) is an automorphism of M(m).

Proof. We need to check the necessary equality on generators. For a € R this follows from
of(m) = m and our assumption on the action of R on M (m), for a =Y}, j # i, this follows

from p; ; = 1. For a = X this is obvious. Let a = Y;. We have

YiXE(v) = 1.XF () = 6. XE XYi(ou(t) ' (v) =

Now let a = X, j # i. We have

X;XF(v) = X7 X070 (1)t (v) = XX (v).

Remark 4. We note that in general the algebra B/(m) is not commutative. Indeed, take
n=3, R=Clt], o1 =00o=03:t— —t,t; =1ty =t3 =1, pij =1 for all i,j. Clearly
t* = tit; 1(tj)aj_l(ti) = (=t)(=t) = ? and 07 '03 = 0503 = e. But V1 X3Y,X;3 =
—YQX?,YlXa

Now we want to show that this is a common feature, in fact, we will show that the
graded elements in B either commute or anticommute in their action on M (m).

Lemma 7.4. Assume that W(m) C {g € Z"| g(m) € grsupp(M(m))}. For anyi € T and
any n € supp(M(m)) the actions t; : M(m), — M(m), and o;(t;) : M(m), = M(m), are
bijective.
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Proof. Assume that g; occurs with a non-zero coefficient in the decomposition of s;. Con-
sider a generator, Z, of flj, having the form Z = Z'Z;, where Z; = X; or Z; = Y;. As
sj(n) € grsupp(M(m)), we have Z*Z : M(m), — M(m), is a bijection. Taking into ac-
count, that T (m) is a group, we get o' : supp(M(m)) — supp(M(m)). If Z; = X; we
have t; ¢ n and if Z; = Y; we have o;(t;) ¢ n. As n is arbitrary and m is a maximal ideal,
the proof is finished. O

From now on we will work under the assumption on the group W (m), which appeared
in the previous Lemma: W(m) C {g € Z"|g(m) € grsupp(M(m))}. We recall that we
also assume R to be a domain. Now we want to extend the ring R in order to be able
to take square roots of the elements ¢; € T. Let T" be the subset of T consisting of all
those 4 such that there does not exist #; € R with #? = ¢; (for i € T\ T" we fix such ;).
Let P = R[z}, |w € W,i € T'|. Setting 0;(x},) = ., we extend 0; to an automorphism
of P. These extensions commute for different j and we get an action of W on P by
automorphisms. Let I be the minimal ideal of P, containing all (z)? —t; and stable under
W-action. Set R’ = P/I, clearly R can be naturally identified with polynomials of zero
degree in R'. Let A’ denote the TGWA associated with R', M, {o;}, t,.

Lemma 7.5. The ideal w', generated by all ax’ + b, a,b € m is a mazimal ideal of R/,
whose intersection with R equals m.

Proof. Follows by direct calculation. O

The inclusion R C R' induces a natural inclusion R/m C R'/m/, which induces an
inclusion of M(m) to M(m') as A-modules.

Lemma 7.6. Let g,h € W(m), a € qu, be A, v e M(w'). Then abv = +bav. In
particular, abv = +bav for any a € flg, be flh, v € M(m).

Proof. First we note that from Lemma 7.4 it follows that all =, oy(zf), 7 € T' and all
ti, 0i(t;), i € T'\ T' are invertible on M(m'). We will write /% = #;, i € T \ T" and
Vit = zi, i € T'. By definition we have 1/0;(t;) = 0;(1/%;). Consider the elements
X! = X;(vE) ™t and V] = Yi(\/os(t;))7L, i € T acting on M(m’). We claim that all
these elements (anti)commute (till the end of this proof all the equalities will be operator
equalities on M(m)). Indeed, the only non-trivial relations to be checked are XY/ =
+Y/ X7, XiX] = £ X[ X} and YY) = £Y/Y] (i,j € T). We will do the first and the second
ones, the third follows by applying * to the second. For the first one we start with the case
1 = 7 and have

XY = X,(Vt) Y, ( o—,-(ti))_1 = X;Yi(o:(t;)) L= 1=

— VXt =, ( ai(ti)) X (VR =YX

7
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For ¢ # j we have

XY = X;(Vt) Y] ( Oj(tj)>1 = XiYj ( Uj(tz'))l ( Uj(tj)) o
= Hpi;Y; X ( Ui_l(ffj(tj))> B (Vt:) ™ = £Y]X],

where we have used the equality t;t; = pZ 07" (t;)o; " (t:).
For the second one we start with X;X,;V;X; = p,;;X;Y;X;X;, which is equivalent to

XiXjt; = pjq0(t;) X;X;. We proceed as follows:
-~ XZ,XJI\ / (J']_l(tz)\/t?tZ = ,U,J’ZXJIXZI(Tj_l(tZ) O'i_l(tj)\/t_i.

As tit; = pf,0; " (t:)o; '(t;) and R is a domain, we have the equality y/o; ' (t;)\/Eit; =

+115,0; " (t:)y/0; ' (t;)y/T;. The necessary statement now follows from the invertability of

the later elements.

Now write a = r1a’ and b = b/, where 7,7 € R’ and both o' and ¥’ are products of X/
and Y/. As g,h € W(m), we have ra’ = a'r and 0/ = b'r for any r € R'. Finally, on M (m)
we have ab = ria'rob = rirea’t! = trireb'a’ = £rob'ria’ = £ba, as desired. O

Corollary 7.1. Under the conditions of Lemma 7.6 the equality xy = tyx holds for any
graded elements x,y € B/(m).

Proof. Follows from the fact that the representation of B/(m) in M (m) is faithful. O

Remark 5. Representations of the algebras, whose generators (anti)commute, were inten-
sively studied. In particular, in [Sa] one can find a complete classification of unitarizable
simple modules over the complex skew-polynomial ring of this form.

Lemma 7.7. 1. Let N be a simple graded A-module, generated by a graded element, v,
such that mv = 0. Then the map 1 — v extends to an isomoprphism from M (m)
onto N.

2. For any j = 1,...,k there exists a graded automorphism, ¢;, of the module M (m)
such that ¢;(M(m)y) = M(m),, .

Proof. The first statement follows from the construction of M (m). The second statement
follows from Lemma 6.1 and the first one, if one remarks that mM(m),, = 0. O

Assume that the automorphisms ¢;, given by Lemma 7.7, commute (e.g this is the case
of Lemma 7.3 if the group W (m) is generated by ¢¥, i € T). Let G be the group, generated
by all ¢;, given by Lemma 7.7. Clearly, G ~ W (m), as G is commutative and we can fix
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the isomorphism ¢ : W(m) — G, sending s; to ¢;, j = 1,2,...,k. Recall that we have
assumed W (m) grsupp(M (m)) C grsupp(M(m)). Let K be a set of representatives of all
orbits of W (m) acting on grsupp(M (m)). As grsupp(M(m)) C Z", the elements of a fixed
orbit bijectively correspond to elements of W (m). Consider the R-module M(m, K) =
Bgex M (m),. We define on M (m, K) an action of X; and Y; as follows: let v € M(m)g,
g € K, then there exist a unique element, h € W(m) (it depends on X;, Y;, ¢ and
K), such that h(o;(g)) € K (resp. h(o;'(g9)) € K), define X; - v = ¥(h)(X;(v)) (resp.
Yi v =1(h)(Yi(v)))-

Theorem 7.1. M(m, K) is a simple weight A-module.

Proof. The statement about simplicity is obvious, since R will separate the components of
M (m, K) graded by the quotient of W modulo the image of W (m) in it. So, we have to
show that M(m, K) is a A-module, for which it is necessary to check all the relations from
the definition of A. Let u = >;ui = 0 be a graded relation with monomial u;. Then on
M (m, K) our relation will take the form ). v;(u;(v)) =0, v € M(m, K), for some v; € G.
The commutativity of W (m) implies that all 7; do not depend on ¢ (denote this common
element by =), which forces 7(3, u;(v)) = 0. The last is true since M (m) is a A-module.
This completes the proof. O

Finally, we want to remark that Corollary 6.1 and Theorem 7.1 can be used to construct
simple weight modules over A and B. In the case of algebra A the ring Q is quite simple and
it follows directly from the definition of o; that W ~ Z™ and w(m) # m for any m € 9(Q)
and any 0 # w. In the second case the situation is worse since R is a polynomial ring over
the field D, 1, which is not algebraically closed. This requires more technical efforts (as
description of W-orbits on R and maximal ideals in R) in each concrete case.

Acknowledgments. The work was completed during the visit of the first and the third
authors to SFB-343, Bielefeld University in July-August 2000. The financial support,
hospitality and accommodation of SFB-343 are gratefully acknowledged.

References

[B] V.Bawvula, Generalized Weyl algebras and their representations. (Russian) Algebra i
Analiz 4 (1992), no. 1, 75-97.

[Be] G.M.Bergman, The diamond lemma for ring theory. Adv. in Math. 29 (1978), no. 2,
178-218.

[DFO] Yu.A.Drozd, V.M.Futorny, S.A.Ouvsienko, Harish-Chandra subalgebras and Gel-
fand-Zetlin modules. Finite-dimensional algebras and related topics (Ottawa, ON,
1992), 79-93.

21



[VH] A. van den Hombergh, A note on Mickelsson’s step algebra. Nederl. Akad. Wetensch.
Proc. Ser. A (Indag. Math.) 37 (1975), 42-47.

[Ma] V.Mazorchuk, Orthogonal Gelfand-Zetlin algebras. 1. Beitrdge Algebra Geom. 40
(1999), no. 2, 399-415.

[MT1] V.Mazorchuk, L.Turowska, Simple weight modules over twisted generalized Weyl
algebras. Comm. Algebra 27 (1999), no. 6, 2613-2625.

IMT2] V.Mazorchuk, L.Turowska, x-Representations of twisted generalized Weyl construc-
tions. Preprint, TRITA-MAT-1998-MA-04 (1998), Royal Institute of Technology, De-
partment of Mathematics, Stockholm, 22 p., to appear in Algebr. Represent. Theory.

[IMT3] V.Mazorchuk, L.Turowska, On Gelfand-Zetlin modules over U,(gl(n)). Czech. J.
Phys. 50 (2000), 139-144.

[Mi]| J.Mickelsson, Step algebras of semi-simple subalgebras of Lie algebras. Rep. Mathe-
matical Phys. 4 (1973), 307-318.

[Sa] Yu.Samoilenko, Spectral theory of families of selfadjoint operators. Mathematics and
its Applications (Soviet Series), 57. Kluwer Academic Publishers Group, Dordrecht,
1991.

[S] N.N.Shapovalov, On a bilinear form on the universal enveloping algebra of a complex
semisimple Lie algebra. Funk. Anal. i Prilo. 6 (1972), 65-70 (in Russian); transl.:
Func. Anal. Appl. 6 (1972), 307-312.

[Z] D.P.Zhelobenko, Predstavleniya reduktivnykh algebr Li. (Russian) [Representations
of reductive Lie algebras] VO “Nauka”, Moscow, 1994.

Volodymyr Mazorchuk, Algebra, Department of Mechanics and Mathematics, Kyiv Taras
Shevchenko University, 64, Volodymyrska st., 01033, Kyiv, Ukraine,
e-mail: mazor@mechmat.univ.kiev.ua, mazor@mathematik.uni-bielefeld.de

Mariya Ponomarenko, Algebra, Department of Mechanics and Mathematics, Kyiv Taras
Shevchenko University, 64, Volodymyrska st., 01033, Kyiv, Ukraine,

e-mail: mponomarenko@Alfacom.net

Lyudmyla Turowska, Chalmers Tekniska Hogskola, Matematik, 412 96, Goteborg, Sweden,
e-mail: turowska@math.chalmers.se

22



