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1 Introduction

The foundations of the theory of highest weight modules over simple complex finite-
dimensional Lie algebras due to the original paper by Verma ([V]), where the family of
universal highest weight modules (Verma modules) was introduced and studied. Although
in [V] only basic properties of Verma modules were studied, it was clear, that Verma
modules should have some deep connection with the general theory of Lie algebras, Weyl
groups, flag manifolds and so on.

The major famous results about Verma modules were obtained in a series of celebrated
papers ([BGG1, BGG2, BGG3]) by Bernstein - Gelfand - Gelfand (BGG). In a few words,
these three results describe the following: The first one, usually called the BGG Theorem,
gives, in terms of the Weyl group action on the weight space, a criterion for the existence
of a Verma submodule in a Verma module. The second one presents a combinatorially
constructed resolution of a simple finite-dimensional module by Verma modules. This
resolution is usually called the BGG resolution. The last result shows, that in a natural
category, which is now known as category O, Verma modules play the “intermediate” role
between simple and projective objects.

It is quite difficult to overestimate the influence of these results on modern represen-
tation theory of Lie algebras. The bibliography of papers on this and related subjects is
enormous (the reader can consult, for example, resent monographs [MP] or [Jol], although
it is impossible to find the complete bibliography anywhere outside Math. Reviews). The
results by BGG not only led to the development of new branches of algebra (like quasi-
hereditary algebras), but also found applications in functional analysis, combinatorics,
modern physics and so on.

During the 30 years since the paper of Verma, many famous and deep results about
Verma modules were obtained. It is worth mentioning, for example, the Kazhdan-Lusztig
Theorem ([KL, BB1, BrKa]) or Soergel’s description of the category O ([S1]). Some results
have been generalized to certain infinite-dimensional Lie algebras, e.g. (affine) Kac-Moody
Lie algebras, Virasoro algebra, quantum algebras, Yangians and so forth. So far the theory
of Verma modules is not completed and there are many interesting unsolved questions and
problems.

There have been several attempts to generalize the theory of Verma modules, and one of
the most natural of them is to generalize Verma modules themselves. This can be done in
different ways (compare, for example, [Gy, L1, RC]). Generalized Verma modules (GVM)
were studied from different points of view and many properties of classical Verma modules
were established for or generalized to GVMs. The aim of this manuscript is to present a
systematic study of GVM obtained by so-called parabolic induction for a parabolic subal-
gebra of a simple Lie algebra and to give a historical overview of the development of the
subject.

In particular, we present an analogue of the BGG Theorem (in partial cases, covering
explicitly the case of induction from a weight si(2, C)-module), an analogue of the BGG
resolution for simply laced algebras, an analogue of the Kazhdan-Lusztig Theorem and an
analogue of category O, including Soergel’s type description for its blocks. In order to



avoid technical calculations (which are quite difficult in some cases), we present mostly
the ideological foundations of the proofs. For complete details the reader can consult the
corresponding original paper.

The results, described here, were obtained by several authors during the last 14 years
(see [CF, F1, F2, FM1, FM2, FM3, FM4, FKM1, FKM2, FKM3, KIMa, KoMa, KM1,
KM2, KM3, KM4, KM5, M3, M4, MO, MT]).

This manuscript was written during the authors stay as an Alexander von Humboldt
fellow at Universitat Bielefeld. The finansial support of Humboldt Foundation and the
hospitality of Bielefeld University are gratefully acknowledged. Finally, I want to thank
all my colleagues for their help in my research work, leading to the appearance of this
manuscript. I am especially indebt to Prof. M.Klucznik for his generous help in preparation
of this manuscript.



2 Generalities on Lie algebras

In this Chapter we give a brief synopsis of facts and notations used in general theory of
Lie gorups, Lie algebras and their representations. As some preliminary and introductory
text-books one can use [BK, BKK, D, J, Ka, Se].

2.1 Lie algebras and modules over Lie algebras

We fix throughout the complex field C and note that instead one can work over arbitrary
algebraically closed field of characteristic zero. Let Z denote the ring of integers, Z, the
set of all non-negative integers and N the set of all positive integers.

A Lie algebra, &, is a C-vectorspace equipped with a binary bilinear operation [-,-] :
6 x & — &, which satisfies the following two conditions:

L1. [z,y] = =]y, z] for all z,y € &.
L2. [z,[y,z]] + [y, [z, z]] + [2, [z,y]] = 0 for all x,y,z € & (Jacobi identity).

As we work over the field of characteristic zero, L1 is equivalent to the following: [z, z] =0
for all x € & (in fact, here we really need that the characteristic is different from 2).
The standard examples of Lie algebras are commutative or abelian Lie algebras, in which
[z,x2] = 0 for any z € &, and Lie algebras associated with associative algebras. The last
ones are constructed as follows: fix an associative algebra, A, and define on the underlined
vectorspace &4 = A a new operation via [z,y] = xy — yz. Then &4 is a Lie algebra
called the Lie algebra, associated with A. If we will have to distinguish the Lie brackets in
different Lie algebras, we will add the algebra as a subscript denoting [-, -|g the Lie brackets
of a Lie algebra &. We also introduce two standard notation: for a C-vectorspace V' the
Lie algebras associated with assosiative algebras ¢gl(V') and sl(V') will be denoted by gl(V)
and sl(V) respectively.

For a given Lie algebras & and A, a homomorphism (of Lie algebras) from & to A is
a linear map, f, which preserves the Lie brackets, that is f([z,y]s) = [f(x), f(y)]a for all
z,y € G. As usual, a bijective (resp. surjective, resp. injective) homomorphism will be
called an isomorphism (resp. epimorphism, resp. monomorphism).

Let & be a Lie algebra. A &-module, V', is a C-vectorspace on which the elements
of & act by linear transformations and the following condition is satisfied: [z,y](v) =
z(y(v)) —y(z(v)) for all z,y € & and v € V. The last is equivalent to requiring that the
map f: & — gl(V), f:2 — z(-) € gl(V) is a homomorphism of Lie algebras. Such map
is called a representation of &, in other words, modules and representations are the same
things from a little bit different points of view. The most natural example of a & module
is & acting on itself via the Lie bracket = — ad = = [z,-]. This module is called the adjoint
module (resp. adjoint representation). In what follows we will often omit the brackets in
the expression z(v) in order to simplify notation. As usual, a submodule of a module is
a subspace closed under the action of all elements of the Lie algebra. A module, V, is
called simple (or irreducible) if it does not have any submodules except V and 0 (¢rivial



or non-proper submodules), and reducible otherwise. A module is called indecomposable if
it can not be decomposed into a direct sum of non-trivial submodules, and decomposable
otherwise.

If V and M are modules over a Lie algebra &, then, via g — g® g, V & M is maid into
a B-module, called a direct sum of V and M. Analogously, viag— ¢g®1+1Rg, VM
is maid into a ®-module, called a tensor product of V and M.

2.2 Nilpotent, solvable, semi-simple, simple and reductive Lie
algebras

Let & be a Lie algebra. An ideal, I, of & is a subspace of & such that [z,y] € I for
any r € ® and y € I. Clearly, any ideal of & is a Lie subalgebra of &. Given & one
can associate with it the derived algebra &' = &) = [&, ). Clearly, &' is an ideal of
®. Now we can define inductively &* = [&,&" '] and &) = [&(~D &C~1] both being
ideals in &. The algebra & is called nilpotent (resp. solvable) if there exists i € N such
that & = 0 (resp. &® = 0). As &® C &', any nilpotent Lie algebra is solvable. The
classical examples of nilpotent (resp. solvable) Lie algebras are Lie algebras associated with
associative algebras of strictly upper triangular (resp. upper triangular) n X n matrices.
This also shows that, in general, a solvable Lie algebra is not nilpotent. We also note that
any abelian Lie algebra is both nilpotent and solvable.

The main structure result about nilpotent Lie algebras is the Engel’s Theorem ([D,
Theorem 1.3.15]), which states that a Lie algebra, &, is nilpotent if and only if each
element of & is ad -nilpotent.

For solvable Lie algebras, the main result is not structural but relates to the repre-
sentation theory. This is the Lie’s Theorem (|D, Theorem 1.3.12]), which claims that for
any solvable Lie algebra & and any finite-dimensional &-module V' there is a non-zero
element in V', which is an eigenvector for all elements of &. In particular, any simple
finite-dimensional &-module is one-dimensional.

A Lie algebra, &, is called simple if it is not abelian and does not contain any proper
ideals. A Lie algebra, &, is called semisimple if it is non-zero and has no abelian non-zero
ideals. A classical example of a simple Lie algebra is sl(n, C). Each simple Lie algebra is
semi-simple by definition. A Lie algebra, &, is called reductive if it is a direct sum of a
semi-simple Lie algebra and a commutative Lie algebra.

Any finite-dimensional Lie algebra, &, has a unique maximal solvable ideal, R, called
the radical of &. The principal structure theorem of semi-simple finite-dimensional Lie
algebras claims that a finite-dimensional Lie algebra is semi-simple if and only if its radical
is zero if and only if it is a direct sum of simple Lie algebras (the last decomposition is
unique up to a permutation of the components), see [D, Theorem 1.5.2].



2.3 Classification of simple finite-dimensional complex Lie alge-
bras

The iso-classes of simple finite-dimensional complex Lie algebras are in bijective correspon-
dence with finite reduced indecomposable root systems (see [BK, D, Se]). In this section
we will briefly describe this correspondence. We start with a definition of a root system
(see [D, Appendix]).

A subset, A, of a finite-dimensional vectorspace, V, is called a reduced root system if
the following conditions are satisfied:

RS1. A is finite, does not contain 0, and generates V.

RS2. For all o € A, there exists an o € V* such that (o, ") =2 and A is stable under
the reflection s, : v — v — (@, @") (the element o is then unique).

RS3. For all & € A, we have o¥(A) € Z.
RS4. If a € A, the only elements of A which are proportional to o are +a.

Elements of A are colled roots. The group W of automorphisms of V' generated by s, is
called the Weyl group of A. Any reduced root system contains a basis, that is a finite
subset such that any root can be written as a linear combination of basic roots with either
only integer non-negative coefficients or only integer non-positive coefficients. Each two
basis are conjugated by the Weyl group (as sets).

With a fixed basis m of a reduced root system A one associates the Dynkin diagram
of A (it does not depend on the choice of 7 since all basis are W-conjugated) defined as
follows. This diagram is a “graph” with 7 as the set of vertices. Two vertices ¢; and «; are
connected with n;; lines (bons), where n; ; = (a4, o) - {j, &). There is an arrow from o
to o if [{a;, )| > 1. A reduced root system is called indecomposable if the corresponding
Dynkin diagram is connected. Two root systems are isomorphic if and only if their Dynkin
diagrams are isomorphic. The Dynkin diagrams of indecomposable reduced root systems
are very well known and form four series A,,, B,, C,, D, and 5 exceptional diagrams GS,
Fy, Eg, E7, Eg (e.g. see [BK, Section 9]).

Given an indecomposable reduced root system, A, one constructs a simple Lie algebra,
B, via the following Serre’s construction. Let m be a basis of A. The Lie algebra & will
be generated by X,, Y, and H,, o € m with relations

S1. [Ha, Hgl =0 for all o, 5 € 7.

S2. [Xo, Y| = dapH, for all o, § € 7 (here 44 is the Kronecker symbol).
S3. [Ha, Xg] = (B,0") X and [H,, Y] = —(B,a")Yp for all o, § € 7.

S4. (ad X,)~Be")+1(X4) = 0 and (ad Y,)~ B+ (Yy) = 0 for all o, 8 € 7.



Serre’s Theorem says that &, is a simple finite-dimensional Lie algebra.

Conversely, with each simple finite-dimensional complex Lie algebra we should associate
a root system. Let & be a Lie algebra. A nilpotent subalgebra, £, of &, which is equal to its
normalizer in &, is called a Cartan subalgebra of &. A Cartan subalgebra of & is a maximal
nilpotent Lie subalgebra of & ([D, Theorem 1.9.4]). If & is finite-dimensional, Cartan
subalgebras exist ([D, Theorem 1.9.9]) and any two Cartan subalgebras are conjugated
by an elementary automorphism of & ([D, Theorem 1.9.11]). For a semi-simple finite-
dimensional &, any Cartan subalgebra, ), of & is, in fact, maximal commutative and
all its elements are ad-semisimple ([D, Theorem 1.10.6]). Fix a simple complex finite-
dimensional Lie algebra &, a Cartan subalgebra, 9, in ® and denote by A = A(®, §) the
subset of $* consisting of all those non-zero a for which there exists an element z € &
such that [h,z] = a(h)z for all h € $). Then A is an indecomposable reduced root system
in H* ([D, Proposition 1.10.7]). Moreover, this map (from & to A) is inverse to the above
map from A to Ga.

Let & be a (semi)-simple finite-dimensional complex Lie algebra with a fixed Cartan
subalgebra, ), and the corresponding root system A C $* with a fixed basis, 7. Then
in & one can choose a Weyl-Chevalley basis (here basis means basis as a vectorspace),
Xa, @« € A, H,, @ € 7. In this basis one has [Hy, Hs] = 0, [Hy, Xg] = (B,a")Xp
and [X,, Xg| = capXatp with integer non-zero c,p if a + 3 € A or [X,, Xg] = 0 if
a+ B ¢ A. There is a canonical antiinvolution on & associated with this basis, the
Chevalley antiinvolution o. It maps each X, to X_, and fixes all H,. For example,
the non-diagonal matrix units and elements e;; — e;41 41 form a Weyl-Chevalley basis of
sl(n,C) and the corresponding Chevalley involution is just the transposition of matrices.

Fix &, $, A and 7 as above. For o € A denote by &, the set of all elements z € & on
which $ acts via a (&, is called a root subspace of &). We set &y = § and have that for
a € A the space &, is one-dimensional. The Weyl-Chevalley basis is compatible with the
direct sum decomposition = H B (BaecnBy). Let A = AL UA_ be the decomposition of
A into a disjoint union of positive (A ) and negative (A _) roots with respect to w. Define
Ny = Baen. By Then & = N_ B H DN, is a classical triangular decomposition of &.
The algebras 9. are nilpotent. A Borel subalgebra, 8 = $ DN, , is a solvable Lie algebra.

2.4 Contragradient algebras, Kac-Moody algebras and Lie alge-
bras with triangular decomposition

There are several ways to define a reasonable generalization of simple finite-dimensional
Lie algebras. The most famous one leads to Kac-Moody Lie algebras which we are go-
ing to define in this section. As somewhat related we will also recall the definitions of
contragradient Lie algebras and Lie algebras with triangular decomposition.

So, we move towards the definition of Kac-Moody Lie algebras and start with contra-
gradient (or Chevalley) algebras. Let A = (a; ;) be an n X n matrix with complex entries.
With A one associates a contragradient Lie algebra, &(A), uniquely defined by the following
properties ([Ka, Proposition 4]):



CG1. ®(A) contains an abelian diagonalizable subalgebra, £, such that &(A) = @uecq+ Ba,
where &) = ) and &, = {z € &(A) | [h, z] = a(h)z,h € H}.

CG2. Any ideal of &(A) which intersects $) trivially is zero.

CG3. There exists a linearly independent system of linear functions ay,...,q, € $H* and
system of elements ey, ..., e,, fi,..., fn of &(A) such that

(Z) ®ai:C€i7®— :(sz,lzl,,n

(i1) [es, f;] = 0 for i # j.

)
(¢13) All e;, all f; and $) generate &(A).
)
) «

(1v) The elements h; = [e;, f;] are linearly independent.

(v) aj(hi) = a;; for all 4, j.
(vi) If h € $ is such that «;(h) = 0 for all i, then h € Y | Ch,.

To obtain a Kac-Moody Lie algebra we should choose A to be a generalized Cartan
matriz, that is a;; = 2, a;; € —Z4 for ¢+ # j and a;; = 0 implies a;; = 0 for all 4,5. It
is known that in the case, when A is a symmetrizable (i.e. there exists a diagonal non-
degenrate matrix D such that DA is symmetric) generalized Cartan matrix, (A) admits
a Serre’s type presentation ([MP, Chapter 4]). Any contragradient Lie algebra &(A) has
the Chevalley antiinvolution ¢, which interchanges e; and f; and stabilizes $). A classical
textbook about structure and representation theory of Kac-Moody algebras is [Ka].

Let & be a Lie algebra. A triangular decomposition of & is a 4-tuple (£, &,,Q4,0),
where ) is an abelian finite-dimensional subalgebra of &, & is a subalgebra of &, Q). is
a free additive subsemigroup ®;c;Z a; \ {0} of $* with linearly independent «;, and o is
an antiinvolution on & such that

TD1. &, admits a decomposition & = @aecq, GG, with & = {z € &, | [h,z] = a(h)z,h €
9}

TD2. 6=0(6,)0HDE,.

If & is a semi-simple finite-dimensional Lie algebra with a fixed Cartan subalgebra $) and
a basis m of A, (9,0, Z, A, \ {0}, 0) is a triangular decomposition of & (in other words,
the classical triangular decomposition of & gives rise to a triangular decomposition in the
sense above). If &(A) is a contragradient algebra as above, & its subalgebra generated
by e; and Q) the semigroup generated by «;, (£, &, Q4,0) is a triangular decomposition
of 8(A). The class of algebras with triangular decompposition is bigger than that of
contragradient algebras, since, for example, the Virasoro algebra is not contragradient but
has a triangular decomposition. More about Lie algebras with triangular decomposition
can be found in a very good textbook [MP].

In what follows we will mostly work over a simple finite-dimensional Lie algebra and
in this case we will not need abstract machinery of triangular decomposition in the above
sence. It will be necessary only in Chapter 9.
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2.5 Weight modules

There is a nice common property of semi-simple finite dimensional algebras, Kac-Moody
algebras and algebras with triangular decomposition — they have a reach theory of weight
modules. As the notion of a Lie algebra with triangular decomposition is the most general
one, we will give all definitions in this case.

We start from a general definition of a weight module. Let & be a Lie algebra and § be
an abelian subalgebra of &. A &-module M will be called $-weight if it decomposes into a
direct sum of its $-weight (sub)spaces My = {v € M |hv = A(h)v,h € H}, A € H*. The set
of all non-zero §)-weights of M is called the $)-support of M and is denoted by suppg M.
For example, if & is a Lie algebra with a triangular decompositiopn (9, &, ,Q.,0), then,
by definition, & itself is an $-weight module under the adjoint action. Usually, if § is a
fixed Cartan subalgebra of & we will omit it in notation and refer to the corresponding
H-weight modules simply as to weight modules.

The main property of the weight modules over Lie algebras with triangular decompo-
sition is that they are graded with respect to the @Q-grading of & defined by Q. U —Q).
Indeed, let @) denote the abelian additive subgroup in §) generated by ). Then a natural
decomposition & = Pqc®“ defines on & the structure of a ()-graded Lie algebra, that
is [, &) C &8, If M is a weight &-module then &*M, C M,y and hence M is a
graded &-module with respect to the @-grading. Any homomorphism of weight &-modules
is automatically graded of degree 0.

There exist a lot of examples of weight modules over Lie algebras with triangular
decomposition. Here we disscuss only the most classical one. Let & be a semi-simple
finite-dimensional Lie algebra with a fixed triangular decomposition ($,9,,Q+, o). Then
any simple finite-dimensional &-module is, clearly, a weight module. By the Weyl Theorem
([Se, Section 7]), any finite-dimensional module over & is completely reducible, that is a
direct sum of simple modules. Hence, any finite-dimensional $-module is weight.

If V is a weight &-module, the (formal) character ch(V') is a formal expression

> dim(V3)e.

AEH*

The characters behave well in direct sums, weight extensions and tensor products. In
particular, ch(V; @ V,) = ch(V1) + ch(12) and ch(V; @ Vi) = ch(V1) x ch(V3), see [D,
Section 7.5].

2.6 Universal enveloping algebras

Let & be a Lie algebra and V be a &-module. Then any z,y € & are linear operators
on V. Unfortunately, in general, the usual composition x o y of these two operators does
not represent any element from &. In other words, if we consider V as a representation
f:® — gl(V), the image of f is not closed under taking compositions of linear operators
(associative structure on ¢/(V')). By definition, this image is only closed under taking
commutators [z,y| (Lie structure on gl(V')). This is not quite good, since usual methods

11



of linear algebra strongly rely on composition of linear operators. In order to improve the
situation, we want to embed & into a bigger associative algebra, U(®), such that any &-
module can be canonically extended to a U(®)-module by taking all possible compositions
of the operators x € &. This leads us to the notion of the universal enveloping algebra of
& (see [D, Chapter 2]).

Define the universal enveloping algebra U(®) of & as the quotient of the tensor algebra
T(®) = ®icz, 6% over the ideal generated by all elements zy — yz — [z, y], z,y € &. U(®)
has a natural associative structure inherited from 7'(®). The main result about univer-
sal enveloping algebras is the famous Poincaré-Birkhoff-Witt Theorem (PBW-Theorem)
claiming that choosing a C-basis, {g;|¢ € I}, indexed by a totally ordered set I, the set of
all monomials {g;, ... g, |k > 0,41 < iz < ... <4} forms a C-basis in U(®). In particular,
a natural map ® — U(®) is an injective Lie algebra homomorphism.

Any U(®)-module is a &-module just by restriction. As T'(&) is generated by &,
composing elements z € &, any &-module uniquely extends to a U(®)-module. Moreover,
this is a canonical exact equivalence of module categories.

U(®) admits a natural filtration by degree of monomials. From the PBW-Theorem
it also follows that the associated graded algebra is commutative and isomorphic to the
polynomial algebra in || variables. In particular, this means that U(®) is almost commu-
tative. We will denote by Z(®) the center of U(®). It is known that if & is semi-simple
finite-dimensional with a fixed Cartan subalgebra, ), Z(®) is isomorphic to a polynomial
algebra in dim §) variables ([D, Section 7.4]).

2.7 Classical sl(2,C)-theory

We finish this Chapter recalling some results from the classical representation theory of
the Lie algebra s[(2, C) (see [Se, Section 4]). Let & = sl(2,C) with the standard basis

00 1 0 01

(1) m-(o ) x=(0a)
This is a Weyl-Chevalley basis with relations: [X,Y] = H, [H, X] =2X and [H,Y] = —2Y.
The one-dimensional subalgebra generated by H is a Cartan subalgebra, and $* can be
identified with C. The corresponding root system A then contains two roots +2. Choosing
m = {a = 2} we have that &, = 91, is spanned by X and &_, = 91_ is spanned by Y.
The Chevalley aniinvolution sends X to Y and fixes H. The center Z(&) of U(®) is a
polynomial algebra in one variable ¢ = (H + 1)? + 4Y X. The last element is called a
Caismir element.

Simple finite-dimensional &-modules are parametrized by their dimensions, that is for
each n € N there exists a unique simple n-dimensional &-module V,,. V,, has a basis, v;,
ie{-n+1,—n+3,...,n—3,n— 1} and the action of generating elements of & in this
basis is given by

1 .
Yv,=vi_o, Hv;=1v;, Xv;= Z(nQ —(i+ 1)2)Ui+2'
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The element v,, 1 is a highest weight element of V,,, that is Xv,, 1 = 0. The element v_,, 4
is a lowest weight element of V,,, that is Yv, 1 = 0. The unique eigenvalue of ¢ on V,,
equals 2.

The module V,, is the unique simple quotient of the Verma module M (n), which has a

basis, v;, © € n — 1 — 2Z and the action of generating elements of & in this basis is given
by

. 1 .
Yv; =vi_o, Huv;=1v;, Xv;= Z(n2 — (i 4+ 1)*)vi40.

M (n) is a weight module generated by a highest weight element v, ;. Each M(n), n € N
has a unique non-trivial submodule, which is isomorphic to M(—n). If we define M (n) for
n € C\ Z in the same way as above, the result will be a simple &-module.
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3 Verma modules

Before introducing generalized Verma modules, it is natural to discuss classical Verma
modules, which we are going to define in this Chapter. We restrict us to the case of simple
complex finite-dimensional Lie algebras and list the main properties of Verma modules. We
follow closely the classical textbooks [D, Jol, MP] for basic definitions and results. More
advanced facts are available only as research papers and we will give precise references in
each case.

3.1 Definition

Let & be a simple complex finite-dimensional Lie algebra with a fixed Cartan subalgebra
H; A C H* the corresponding root system; 7 a basis od A; A = A, UA_ the decomposition
with respect to P; & = N_ B HS N, the corresponding classical triangular decomposition
of &; ¢ the Chevalley antiinvolution; X,, a« € A, H,, a € 7 a fixed Weyl-Chevalley basis;
W the Weyl group and p half the sum of positive roots. For a € A let &, denote the
corresponding root subspace of &. W acts on $* in a natural way as a Weyl group. Define
the dot-action of W on $* by w-\ = w(A+p)—p. For a € A, s, denotes the corresponding
reflection. Let (-, ) be the standard W-invariant form on $*. The corresponding dual form
on $) will be also denoted by (-, ).

Fix A € $* and consider a one-dimensional 8 = § & DM, -module, C = C,, such that
(a+h)(z) =(A=p)(h)z for all a € Ny, h € H and z € C. The module

M) =U(®) ) Cy
U(8)

is called the Verma module, associated with &, §, 7 and A (see [D, Chapter 7).

We note, that there are two standard ways to parameterize the module M (\). They
differ by the replacement of A\ — p with X in the above definition of C,. Both possibilities
occur in the literature; we have chosen to follow the convention of Dixmier in his standard
reference [D].

3.2 Basic properties

Originally, Verma modules appeared as the universal highest weight modules. The first
branch of basic properties of M () is connected precisely with this notion.

Let M be a weight &-module. A non-zero element, v € V), is called a highest weight
element provided M, v = 0. A weight &-module, M, is called a highest weight module if
M is generated by a highest weight vector, whose weight is called the highest weight of M.
We also recall the standard partial order < (which depends on 7) on $* defined as follows:
1 < po if and only if pus — p1 can be written as a linear combination of positive roots with
non-negative integer coefficients. Define the Kostant partition function P : $* — Z, as
the number of different decompositions of u € $* in a linear combination of positive roots
with non-negative integer coefficients. Clearly P(u) > 0 if and only if 0 < p.
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Theorem 3.2.1. 1. M()) is a highest weight module with the highest weight A — p.

2. M(A) is a U(M_)-free module of rank 1. In particular, M () is isomorphic to U(N_)
as a vector space (graded by weights).

3. supp(M (X)) coinsides with the set of all u € $H* such that p < A — p. Moreover,
dim(M(A),) = P(A—p—p) for any p € $H*.

Any highest weight &-module with the highest weight A — p is a quotient of M(\).
M () has a unique simple quotient, L()\).

M () has a central character, x».

NS o

Any endomorhpism of M(\) is scalar.

The complete proof can be found, for example, in [D, Chapter 7]. We note that, under
our definition, the parameter A of M ()) does not coincide with the highest weight of M ()),
which is A — p. Of course one can parameterize Verma modules by their highest weights.
This leads to the second way of describing them (as was mentioned above). Further we
will see that our way is a bit more convenient for some properties of Verma modules. We
also note the the fifth statement of Theorem 3.2.1 is usually called the universal prop-
erty of Verma modules. From this statement it follows, for example, that any simple
finite-dimensional &-module is a quotient of an appropriate Verma module (and hence
coincides with the corresponding L())). The set of A such that L(\) is finite-dimensional
is usually denoted P and called the set of reqular dominant integral parameters (see [D,
Section 7.2]).

The next collection of properties of Verma modules is closely related to the structure
of M(}).

Theorem 3.2.2. 1. x» = x, if and only if X € W (u).
2. For any x € Z(®)* there exists X € H* such that x = x»-
3. M()\) has a composition series.
4. dimHomg (M (A), M (p)) < 1 and any non-zero homomorphism from this space is
mnjective.

Again, the proof can be found in [D, Chapter 7]. The first two statements of this
Theorem are easy corollaries of the famous Harish-Chandra isomorphism Theorem, which
states that, under the Harish-Chandra homomorphism ¢, Z(®) maps isomorphically onto
the algebra S($)">) of polynomials in §) invariant under the dot-action of the Weyl group.
Composing ¢ with the shift of indetermines in §), associated with p, we obtain a new map,
whose image coincide with the algebra S(£9)" of usual invariants under the standard action
of W (see [D, Section 7.4]).
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3.3 BGG Theorem and Shapovalov form

The following Theorem is the celebrated BGG criterion for the existence of a non-trivial
homomorphism between two Verma modules ([BGG2]). The sufficiency of it was proved
by Verma ([V]), who also conjectured the necessity part.

Theorem 3.3.1. For A\, u € $H* the following are equivalent
1. M(p) C M(N).
2. L(p) is a subquotient of M(X).

3. There exist a sequence o, o, ..., oy of positive roots such that

1S Sag (1) < Sas (801 (1)) < S (- - (805 (51 (1)) - +) = A

The proof can be found in [D, MP, BGG2]| (|D, Section 7.6] is the most detailed). From
this Theorem one can easily deduce the following criterion for M()\) to be simple.

Corollary 3.3.1. M(\) is simple if and only if so(A) € A for any o € A,

Originally, the proof of Theorem 3.3.1 crucially used the first statement from Theo-
rem 3.2.2. Later ([KK]), an elementary proof was found. It uses the notion of the Shapo-
valov form on M (), defined in [Sh]. Denote by v, a canonical generator of the module
M()\) = M(A+p) (in what follows we will keep this notation). According to Theorem 3.2.1,
any element of M ()) can be written as uvy, u € U(OM_). Define

F(u1vx, u2v3) = @(projy, (o (u1)uz))(A),
where U, denotes the centralizer of §) in U(®). F is called the Shapovalov form on M()).
Theorem 3.3.2. 1. F s a symmetric contravariant bilinear form on M()\)
2. The weight subspaces of M (A\) are orthogonal with respect to F.
3. The radical of F' coincides with the mazimal submodule of M(/\)
4. M()) is simple if and only if F is non-degenerate.
5.

det Fligy, = [T TTO(Ha) + p(Ha) = nla, a) /27077,

OéEA+ n=1

Theorem 3.3.1 is an easy corollary of Theorem 3.3.2. But the proof of Theorem 3.3.2
in [Sh] was based on Theorem 3.3.1. The proof in [KK] is quite elementary (but not easy!)
and is independent of Theorem 3.3.1 (and even of Harish-Chandra Theorem). Hence the
last gives us an elementary proof of Theorem 3.3.1.
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3.4 Weyl and Demazure character formulae and Schubert filtra-
tion

As it was mentioned, simple finite-dimensional &-modules are L(A), A € P™*. There are
a lot of things known for such L()\). Here we are going to disscuss the most famous ones —
Weyl and Demazure character formulae and the corresponding Schubert filtration.

The first famous result about simple finite-dimensional &-modules is the celebrated
Weyl character formula, [D, Theorem 7.5.9].

Theorem 3.4.1. Let A € Pt*. Then

ch(L(\)) = (Z(—l)““%“"”) (Z(—l)l(“’)e“’(p))_ )

weW weW

Demazure character formula is an improvement of the Weyl character formula. To
write it we need some additional notation. For o € m we set dp, = (1 — e™*)71(1 — e %s,),
where we consider s, as an operator on the ring of characters via s, (e*) = e®=®),

Theorem 3.4.2. Let A € P™" and wy = Sq,Say - - - Sa, e a reduced decomposition of the
longest element wy € W. Then

ch(L(N) = dayda, - - - da 7.

Proof can be found in [Jol, A] or [Z2, Chapter 2]. Associated with this character
formula there is a canonical filtration of L(\) as U(28)-module, called Schubert filtration
(see [Jol, Z2]).

Theorem 3.4.3. Let A € P™" and wo = Sa,Say - - - Sa, € a Teduced decomposition of the
longest element wy € W. Then thre exists a filtration L(A) = Ly C Ly C ... C Ly, C L1 =
0 of U(2B)-modules such that fori=1,2,...,k holds

ch(L;) = do,d

A—p
aipy - - doge™ P

We also note that all U(B)-modules L; mentioned in Theorem 3.4.3 are cyclic and any
canonical generator of L; is a highest weight element of L(\) with respect to some other
choice of the basis in A.

3.5 Composition multiplicities

Theorem 3.3.1 gives us a criterion for L(u) to be a subquotient of M ()), or, in other words,
for the corresponding composition multiplicity, that is the number of times L(u) occurs as
a quotient in a composition series of M (\), which is usually denoted by (M(\) : L(u)),
to be positive (or # 0). A natural question to determine (M (X) : L(u)) completely seems
to be the most difficult part of the theory of Verma modules. This is the content of the
famous Kazhdan-Lusztig Congecture ([KL]), which has been proved for semi-simple finite-
dimensional & in [BB1, BrKa]. To formulate the statement we need some preparation.
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Let W be a Coxeter group, S the set of simple reflections, [ the corresponding length
function (see [H1]) and < the Bruhat order on W. Set £ = Z[v,v™!]. Define the Hecke
algebra H(W, S), associated with W and S, as a free £-module with a basis T,,, w € W
and associative multiplication defined by

HAL. T,T, = Ty, if l(zy) = I(2)I(y).
HA2. T2 =v?T1 + (v 2 - 1)T;, s € S.

Of course, one has to check the existence of such structure and we refer the reader to [KL]
for this. Set H, = v'™T,, w € W. One has H,H, = H,, if l(zy) = I(z) + [(y) and
H? =1+ (v'!—wv)H, s € S. In particular, H;' = Hy; + (v — v ') and H; is invertible
for s € S. Using H,H, = H,, one derives that H, is invertible for any w € W. There
exists a skew-linear (i.e. v — v™') involution d : H — H, which sends H,, — (Hy-1)"",
w € W and is a ring homomorphism. Further, for any w € W there exists a unique H,,
such that d(H,) = H,, and H,, = H,+ >, _,, hyw(v)Hy, where hy,(v) € vZ[v], moreover,
H,, w € W form a basis of H (see [KL]). For z,y € W set P,, = v'®)~"®h,  which is
known to be an element of Z[v] and is usually called a Kazhdan-Lusztig polynomial. Then
the Kazhdan-Lusztig conjecture states the following.

Theorem 3.5.1. Let W be the Weyl group of & and S the set of simple reflections with
respect to . Let A € $* be integral dominant and z,y € W. Then (M (z(\)) : L(y()\))) =

P, ,(1).

Proof, even for finite-dimensional &, is highly non-trivial and can be found in [BBI,
BrKa].

3.6 BGG resolution

As was mentioned, L()) is finite-dimensional if and only if A € P™* moreover, each simple
finite-dimensional module is of the form L(\) for an appropriate A € Pt+. Let [ : W — Z,
denote the standard length function with respect to 7. Fix A € P*+. Fori=0,1,...,|A,|
denote by C; the direct sum of all M (w())), with {(w) =i (we will also denote by W; the
set of such w). According to Theorem 3.2.2, any homomorphism d; : C; — C; 1 can be
defined via a complex matrix (d(z)wy)ggvv%_l According to [BGG1] or [RC], one can choose
d (%), simultaneously such that d(i),, # 0 if and only if z < y with respect to the Bruhat
order on W and d;_; od; = 0 for all 4.

Theorem 3.6.1. The sequence

d d _
0= Cla, —5 Clayier =5 .0y 25 M) 25 L)) — 0,

where p is the canonical projection, is exact.
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The exact sequence from Theorem 3.6.1 is known as the BGG resolution of L(\). The
proof of Theorem 3.6.1 can be found in [BGG1]. Some interesting facts about it also can
be found in [L1, RC, RCW1, GJ]. We have to note that sometimes this BGG resolution
is called the strong BGG resolution in order to distinguish it from another (quite similar)
resolution, constructed in [BGG1] by using the cohomology of &. The equivalence of both
resolutions was proved in [RC].

3.7 Category O

One of the most important structures arising in the representation theory of & is the
so-called category O, defined and investigated in [BGG3]. In particular, it led to the
appearence of such new objects in modern algebra, as quasi-hereditary algebras, highest
weight categories, BGG catregories and so on (see [CPS1, 12]).

Let O denote a full subcategory of the category of all &-modules, which consists of
those modules M, which are

o finitely generated;
e § diagonalizable;
e M, finite (i.e. U(M, )v is finite-dimensional for any v € M).

Theorem 3.7.1. 1. O is closed under taking submodules, quotients, finite direct sums
and under tensoring with finite-dimensional modules.

2. All Verma modules belong to O.
3. L(A), A € $* ezhaust the set of simple modules in O.
4. Any module in O has a composition series.

5. O = @yeze)O(x), where O(x) is a full subcategory consisting of all modules, which
are annihilated by a big enough power of z — x(z) for all z € Z(®).

The proof can be found in [BGG3] or in [MP]. It is quite easy. The first non-trivial
property of O states that it can be decomposed into a direct sum of full subcategories,
each of which is equivalent to the category of (finite-dimensional) modules over a finite-
dimensional algebra.

Theorem 3.7.2. 1. O has enough projective modules (i.e. any module in O is a quo-
tient of a projective module in O).

2. There 1s a bijection between simple modules and indecomposable projective modules
in O. We will denote by P(\) the projective cover of L(X), A € $H*.

3. Each O(x) is equivalent to the category of (finite-dimensional) modules over a finite-
dimensional algebra.
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Again, the proof can be found in [BGG3] or in [MP]. The next Theorem is the celebrated
BGG reciprocity principle for O.

Theorem 3.7.3. 1. Any projective module in O admits a Verma flag, that is a filtra-
tion, whose subquotients are Verma modules.

2. For any \, p € H* holds [P(\) : M(u)] = (M(p) : L(X\)), where [P(X) : M ()] denotes
the number of occurrences of M(u) in a Verma flag of P()\). In particular, the last
is a well-defined number (i.e. does not depend on a Verma flag).

Roughly speaking, Teorem 3.7.3 shows that Verma modules play in O a role of inter-
mediate modules between simples and projectives. The proof can be found in [BGG3| or
in [MP].

Theorems 3.7.2 and 3.7.3 were a motivation for introducing in [CPS1] the class of
quasi-hereditary algebras. Let A be a finite-dimensional associative algebra and I be a set
parametrizing simple A-modules L;, ¢ € I. Denote by P; the projective cover of L; and let
< be a partial order on I. The algebra A is called quasi-hereditary (with respect to <) if
there exists a choise of A-modules, M;, ¢ € I such that

QH1. M; surjects onto L; and the kernel of this map is filtered by L;, j < 1.
QH2. P; surjects onto M; and the kernel of this map is filtered by M;, ¢ < j.

Considering O(x) with the partial order coming from the Bruhat order on W, one
easily derives that any finite-dimensional associative algebra associated with O(x) is quasi-
hereditary. Theory of quasi-hereditary algebras is relatively well-developed, in particular,
there is an abstract analogue of the BGG reciprocity and a lot of other nice properties (see
[CPS1, R3, 12, KIKo| and references therein).

The next natural question for the category O is to give a precise (combinatorial) de-
scription of the algebras which appear in Theorem 3.7.2. This was solved (much later) by
Soergel in [S1]. In order to state Soergel’s results, we need a bit more notation.

Denote by C' the quotient of the polynomial algebra S($)) over the ideal generated
by all non-constant homogeneous polynomials in S($)), invariant under the action of W
(we emphasize that here we mean the ordinary action). The algebra C' is usually called
the coinvariant algebra. Let Ao € P™ be such that the module L()g) is one-dimensional
(trivial module). Then the corresponding block O(x,,) is called principal. Let wy denote
the unique longest element in W (I(wy) = |A4|). The projective module P(wy(Ag)) is
usually called the big projective module. 1t is easy to see that [P(wg(Xo)) : M(w(Xg))] =1
for any w € W and [P(w(Xg)) : M (wo(A))] = 0 for any w # wy.

Theorem 3.7.4. 1. The endomorphism algebra of P(wy(Xo)) is isomorphic to C.

2. The finite-dimensional algebra, associated with O(x»,), coinsides with the endomor-
phism algebra of P(wy(\o)), viewed as a module over its endomorphism algebra (i.e.
viewed as a C-module).
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3. If 1, po € P, then O(x,,) and O(x,,) are equivalent.

4. Any O(x) is equivalent to some O(x) with an integral X with respect to the semisim-
ple part of the Levi factor of a parabolic subalgebra of &.

The proof can be found in [S1, Be|. The second statement of this Theorem is know as
the double centralizer property. The third statement is standard and was stated (without
proof) in [BGG3]. From the last statement it follows, in particular, that for a fixed algebra
® the set of non-isomorphic finite-dimensional algebras arizing from the corresponding O
is finite and that Kazhdan-Lusztig Theorem describes the composition multiplicities fot all
Verma modules, not necessarily having an integral parameter.

The Chevalley antiinvolution on & leads to a natural duality, *, on O (by a duality
we mean a contravariant exact functor, which preserves simple objects). Let F(A) (resp.
F(V)) denote the full subcategory of O which consists of all modules admitting a Verma
flag (resp. dual Verma flag, that is a flag, whose subquotients are isomorphic to M (A\)*,
A € $*). Then, according to the general result of Ringel for quasi-hereditary algebras
([R1]), the indecomposable modules in F = F(A) N F(V) are naturally parametrized by
A € H* (i.e. there is a natural bijection between simple modules in O and indecomposable
modules in F), moreover F coincides with the full subcategory consisting of all direct sums
of these indecomposable modules. We will denote by 7'(\) the indecomposable module in
F which corresponds to A € $* (this means that any Verma flag of T'(\) starts with M (\)).
T'()) is usually called a tilting module. If we restrict our considiration to O(x,), A € H* and
denote by W) the subgroup of W stabilizing A, then the direct sum 7" = @ycw/w, T (w()))
is called the characteristic tilting module of O(x»). In this case F(x») coinsides with add T’
(see [KIKo]). Having this characteristic tilting module 7" one can consider its endomorphism
algebra, which is known (for our example, or in general, for quasi-hereditary algebras) to
be a quasi-hereditary algebra ([R1, R2]). This algebra is called the Ringel dual for the
algebra, corresponding to O(x.)-

Theorem 3.7.5. 1. The principal block O(x»,) of O is its own Ringel dual (i.e. the
corresponding algebra is isomorphic to its Ringel dual).

2. For z,y € W holds [T(x(Xo)) : M(y(Xo))] = (M (ywo(Xo)) : L(zwo(No)))-

This Theorem is a recent result of Soergel ([S4]), where the reader can find a proof of
both statements. Some more interesting results about category O and related structures
can be found in [BG, BC1, BC2, BGS, H2, CI, CS, ES, I1, 13, 14, IS, MP, RCW2, S2, S3|.

3.8 Loewy series

The last basic fact about Verma modules, which we are going to discuss here is a description
of the Loewy series, in particular, rigidity of Verma modules, established in [I1].

If M is a module of finite length, a Loewy filtration of M is a filtration of shortest
possible length with semi-simple subquotients. Among such filtrations there is one which
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contains any other term-by-term, the socle filtration
0 C soc(M) C soc(M/soc(M)) +soc(M) C ...,
and one which is contained in any other, the radical filtration
-+« C rad(rad(M)) C rad(M) C M.

The length of a Loewy filtration of M is called the Loewy length of M and, by definition,
does not depend on the choice of a Loewy filtration. M is called rigid if the socle and
the radical filtrations of M coincide, equivalentely, if there exists a unique Loewy filtration
of M. For i € N we denote by soc’(M) the entries of the socle filtration of M and set
soc;(M) = soc'(M)/soct 1(M).

Theorem 3.8.1. 1. Any Verma module is rigid.

2. For an integral antidominant reqular X\ and w € W the Loewy length of M (w(\))
equals [(w) + 1.

3. Let X be antidominant integral and regular. Then Py y(v) =Y, (s0Ciy)+142i (M (2(N))) -
L(y(\)))v".

The proof can be found in [I1]. We only note that, in particular, the third statement
explains the “structure” of the Kazhdan-Lusztig polynomials, whose coefficients count the
number of occurrences of a simple module in the layers of the unique Loewy filtration of a
Verma module.
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4 Introducing Generalized Verma Modules

In this Chapter we introduce the main object of our interest: Generalized Verma modules.
We establish their basic properties and introduce one important tool: the generalized
Harish-Chandra homomorphism.

4.1 Definition

Let P D B be a parabolic subalgebra of & which contains 8. Denote by 9 the nilpotent
radical of P and by 2’ the Levi factor of P. Then 9t C M, , A’ is a reductive Lie algebra,
which can be decomposed ' = A @ $Hy, where 2 is semi-simple and Hy C ) is abelian and
central in 2'. Let V' be an $)g-diagonalizable 2'-module. Set MV = 0. In this way we turn
V into a P-module. Now we can use the induction from P to & and obtain the module

Mp(V) =U(®) Q) V.
U(P)

associated with &, P and V. This induction, which is associated with a parabolic subal-
gebra P of & is usually called a parabolic induction.

If the module V' is simple we will call Mp(V) a Generalized Verma module (GVM). If
the parabolic algebra P is fixed or clear from the context we will usually omit it in the
notation and will simply write M (V).

We will also need some more notation. Let A(A) C A be the root system of 2. Then
m(A) = 7N A(A) is a basis in A(2A) and A(A)L = AL N A() are the corresponding sets
of positive (negative) roots with respect to w(2(). Denote by W (2() the Weyl group of
A(2(), which is a subgroup of W. Let 91(2() denote the subalgebra of 9_ generated by X,,
a€ (A_\ A(A)). Clearly, () is the image of 9T under o.

Denote by $(2) the intersection $ N 2A. Since Hy is central in A, we have that £y
coincides with the orthogonal complement to $(2) in $ with respect to (-,-). Hence we
can identify $)(2)* with the subspace of $*, generated by all & € A(A) and $Hj with the
orthogonal complement to H(2)* in $*. Let py : H* — H* denote the projection on H
with respect to $(2)*. $j inherits a natural partial order from the order < on $*. We
will denote this order by the same symbol and set pu; < po for pi, po € $Hy if there exists
uz € H* such that py(us) = po and py < ps (as elements in H*).

4.2 Basic properties

For this Section we fix a GVM M(V') = Mp(V) and keep the notation of Section 4.1. Since
V is a simple 2'-module and $)g is abelian and central, Hg acts on V by scalars, i.e. via
some A € $)%. So for the rest of this section we fix V, M (V) and A above.

Let M be an $Hg-weight &-module. A non-zero element, v € M), A € H5 will be called
an A-highest weight element (or an A-primitive element, or just a semiprimitive element, if
2 is clear from the context) provided Mv = 0. An $Hy-weight G-module, M, will be called
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an A-highest weight module if it is generated by an 2-highest weight vector, v, such that
U(A)v is a simple A-module. The 2A-weight of v will be called the A-highest weight of M.

Proposition 4.2.1. 1. M(V) is an A-highest weight module with the A-highest weight
A. Moreover M(V'), =~V as an A-module.

2. M(V) is a U(M(A))-free module and any basis of V is a U(M(A))-basis of M (V).
8. suppg, (M(V')) coincides with the set of all p € Hy such that p < A.

4. Any A-highest weight module M such that \ is the A-highest weight of M and M) ~V
(as an ~A-module) is a quotient of M(V).

5. M(V) has a unique simple quotient, L(V) = Lp(V).
6. Endg(M(V)) ~ Endy (V). In particular, any &-endomorphism of M (V') is scalar.

Proof. The second statement follows from PBW Theorem. The fourth statement follows
from the universal property of the tensor product. The last statement follows from [D,
Proposition 2.6.5]. The rest is trivial. O

The forth statement of Proposition 4.2.1 is nothing more than the universal property
of a GVM. One sees that Proposition 4.2.1 is almost analogous to Theorem 3.2.1, although
one statement is missing. We will discuss it in the next Section.

The last basic property of a GVM, which will be explained in this Section is connected
with its Hy-weight structure. Consider U(®) as an A-module under the adjoint action.
Then this module is Hg-weight. Given an $y weight \ of U(®), we will denote by U(&)*
the vector space, generated by all monomials in U(®),, which do not contain any factor
from 2. Clearly, U(®)” is finite-dimensional and is an 2-submodule of U(®).

Lemma 4.2.1. Let X be the A-highest weight of Mp(V') and p € . Then Mp(V), is
isomorphic to U(&)** @V as a A-module.

Proof. Since Mp(V) = U(&) ®y(p) V, we have Mp(V), = U(&)** @V as a vector space.
If we consider U(®)* * as a 2-module under adjoint action, the equality above becomes
an isomorphism of 2A-modules. O

4.3 Generalized Harish-Chandra homomorphism

One of the most important tools in studing of GVMs is the so-called generalized Harish-
Chandra homomorphism, defined and studied in [DOF3]. We will follow [DOF3] in this
Section so the reader can consult [DOF3| for any technical details which will be missed.

Again, we fix a GVM M (V) as in the previous section. The reason to introduce a
generalization of the Harish-Chandra homomorphism is to study the action of Z(&) on
M (V). This will be explained in this Section.
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Define L(2() = UyNU(&)N. Then it is clear that L(2A) is a two-sided ideal in Uy, L(A) =
Up NNRA)U (&) and Uy = L(A) & (U(A)o @ U(He)). We define the generalized Harish-
Chandra homomorphism (or 2A-Harish-Chandra homomorphism) @y as the projection of
Up on U(A)p ® U($Hy) with respect to L(A). We note that g is completely determined
by a subset 7(2) of 7 and if 7(A) = @, i.e. A = 0, then ¢y coincides with the classical
Harish-Chandra homomorphism ¢ (see [D, Chapter 7]).

The next lemma explains an importance of 2A-Harish-Chandra homomorphism in the
study of A-highest weight modules, in particular, in the study of GV Ms.

Lemma 4.3.1. Let M be a A-highest weight module with the A-highest weight A € $y.
Then for any u € Uy and for any v € My holds uv = @y (u)v.

Proof. Follows directly form the definitions of 2A-highest weight and 2A-Harish-Chandra
homomorphism. O

Since Z(®) C Uy, we can compute the action of any z € Z(®) on a GVM M(V)
directly by an application of Lemma 4.3.1. Hence, it is necessary to study the image of
Z(®) under @g.

Let py denote half the sum of all positive roots in A(2) and let p* = p— py. Denote by
v the automorphism of S()) defined by v(f)(A) = f(A — p) (we say that v is the shift by
p). Analogously, let 79 be the automorphism of S($(2()) defined by ya(f)(A) = f(A— pa).
Let 7™ = 7] s(s)-

Denote by i the restriction of the composition (1 ® ¥*) o g : Uy — U(A)e @ U(Ha)
to Z(®) and by iy the restriction of (190 ¢) @1 : U(A)o @ S(Ha) = S(HA)) @ S(Ha)
to Z(2A) @ S(Ha). Let m: S(H(A)) ® S(Ha) — S(H) be a canonical isomorphism. For a
semisimple Lie algebra A with a fixed Cartan subalgebra we will denote by a4 the canonical
inclusion of Z(A) into U(A)y.

Theorem 4.3.1. The following diagrams commute:

1.
Up 22023 17(90)0 @ S($5a)
vwl l(mow)@l
S5(H) «——  SHE)®S(H)

2.

Z(6) —— ZA)®S(Ha) = S(9)

o | [ sac a

Us (1@7*)ops U)o ® S(Ha) mo((yaop)®1) S(5)
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Z(6) —— Z(A) ® S(H2)

vowl l(wmp)@l

SO —  S(H)"®

Proof. Direct verification, which uses Harish-Chanda isomorphism Theorem (|D, Theo-
rem 7.4.5]). O

Corollary 4.3.1. ¢y(Z(8)) C Z(2A) ® S(Ha)-

Hence, the action of Z(®) on M (V') can be computed from the action of Z(2) ® S($Hg)
on V. Since V is a simple A'-module, $g and hence S($y) acts on V' by scalars, which
correspond to A € $3. Since V is a simple 2-module, we can apply Quillen’s Lemma ([D,
Proposition 2.6.8]) and obtain that Z(2() acts on V' by scalars. Hence Z(&) acts on M (V)
by scalars. This means that we have already proved the following result.

Corollary 4.3.2. M(V) admits a central character.

Having the map i : Z(6&) — Z(A) @ S($Hg), we can define a natural dual map * :
(Z(A) ® S(Ha))* — Z(B)*. One more important consequence of Theorem 4.3.1 and the
classical Galois theory is the following statement.

Corollary 4.3.3. For each x € Z(®)* the set (i*)~'(x) is finite. Moreover |(:*)~'(x)| is
less or equal to the index of W (L) in W.
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5 Motivation and Tools

In this Chapter we present some motivation for why one should be interested in studying
GVMs. In particular, GVMs appear in different generalizations of the O category, e.g. in
the category Og introduced by Rocha-Caridi ([RC]) or in the category O% introduced by
Coleman and Futorny ([CF]). GVMs also play an important role in the classification of all
simple weight &-modules.

In the last two sections of this chapter we recall a Theorem of Kostant ([Ko2, Theo-
rem 5.1]) and a localization of U(®) introduced by Mathieu ([Ma]). They will be essential
tools in our study.

5.1 Classification of simple weight modules

The main problem in the representation theory is to classify the representations of some
algebraic object. Usually, this problem is very difficult. For example, in some cases it
is equivalent to the problem of classification of all representations for all objects of the
same kind. Such a situation is called wild (of course this is not a formal definition, see,
for example, [Dr]). Thus usually one restricts the general problem to classification of some
reasonable classes of representations. One of the most natural classes of representations
of a simple complex finite-dimensional Lie algebra is the class of all weight modules. For
example, all finite-dimensional modules (L()A), A € P™) are weight modules. Hence, the
problem to clasify all weight (in particular, all simple weight) &-modules is natural and
very important. In this section we describe, what is known here and how this problem
relates to the study of GVMs.

First of all about the history of the question. A classification of all simple &-modules is
known only for & = sl(2, C) ([B]] or [B] for a more general result). A classification of simple
weight &-modules with finite-dimensional weight spaces was recently completed by Mathieu
([Ma]), some partial results towards it were obtained in [F3, BLF] (see also references
therein). For weight modules with infinite-dimensional weight spaces the problem is still
open, however there are some partial results, see [F3, DOF1].

Now, about the problem itself. One of the most important results for the solution
of this problem is the Theorem, proved independently in some special cases by Fernando
([Fe]) and Futorny ([F4]) and then in a complete generality in [CFO] (using a computer).
Recently an easy proof was found in [DMP]. To state the theorem, we have to introduce
the notion of a dense module.

Recall that & and $) are fixed. A weight &-module, M, is called dense if supp(M)
coincides with the set A + ZA for some A\ € $H*. It is clear, that if M is indecomposable,
then supp(M) is a subset of some A+ ZA. Hence, for an indecomposable M, dense means,
that M has the maximal possible support. Now the mentioned result (which we will call
the Fernando-Futorny Theorem) is the following.

Theorem 5.1.1. Let M be a simple weight &-module. Then M 1is either dense or there
exists a parabolic subalgebra P D B in I' with the Levi decomposition P = A &N and a
simple dense module V' over A, such that M ~ Lp(V').
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We note, that the module V, given in Theorem 5.1.1 is automatically £(2)-weight.
This result is quite non-trivial, especially if one looks at [CFO] and the computer list
presented there. The proof in [DMP] is tricky and uses both ideas from [Fe] and [F4].

In principal, Theorem 5.1.1 decomposes our classification problem into two parts. The
first one: to classify all dense modules. Exactly this was done in [Ma] for weight modules
with finite-dimensional weight spaces. The second problem is to study modules Lp(V),
or more general, modules Mp(V'), which are GVMs, associated with §(2l)-weight mod-
ules. We also note, that some information about Lp(V'), in the case when V has finite-
dimensional A-weight spaces was also obtained in [Mal. In fact, the character of Lp(V)
was computed, but not directly, only by reducing the problem to the character of some
L()).

In principal, the claim that Theorem 5.1.1 reduces the classification of simple weight
modules do the classification of simple dense modules is a bit unfair, since given P and a
simple 2-weight module V' the construction of Ly (V') may be a very difficult problem. This
is not easy even for Verma modules, since it involves at least a description of a maximal
submodule in M(A), which is far from being trivial in general. Anyway, Theorem 5.1.1
presents a good motive to study GVMs and the corresponding simple quotients.

5.2 Category Og

The Verma modules appear as important intermediate objects in the category O. Analo-
gously, GVMs appear in different generalizations of O. One of them, which we will describe
in this Section was introduced and studied by Rocha-Caridi in [RC]. We fix notation from
Section 4.1. Original notation Og relates to a subset S of 7, which defines the semisimple
part of the Levi factor of P. In our situation S = 7(2(), but we retain the classical notation
for the whole category.

Define Og to be the full subcategory of the category of &-modules consisting of the
modules M such that

e M is finitely generated;

e M is a direct sum of simple finite-dimensional 2’-modules, when viewed as an 2/'-
module;

e M is Dtfinite, i.e. U(M)v is finite-dimensional for any v € M.

We note, that the second condition is equivalent to saying, that M is $)-diagonalizable and
is a direct sum of finite-dimensional 2-modules, when viewed as an 2-module.
It happened that Og has properties, similar to those of O.

Theorem 5.2.1. 1. Og is a full subcategory of O.

2. Og 18 closed under taking submodules, quotients, finite direct sums and under ten-
soring with finite-dimensional modules.
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All GVMs Mp(V'), where V is finite-dimensional, belong to Os.
Lp(V), V is simple finite-dimensional, ezhaust the set of simple modules in Og.

Any module in Og has a composition series.

S S

Os = Dyez@)Os(x), where Og(x) is a full subcategory consisting of all modules,
which are annihilated by a big enough power of z — x(z) for all z € Z(®).

As in O, category Og has a block decomposition, with each block being a module
category over a finite-dimensional algebra.

Theorem 5.2.2. 1. Og has enough projective modules (i.e. any module in Og is a
quotient of a projective module in Og ).

2. There 1s a bijection between simple modules and indecomposable projective modules
in Os. We will denote by P(L) the projective cover of a simple module L € Og.

3. Each Og(x) is equivalent to the category of (finite-dimensional) modules over a finite-
dimensional algebra.

And finally, there is an analogue of BGG reciprocity.

Theorem 5.2.3. 1. Any projective module in Og admits a generalized Verma flag (i.e.
a filtration, whose subquotients are Mp(V'), V finite-dimensional).

2. For any finite-dimensional A'-modules Vi and Va holds [P(Lp(V1)) : Mp(V3)] =
(Mp(Va) : Lp(V1)), where [P(Lp (V7)) : Mp(Va)] denotes the number of occurrences
of Mp(Va) in a generalized Verma flag of P(Lp(V1)). In particular, the last is a
well-defined number (i.e. does not depend on a generalized Verma flag).

The proofs of all theorems can be found in [RC], for a more general context see also
[RCW2, MP].

The finite-dimensional algebras, arising in Og are related the the algebras, arizing from
Q. In fact, they are Koszul dual to algebras corresponding to the singular blocks of O
([BGS]). From Theorem 5.2.2 and Theorem 5.2.3 it follows easily, that the blocks of Og
correspond to quasi-hereditary algebras, so one can construct, for example, tilting modules.
But so far this theory is not completed.

We see, that GVMs naturally occur and play an important role in the category Ogs.

5.3 Category O°

GVMs appear also in another generalization of O, proposed by Coleman and Futorny in
[CF]. Assume that 2 is isomorphic to s[(2, C). Then 7(2() contains the unique element, say
«. This is why we will denote the category, associated with such P by O®. To proceed we
need one more notation, introduced in [CF]. A weight ®-module M with finite-dimensional
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weight spaces will be called «a-stratified provided X, and X , act injectively (and hence
bijectively) on M. We also fix the quadratic Casimir operator C' of U(®) ([Ka, p.22]).

We define O the be the full subcategory of the category of &-modules, consisting of
all modules M such that

e M is finitely generated;

o M is $H)-diagonalizable;

e M is a-stratified;

e M is Otfinite, i.e. U(M)v is finite-dimensional for all v € M,
e M is (C-diagonalizable.

The fifth condition seems to be quite disputable. The reason to add it in the definition
above was to avoid the self-extensions of GVMs inside O%. But it happens that exacly this
condition causes difficulty in naturally generalizing some of the properties of category O
to O%. We improve the situation later in Chapter 12. Nevertheless, now we list the basic
properties of O%.

Theorem 5.3.1. 1. O% is closed under taking submodules, quotients and finite direct
sums.

2. All GVMs Mp(V'), where V is a simple a-stratified A-module, belong to O%.

3. Lp(V'), where V is a simple a-stratified A-module, exhaust the set of all simple mod-
ules in O%.

4. Any module in O% has a composition series.

5. 0% = ®yeze)-O0%(x), where O%(x) is a full subcategory consisting of all modules,
which are annihilated by a big enough power of z — x(z) for all z € Z(®).

The proof can be found in [CF, Section 4].

First, we note that, unlike O and Og, the category O is not closed under tensoring with
finite-dimensional modules. The reason is that such a tensor product does not preserve
the fifth condition (but it preserves all other conditions).

Secondly, all simple a-stratified 2-modules can be easily classified. This is a part of
classical sl(2,C) theory. We will need this later, so now we present a construction of all
such modules.

Fix a,b € C and recall the Casimir element ¢ = (H, + 1)? + 4X_,X, of U(XA) (see
Section 2.7). Denote by V(a,b) the A-module with the basis v;, i € Z and the action of
generators of 2 defined as follows:

1
Havi = (CL -+ 2i)’l)z', X—avi = UVij—1, Xavi = Z(b — (a -+ 21 -+ 1)2)U'i—|—1-
We note that b is a unique eigenvalue of ¢ on V(a, b).
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Proposition 5.3.1. 1. V(a,b) is an indecomposable dense weight module of length < 3
with one dimensional weight spaces.

2. V(a,b) is simple if and only if V(a,b) is a-stratified if and only if b # (a + 25 + 1)?
for all j € 7.

3. The set of simple V(a,b) exhaust the set of simple a-stratified A-modules.
4. V(a,b) ~V(d, V) if and only if b =1V and a = o' + 2k for some k € Z.

Proof. The first and the second statements follow directly form the definition of V' (a,b).
To prove the rest we recall one known fact ([DOF3, Lemma 3]), that for any simple £(%)-
weight A-module M any weight space My, A € H(2A)* is a simple U(2A)o-module and any
simple $)(2A)-weight U(A)o-module N has a unique extension to a simple $)(2)-weight 2-
module. The algebra U(2l), is generated by H, and ¢ and thus is commutative. Hence,
any simple $)(2)-weight U(2A)o-module is one-dimensional and thus, coincides with some
V(a,b), for some a,b € C and A € H(A)*. Now the third statement follows from the first
and the second ones. The rest is obvious. O

Using Proposition 5.3.1, one can characterize V (a,b) as a unique 2A-module, having the
following properties:

e ¢ is an eigenvalue of H, on V (a,b);

b is the eigenvalue of ¢ on V(a,b);

e V(a,b) is dense;

X_, acts bijectively (or injectively) on V' (a,b);

all weight, spaces of V(a, b) are one-dimensional.

We will need this characterization later.
We return to the category O%. We have already established its basic properties. The
second step is the result about finite-dimensional algebras arising from Q.

Theorem 5.3.2. 1. O% has enough projective modules (i.e. any module in O% is a
quotient of a projective module in O%).

2. There 1s a bijection between simple modules and indecomposable projective modules
in O,

3. Each O%(x) can be decomposed into a direct sum of full subcategories, each of which
is equivalent to the category of (finite-dimensional) modules over a finite-dimensional
algebra.
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The proof of this fact is essentialy [CF, Theorem 4.7]. Again, one can see some differ-
ences between O and Og. The direct summand O%(x) of O* has infinitely many simple
objects, hence one should decompose it further in order to reduce the situation to finite-
dimensional algebras. The fifth condition from the definition of O causes the fact that the
finite-dimensional algebras arising from O% are not quasi-hereditary in general (at least in
a natural presentation). The problem is that the projective modules in O* do not always
admit a generalized Verma flag (i.e. a filtration, with quotients of the form Mp(V(a,b))).
We will improve this situation in Chapter 12.

Category O% is another generalization of O, in which some GVMs appear as natural
objects, and whose simple objects are exhaust by the unique simple quotients of GV Ms.

We hope that we have presented enough motivation to claim that the study of GVMs
is an interesting and important problem in representation theory of Lie algebras.

5.4 Kostant’s Theorem

We have already mentioned that a lot of information about &-modules, in particular, about
Verma modules or GVMs, can be obtained, studying the action of Z(&) on these modules.
For example, this was a motivation for introducing the generalized Harish-Chandra ho-
momorphism in Section 4.3 (and in [DOF3]). Further, one of the most powerful technical
tools for studying Verma modules is the Jantzen translation functor, which is the composi-
tion of the tensor product with a finite-dimensional module followed by the projection on
O(x). This motivates the exploration of how a central character behaves under tensoring
with a finite-dimensional module. This is the content of a famous result of Kostant ([Ko2,
Theorem 5.1]). This Theorem will be an important statement for us and we present a
complete formulation of it, and will call it Kostant’s Theorem in what follows.

We recall, that, according to Quillen’s Lemma, any simple &-module M has a central
character. This means that for some x = xn € Z(&)* holds: zv = x(z)v for all v € M,
z € Z(®). We also recall, that according to Theorem 3.2.2, for any x € Z(&)* there exists
A € $* such that x = x,, i.e. x is the central character of M(\).

Theorem 5.4.1. Let M be a simple &-module having a central character xpr = xx for
some A € H* and F be a finite-dimensional &-module. Then for any z € Z(®) the element

I ¢-xu2)
p€supp(F)

annihilates M @ F.

We remark, that under our notations supp(F) is an ordinary set and not a multi-set.
Hence any weight of F' is taken only once in the product above. A proof can be found in
[Ko2]. We emphasize one useful corollary of this Theorem.

Corollary 5.4.1. Keep the notation of Theorem 5.4.1 and assume that for any pi, ps €
supp(F), 1 # po holds Xatp, 7# Xatus- Then M ® F is Z(®)-diagonalizable.

32



In particular, the last means that for almost all (with respect to, say, Lebesgue measure)
A € $H* the module M () ® F is Z(®)-diagonalizable for all finite-dimensional F'.

Theorem 5.4.1 can be easily applied for example, to the modules V (a, b) introduced in
Section 5.3. Fix a,b € C and a finite-dimensional module F' of dimension n. Since F' is
n-dimensional, its highest weight is n — 1 and the eigenvalue of ¢ on F equals n?. The
eigenvalue of ¢ on V'(a,b) equals b, which coincides with the eigenvalue of ¢ on the Verma
module M (v/b—1) (since v/b is defined up to a sign, there can exist, in general, two Verma
modules having the same eigenvalue of ¢). According to Theorem 5.4.1, the element

n—1

[J(e— Vo—n+2i+1)%)

1=0

annihilates F' ® V (a,b). Hence, the only subquotient that can appear in F'® V(a,b) are
subquotients of V(a, (vVb—n+2i+1)?), i =0,1,...,n — 1. Moreover, if V (a, b) is simple
and b is not the square of an integer, the module F' ® V' (a, b) is completely reducible. One
more thing, if V'(a, b) is simple, then any indecomposable submodule of FF®V (a, b) is of the
length 1 or 2, and any such submodule of the length 2 is a self-extension of some V (a, k%),
keZ.

Comparing the dimensions of the weight spaces one can show (we will do it later
on in Section 6.7), that F' ® V(a,b) has precisely dim(F') subquotients (counted with
multiplicities), which has the form V'(a,d’). This is a nice property, which has no analogue
for a finite-dimensional substitution of V'(a, b). Really, the length of F'® E for F, E finite-
dimensional can be smaller than dim(F').

We also note that for a general simple M it is not known if the module FF ® M (F,
finite-dimensional) has finite length. This was proved by Kostant ([Ko2]) for simple Harish-
Chandra modules (i.e. modules coming from group representations), but in general the
question is open. We do not know any counterexample, but we also can not prove this, so
we will have to be careful later, especially in Chapter 12.

5.5 Mathieu’s localization

Another important tool for us will be a special localization of the universal enveloping
algebra together with a family of automorphisms, introduced by Mathieu in [Ma]. As
mentioned above, Mathieu studied weight modules with finite-dimensional weight spaces,
so his construction works perfectly only in that case. This means that we will not be able
to apply it everywhere. Nevertheless, we will use it for the study of a-stratified modules
(it can also be applied in a more general situation, which we will not discuss here). We
also note, that we will not present Mathieu’s construction in complete generality. Since
we are going to use it only for a-stratified modules, we will define everything to cover only
this case. For the general case we refer the reader to [Ma).

So, assume that 2 is isomorphic to sl(2,C) and 7(2) = {a}. The main object of our
interests here will be the element X_,. Since & is a simple finite-dimensional complex Lie
algebra, X _, is locally ad -nilpotent on & and thus on U(®). Hence, the multiplicative set
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S of powers of X_, in U(®) satisfies the Ore conditions for localizability (see also [Ma,
Lemma 4.2]). Denote by Us the corresponding localization of U. The following proposition
presents a nice family of automorphisms of Ug. This is a partial case of [Ma, Lemma 4.3|
and we have just copied the proof from there.

Proposition 5.5.1. There exists a unique family of automorphisms, 0, : Us — Ug, x € C,
such that

o 0,.(u) = X* uXZ} for all integer x;
e the map x — O,(u) is polynomial in x for any u € Us.

Proof. Clearly, X_, is locally ad-nilpotent on Us. Thus for a fixed u € Ug there is a
positive integer, N, such that ad (X_,)"*!(u) = 0. For z > 0 set

() = 3 (1) (5) ad (o,

1
1=0

As the binomial coefficient can be extended to a polynomial on C, we can polynomially
extend 6, for all z € C. Uniqueness follows from the uniqueness of the polynomial exten-
sion. O

Proposition 5.5.1 allows one to twist special U(®)-modules by 6,. Indeed, let M be
a G-module on which X_, acts bijectively (for example, M can be a-stratified). Then
M extends to a Us-module M in a natural way and we can apply 0,, x € C to obtain
the twisted Ug-module Ox(M). Then we can restrict the result on U(®) and obtain a
new U(®) module, which we will denote by 6,(M). We note, that if we start from an
a-stratified module M the result 6,(M) is not necessary a-stratified. This means that it
is possible that the action of X, on 6,(M) is not injective (the action of X , on 6,(M)
is bijective by construction). In a more general context one can start from an arbitrary
module M and use an induction from U(®) to Ug, but if X , acts not injectively on M,
some element of M will be annihilated during the induction process. We emphasize the
following important property of 6.

Lemma 5.5.1. Let M be a weight &-module on which X_, acts bijectively and X\ € H*.
Then for any h € $, v € My and x € C holds ,(h)v = (A + za)(h)v. In particular,
supp(0,(M)) = supp(M) + za.

Proof. Suppose that z € Z. Then 0,(h)v = X* hX"2v = (h + za(h))v = (A + za)(h)v.
Since 6, is polynomial in z, 8,(h)v = (A + za)(h)v for any x € C. The statement about
the support is now trivial. O

Lemma 5.5.2. 6,(z) = z for any x € C and any z € Z(®).

Proof. Again the statement is trivial for € Z. For arbitrary x everything follows now
from polynomiality of 6,. U
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As an example, one can take & = 2 and M = V/(a,b), the module constructed in
the Section 5.3. Then X , acts bijectively on V(a,b) (but V(a,b) is not necessary a-
stratified) and one can consider 6,(V (a,b)). Clearly from Proposition 5.3.1 it follows that
0,(V(a,b)) ~ V(d, V) for some a',b/ € C. By Lemma 5.5.2, ¥ = b. By Lemma 5.5.1,
a = a+ 2x. Hence 6,(V(a,b)) ~ V(a + 2z,b). Further we will use 6, to a-stratified
module, and will see that a lot of information can be derived from the last calculation with
0.
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6 An analogue of the BGG Theorem, 1

We begin the study of GVMs with an attempt to generalize the BGG Theorem about the
existence of non-trivial homomorphisms between Verma modules (Theorem 3.3.1). In this
Chapter we cover the case 2 ~ sl(2, C), which was worked out in [M1, M3, FM1, KM1].
We note, that the results of this chapter will be generalized and reproved in Chapter 9
in a much easier way. Nevertheless we will present the scheme of the original proof here,
because the same scheme can be applied for another situation (Chapter 8), which will not
be covered in Chapter 9.

As a first step, we present one general sufficient condition for simplicity of Mp (V)

6.1 Naive sufficient condition for simplicity

In this section with each GVM we associate a Verma module. We will prove (Theo-
rem 6.1.1), that under some conditions, the simplicity of this Verma module implies the
simplicity of the original GVM. Finally, we conjecture that this is the case for any GV M.
This is the easiest result about the structure of a GVM and it is based on a study of
properties of the generalized Harish-Chandra homomorphism, combined with Kostant’s
Theorem. We retain the notation from Chapter 4.

Consider a GVM, Mp (V). Let xy be the central character of V', where V is considered
as a A-module. Assume that g acts on V via A € Hj (or, equivalently, A is the A-highest
weight of Mp(V')). Suppose that xv = x,, # € H(2A)* and i belongs to the closure of the
antidominant Weyl chamber. Now we can consider the module Mp(M (1)), which is, in
fact, the Verma module M (v), v € $*, such that py(v) = A + p* and v — py(v) = p. Set
M(v) = f(Mp(V)). We remark, that M(y) is a simple Verma module over 2, since f is
chosen to be in the closure of the antidomimant Weyl chamber.

Theorem 6.1.1. Suppose that supp(M (v)) "W (v)—p = {v—p}. Then Mp(V) is simple.

We remark, that supp(M (v)) N W (v) — p = {v — p} automatically implies that M (v)
is simple, according to the BGG Theorem (Theorem 3.3.1).

Proof. In this proof all weight subspaces will be taken with respect to the abelian algebra
Ha-

Consider M(v) as a GVM Mp(M (u)). Suppose that Mp(V) is not simple and has a
non-trivial submodule N. Clearly, N contains a non-zero A-primitive element v € Mp(V);,
for some ¢ € $Hj such that A # £ By Lemma 4.2.1, there exists a finite-dimensional -
module F, such that Mp(V), is isomorphic to F® V, as an 2-module. Applying Kostant’s
Theorem, can assume that Z(2A) acts on v via some character, say x.

Consider a A module Mp(M(u))e. Clearly, it is isomorphic to F ® M(u) as a A-
module. Moreover, since M (1) is a Verma module, then M (u) ® F has a Verma flag ([D,
Lemma 7.6.14]). Comparing the filtration in [D, Lemma 7.6.14] with Kostant’s Theorem,
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we conclude that necessarily one of the Verma sub-quotients of Mp(M (11))e, say M (n), has
the central character x.

Consider the GVM Mp(M(n)) with the A-highest weight £ (clearly, Mp(M(n)) is a
Verma module over &), and let w be its canonical generator. Since w is a A-primitive
element, we can calculate the action of Z(®) on w in terms of x and £ using the generalized
Harish-Chandra homomorphism (see Lemma 4.3.1). Moreover, the same can be done
for v. This implies, that the central characters of Mp(M(n)) and Mp(V) and thus the
central characters of Mp(M(n)) and M(v) coincide. Let Mp(M(n)) ~ M(v') for some
V' € H*. From Theorem 3.2.2 we immediately obtain, that / € W(v), which contradicts
our conditions. This completes the proof. O

Conjecture 6.1.1. If f(Mp(V)) is simple then Mp(V') is simple.

We also believe that this conjecture is true if one replaces & with a symmetrizable
Kac-Moody Lie algebra and P with a standard parabolic subalgebra of &, such that 2 is
finite-dimensional.

6.2 The category K¢

In this Section we establish some basic properties of weight GVMs in the case A ~ s[(2, C).
As in Section 5.3, we assume 7(2) = {«}. If V is a simple weight A-module without highest
or lowest weights (otherwise we will have Mp (V) is a Verma module), then V' ~ V' (a, b) for
some a,b € C, b # (a+ 2i + 1)? for all i € Z, according to Proposition 5.3.1. In this case
both X, and X_, act bijectively on V(a,b). By Lemma 4.2.1, any Mp(V (a,bd)),, 1 € H
is isomorphic to F' ® V' (a,b) for some finite-dimensional A-module F. Let V(d’,’) be a
simple subquotient of F' ® V (a,b). If we recall our example from Section 5.4, we will see,
that b’ # (a’' + 2i + 1)? for all 1 € Z. Hence Mp(V (a,b)) is a-stratified.

It will be more convenient to study modules Mp(V (a,b)) for all a,b € C. From the
previous paragraph it follows, that Mp(V(a,b)) is a-stratified if and only if V(a,b) is
a-stratified. To be able to work with any a,b € C we introduce a new category of &-
modules. Let K% denote the full subcategory of the category of all &-modules, which
consists of all weight modules with finite-dimensional weight spaces, on which X_, acts
bijectively. Clearly, all Mp(V (a,b)) are objects of *. In this section, we will study the
properties of Mp(V (a,b)) inside the category K*.

Lemma 6.2.1. K% is closed under taking kernels and cokernels of morphisms and under
taking finite direct sums.

Proof. Let My, My € K* and f : M; — M, be a homormorphism. First we prove that
X_, acts bijectively on the kernel of f. Indeed, X_, acts injectively on it, since it is a
submodule of M;. Let x € M;, f(z) = 0 and y € M; be such that X _,y = x. Then
X _of(y) = f(x) = 0 and hence f(y) = 0, since X_, acts injectively on M,. This means
that X_, acts bijectively on the kernel of f.
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Since M has finite-dimensional weight spaces, we obtain, that X , also acts bijectively
on M;/ker(f). Thus, X , acts bijectively on the image of f. Finally, since M, has finite-
dimensional weight spaces, we obtain that X , acts bijectively on the cokernel of f. [

It is convenient to reparameterize our GVMs. The module Mp(V (a, b)) is uniquely de-
termined by the $-weight A — p of one of its 2-primitive generators v and by the mentioned
b = p? for some p € C, which is the eigenvalue of ¢ on v. We set M()\,p) = Mp(V (a,b)).
Under this notation we always have M(\,p) ~ M (A, —p) ~ M (A + ka,p) for all k € Z.
Clearly, M (), p) is a-stratified if and only if +p # A(H,) + 2i for all i € Z. We can always
choose A such that (A — p)(H,) = a. Sometimes it will be convenient to fix such A.

Lemma 6.2.2. Each M (), p) has a unique simple quotient object L(A, p) in K*. Moreover,
L(A,p) is a simple &-module if and only if M (A, p) is a-stratified.

Proof. The proof of the first statement is analogous to the proof of the corresponding
statement for Verma modules. The second statement is obvious. O

Let v; be the basis of V(a,b), defined in Section 5.3. Then, by Proposition 4.2.1 (the
second part of it can be easily extended on the case of a non-simple V), 1 ® v;, i € Z is a
U(M(A))-basis of M(\, p).

Lemma 6.2.3. For any w € M (), p) there existsi € Z and u € U(M_) such that w = uv;.
Proof. For some k € N, a; € C and u; € UM(A)), —k < j < k, we have
k k . k _
w = Z (ajuv;) = Z (aju; X" Tvg) = (Z ajquk;J) V.
=k =k =k
This completes the proof. O

Proposition 6.2.1. 1. Any two non-trivial subobjects (in K*) of M (), p) have a non-
trivial intersection. In particular, M (X, p) contains a unique minimal subobject.

2. dim Hom(M (X, p), M(p,q)) < 1 and any non-zero homomorphism from this space is
a monomorphism.

Proof. Follows from Lemma 6.2.3 and the fact that U(91_) has no zero divisors by standard
arguments (see, for example [D, Proposition 7.6.3,Theorem 7.6.6]). O

6.3 A, case

In this Section we explain the results from [F2]. This was the first attempt to study the
structure of GVMs in the simplest case, when & is isomorphic to s[(3,C). In this case
we can assume that A ~ sl(2,C), 7(A) = {a}, m = {®,3}. We retain notation from
Section 6.1. Our main result here is the following statement.
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Theorem 6.3.1. Denote n* = n*(\, p) = (\(H, + 2H;) £ p)/2.

1. M(u,q) € M(\,p) if and only if p = X —nfB+ka, n € Z,, k € Z, and one of the
following conditions holds:

(i) n=0 and g = £p;
(ii) n € {n*(\,p)} and ¢* = (p F n*(\,p))*.

Moreover, if M(\,p) contains a unique non-trivial Verma submodule V (u,q), then
M\, p) D M(u,q) D 0 is a composition series of M(\,p) (in K*).

2. If ny =n~(\,p) € N and no = n*(\,p) €N, then
M\ p) D MAN—n18,p+n1) D M(A—ngB,p—mns) DO,
moreover, this is a composition series of M(\,p) (in K®).
3. The module M (X, p) is a simple object in K* if and only if n*()\,p) & N.

We note, that this statement gives us more information than we have expected. In fact,
the statement additionally presents a composition series for M (A, p). This is a phenomena
for s1(3,C) case and we will not recover it in this Chapter for other cases. One can also
note, that the proof of this additional information is ideologically the most difficult part
of the whole proof.

Proof. The original proof from [F2] is based on direct technical calculation. We will omit
these technical detailes, which can be found in [F2].

Clearly, to prove the theorem, we have to determine the set of A-primitive elements
in M(A,p) (this will be a direct generalization of the BGG Theorem). Suppose that
vg € M(A\,p)r_p (i.e. (A—p)(Hy) =a). Let u € M(A\,p)r—ptka—ns, k € Z, n € Z, be a
non-zero element. Then

n

u=> a; X7, X" T ®@uvj (1)

J=0

The element u is ™A-primitive if and only if Xgu = X,1pu = 0. Using (1), we can write
these conditions as a system of linear equations on a;. Solving this sistem, we obtain that
a non-trivial solution exists if and only if n = 0 or p? = (—2n + A(H, + 2Hp))?. This,
together with Proposition 6.2.1, in fact, proves all statements about the embeddings of
GVMs.

To complete the proof we have to show that the natural embeddings of GVMs form
a composition series. We will prove this for the second statement. The corresponding
result for the first statement can be obtained by the same arguments. We have M(\ —
niB,p+n1) C M(\,p), M(A—nof,p—ng) C M(A,p) and M(\ —nef,p —ne) C M(\ —
n13,p+ n1) by virtue of the first part of the Theorem. Now one can easily calculate, that
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dim(M (X, p)a—p-—ng) = n+1. Let Ly = M(A,p)/M(A—ny18, p+n;). From Proposition 6.2.1
it follows that dim(L;)_,—ng = n+1, if n < ny and dim(Lq)x_,_ng = 11, if n > ny. Denote
by &, the sl(2, C) subalgebra of &, generated by X,4. Since o and 3 are not orthogonal,
from the standard sl(2,C) calculation it follows that there exists ¢ € Z such that the
module U(®;)v; is simple. Hence, X_z acts injectively on Ly_,.;, ;g for any quotient L
of M(\,p) and any j € Z,. This implies, in particular, that L; is simple. By the same
arguments the module Ly = M (A —n13,p+ n1)/M (X —naf3,p — ng) is also simple as good
as M (X — nyof3,p — mg) itself. This completes the proof. O

On the set of isomorphism classes of all GVMs we can defene a natural partial order
with respect to inclusion. According to Theorem 6.3.1, the obtained partially ordered set
decomposes into a non-ordered union of chains of lengths 1,2 or 3. This shows that the
situation with GV Ms is simpler than the analogous situation of Verma modules. For exam-
ple, for the principal block of O the corresponding poset of Verma modules is, according
to the BGG Theorem, the poset of Bruhat order on the corresponding Weyl group. In
particular, the order on this poset is not linear.

6.4 B, case

In this Section we present the results, analogous to Theorem 6.3.1 in the case, when & is
a Lie algebra of type By. These results were obtained in [FM1, Section 4], which is, in
fact, the most difficult technical part of [FM1]. The proof of these results is absolutely
analogous to the proof of Theorem 6.3.1, but involves more complicated calculations. This
is why we will omit the proof here and refer the reader to [FM1]. We retain the notations
from Section 6.1.

Let again 7 () = {a} and 7 = {«, #}. Unlike the case of s[(3, C), the Dynkin diagram
of type By has no non-trivial automorphisms and hence we have to consider two different
cases:

e «r is a short root.
e « is a long root.

We will see that these cases, as well as the corresponding criteria, are quite different.

Consider the first case (« is a short root). Then A, = {«, 8, B+, +2a}. For A € H*
and p € C denote n*(\,p) = (\(Ha + 2H3) £ p)/2 and n(\,p) = nT(\,p) + n=(\,p) =
A(H, + 2Hp).

Theorem 6.4.1. 1. M(u,q) C M(\,p) if and only if u= A+ ka—nB, k €Z, n € Z,
and one of the following conditions holds:

(i) n=0 and g = £p;
(ii) n € {nT(\,p),n(\,p)} and ¢> = p* + 4n\(H, + 2Hg) — 4n?.

2. The module M (), p) is a simple object in K* if and only if {n= (X, p),n(\, p)}NN = @.
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From Theorem 6.4.1 follows immediately, that the poset of GVMs with respect to
inclusions is a non-ordered union of chains of lengths 1,2 or 4, which is analogous to the
case of s[(3,C). As we have already mentioned, the proof of Theorem 6.4.1 can be found
in [FM1] and is analogous to the first part of the proof of Theorem 6.3.1. We also note,
that unlike Theorem 6.3.1, Theorem 6.4.1 does not give us a composition series of M (A, p).

Now consider the second case (« is a long root). Then A, = {«a, 8, 8+ «, 26+ a}. For
A € 9* and p € C denote n*(\,p) = (\(Ha + Hp) £p) and n(\,p) =nT(\,p) +n (\,p) =
2\(H, + Hp)

Theorem 6.4.2. 1. M(u,q) C M(\,p) if and only if u =X+ ka—nB, k €Z, n € Z,
and one of the following conditions holds:

(i) n=0 and g = +p;
(ii) n € {nt(\,p)} and ¢*> = (p F nE(\,p))%;
(iii) n =n(\,p), n/2 € N and ¢ = £p;
(iv) n=n(\p), n/2 ¢ N, n¥(\,p) € N and g = +p.

2. The module M(\,p) is a simple object in K if and only if n*(\,p) € N and
n(A,p)/2 ¢ N.

From Theorem 6.4.2 it follows that the inclusions of GVMs for this case can be more
complicated that in previous cases and not only linear posets can occure. Thus, if we
assume that ny =n~(\,p) € Nand ny = n*(\,p) € N, ny > ny then if p € N we have

M\ = (n1+n9)B,p) C M(A—ngfB,p—mn3) C M(A—n18,p+n1) C M(A,p),
and if p ¢ N we have

M(A = (m1 +n2)B3,p) C M(A—naf,p—n2) C M(A,p),
M(A = (n1+n2)B,p) C M(A—nB,p+n1) CM(Ap),
M =mB,p+m) & M(A—naB,p—mno),
M(A—ngB,p—mnz) € M(A—n18,p+m1).

6.5 A new action of the Weyl group and a generalization of the
Harish-Chandra Theorem

We have already understood, that the space of parameters for modules M (A, p) is the linear
space of all pairs (\,p), A € $H*, p € C. So far we have not seen why we substituted b
by p, p> = b. This will be clarified in this Section. Denote by Q = $* @& C the set of
parameters of our GVMs. The aim of this Section is to introduce an action of the Weyl
group on {2, which will play an important role in our generalization of the BGG Theorem.
For Section 6.5 and Section 6.6 we assume that & is a simple finite-dimensional complex
Lie algebra and & is not of type G2. The reason is that the action of the Weyl group on
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Q) will be defined using rank two calculations, obtained in Theorems 6.3.1, 6.4.1 and 6.4.2.

We did not cover the G5 case there, and so will not be able to consider it here. We will

handle the G5 case in Section 6.7 by different methods, because of the technical difficulties.
Consider the following partition of m: 7 = m UmyUms Uy, where my = {y € m|a+7y €

Alaf =]}, m={yenlaty e Ao <]}, m={yenrlatyellaf >}
={yvern|a+y¢&A}. For (\,p) € Q and § € 7\ 74 denote

np) = { sQAHa+2Hy) £p), femum,
o P )\(Ha + Hﬂ) :l:pa ﬂ € T3

and define three pairs (Ag, ply) € Q, i = 1,2,3, where Ay = A — ng(\,p)B, py = nj(\,p),

ps =p+2n5(\p), i =p+n5(\p).
For each 3 € m consider lg € GL(2) such that

()‘7 _p)7 ﬁ =«
ls(Ap) =1 (spA,p), BeEm\{a} 2)
(As,p5), B € mi, i=1,2,3.

If one looks at (2) carefully, it is easy to see, that for rank two algeras of type A, or
By, formulae (2) coincide with those obtained in Theorems 6.3.1, 6.4.1 and 6.4.2. Further
we will see that, in fact, (2) defines an action of W on €.

For r € C denote by Q, the afiine hyperplane in 2, which contains all (A, p) such that
A=ra+ 3 e 0y 988, ag € C. Clearly, Q. = ra + Q, Qo is a subspace of  and all Q,
are invariant under lg, 8 € 7.

Lemma 6.5.1. Suppose that (\,p) € Qp,, (1,q) € Qp, and 11 — 19 &€ Z. Then
Hom(M (X, p), M (1, q)) = 0.

Proof. Under the conditions of the Lemma, the weight lattices of M (A, p) and M (u, q) are
different, which completes the proof. O

Clearly, Lemma 6.5.1 can be generalized to any Ext between M (A, p) and M(u,q) in
the category of weight &-modules.

Let A° be aroot system dual to A, ' : A — A° be a canonical bijection and 7° = /().
Construct a map 7y : A° — (2, as follows. For # € 7 let

Ezw‘la/‘))ﬂ 116°1%) ﬂ:g A, lal > (6]

0/ o 2)8+ra,—3|6°%), a+pB €A, |lal>

TEV=Y (G4 ra,-1), a+BeA ol < @
((18°1?/2)8 + re, 0), a+ B &N a#p.

The formulae (3) define a map from 7° to €., which can be extended to the whole of A°
by linearity. Define n, = nfon' : A — Q,. For a fixed r we set n = n,, 7, = n(n),
Aoy =n(4), AL, =n(AT). Clearly, 74, is a basis of €,.
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Define a bilinear form (-, ), : ©, x Q@ — C as follows. For 3 € m,, and (\,p) € Q let

P, n 1 (B) =«
(B, (A p)r = AMHy1(5), 07 '(B) € ma\{e} (4)
n;—l(ﬂ)()\’p)a 7771(5) S \ Ty

One can extend (4) to the whole space by linearity. It is straightforward, that (-, -), is non-
degenerate on (2, and using this form one verifies that A, , is a root system in €2, (-, ), of
the same type as A° and 7, is a basis of A,, (see [FM1, Proposition 5.2,Lemma5.3]).

Lemma 6.5.2. The rule sg(\,p) = l3(A\,p) defines an action of W on Q.

Proof. Follows from the discussion above and the fact that the Weyl groups of A and A°
are isomorphic. O

Now we are ready to prove the first important result towards the BGG Theorem: a
generalization of the Harish-Chandra Theorem. Consider a map j : Z(2A) ® S(9a) —
C[t] ® S(Ha), such that j(c) = t, and the algebra A = C[v/t] ® S($s), which acts on €, by
polynomial functions. Denote by A" C A the polynomial functions, invariant under W.
Then AW C C[t] ® S(9Hg), since s4(\,p) = (A, —p).

We know already, that M (A, p) has a central character. We will denote this central
character by x» p-

Theorem 6.5.1. joi: Z(®) — AW is an isomorphism that does not depend on the choice
of ™ containing a.

There is a small confusion in the formulation, since we do not yet know if j o i(Z(®))
is contained in A". We will prove this at the first time.

Proof. We will prove this theorem by reducing it to the classical Harish-Chandra Theorem.
As the first part, we prove, that j o i(Z(®)) C AW.

First of all, we remark that for (A, p), and (i, q) in €, such that (A, p) € W(y, ¢) holds
Xap = Xugq- Really, it is enough to show this in the case (A,p) = sg(u,q) for g € .
Using the generalized Harish-Chandra homomorphism we see, that the eigenvalue of any
z € Z(®) on M(),p) is a polynomial function in (), p). Using the classical theory of Verma
modules ([D, Chapter 7]) and Theorems 6.3.1, 6.4.1 and 6.4.2 one can find sufficiently many
(A, p) such that x(xp) = Xss0p) and the statement follows from the polynomiality of the
action of Z(®).

Let 0 # z € Z(&),w € W and (A, p) € Q,. Then w(joi)(2)(\,p) = (joi)(2)(w (A, p)).
From Lemma 4.3.1 we have that the last expression equals X,-1xp)(2) = X(p)(2) =
(j 04)(2)()\,p). Hence w(joi)(z) = (j oi)(z) and we obtain that j o i(Z(&)) C AW.

Now consider the commutative diagram

Z(®) LN AW NG N S(H)W

l l

Clf] ® S(%a) L2, (5w,
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Since ((p ® 1) 0 57') 0 j o is an isomorphism, we have that ker(joi) = 0 and ((¢ ® 1) o
J7HAY) = S(H)". On the other hand, (¢ ® 1) o 57! is an isomorphism on the lower
row. Thus ker((¢p ® 1) 0 ) = 0, which implies that j o4 is an epimorphism and hence an
isomorphism. It does not depend on the choice of 7 containing « by the Harish-Chandra
Theorem. O

Corollary 6.5.1. Suppose that (\,p), (i1, q) € . Then xxp = Xu,q f and only if (A, p) €
W (s, q).

Proof. We have already known the “if” part, so we have to prove the “only if” part.
But two different orbits of W on €2, can be distinguished by the values of a polynomial
function. Summing over W we can assume that this function is W-invariant. Apply-
ing Theorem 6.5.1, we obtain that there is a central element (which corresponds to the
constructed function), which has different eigenvalues on the corresponding GVMs. O

6.6 BGG Theorem and a simplicity criterion

In the previous Section we defined an action of W on the space €2 of parameters of GVMs
and found out that this action is compatible with the central characters of GVMs. This
is good evidence to expect that it is possible to generalize the BGG Theorem and give a
criterion for the existence of a non-trivial homomorphism between two GVMs in terms of
the defined action of W. This will be done in this Section.

Now we have to define a special partial order on €2,, which is analogous to the standard
partial order on $*. For (A,p), (i, q) in Q, set (p,q) < (A, p) if there exists 5 € Af,
(here A¥  is taken with respect to 7, ) such that sg(), p) = (1, ¢) and for 8 # n(a) holds
(B, (A\,p)), € N. Consider the transitive closure of <, which we will also denote by <. The
main result of this Section is the following Theorem, wich generalizes the BGG Theorem
to the case of GVMs of the form M (A, p).

Theorem 6.6.1. Let (A, p) and (i, q) be elements from §2,. Then the following statements
are equivalent:

1. M(p,q) € M(A,p).

2. L(p,q) is a subquotient of M(\,p).

8. (1, q) < (A, p).

The detailed proof of this Theorem can be found in [FM1, Section 7]. In fact, it follows
the general line of the original proof of BGG from [BGG2]| (see also [D, Theorem 7.6.23]).
In order, to omit the standard technical details here we will explain only main ideological
steps of this proof.

Proof. In the first part of the proof one has to show that the third condition implies the first
one. For this it is enough to show, that if 8 € AL | 8 # n(«) such that (3, (\,p)) =n € N,

a,r?

then M(sg(A,p)) C M(A,p). If one fixes n, then it is easy to see that the set of those (A, p),
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such that M(sg(A,p)) C M(A,p) is Zariski closed in Q, ([FM1, Proposition 7.1]). Now
one has only to find sufficiently many (A, p) such that the inclusion M (sg(\,p)) C M (A, p)
is obvious. This can be easily done if one considers (A, p), which correspond to non a-
stratified GVMs. To the highest weight submodules of such GVMs one can apply the
classical BGG Theorem, which guarantees the desired inclusions ([FM1, Lemma 7.3]).

Note that the first condition easily implies the second one. Thus, in the second part
of the proof one has to show that the second condition implies the third one. For this
one can follow the original proof of BGG, the main tool of which is tensoring with finite-
dimensional modules. This proof can be directly rewritten in our case, if we understand,
how GVMs M (A, p) behave when we tensor them with a finite-dimensional module.

The key statement here is the following observation ([M3, Lemma 4.5]) for s((2, C):
Let F be an n-dimensional simple sl(2, C)-module. Then the module F ® V(a,p?) has
length n in the category K®. Moreover, the list of simple subquotients of F' ® V (a,p?)
is the following: V(a,(p —n +1)?), V(a,(p —n +3)?), ..., V(a,(p +n — 1)?). We note
that it is possible, that some subquotients of the above list are isomorphic. This means
that they occur in a composition series with the corresponding multiplicity. The proof of
this fact is based on the idea, that one can substitute V' (a,b) with a (big enough) simple
finite-dimensional module, namely, with a simple finite-dimensional module F”’, such that
dim(F") > 3n. Then the statement follows directly from the Littlewood-Richardson rule.
This implies the statement for V' (a’, '), which has F' as a subquotient. Now one has just
to note, that the action of generators of s[(2, C) is defined on the basis of V' (a, b) via some
polynomials and the set of possible F” is infinite.

As soon as we know the result above, we can construct a filtration of F' @ M (X, p'),
where F'is a finite-dimensional &-module, such that each subquotient of this filtration is
isomorphic to some M (4, ¢") (a Verma flag of FF® M (X, p')). Moreover, we can precisely
determine all GVM subquotients of this filtration (see also Chapter 12, which is indepen-
dent of the present Section), and see, that the picture for their parameters in 2 is quite
analogous to the situation with parameters of Verma modules in $*. Having this knowl-
edge, we just rewrite the proof of [D, Theorem 7.5.23] (this was done, with all necessary
notation and explanations in [FM1, Section 7]). O

From Theorem 6.6.1 one can easily derive a simplicity criterion for M (), p).

Corollary 6.6.1. The module M (A, p) is a simple object in K if and only if (5, (\,p))r &
N for all B € A7, \ {n(a)}.

6.7 G- case

Theorem 6.6.1 generalizes the BGG Theorem to the case of arbitrary simple complex
finite-dimensional Lie algebras not of type G5. The reason is that the definition of our
action of W on ( is based on the computational results for A; and B, algebras, obtained
in Theorems 6.3.1, 6.4.1 and 6.4.2. We are not brave enough to try to do analogous
calculations for the G5 case, so we will try to guess the necessary action of W and then
prove an analogue of the BGG Theorem, following the proof of Theorem 6.6.1. The hint,
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why it seems to be possible, is that we really did not use Theorems 6.3.1, 6.4.1 and 6.4.2
in the proof of Theorem 6.6.1 directly. In the first part of the proof we succeed to obtain
enough information from highest weight submodules of non a-stratified modules M (A, p).
The content of this Section is essentially the content of [KM2]. We also refer the reader to
[KM2] for all technical details.

Retain the notation from Section 6.5. Let & be a Lie algebra of type G2, 7 = {«, 8},
7(A) = {a} (a can be a long root as well as a short one). Denote by (-,-)° the invariant
bilinear form, which corresponds to A°. For (A, p) € € set

Ma(Hqe)Hg — a(Hg)H,) + a(Hpg)p
a(Ha) .

Nop) = (5)

For all v° € 7° we define a map 7, : 7° — €2, as follows

°(7°) (ra. (o, 0)"). v=a (6)
n\7v )= a(Ho)(v°,7°)°—a(Hg)(a®,7°)° o ~0)\0 o o
( a(Ha’;ﬁ(’yHﬂ)—a(HZ)ﬁ(HZ) B+ra,(a°) ) , V7 Fal

The map 7y can be continued by linearity on A°. Set n =nf o’ and let A,, = n(A) with
the fixed base n(m). For all (A,p) € Q,v € m we let

O Ry )

One can continue (-, ), on €2, by linearity on the first argument and obtain a bilinear form
() : 2 x Q — C at the same way as it was done in Section 6.5.

We note that the formulae above are valid for any algebra of rank two, not only for type
(G5. In the cases of algebras of type Ay and B, they will coincide with the corresponding
formulae from Section 6.5. It is easy to see that (-,-), is non-degenerate on , and A, , is
a root system in ,, (-, -), of the same type, as A°. Now one can define an action of W on
1 via sy(), 7 € 7. Retaining the notation from Section 6.6 and following all the proofs we
obtain the following.

Theorem 6.7.1. The statements of Theorem 6.5.1, Corollary 6.5.1, Theorem 6.6.1 and
Corollary 6.6.1 extend to the case when & s of type G,.

Finally, we remark that the structure of the poset of GVMs (with respect to inclusions),
in this case, is the most difficult among all cases of algebras of rank two. In the case when
a is a short root, the corresponding poset is a non-ordered union of linearly ordered sets
and of quadruples occuring in By case. In the case when « is a long root, to the posets
descibed above one should add the poset of the Bruhat order on on a Weyl group of type
Aj.
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7 Gelfand-Zetlin modules

In the previous Chapter we generalized the BGG Theorem on GVMs, induced from a dense
s[(2, C)-module. We crucially used the classification of such modules (classification of mod-
ules V(a, b)) and the fact that the modules V' (a,b) are, from some points of view, similar
to finite-dimensional modules. In our case, this means that all the modules V' (a, b) have a
natural basis, in which the action of the generators of 2 is written using the same polyno-
mial formulae, which occur in finite-dimensional modules. We really used this similarity
in the proof of Theorem 6.6.1, where we determine all subquotients in a composition series
of the tensor product of V(a,b) with a simple finite-dimensional module. One of the most
direct ways to generalize this machinery on bigger algebras, is to find a reasonable family
of modules, similar to finite-dimensional modules in the above sense. Fortunately, this
can be done, using the celebrated Gelfand-Zetlin basis for finite-dimensional 2-modules
([GZ1, GZ2], see also [BR, Z1]). The classical result by Gelfand and Zetlin presents a
nice basis for finite-dimensional modules over simple Lie algebras of type A,, B,, and D,,.
Jimbo extended the same construction on the case of quantum algebra U,(gl,) ([Ji]).

In this Chapter we present a construction of a family of modules “similar to finite-
dimensional modules” for all mentioned algebras. We have to note, that there are also
some recent results for the C), case and for certain (non-standard) quantum algebras (see,
for example, [Mol, Mo2, GI]), but we are not going to discuss them. These modules were
first constructed by Drozd, Futorny and Ovsienko for the A, case. The best explanation
of their construction can be found in [DOF1], although this is not the first paper on this
subject. One can also consult [DOF2, DOF4, DOF5]. This construction was extended to
orthogonal Lie algebras in [M5] and to U,(gl,) in [MT].

In this Chapter we will consider three cases (A,, orthogonal algebras, U,(gl,,)) sepa-
rately. For each case we recall the classical rersult concerning finite-dimensional modules
and present a construction of the new family of modules, which are called generic Gelfand-
Zetlin modules. Regretfully, the only complete proof for the classical situation, available in
the litarature ([Z1, Chapter 10]) covers only the A, case. Some analogous calculations can
also be found in [O1, O2]. In the last Section we give a unified proof for the construction
of generic modules in all cases.

7.1 gl(n,C) (sl(n,C)) case

In this Section we recall the results from [GZ1]. For our convenience we will work with a
reductive Lie algebra A, isomorphic to gl(n,C). We fix a standard basis in ', consisting
of matrix units e; ;, 7,7 = 1,2,...,n. By a tableau we will mean a doubly indexed vector
[1] = [l;;] from C*"+D/2 where i = 1,2,...,n and j = 1,2,...,i. Denote by [%7] the
Kronecker tableau, i.e. one with 5,’:; =1 and 525 =0ifk#aorj#b.

Theorem 7.1.1. Let V(m) be a simple A'-module with the highest weight m = (my,
Mnp2y---y Mun), Mpi = Mpir1, Mp; € N Then V(m) possesses a basis consisting of all
tableau [ s] such that s, j = myj, 7 =1,2,...,n and s;41; = Sij = Siy1541, 1 =1,2,...,n,
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j=1,2,...,1 and the action of generators of A’ is given by the following formulae:

k-1
ek il s (Zskz—Zsk_u—{—k)[s], k=1,2,...,n,

ki1l S Zakj ]+[5 ]]) er+1k[ S Z%g [5]6’]])

where [5’”] is the Kronecker tableau and for l,; = s, —t we have

H(lk:tl,z' — )

af ([s]) =T :

ri[s]) =7 H(lk,i L)
i#]

The proof of this Theorem can be found in [Z1, Chapter 10]. We note, that not all simple
2-modules occur as V' (m) in the above formulation. To cover all simple finite-dimensional
2-modules one has to consider the modules V(m,h), h € C in which in all basis elements
[ s] the entries s; ; are replaced by s; j+ k. In this notation V(m) = V(m, 0). Nevertheless,
if we consider the restrictions of all V(m) from the above formulation on sl(n,C) we
will obtain all simple finite-dimensional sl(n, C)-modules (but this correspondence is not
bijective).

Now we can see an analogue with sl(2, C)-case. Theorem 7.1.1 presents a basis of the
finite-dimensional 2'-module V(m), and the action of generators of A’ on this basis is
written by some polynomial (rational) formulae. The idea to construct a new family of
2A'-modules, is to take an analogous basis, in which all formulae are well-defined. More
precisely, fix a tableau [!] such that l;; — l; x & Z for all possible i and j # k. Consider
the set B([!]), consisting of all tableaux [], such that

® i, =l  for all j;
o tii—lLij€Zforall<i<n-—1andallj.
Let V([1]) be a vector space with a basis B([l]). For [t] € B([1]) set

k k—1
ennlt] = (Zlk,i - Zlk—l,z’) [t], k=1,2,...,n,
i=1 i=1
k

erwni[t] =) af (D[] +[6]),  exralt] = Z% [tD([¢] = [6™7]),

=1

where

H(tkil,i X))

“k; t|) = : ;
LRSS | (o

i#]
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We will call the formulae above the Gelfand-Zetlin (GZ) formulae.

Theorem 7.1.2. 1. The GZ-formulae define on V([1]) a structure of a ™A' -module of
finite length.

2. V([1]) is simple if and only if l; ; — li_1x € Z for all 4,5, k.

The proof will be given in Sectrion 7.4. Some more explanation and properties of V' ([1])
will be presented in Section 7.5. The modules V([{]) will be called generic Gelfand-Zetlin
modules.

7.2 9O(n,C) case

In this Section we recall the Gelfan-Zetlin construction of simple finite dimensional modules
over the Lie algebra 2 = O(n, C) (see [GZ2] or [BR, Section 10.1.B]). The results presented
here were obtained in [M5]. Let X1, = €11, — €ii+1, 1 < @ < n — 1 denote the standard
generators of . Assume that n = 2k or n = 2k + 1. In this Section, by a tableau we
will mean the vector [1] with complex entries, considered as a double indexed family [I; ;],
where 1 <i<n—1land1<j<sfori=2s—1ori=2s. As usually, [6"/] will denote
the Kronecker tableau.

Fix a vector m = (mq, my, ..., my) with integer or half-integer entries satisfying the
following conditions:

1. Forn=2k:my >2mo > ... 2 my 1 > |myl.
2. Forn=2k+1: mi>2mo>... > mg_1 =my; = 0.

Consider the set B(m) consisting of all tableaux with all integer or all half integer entries
satisfying the following conditions:

ln—1; = my,

lopt1,i 2 lopi 2 lopy1it1, 1=1,2,...,p—1,
l2p+1,p 2 l2p,p > ‘l2p+1,p+1‘a

l2pz>£2p lz>l2pz+la 7;:1,2,---,27_]-,
l2pp > l2p lp l2pp

Consider the vectorspace V (m) having B(m) as basis (clearly V' (m) is finite-dimensional)
and define an action of the generators X;;; on the basis elements as follows:

P P
Xop+1,20[1] ZA bap—1,3) (1] + [6771]) ZA ly 15— 1)([1] = [62717]),
Jj=1 j=1

P P
Xopyo,2p+1[!] ZB lopg) ([1] + [0%77]) ZB lop — 1)([1] = [6%7]) 4 iCyp[ 1],
Jj=1 j=1
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where the functions A, B and C are defined in the following way: first we substitute lo, 1 ;
by Sop-1; = lop-1,; +p — j and lyy ; by S9p; = lop ; + p — j + 1 for all possible p, then we
define

. o1 1/2
Allgp-15) = 2 (H(52p—2,r — Sop-1,5 — 1) (s2p—2,r + S2p—1j)> X

r=1

r=1

» 1/2
X (H(82p,r — Sop—1,j — 1) (S2p,s + 82p—1,j)) X

~1/2
X (H(Sgp—l,r - Sgp—l,j)(sgp—l,'r - (S2P*1j + 1)2)) )

r#i

p p+1 1/2
B(lQPaj) = (H(Sgpl,r - sgp,j) H(sgp—f-l,r - 83]),]’)) X

r=1 r=1

~1/2
X (Sgp,j(4sgp,j - 1) H(Sgp,r - S%p,j)((‘g?;ﬂﬂ‘ - 1)2 - S%p,j)) ’

TF]

p pt1 P -1
CQp = H Sop—1,r H Sop+-1,r 32p,r(52p,r - 1) .
r=1 r=1 r=1

Theorem 7.2.1. The formulae above define on V(m) the structure of a simple A-module.
Moreover, any simple finite-dimensional A-module is isomorphic to V(m) for some m as
above.

We will call the formulae above the Gelfand-Zetlin (GZ) formulae (for the orthogonal
case). Regretfully, there is no complete proof of this theorem (which is again a long
straightforward calculation) available in the literature. The reader can find some related
calculations in [O1, O2]. Using Theorem 7.2.1, we define a new family of A-modules (which
we will call generic Gelfan-Zetlin modules) as follows:

Fix a tableau [/] with complex entries ;j, ]l <i<n—1land 1< j<kifi=2k—1
or ¢ = 2k satisfying the following defining conditions:

e all /;; are not integers and half-integers for ¢ < n — 1;
e [; i+ 1\ is not an integer for all 1 <+ <n —2 and all j # k.
Consider a set B([1]) consisting of all tableaux [¢] such that

° tn—l,j = ln—l,j for all j,
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® t;; —l;;is an integer for all 1 <4 < n — 2 and all j.

Let V([1]) be a vector space with basis B([[]). For [t] € B([]) set

p p
Xopiraplt] = D Altay-1) (] + [677]) = 3 Altap-1,5 — V(] = [6717]),
Jj=1 j=1
p

Bltay,; — 1)([t] = [07]) +iCoy[t],

M@

Xopr2gpr1[? Z Btap,)([t] + [67]) —
7j=1

1

J

where the functions A, B and C are taken from the GZ formulae for the orthogonal case.
This action can be easily extended to V([{]) by linearity.

Theorem 7.2.2. 1. The formulae above define on V ([1]) the structure of a completely
reducible A-module of finite length.

2. V([1]) is simple if and only if l; ; — li_1x, € Z for all 4,75, k.

The proof is postponed till Section 7.4.

7.3 U,(gl,) case

In this Section we apply the same construction to the quantum analogue U,(gl,,) of the
algebra gl(n, C). The original generalization of the Gelfan-Zetlin construction to this case
was obtained in [Ji], but we will follow [K1Sc], because [KISc| contains a more convenient
version of the Gelfand-Zetlin formulae. The reader may also consult [UTS1, UTS2|, where
the same results were obtained by different methods. The results of this Section were
obtained in [MT]. In this Section by a tableau we will mean a tableau as in Section 7.1.
We begin with the definition of U,(gl,,) we will use.

Let ¢ be a non-zero complex non-root of unity. For any complex = we set [z], =
(®—q®)/(qg—q") = (e* — e7®) /(eh — e7"), where ¢ = exp(h). We define U,(gl,) as
a unital associative complex algebra generated by E;, F;, + =1, 2,..., n—1, Kj, Kj’l,
j=1,2,..., nsubject to the relations

K,K; = K;K;, KK;'=K,'K;=1,
KB K ' = q5ij/2q75¢,j+1/2Ej,
KiFjK[l =g %/ 5¢,j+1/2p.

2 g2 2 72
B, F}] = %K K — Ky Kz+1’
q—q
[Ei, Bj] = [F}, Fj] =0, |i—j| 2 2
ElEi1 — (¢ +q )EiEu E; + E; E} =0,
F?Fipy — (q+q¢ YFF F 4+ Fi F? =0

(see, for example [KISc, UTS1, UTS2)).
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Theorem 7.3.1. Let V(m) be a simple U,(gl,)-module with a highest weight m = (my, 1,
Mp2y- -5 Mpp), Mpi = Mpip1, Mpj € No Then V(m) possesses a basis consisting of all
tableau [s] = (si;)i2 11221 such that spj =myj, 7=1,2,...,n and Si115 = Sij = Sit1,j+1,
= 1,2,...,n, j = 1,2,...,1 and the action of generators of U,(gl,) are given by the
following formulae:

Kk[s]_quk/z[ ak_zskz Zsk 1,49 k_l,Qa"'a n,

Zakj D([s1+[6%7]), Fils]= Zak] —[6%7]),
where for l,; = s, —t we have
H[lkiu k,jlg
H[lk,z Ik.jlq

i#]

ki(ls]) =

The proof of this theorem can be found in [UTS1]. Analogously to Section 7.1 we
construct a family of generic Gelfand-Zetlin modules over U,(gl,,) as follows.

Let 1(q) be the set of all complex z such that ¢* = 1. Fix a tableau [!] with complex
entries [;;, 1<i<nand1<j<1 satlsfymg the following condition:

¥R
© 2(l;;—lix) €1(q) +2Z forall1 <i<n—1andall j #k.
Consider a set B([[]) consisting of all tableaux [#] such that
® t,;=l,; for all j;

e t;;—l;;is an integer for all 1 <7 < n —1 and all j.

),

Let V([1]) be a vector space with a basis B([1]). For [t] € B([1]) set

k —
Kk[t]:qak/2[t]a ak:Zlk,i_Zlkfl,i'i_ka k:1a27"'7n7

Ek[t]=za;ij([t])([ J+16%7]), Fft]= Z% [t])([t] —[8%7]),
where
H[tk:tl,i — tkjlq
i [Ttk = tele

i#]
We will call the formulae above the Gelfand-Zetlin (GZ) formulae.

ai;([t]) =
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Theorem 7.3.2. 1. The GZ formulae define on V([l]) the structure of a U,(gl,)-
module of finite length.

2. The module V ([1]) is simple if and only if l; j — li1x € Z for all i, j, k.

The proof will be given in the next Section.

7.4 Proof of Theorem 7.1.2, Theorem 7.2.2 and Theorem 7.3.2

Here we present a unified proof of Theorem 7.1.2, Theorem 7.2.2 and Theorem 7.3.2. For
the unification we set U(2) = U,(gl,) in Theorem 7.3.2.

First we show that the GZ formulae really define on V([/]) the structure of a U()-
module. Consider a relation u = 0 in U(2(). Clearly, it is enough to show that u (as an ele-
ment of the tensor algebra) acts trivially on V'([1]), thus we have only to prove that u[¢] =0
for any [¢] € B([!]). Using the GZ formulae, we can write u[t] = 3" jcrq e F([SDIs],
where the set I(u,[t]) —[t] depends only on u and for any fixed u each f([¢]) is a rational
function in ¢;; (resp. ¢' in the quantum case). Thus, it is enough to show that each
f([s]) is identically zero. Hence, we have to show that some polynomials in ¢;; (resp.
q'i) are zero. Let p be such a polynomial, k£ be its degree and s be the degree of u.
Clearly, there exist a tableau [£] such that all #; ; are positive integers and for any integers
—k—s < 3;; < k+s the tableau [ #; ; + §; ;] occurs as a basis element in a finite-dimensional
U(2A)-module. Taking into account in the quantum case, that ¢® # ¢°, if a # b are positive
integers, we conclude that p is identically zero, since GZ formulae really define the struc-
ture of an A-module on the finite-dimensional module as above. This complete the proof
of the first step.

Now we are going to show that there exists a natural commutative subalgebra I' in
U(2A), which distinguishes the basis elements [¢] from B([!]), i.e. for any different [#]
and [s] from B([l]) there exists z € T such that z[t] = a[t], z[s] = b[s] and a # b.
Consider an increasing chain of algebras U(gl(1,C)) C U(gl(2,C)) C --- C U(gl(n,C))
(resp. U(O(1,C)) c U(D(2,C)) C --- C U(D(n,C)), resp. Uy(gly) C Uy(gly) C --- C
U,(gl,,)) with natural inclusions with respect to the first basis elements. Denote by I' the
subalgebra of U(2) generated by all Z(2), for U(2) occuring in the above filtration. Set
U) = Ul(gl(k,C)) (resp. U(O(k,C)), resp. U,(gl;)) from the above filtration. Then any
generator of U (), acting on [¢] changes only ¢; ; with j < k. From this it follows that
the action of any z € Z(2) on [¢] is a rational function in #; ; (resp. ¢'*i), j =1,2,...,k.
Reducing our consideration to U (2ly) we obtain, that it is enough to prove that the central
characters (if they exist) of V([1(1)]) and V'([1(2)]) with I(1),, — (2)n; € Z for all j and
l(a)n; — l(a)n; & Z for all a and j # ¢ do not coincide. Consider a finite-dimensional
U(2A)-module V' (m), as in Theorem 7.1.1 (resp. Theorem 7.2.1, resp. Theorem 7.3.1). The
upper row of any tableau [s] which indexes some GZ-basis element of V' (m) determines
the highest weight of V(m). Hence, any z € Z(2) acts on V(m) via a scalar, which
is a polynomial in m, ;, 7 = 1,2,...,n, that can be computed via the Harish-Chandra
homomorphism. Denote this scalar by f,(my,;). Since we have infinitely many finite-
dimensional modules with a Gelfand-Zetlin basis, we obtain that z[t] = f,(¢,;)[t] for any
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[t] € B([!]). In particular, V([1]) has a central character. Using a trivial calculation with
the Weyl group, we see that (I(1), ;) and (/(2), ;) do not belong to the same orbit, since
1(1)n,; — U(2)n,; € Z for all j and l(a),; — l(a)n; & Z for all a and j # i. Now the desired
statement follows immediately from the Harish-Chandra Theorem (Theorem 3.2.2, resp.
[J, Claim 6.26,Section 8.30]).

From the previous paragraph it follows that any submodule of V' ([[]) is determined by
the set of basis elements, [¢] € B([1]), which it contains. Consider a graph with vertices
[t] € B([1]), in which [¢] and [¢]+ [0* | are connected by an edge if there are generators
X,Y of U(2), such that X[¢] has a non-zero coefficient in [¢]+ [6%? ] and Y ([¢] + [§%7])
has a non-zero coefficient in [t], i < n, j < i. From the GZ formulae it follows easily,
that this graph contains only finite many connected components. Hence V' ([/]) has a finite
length. All other statements follow immediately from the GZ formulae.

7.5 General theory of Gelfand-Zetlin modules

In Section 7.4 we introduced an important technical tool in the study of V([¢]) — the
subalgebra I' of U(2A). Using it we can abstractly define a general class of U(2()-modules,
which contains all the modules V([1]). We say that a U(2)-module M is a Gelfand-Zetlin
module, if it decomposes into a direct sum of non-isomorphic finite-dimensional ['-modules.
Since I' is commutative, an equivalent condition is that M is a [-root module (i.e. a direct
sum of ['-root subspaces) with finite-dimensional root subspaces (a I'-root subspace MX of
M, which corresponds to x € T'* is the set of all v € M such that (z — x(2))¥v = 0 for all
z € I' and for big enough N € N). From Section 7.4 it follows easily, that each V([!]) is
a Gelfand-Zetlin module. The algebra I' is usually called the Gelfand-Zetlin subalgebra of
U).

In Section 7.4 we saw, that there is a natural (not bijective) parametrization of x € I'*
by tableaux. Really, if 1] is a tableau, we will say that it parametrizes a GZ weight y € IT'*
if for any 1 < k£ < n the highest weioght U (2(;)-module with the highest weight (I ;)j=12,..k
has the central character x|z,). It follows from the Harish-Chandra Theorem, that two
tableaux parametrize the same chracter of I' if and only if they belong to the same orbit of
the natural action of the product W of all Weyl groups of U (%) on the set of all tableaux.

The category of Gelfand-Zetlin modules is quite interesting. It was studied in different
cases in [DOF1, DOF2, DOF4, DOF5, M4, M5, MO, MT]. Some recent results were also
obtained in [Ov]. In particular, the situation of the Gelfand-Zetlin subalgebra I' in U () is a
partial case of an abstract Harish-Chandra situation, defined and studied in [DOF1]. Thus,
I is a Harish-Chandra subalgebra of U(2() in the sense of [DOF1] (see [DOF1, M5, MT]).
This means (for a commutative algebra I'), that T'ul" is a finitely generated bimodule for
any u € U(20). An abstract machinery, developed in [DOF1], allows one to obtain many
interesting properties of the category of Gelfand-Zetlin modules. For example, it follows
easily, that any simple V([]) has only trivial extensions with any other (non-isomorphic)
simple Gelfand-Zetlin module. We will not need these properties, so we will not discuss
them. The reader can consult [DOF1] directly.

In what follows we will use constructed generic Gelfand-Zetlin modules V' ([/]) only
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over gl(n,C) (sl(n,C)) algebra. We have already mentioned, that the main advantage of
modules V' ([1]), is their similarity to finite-dimensional modules. Using this, we will obtain
an analogue of the BGG Theorem for modules Mp(V ([{])) by the same methods as used
in Chapter 6. For any simple 2, bigger than sl(2, C), this will not be recovered using the
general machinery of Shapovalov form in Chapter 9.
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8 An analogue of the BGG Theorem, 11

In this Chapter we give a generalization of the BGG Theorem for GVMs Mp(V'), induced
from a simple generic GZ module V' ~ V'([]). The results, presented here were obtained
in [M4, MO]. The content in [MO] is a generalization of the BGG Theorem, but in [M4]
the main content is different and there only a slight generalization of the results from [MO]
mentioned. This is why [MO] is much more detailed than [M4], so we refer the reader to
[MO)] for all technical details.

8.1 GVMs induced from V ([{])

In this Chapter we fix the Lie algebra & = gl(n,C) (or & = sl(n,C) just by restiction)
with the standard Cartan subalgebra and the standard root basis. Then the algebra 2
is a direct sum of some gl(n;, C) (sl(k;,C)), ¢ = 1,2,..., k. In a natural way we extend
the notion of a generic GZ module to the algebra 2. Thus, any generic GZ module
V over 2 is defined by a sequence of tableaux [[] = ([{(¢)])iz12,. 4 Let V([I]) be a
simple 2('-module, whose restricion on 2{ is a simple generic GZ 2-module. Consider the
corresponding GVM Mp(V([1])). It follows directly from the definition of GZ modules and
from the generalized Harish-Chandra homomorphism, that Mp(V([[])) is a GZ module
over . We can parameterize Mp(V ([!])) in a regular way by [/] and by the $iy-highest
weight A € 95 of Mp(V([1])). Since Mp(V([1])) is a GZ module, this parameterization
can be changed by a bit more convenient one. If we fix a I'-weight vector v € Mp(V([1]))a,
whose GZ weight is parameterized by some tableau [¢], then [¢] uniquely defines V([1])
and A. Hence [t] uniquely defines Mp(V([t])). For us it will be much more convenient
to parameterize GVMs by such tableaux [%], so we need to know, which [¢] can occur
as parameters of GVMs. In the situation described above we set M([t]) = Mp(V([1])).
Correspondingly, we set L([t]) to be the unique simple quotient of M([t]). To formulate
such a condition, we assume that 7 is ordered in a natural way, 7 = {a, q9,..., 0, 1}.
From Section 7.5 we know that the tableaux parameterize the I' weights up to the action
of W. This means that all our results should be also formulated up to this action. For a
subset A € N we will denote by I(A) its convex hull in N.

Lemma 8.1.1. Up to the action of W, the tableau [t ] parametrizes the GVM induced from
a generic GZ module over 2 if and only if the following conditions are satisfied:

o tig—tix ¢ 2, # K if oy € 7() for any 5 € I({i, 5, k});

o ti1,; =ti; if as € m(A) for some s € I({i,j}).
Proof. Follows from the facts, that [;; — l;x € Z, i < n, j # k for a generic V([/]) and
lit1,; =1;; for all 4, j if [ 1] paramitrizes the highest weight of a highest weight module. O

Let 2 denote the set of all tableaux, satisfying the conditions of Lemma 8.1.1. From
the disscusion above it follows, that we can consider our GVMs as M([t]), [t] € Q. Fix
[t] € Q, such that M ([¢]) is the GVM induced from a simple generic GZ module. Consider
the vectorspace 7T, consisting of all tableaux, which satisfy the following conditions:
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o t;; =0if o, € m(A) for all s € I({i,7});
o tiy1; =t if oy & w(2A) for some s € I({3,5})-

Denote by 2[4 the affine hyperplane [¢] 4 7. In the next Section we will define an action
of W on €4 and in Section 8.3 we will give a generalization of the BGG Theorem in terms
of this action.

8.2 An action of the Weyl group and the Harish-Chandra The-
orem

There is a natural action of the Weyl group W on the set of all tableaux: it just permutes
the elements of the upper row of a tableau. From the definition of €, is is clear, that
we can not just restrict the natural action on €], because (2] is not invariant under it.
Nevertheless, it is easy to extend the natural action of W on the upper row of [s] € Q¢ to
an action of W on ;1. Suppose that W acts naturaly on the upper row of any [s] € Q4.
For [s] € Q) and w € W set w[s] = [m ], where m; j = s, if 5;; # snj and m;; = Sp,0(j)
if s; ; = s,;. Clearly, this defines an action of W on Q).

Lemma 8.2.1. For [s] € Q) and w € W () we have M([s]) =~ M(w[s]).

Proof. Follows from the fact that the action of W (%) does not change [s] up to the action
of W. O

For [s] € Q4 let x[5] denote the central character of the module M([s]).
Lemma 8.2.2. For [s], [m] from Q) holds x[s1 = X(m] if and only if [s] € W[m].

Proof. x(s) (resp. X[m]) coincides With X(s, .);_i .. . (T€D. X(nn)jc1...)- Since the action
of W on the upper row of [s] (resp. [m]) coincides with the action of W on $* the
statement follows from Theorem 3.2.2. O

This result can now be easily extended to a more general statement, which is a gen-
eralization of the Harish-Chandra isomorphism Theorem. Denote by A the vectorspace
of all tableau [t], satisfying the following condition: t;11,; = t;; if as & 7(A) for some
s € I({i,7}). Then the action of W on each ;) can be easily extended to an action of W
on A. Since any element of A parameterize some element of I'*, we have a natural map
from ' to S(A*). Let p denote the composition of this map with the natural inclusion of
Z(A) ® S(Hy) in T

Consider the following commutative diagram:

S(A) o S(9)



Here j is the natural projection with respect to the upper row of the tableau. We can
extend our commutative diagram by the row of the invariant algebras:

S(A) 5 S(9)

2(8) LT Z() @ 5(5m) 0% S(5(2)" @ S(9)
S S(9)",

where ¢ is the canonical inclusion and Jy is an isomorphism. Now we can consider a
composition ¥y = ¢~ o (1 ® ¥*) o wg. From Lemma 8.2.2 and the commutativity of the
diagram above we obtain.

Theorem 8.2.1. Z(&) % S(A")W.
Proof. Follows from the discussion above. O

Note, that one can also prove Theorem 8.2.1 independently from Lemma 8.2.2 by meth-
ods, analogous to that used in the proof of Theorem 6.5.1. Theorem 8.2.1 is a generalization
of the Harish-Chandra isomorphism Theorem.

8.3 The BGG Theorem and a simplicity criterion

Now we are ready to state and prove an analogue of the BGG Theorem for modules M ([ s]),
[s] € Q4 in terms of the new action of W on €. To formulate the Theorem we have to
introduce a partial order < on Q). For any transposition (ij), i < j in W we will write
(¢5)[s] < [s] provided s,; — s, € Z;. We also denote by < the transitive closure of <.

Theorem 8.3.1. For [s],[m] € Qpy the following conditions are equivalent:
1. M([s]) C M([m]).
2. L([s]) is a subquotient of M ([m]).
3. [s] < [m]

The complete proof of this theorem can be found in [MO]. Here we present only
a scheme of the proof. The original proof from [MO] is, in fact, analogous to that of
Theorem 6.6.1, or, more generally, to the original proof ([D, Theorem 7.6.23]) of the BGG
Theorem. From Theorem 8.3.1 we immediately obtain the following criterion of simplicity
for M([s]).

Corollary 8.3.1. For [s],[m] € Qpy the following conditions are equivalent:
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1. M([s]) is simple.
2. For any o € AL\ A(A) holds so[s] A [s]-
3. For any 1 < i< j < n such that {a;, iy, ..., 05-1} ¢ w(A) holds s,; — sn; & N.

As we already mentioned in Section 6.6, in order to be able to follow the original proof
of BGG, we have to know the subquotients of the tensor product M ([s]) ® F with a finite
dimensional -module F. Of course, for this it is sufficient to decompose V ([1])® F', where
V([1]) is a simple generic GZ module over 2 and F is a simple finite-dimensional module
over 2. Clearly, we can assume that 2 ~ gl(n,C), (sl(n,C)). Denote by [p] the natural
inclusion of $(A)* in the space of all tableaux, which sends A € H(2)* to the tableau
[P(A) ], such that p(N),; = A; and p(A); ; = 0 otherwise. Denote also by p* the canonical
inverse map, which sends any tableau to the weight defined by its upper row.

Lemma 8.3.1. Let V([l]) be a simple generic GZ module over A and F be a simple
finite-dimensional A-module. Then any subquotient of V([1]) ® F is of the form V ([t] +
[P(A)]) for A € supp(F). Moreover, the multiplicity of V([t] 4+ [P(N)]) as a subquotient
of V([1]) ® F equals ) dim(F},), where the sum is taken over all i € supp(F) such that

pr([t]+[p(w)]) e W ([] + (W) ])-

Proof. First we note that, according to [GZ1]|, F' decomposes into a direct sum of non-
isomorphic one-dimensional I'-modules. As we have seen in Section 7.4, the same is true
for V([1]). Further, from the construction of V([/]) and Section 7.5 it follows that two
modules V([1(1)]) and V([1(2)]), such that [(1);; =1(2);; foralll <i<n—1andallj
are isomorphic if and only if their central characters coincide.

Now the statement, that any subquotient of V([1]) ® F is of the form V([¢]+ [p(\)])
for some A € supp(F'), follows directly from Kostant’s Theorem.

Denote by supp(F) the multi-support of F, i.e. the support in which all weights are
counted with their multiplicities. Denote by I a natural subalgebra of T', which is the
Gelfand-Zetlin subalgebra of U(gl(n —1)) (U(sl(n —1))). By the construction, the module
V([1]) is dense with respect to I (i.e. its I'-support coincides with a weight lattice)
and all I'-weight subspaces are one-dimensional. Since tensoring with a finite-dimensional
module preserves the weight lattice, we conclude that V([/]) ® F is a dense module and
all non-trivial I"-weight subspaces of it are of dimension dim F'. Hence, applying [DOF1,
Corollary 33], we obtain that the length of V([{]) ® F equals dim(F).

Now we want to substitute V([/]) by a finite-dimensional module E and apply a sim-
ilarity of V([/]) with E, mentioned in Chapter 7. Suppose that E lies far enough from
the walls, i.e. the length of £ ® F equals dim(F'). We will call a I''-weight subspace of F
generic provided the dimension of this weight subspace in E ® F equals dim(F'). Clearly,
any E lying far from the walls has a generic I'-weight subspace. Fix E lying far from the
walls and a generic I"-weight v (i.e. E, is a generic ['-weight subspace). Fix z € Z(2).
Choose a basis in (F® F'),, and write the characteristic polynomial f,(X) of z in this basis.
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Let A be a highest weight of E. From the Littlewood-Richardson rule we obtain

X == J] & =xux() (8)

N €supp(F)

Note that from the GZ formulae, which define the action of the generators of & on finite-
dimensional modules, it follows that the coefficients of f,(X) are just the rational functions
in the entries of the tableau, parametrizing v. Since we can find sufficiently many modules
E lying far from the walls and sufficiently many generic ['-weight subspaces in E we
conclude for any generic I'-weight v in any simple module M, defined using Gelfand-Zetlin
formulae, the polynomial f,(X) has also the form (8).

To complete the proof we only have to recall that the module V([/]) was constructed
using the GZ formulae and, as it was mentioned above, any I'-weight subspace of V'([1])
is generic. U

From Lemma 8.3.1, we see that generic GZ modules behave even more regular with re-
spect to tensoring with finite-dimensional modules, than finite-dimensional modules them-
selves. One notes that Lemma 8.3.1 is a precise analogue of the corrsponding statement
for modules V' (a, b) from Section 6.6. In fact, it also includes the mentioned statement in
the case of simple V(a, b).

In order to feel free while working with M([s]), [ s]| € €[4}, one needs also some classical
results about GVMs. More precisely, one needs an analogue of Proposition 6.2.1.

Proposition 8.3.1. For [s],[m] € Q) holds dimHom(M ([s]), M([m])) < 1 and any
non-zero homomorphism from this space is injective.

Proof. Analogous to the proof of the analogous statement for Verma modules, but uses
some technical innovations, like relative Gelfand-Kirillov dimension. These are purely
technical calculations so we omit them. The reader can consult [MO, Section 6]. O

Now the strategy to prove Theorem 8.3.1 is quite transparent.

Proof of Theorem 8.3.1. Again the first statement clearly implies the second one. So, first
we prove that [s] < [m] implies M([s]) € M([m]). For this it is enough to consider
a € AL \AR) and [s] = sa|m] < [m]. First assume that 7 = 7(A) U {a,,—1} and
that s, transposes m,,; with m,,,. If we assume that m,; — m, & Z for all i' # i, n,
the module M([m]) can be constructed via GZ formulae and the statement follows by
direct calculation. Now for the general o € A, \ A(2) the proof repeats the proof of the
analogous statement in Theorem 6.6.1.

Now we have to prove that the second statement implies the third one. Having
Lemma 8.3.1 and Proposition 8.3.1, this is a direct translation of the original proof of
BGG (D, Theorem 7.6.23]). O
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8.4 Tableaux realization of Verma modules and GV Ms

In the last two Chapters we saw, that it is quite convenient to work with a GZ &-module
M, constructed directly from the GZ formulae. For this the set of tableaux, parametrizing
the GZ weights of M, should be chosen such that the GZ formulae are well-defined on all
these tableaux, i.e. all denominators of the GZ formulae are non-zero. This leads us to
a useful notion of a &-module having a tableaux realization. In this section we define a
family of &-modules having a tableaux realization and construct a tableaux realization for
some Verma modules and some GVMs. The content of this section is taken from [M4],
where the notion of a module having a tableaux realization was introduced.

We fix & = gl(n,C) (or sl(n,C)), but we note that analogous constructions can be
done in other cases (see, for example, [M5]). A tableau [/] will be called good, provided
lij —lix € Zfor all i <n and j # k. A GZ module M over & is said to have a tableaux
realization, if it decomposes into a direct sum of one-dimensional ['-modules, parameterized
by good tableaux. From Theorem 7.1.1 it follows that if an indecomposable &-module M
has a tableaux parametrization, then there exists a set B(M) of tableaux, which can be
taken as a basis for M, and action of & on this basis is defined by the GZ formulae.
The simplest examples of modules having a tableaux realization are finite-dimensional
®-modules or generic GZ modules V([/]). In this Section we also construct a tableaux
realization for some Verma modules and some GVMs. Tha main advantage of such modules
is that they are given by precise formulae, so they are quite easy for calculations.

Let a = (a1,...,a,) € H* be such that ay —a; € Z and a; > a; forall 1 < j <k < n.
Consider the tableau [I] = [l](a) defined as follows: [; ; = a; for all 1 < j < ¢ < n. Let
B([1]) denote the set of all tableaux [¢] satisfying the following conditions:

1. ln,j:tn,j,jzl,...,n;
2. li,j—ti,jEZ_f_ for a111<j<2<n,
3. tz’,j > ti—l,j foralll<i<n, 1 <j <.

It follows directly from the GZ formulae, that [t] 4 [§%/] € B([1]) for [t] € B([1]), if
a?;-([t]) # 0. Let M = M([l]) denote the &-module with a basis B([/]) and the action
of generators of &, defined by the GZ formulae (here we have an abuse of notation, but
we will see that M ([[]) is a Verma module with the highest weight a — p, so everything is
correct). It follows directly from Section 7.4, that M([1]) is really a &-module.

Theorem 8.4.1. 1. M([1]) ~ M(a).
2. M([1]) is simple.
3. M([1]) ® F is completely reducible for any finite-dimensional ®-module F.
4. Bxt (M([1](a)), M([1](d"))) = Ext'(M([1](a")), M([1](a))) = 0 for any a, a’ as above.
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Proof. 1t follows directly from the GZ formulae, that the GZ weight space of M ([l]),
corresponding to [1] is a highest weight and generates M ([[]). Thus M([!]) is a quotient
of M(a). Comparing the dimensions of the weight spaces we obtain that they coincide,
hence M([!]) ~ M (a). Direct application of the GZ formulae also shows that [/] is the
only highest weight of M ([[]). Hence M ([[]) is simple. The third statement follows from
Corollary 5.4.1. The last one follows from the third one and Theorem 3.7.3. U

Now, as in Section 8.2, assume that 7 = {a1,ay,...,a,} and fix 7(A) C 7. Consider
a tableau [t ], satisfying the following conditions:

® ti;—tir & Z for any i < n and any j, k;

ot =t;;if a; & w(A) for some s € I({i,j}).

Let B([t]) denote the set of all tableaux [ s ], satisfying the following conditions:
Lospj=th;, 7=1,...,m;

2. s;;—tij € Z; for all 1 < j < i < nsuch that a, & 7(A) for some s € I({7,5});

3. 8i; = si—1; foralll <i<n, 1< j<isuch that a; € 7(A) for some s € I({7,7});
4. s;;—tij € Zif ay € m(A) for any s € I({7,7}).

It follows directly from the GZ formulae, that [s] £ [d%/ ] € B([t]) for [s] € B([t]), if
al?tj([s]) # 0. Let M = M([t]) denote the &-module with a basis B([¢]) and the action
of generators of &, defined by the GZ formulae (here we have an abuse of notation, but
we will see that M ([t]) is a GVM, so again everything is correct). It follows directly from
Section 7.4 that M([t]) is really a &-module.

Theorem 8.4.2. M([!]) is a simple GVM, induced from a simple generic GZ module over
A. Moreover, M([l]) ® F is completely reducible for any finite-dimensional &-module F.

Proof. Folows directly from Section 8.2 and Corollary 5.4.1. O

Theorem 8.4.2 differs from the description in Section 8.2, since here we present a precise
construction of M([t]), which was not done in Section 8.2.
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9 Generalized Shapovalov form

In this Chapter we generalize a modern technique of studying of Verma modules using
the Shapovalov form ([KK]) on GVMs. This machinery was worked out in [KM3], so we
refer the reader to this paper for all missing technical details. In particular, we define a
generalization of the Shapovalov form on a GVM M(A, p), see Chapter 6. We calculate
the determinant of this form. Using the determinant formula we generalize the BGG
Theorem about the embeddings of GVMs. In particular, these results covers all known
generalizations of the BGG Theorem for a- stratlﬁed modules, obtained in Chapter 6 and
in [F7] in the case of an affine algebra of type A . Since the proposed machinery works
in a more general situation than just simple ﬁmte dlmensional algebras, we begin with the
setup.

9.1 Definition of the form

Let & be a complex contragradient Lie algebra associated with a complex (n X n)-matrix
A = (a;;). We fix the standard triangular decomposition (&, $,A;,0) of &. Let A be
the set of roots of the algebra & i.e. A=A, U—A, (]MP]). For the rest of this Chapter
we fix a basis m of A, and an element a € 7 satisfying the following conditions: the
subalgebra A of & generated by &, should be isomorphic to sl(2,C) and & should be
an integrable (i.e. direct sum of finite-dimensional modules) 2-module under the adjoint
action. This generalizes the situation, described in Chapter 6, where o was a basis of the
root, system A(2A) and 2 was the semisimple part of the Levi factor of P. We can just let
P be generated by &, $ and &_,. So, we keep all the notation from Chapter 4. We fix
the dual elements Hg € § for all 3 € A,.

Under the above choice of a the simple reflection s, on $H* is correctly defined and
satisfies all the standard properties of a simple reflection. Let P denote the standard
Kostant partition function with respect to 7 and P denote the standard Kostant partition
function with respect to s, (7). By a quasiroot we will mean any element qa € $*, where
a € A, and q is a positive rational number.

For a contragradient Lie algebra with a symmetrizable Cartan matrix let (-,-) denote
the bilinear form on & ([Ka, MP]). The corresponding bilinear form on $* will also be
denoted by (-,-). For a restricted weight &-module V' we introduce the action of the
Kac-Casimir operator Q2 ([KK]) on V' as follows: for v € V,, p € H* let

i) (4)
Qv = (u+2p, 1 U+QZZe 5€5 U
BeEQL i

where p is an element in $* such that (p,v) =1 for all v € , eg) form a basis of &z and
e@ﬁ form the dual basis of &_g. One can easily check that the form (-,-) on $* is invariant
under s,.

Set H(a) = U(H) ®Clc]. Consider the following decomposition of U (&) ([F7, page 88]):
UB)=NRA)U(B) +U(B)MN) & H()C[X,] X @ H()C[X_o] X0 ® H().
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Let p be the projection of U(®) on $H(«) with respect to the above decomposition.
We define an a-Shapovalov form (or a generalized Shapovalov form) F, on U(®) as a
symmetric bilinear form with values in $)(«) as follows (see also [F7, KK, MP, Sh|):

Fo(z,y) = plo(2)y), =,y € U(B).

It is straightforward that the graded components U(®)¢, & € ZA, are orthogonal with
respect to F,. Moreover, F, is contravariant, i.e. Fy(zz,y) = F,(z,0(2)y) for all z,y,z €
U(®).

Consider a vector subspace

M=UNEA) & 6,) + UMNA) & 6_y)

in U(®). For £ € ZA we set Mg = MNU(B),. Clearly, each M is finite-dimensional. To
calculate the dimension of M, we have to introduce the notion of the Kostant a-function
P, (see also [MO]).
For v = Zagﬂ € A set Y,(y) = Z agf. Define the Kostant a-function P, :
fen Be(m\{a})
$H* — NU {0} as follows: for A € $H* set P,(A\) to be the maximum number of the
decompositions

A+na= Z ngYa(5)
pes\{a}

with non-negative integer coefficients, where n runs through all integers. It follows easily
from the definition of P, that dim M_; = P,(&).

For n € ZA we denote by F}! the restriction of F, to M_,.

Fix a,b € C and denote by V(a,b) the A-module uniquely defined by the following
properties: V(a, b) has the same subquotients as V (a, b) and V (a, b) is generated by V (a, b),
as a 2-module. Clearly, V(a,b) ~ V(a,b) if the module V (a,d) is a-stratified (and hence
simple by Proposition 5.3.1). We will denote by M(\,b), A(H,) = a, the corresponding
GVM Mp(V(a,b)). We note that Mp(V(a,b)) ~ Mp(V(a,b)) if and only if V(a,d) is
a-stratified, but these two modules always have the same subquotients. Let 0 # vz €
M(A,b), be a canonical generator of M(A,b). It is well-known (see for example [CF])
that Muv ) = M(A,b). We can naturally identify $(«) with the ring of polynomials on
the C-space {(\,b) |\ € H*,b € C} by setting ¢* = (0,1). Thus we can define the value
F1((A, b)) of F! at the point (A, b).

Now we can define a bilinear C-valued form, E,, on M(),b) by setting

~

Fa(ulv(/\,b): ’U;Q’U()\’b)) = Fa(ula u2)((A: b))7 Ur, Uy € M.

The following Lemma presents the standard properties of FE,:

Lemma 9.1.1. 1. The kernel of E, coincides with the unique mazimal submodule of
the module M (), b).
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2. E, is non-degenerate on M (A, b) if and only if M (A, b) is simple.
3. All weight subspaces of M (), b) are orthogonal with respect to E,.

Proof. Proof is analogous to that for the classical Shapovalov form (see for example [MP]).
U

9.2 Determinant formula

The main advantage of the generalized Shapovalov form is that it is possible to calculate the
determinant of its restriction to a weight space of M (A, v). This is given by the following
determinant formula.

Theorem 9.2.1. Let & be a contragradient Lie algebra with a symmetrisable Cartan ma-
trixz. Then for any n € H*

det 7} = [ (X-uXa + b(Ha 4 p(Ho) = £) "7
k=1
X H (X_oXo+ (1 —k)(Hy+ p(Hy) — (1 — k)))ls(n—ka) y
k=1

00 Pa(n—kp)
X H H (Hg—i-p Hpg) k(ﬂ;ﬂ)> X
ﬂ € A-I— \ {O{}, k=t
sa(B) =5

x 11 ﬁ((Hﬂ+P (Hp) — k(ﬂ;ﬂ)> :
{8, 5a(B)]
ﬁ € A-F \ {a}a
sa(B) # B}
(83, 8)

P, (n—kp)
'(Hsa(ﬁ)+P(Hsa<m)—k 5 >+Q(Hﬂ)a(HSa(ﬂ))XaXa) :

up to a non-zero constant factor, where all the roots 3 are taken with their multiplicities.

We note that the product in the last factor of the above formula runs through all
non-orderd pairs {3, so(3)} such that 5 # s.(3).

The formula from Theorem 9.2.1 looks quite unattractive, however we will later see
(during the proof), that the division into four factors as above is quite natural. In this
Section we present a proof of this formula, a more detailed version of which can be found
in [KM3]. We begin with two necessary lemmas.

Lemma 9.2.1. Up to a non-zero constant factor, det F! is a product of factors having
one of the following forms:
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1. (X oXo+k(Hy+ p(Hy) — k));
2. (X_oXa+ (1= k)(Ha + p(Ho) — (1 — k)));

3. (Hp+ p(Hp) — k ﬂﬁ)), where [ is a quasiroot such that so(B) = f.

4- ((Hﬁ + p(Hp) - k@) ' (Hsa(ﬂ) + p(Hso(8)) — k@) + a(Hp)o(Hs, (8) X -a Xa);
where [ is a quasiroot such that s, (B) # 5.

Proof. Consider a GVM M (), b) generated by a non-zero element v,y € M (A, ). Clearly,
M (A, b) is restricted, hence the action of € is well-defined on it. Applying Q to v, ;) one
obtains Qu(yp) = (A +2p,A) + (b— (A, @) +1)?)/2)v(r ) and thus Q acts as (A +2p, ) +
(b— (A + p,)?)/2)id on M(),b).

There are two general possibilities for M (A, b) to be reducible. The first one: M(A,b)
is reducible if V (a, b) is. The second one: M(),b) is reducible if there exists an a-highest
weight vector in some M(),b), with u — A\ & Za. First assume that V(a,b) is reducible.
This is possible if and only if for some m € N, X' X™ vy = 0 or X% X'v(5 5 = 0 holds.
By direct calculations with U(&,) we obtain

[ X—aXo + k(Heo + p(Ha) — k) vrp) = 0
k=1
or

H X—aX + 1 - k)(Ha + p(Ha) - (1 - k))) Vap) = 0.

Further, suppose that there exists an a-highest weight vector w in M (A, b), for some
p € H* such that y — A ¢ Za. Then the eigenvalues of {2 on v(,p) and w coincide and we
obtain

(A +2p, ) + (b= (A @) +1)%)/2 = (u+2p, ) + (V' = (1, @) +1)*)/2 (9)

for some b’ € C. Clearly, the difference ¥ —b polynomialy depends on v/b after fixing A* and
pu—X (see [FM1]). Thus the formula above can be applied to the case (a+1+2n)? = b, n € Z.
For such N(a,b) we get that M (A, b) is an extension of two Verma modules (with respect to
different bases in A). Now, using the fact that the action of © on a Verma module can be
calculated at the highest weight vector, we obtain that &' = b4 2vb(u — A, ) + (u— A, a)?
(here Vb is the complex square root function which has two different values as soon as
b#0).

If (u— A, ) =0 the equality (9) reduces to (A + 2p,A) = (u + 2p, u) and we can use
the same arguments as in proof of [KK, Lemma 3.2] obtaining the factors (Hz — p(Hg) —
(8,3)/2) (here (3 is not necessary a quasiroot).
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If (1 — A a) # 0 we can take two equalities of the form (9) corresponding to different
values b; and by of v/b, transfer everything in the left-hand side and multiply them. We
obtain the following (here 8 = A — p):

2\ +p,8) = (8,8) = (A+ p, ) (8, @))* = b(B, )” = 0.

The last equality can be rewritten in the form

2\ +p,8) = (B,8) — (A + p, @) (B, @) — (B, )% (A + p, @) — (B, )% (b — (A + p,a)?) = 0.
We note that

2(6, @)
(o, @)

()‘+paﬂ) - ()‘+p’a)(6,a) = ()‘+p,ﬂ_ (ﬂaa)a) = ()‘+pa/8_ a) = ()‘—*—pasa(ﬂ))‘

From this it follows that

@0+ 9, B) — (8, 8)) QA+ pr 5a(5)) — (5a(8), 5a(8))) +
4G50~ 4 p,0)) 0 5) (e 50(5) = 0.

1
Taking into account that Z(b — (A + p,)?) is an eigenvalue of the operator X_,X,, we

obtain the factor of the form

((Hg + p(Hg) — (8,5)/2) (Hso(s) + p(Hsoi5)) — (8, 8)/2) + a(Hg)o(Hy, (5)) X—aXa)

with the same arguments as in [KK, Lemma 3.2].

Now we only need to show that all § appearing above are quasiroots. Suppose not.
Thus we will have some factor of the determinant of F,, corresponding to a non-quasiroot [.
Calculating F,, on a Verma submodule for some reducible N (a, b) we obtain a contradiction
with [KK, Theorem 1]|. Lemma is proved. O

To proceed we define a new a-gradation on U(®) by setting the degree of X, and the
degree of H, to be 0 and all the degrees of other base elements in & to be 1.

Lemma 9.2.2. Up to a factor of grade zero the leading term of det F)! with respect to the
a-gradation is equal to

1T ﬁ HPo ),

Bed\{a} k=1

Proof. From the classical Shapovalov determinant formula ([KK]) it follows that the above
formula is correct for det F7'* where | € N is big enough. To complete the proof it is
sufficient to show that the leading term of det F7 in the a-gradation does not depend on
the shift on a.
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Choose some PBW monomial base v, ..., v; in M_, and suppose that as soon as
some v; contains X_, this monomial should start with this X_,. Consider the elements
Xov1, ..., Xoup and let W be a linear span of these elements. For 1 < i <t set 0; = X v;
if v; does not contain X_, and ¥; = w; if v; = X_,w;. Clearly, elements v, ..., 0; form a
basis of M_,,. Moreover, it follows from the definition of ¥; that up to a factor of zero
degree the leading term of det F7~ ¢ coincides with the leading term of the determinant of
the form F, restricted to W (we will denote it by F,(1¥)). Since the base change from vy,

, U to Xqui, ..., X,v; is defined by the elements of zero grade it follows that det F7
differs from det F,,(W) by a factor of grade zero. This implies that the leading term of
det F7 in the a-gradation does not depend on the shift on o. O

The proof of the classical determinant formula for Shapovalov form ([KK]) is based
on the so-called Jantzen filtration of a Verma module. In order to prove Theorem 9.2.1
we have to generalize this notion for GVMs. Choose z € $* such that (z,3) # 0 for all
B €ZANO. Let ¢ be an indeterminate. By standard techniques, we can extend M (A, ) to

the module M(/\ b) over the algebra U(Qj) U(®) ® C[t], where ()\ b) = (A, b)+t(z,1) €
ﬁ(a)* =9(a)*® (C[t] Further we can trivially extend o on U (QS) and construct a bilinear
form F,. Using F, one can define a bilinear (C[t] valued form Ft on M (/\ b). Setting M
to be equal to the set of all elements v in M (/\ b) such that F, F (v, w) is divisible by ¢ for
allwe M (/\ b) we define a Jantzen filtration

o~

M(\b)=M> M >

on M ()\/\,_b/) The canonical epimorphism ¢ : M ()\,/\_b/) — M(X,b) (t — 0) induces a filtration
M(\b)=M"> M' >

of M(A,b) which we will also call a Jantzen filtration.

Proof of Theorem 9.2.1. We have only to calculate the degrees in det F}! of the factors
described in Lemma 9.2.1. For a quasiroot 3, which is not proportional to «, the proof of
this fact is exactly the same as in [KK, Proof of Theorem 1] because of Lemma 9.2.2 and
the remark that the functions P,(x — ) y € o are linearly independent (here o' is taken
with respect to (-, -)).

Thus we have only to calculate the degrees of the factors of the form

o (X_oXo+k(Ha + p(Ha) — k));
i (X—aXa + (1 - k)(Ha + p(Ha) - (1 - k)))

We will do it for the first kind of factors. One can apply analogous arguments for the
second case. Consider a factor (X_,X, + k(Hy + p(Ha) — k)) for some fixed £ € N. Let
N(a, b) be such that it has the unique submodule starting at the highest weight a — ka.
We note that in this case a ¢ Z. One can easily choose A € $H* (A(H,) = a) such that
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GVM M (A, b) has the unique non-trivial submodule N. Clearly, in the described case N is
isomorphic to the Verma module M (A — k«). From the definition of Jantzen filtration we
have M® = M(\,b) and M! = N. Our goal is to prove that M? = 0. Since N is irreducible

—_—

it follows that either M2 = N or M? = 0. Consider U(®)-modules M (), b) and N and let

w be a canonical generator of N. Use the definition of F, to calculate F!(w,w). By the
direct application of s[(2)-theory we obtain that

k

Fi(w,w) =[] fu(0),

i=1

where fi(t) € C[t] such that f;(0) # 0 satisfy the following condition: the difference
between constant terms in fx; and fy is equal to a — 2k. Since a is not integer it follows
that the product in the formula above is divisible by at most ¢. But it is divisible by ¢
since N is a submodule. Thus the canonical generator of N belongs to M*! and does not
belong to M?2. Hence M? = 0. Now we can claim that from the construction of the Jantzen
filtration, it follows immediately that det F" is divisible exactly by the P(n— ka)-th power
of (X_yXo +k(Ha+ p(Hy) —k)) (see [KK, Proof of Theorem 1] and [MP, Section 6.6]).
This completes our proof. [

9.3 Generalization of the BGG Theorem

Asin the classical case, the determinant formula for F,, enables one to prove a generalization
of the BGG Theorem (see [KK, Theorem 2] and [MP, Section 6.7]). In this Section we will

formulate an analogous result for our GVMs induced from 2.
For A\, u € $* and by, by € C we set (A, b1) — (4, b2) in one of the following cases:

1. by = by, and A = p — ka for some k € Z;

2. by = by + 2¢/by(kB, ) + (kB3,)? for k € Nand 3 € A, \ {a} such that A = p — k@3
and

2(A+ p)(Hp) = k(8,8) = (A + p)(Ha) (8, @) = £/b2(8, ).
(here an analytic branch of y/z function is fixed).

Denote by < the transitive closure of the relation — on $* x C.
For each pair 8 # s,(83) of roots in A, we fix some bijective map

sign : {8, sa(8)} — {£1}.

We also set sign(3) = 0 if (o, 3) = 0 and fix some analytic branch of /z function. For

Be A \{a}, ke NandbeCset fz,(b) =b+ 2sign(8)vba(kB, ) + (kB, ).
First of all one can formulate the following criterion of simplicity for the module M (A, b),
which follows immediately from Theorem 9.2.1 and Lemma 9.1.1.
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Theorem 9.3.1. M (A, b) is simple if and only if the two following conditions are satisfied:
1. (M +p, @) +2k)2#b for all k € Z.

2. (2A+ p, B) = k(B, B)) (2(A + p, 5a(8)) — k(5a(8), 5a(8))) + (e, B) (e, 54(B)) -
(b= A+ p,@)?)) #0 for all 3 € Ay \ {a} and for all k € N.

We remark that the first condition of the Theorem 9.3.1 is equivalent to the condition
that the module N(a,b) (see definition of M(\,b)) and thus the module M(\,b) is a-
stratified. Hence for a-stratified modules one needs to check only the second condition.
The following theorem is a generalization of the BGG Theorem and [KK, Theorem 2].

Theorem 9.3.2. The following statements are equivalent:
1. L(\, by) is a subquotient of M (i, bs).
2. M(\, b)) C M(p,bs).
3. (A b1) < (i, b).

The proof is standard and analogous to the proof of the corresponding result for Verma
modules (see, for example, [MP, KK]). One can also consult [KM3] for some technical
details.
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10 The BGG resolution

In this Chapter we begin the study of simple (as objects in %) quotients L(A,p) of the
GVMs M (A, p) considered in Chapter 6. In fact, we construct an analogue of the BGG
resolution for such modules. We also present a BGG resolution for some simple quotients
of GVMs, induced from generic GZ modules. The results from this Chapter were obtained
in [FM2, FM3, M2, M4], where the reader can find missing technical details. We retain
the notation from Chapter 6.

10.1 General case — semidominant parameters

For this Section we assume that & is an arbitrary simple finite-dimensional complex Lie
algebra. We begin with a cohomological construction of an exact sequence of GVMs.
Denote by W the subgroup of W, generated by all sg, § € 7\ m(2() (this means § € T,
B # «). Recall the set Q of parameters of GVMs, defined in Section 6.5, and the action
of W on Q) constructed in the same Section. We will call an element (), p) € Q minimal,
if (A\,p) —sg(p) = (B,pp) for all § € w\ 7(A). For some time we fix a minimal element
(A,p) € Q.

Let A be the set of all positive roots, generated by \ {a}. Denote by B = B(«) the
subalgebra of & generated by all root subspaces &_g, 3 € A. Consider B as a module
over the subalgebra A = ) @ 9 under the action h - a = [h, a] + A(h)a for any h € $) and
a € B, and

b-a= [b’a’]a [b,a] € B;
0, [b,a] & B.

for all b € 91 and a € B. Clearly, this action can be naturally extended to an action on
k

the exterior powers /\ B, for all £ € N.
Let € be the unique eigenvalue on M (A, p) of the quadratic Casimir operator

C=ho+ Y X oXa,

a€A 4

where hg is a certain fixed element in S(f)). Note that this eigenvalue is determined
uniquely by (A, p) via the generalized Harish-Chandra homomorphism.
Define U, = U(®)/(C — ¢) and consider the following &-modules:

k
Dy=U.Q \B
U(A)

where kK € Z,..
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Following [BGG1], for k£ € N, define the homomorphisms dj, : Dy, — Dj,_; as follows:

(X QX1 ANXo N - ANXy) =
k
Y DX RX A AXi A A X+

=1
Y ()X QXL GIAXI A AKX A AXG A A X
1<i<ji<k

Since di o di1 = 0, we immediately obtain that the sequence
7 d1 d2 d3
0 Dy/Imd; < Dy < Dy <= Dy <+ ...,
where 7 is a natural projection, is a complex. We will denote this complex by L, (), €).

Theorem 10.1.1. The complex UV, (A, €) is ezact.

Proof. The algebra U, inherits the natural gradation on U(®) by the degree of the mono-

mials. This leads to a gradation on Dy. For [ > k, let D,(cl) be a subspace spanned by
the elements x ® y where x is an element in U, of degree less than or equal to [ — &
k

and y € /\B. It is clear that dp(D") ¢ DY and thus d; induces a homomorphism

dg) : D,(Cl)/D,(cl_l) — D,(CIZI/D,(CI:P. Denote lA),(Cl) = D,(cl)/D,(cl_l). Also set M) = D(()l)/lm d
and let n¥ be the corresponding induced homomorphism.
It is sufficient to show that, for every [, the complex

o . O O 0
Dy (1) d (1) dy O] d

0+ MO & Dy & D,y . (10)

is exact.
By the PBW Theorem, for every k € Z., one can write:

Dy = (U(m_) ®/k\B> & (Z XU M) ®/’€\B>

m2>1
and hence
k Ik k
DY ~ (U(m)“) X /\B) P ( XU @) (&) /\B) .
m=1

We will denote by s,91_ the subalgebra generated by () and X,. Let M2 (resp.

5oMP) be the subalgebra generated by X 45, € Ay, 3 ¢ A (resp. B € sqAy, B & sq(A))
and let S;(B) be the set of all homogeneous elements of degree j in the symmetric algebra
of B. Then

Bl(el) ~ (lili U(mﬁ)(lfjfk)sj(B) ®/’C\B) @ (lzlf[] Sa mB (15— k)S )®/IC\B) .

72



For any homogeneous element u € U(M?Z) (resp. u € U(s,NF)) of degree | — j — k
we have that dg) (uS;(B) ® \* B) C uS;;1(B) ® \*' B. Therefore dg) induces a complex
which is in fact the Koszul complex, and hence is exact. Using the PBW theorem we
conclude that the complex (10) decomposes into a direct sum of exact complexes and
therefore is exact. The theorem is proved. O

From Theorem 10.1.1 one immediately obtains the following formula for the formal
character of Dy/Imd;, which we will need later on in Section 11.1:

Corollary 10.1.1.

ch(Do/Imdy) = (—1)'ch D;.

>0

Denote by P(a)™ the set of all (A, p) € Q, such that w(A,p) < (\,p) for all w € W.
Let wy be the longest element in W and w§ be the longest element in W*. Denote by
P(a)* the set of all w§wy(A,p), (A, p) € P(a)™. We will call the elements from P(a)**
(resp. P(a)t) dominant (resp. semidominant). In this section we will construct the BGG
resolution of the module L(),p), (A, p) € P(a)*. Let W," denote the set of all elements of
W of length k € Z,..

Theorem 10.1.2. Let (A\,p) € P(a)". Denote by Cy the direct sum of all M(w(A,p)),
w e W,;" Then there exists an exact sequence

0—LAp) L Cd .. . &C, 0,

where 1 is a natural projection and 0; are the standard homomorphisms, defined with respect
to the Bruhat order on W, see [BGG1, Lemmal0.4].

Proof. 1t follows directly from Theorem 6.6.1 that all the homomorphisms are well-defined
and that this sequence is a complex. First suppose that the statement is true for all minimal
(A, p). Then using the translation functors (i.e tensoring the corresponding sequences with
finite-dimensional &-modules and taking the summand which corresponds to a central
character) we produce the resolutions for all (A, p) € P(a)*. So, it is enough to prove the
statement for minimal (), p). Fix such (), p) and consider the corresponding exact complex
V(A ). Assume that we know that Dy/Im(d;) ~ L(A,p). Then, following [BGG1]| or
[RC], one constructs a sequence of homomorphisms v* : B; — C; which makes the following
diagram commutative:

. —— By(\,p) -2 B,(\,p) —2= By(\,p) — L(A\,p) —— 0

e
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To complete the proof we have only to show that Dy/Im(d;) ~ L(X,p), or in other
words, that

M =M\ p)/ Z M(s5(A, p))
Be(m\{e})

is a simple object in K. From Theorem 6.6.1, it follows that the only simple subquotients
that can occur in M are L(w(A,p)) for w € WT. Let w € W, w # 1. Then there exists
B € (m\ {a}) such that the length of sgw is less than the length of w. Hence, the growth
of the dimensions of the weight spaces of L(w(\, p)),—ks is strictly bigger the the growth of
the dimensions of M,,_yg. This means that L(w(A, p)) is not a subquotient of M. Hence,
the only subquotient of M is L(\,p), which has multiplicity not bigger than 1 and we
obtain M ~ L(\,p). This completes the proof. O]

It is natural to call the sequence, constructed in Theorem 10.1.2, the BGG resolution
of L(\, p).

10.2 Simply laced case — dominant parameters

It is clear, that almost all the arguments used in Section 10.1, except those about the
simplicity of Dy/Im(d;), can be extended to the case (\,p) € P(a)*". In fact, we can
state that, from Section 10.1, the following statement follows easily.

Proposition 10.2.1. Let (\,p) € P(a)™ be a minimal element. Then there exists an
exact sequence

where n and §; are as in Theorem 10.1.2.

To prove, that Dy/Im(d;) ~ L(\,p) for a minimal ()\,p) € P(a)*", we have to assume
that & has a simply-laced Dynkin diagram (note we can not prove the corresponding result
for a non-simply laced case; we do not know if it is true there).

Lemma 10.2.1. Assume, that & has a simply-laced Dynkin diagram and (\,p) € P(a)™
is a minimal element. Then Dy/Im(d;) ~ L(A,p).

Proof. The proof is essentially the content of [FM2, Section 5], so we skip some technical
details which can be found there. Let K (&) denote the subalgebra of &, generated by all
X_g, B € (A:\A).

First we consider arbitrary M (u,q) with a weight generator v. Call an element u €
M (1, q) quasi-primitive, if there exists a submodule M C M (u,q), M # M(u,q), such
that 9u = 0 in the quotient M (u,q)/M. It is easy to see, that as soon as K (®)v intersects
any proper submodule M of M (u,q) then K(&)v contains a quasi-primitive element of F.
The main observation, we are going to prove is the claim.

74



Lemma 10.2.2. The only quasi-primitive elements of K(®)v are CX* v, k € Z,.

Proof. A direct calculation shows that for any 7 € $* the existence of a non-zero a-
primitive element in K (&)v of weight pu — 7 is equivalent to a system of linear equations
on u(Hg), f € m, and does not depend on ¢. But this contradicts Theorem 6.6.1. Thus
the only a-primitive elements in K(®)v are CX* v, k € Z,.

Now suppose that v' € (K(®)v), is quasi-primitive and (K (®)v)s has no quasi-
primitive elements if py(v) < py(€). Consider a basis T in A, \ {a} containing 7 \ {a}.
Then X, v' =0 for all y € 7\ {a}. If y € T\ 7w, we have (7, ) # 0 since & has a simply
laced Dynkin diagram. Let @ =~ s[(2,C) be a subalgebra generated by X, and F' be a
()-module generated by v’. Suppose that X,v' # 0. Since v’ is quasi-primitive it implies
that v’ & I, where F" is a ()-module generated by X,v'. Then F} contains a non-zero ele-
ment v” such that X,v” = 0 and hence F’ has a finite-dimensional quotient. Since M (y, q)
is a-stratified then v, = X* v’ is quasi-primitive for all £ > 0. Note that X, vy = 0 for
all k. Indeed, if X v, # 0 for some £ > 0 then we can apply to v, the same arguments
as above and conclude that a ()-module generated by X,v; also has a finite-dimensional
quotient of the same dimension. But («, ) # 0 and hence these finite-dimensional modules
have different highest weights which is a contradiction from the sl(2, C)-theory. Therefore,
X,v, =0 for all £ > 0. Using the fact that the root system A is finite we find m > 0 such
that Xguv,, = 0 for all 8 € T. Hence, vy, is a-primitive and thus belongs to CX* v for some
k € Z,. We conclude that v' is a-primitive and belongs to CX* v for some k € Z,. O

Now it is clear, that for any quotient V of M(u,q) holds dimV, > dim(K(®)v),.
Consider the module M (A, p). Form Corollary 10.1.1 we deduce that dim(Dy/Im(d,)), =
dim(K(&)v), for all v such that (K(®)v), is non-zero. This implies that Do/ Im(d;) is a
simple module, and hence Dy/Im(d;) ~ L(A,p). O

From Lemma 10.2.1 and Proposition 10.2.1 we immediately obtain the BGG resolution
of L(\,p), (A\,p) € P(a)™™ for & having a simply-laced Dynkin diagram.

Corollary 10.2.1. Assume that & has a simply-laced Dynkin diagram and (A, p) € P(a)™t.
Then there exists an exact sequence

0« LAp &L, & & ... &C,«0,

where n and §; are as in Theorem 10.1.2.

Proof. Analogous to that of Theorem 10.1.2. O

10.3 Corank one case of GZ modules

There is also a transparent way to construct an analogue for the BGG resolution in some
cases considered in Chapter 8. For this Section we retain the notation from Chqgpter 8.
Our results are quite easy and far from being general, so we omit all technical details and
refer the reader to [M4].
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Let & be the gl(N, C) (or sl(n,C)) algebra with 7 = {ay, a9, ...,q, 1} and 7\ 7(A) =
{a1}. Let [[] be a tableau, such that

lin =l for all 7;

® lyi—lniy1 € Z for all 4;

® lpi—lx; & Zfor all k < n and all , j;

o lpi—1lk+1,5¢Zforall k <nandallij>1.

We will denote by P the set of all tableaux satisfying the conditions above. Let M ([1]) be
the GVM constructed in the Section 8.4. Recall that, in Section 8.2, we defined an action
of W on P. The BGG resolution of M([/]) for some special [[] has the following form:

Theorem 10.3.1. Assume that l,; — l, ;11 € N for all ©. Then the following natural
sequence 18 exact:

0= M(sa, ([1])) = M([1]) = L([1]) = 0.

Proof. In fact we have to prove that M = M([1])/M (sq,([1])) is a simple module. From
the construction of both M ([1]) and M (s,,([1])) from Section 8.4, it follows that M has
no non-trivial a-primitive elements, and hence is simple. O

We have called this situation a corank one case, since the difference in ranks between
® and 2 equals one. We also note that the corresponding result for another corank one
situation, when 7 \ 7(2A) = {a,_1} is still a conjecture for n > 3. It is also natural to call
the sequence from Theorem 10.3.1 the BGG resolution of L([1]). We also note, that, using
the notation from Section 10.1, W is generated by s,, in our case, so this sequence has
the same form, as ones constructed in Theorem 10.1.2 and Corollary 10.2.1.
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11 Character formulae and Schubert filtration

In this Chapter we apply the results obtained in Chapter 10 to derive two chracter formulae
for simple subquotients of a-stratified GVMs and to construct an analogue of the Schubert
filtration. These results were obtained in [FM2, KM5].

11.1 Weyl character formula

Using Theorem 10.1.2 and Corollary 10.2.1 it is easy to write down the formal character
of L(\,p), (\,p) € P(a)t" U P(a)". Let p' denote the halfsum of all roots in A and

A

Theorem 11.1.1. Let (A, p) € P(a)TTUP(«)*. Then there exists an element a(\, p) € H*
such that

ch(L(A,p))=(Zem) I[[ a-e?7"|x

i=—00 BeK\{a}
~1
« ( ) (_1)l(w)ew(A+a(A,p)+p'>—a<A,p>) ( 3 (_1)z<w)ew(p')>
weW+ weW+

Proof. We note that the character of L(), p) is invariant under a shift by «. This gives us
the first factor. Now using Theorem 10.1.2 and Corollary 10.2.1, one reduces the rest of the
calculation to the Weyl character formula for the semisimple Lie algebra which corresponds
to A. The reader can consult [FM2, Section 7] for more technical details. O

11.2 Demazure formula

In this Section we extend the Weyl character formula, obtained in Section 11.1 to the
Demazure character formula (see [A, De, Z2] for the classical case). Here we keep the
notation from Chapter 10.

For 3 € A set

dg = (1 — e )71 — e Psp).
Let
+00 '
T = ( Z ew‘> H (1 _ e—ﬂ)—l
i=—00 pe—K\{a}

Let W be the Weyl group generated by sg, 3 € 7\ {a}. We recall that with respect
to m (7 \ {a}) there is a standard length function defined on W (W?).
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Theorem 11.2.1. Let (\,p) € P(a)TTUP(«)*. Then there exists an element a(), p) € H*
such that for any reduced decomposition, w = sg, S, - .- Sg,, of the longest element w € W*¢
the following equality holds:

Ch(L()\’p)) = Tea(A,p) (dﬂl dﬂ2 PR dﬂkeAipfa(Aap)) .

Proof. By virtue of Theorem 11.1.1, there exists a(A,p) € $H* such that ch(L(\,p)) =
Te*P)Q, where

-1

Q= T (1)@ ept-ratirto 2 (Cyen

weW (a) weW (a)

On the other hand, by the Weyl charcter formula (D, Theorem 7.5.9]), @ can be considered
as the character of a simple finite-dimensional module over the Lie algebra associated with
A. From the Demazure character formula [Z2, Theorem 2.5.3], we obtain that

Q = dg,dg, . ..dge* P oOP)

for any reduced decomposition, w = sg,sg, ...5sg,, of the longest element w € W*. This
completes the proof. O

11.3 Schubert filtrations

The classical Schubert filtration of a simple finite-dimensional module is associated with
the Demazure character formula ([Z2]). In this Section we construct a filtration of L(A, p),
(A, p) € P(a)™" U P(a)t by U(P)-modules, associated with the formula obtained in The-
orem 11.2.1.

Theorem 11.3.1. Let (A\,p) € P(a)™" U P(a)™. There is an element a(\,p) € H* such
that for any reduced decomposition, w = sg, g, ... 5g,, of the longest element w € W there
exists a (canonical) filtration

L()\,p):Ll DLy D "'DLkDLk_H:O
of L(\,p) (viewed as a P-module) by the P-modules L;, j =1,2,...,k such that
ch(L;) = Te"*?) (dg, ... dg,e* PP}

Proof. Step 1. To simplify our notation, we set L = L(A,p). First we use Mathieu’s
localization to shift our module L(), p) to O(P, L(V(,p?))). We fix z € C such that the
®-module L' = 6,(L) is not a-stratified and hence is a (non-split) extension of a highest
weight module and a module which is a highest weight module with respect to the basis
Sa(m). Set L(1) to be the set of all element of L on which X, acts locally nilpotent and
L(2) = L/L(1). Then L(1) is a highest weight module and L(2) is a highest weight module
with respect to s, (7).
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Let p be the highest weight of L(1). Then y = A — p + za by Lemma 5.5.1. Since
(A, p) € P(a)T™"UP(a)™, we obtain that p € Z and p # 0, hence u(H,) = |p|—1. From this,
it follows that the unique simple quotient of L(1) is finite-dimensional (or, equivalently, u
is integral dominant).

Step 2. Let &% = 9% © 9, DNS denote the Lie subalgebra of &, generated by &g, 8 €
+A with the inherited triangular decomposition. Consider a &*-module M = U(&*)L(1),,.
This is a highest weight &*-module. The support of any non-trivial &“-submodule of M
does not intersects the highest weight of M and thus this submodule generates in L(1) a
non-trivial &-submodule, whose support does not intersect the intersection of L(1) with
N(X,p). Inducing to U(«), this gives a non-trivial &-submodule in L' on which X_,
acts bijectively. And after the return twist with 6_, we get that L is not simple, which
contradicts our assumptions. Hence, M does not contain any non-trivial &“-submodule,
therefore M is a simple &*-module. As p is integral doiminant we also get that M is
finite-dimensional.

Consider a reduced decomposition wy = sg,8g, - .. Sg,. According to the classical De-
mazure character formula and the classical Schubert filtration one can consider a Schubert
filtration

M=M DMyD:--D M D Mg =0

of M by 91%-module, corresponding to the above decomposition of 1, with ch M; given by
the Demazure formula. Let v; denote a (canonical) generator of M; for j € {1,2,...,k}.

Step 3. By Section 10.2, the maximal submodule of M (), p) is generated by the images
of all M(sg(\,p)) in M(A,p), where § runs through the set of all simple roots different
form «. Lifting this to L(1) we get that L(1) is the quotient of the Verma module M (114 p)
over the submodule generated by the images of all M (sg(pu+p)) in M (p+ p), where 8 # «
is simple.

By PBW Theorem, U(_) is free over K with the basis U(9M®). We can identify each
Verma module with U(91_) as an M_-module. We have that M (u+ p) is free over K with
the basis U(M*)M (11 + p),.. Denote by M the submodule of U(N*)M (i + p), generated
by the intersection of U(M*)M (14 p),, with all images of M (sg(p1+p)) in M(p1+ p), where
B # a is simple. We have L(1) ~ M(u + p)/U(&)M and U(&)M = UN_)M = KM.
Since M is a subset of U(M®)M(u + p), and the last one is a K-free basis of M (u + p),
we get that L(1) is K-free with a basis U(N®)M (u+ p),/M ~ M (here we mean that any
C-basis of U(M*)M (i + p),, resp. L(1) is a K-free basis).

Step 4. Let N be arbitrary M*-submodule of M. Then KN is a P*-module (here and
on * is with respect to the Chevalley involution), moreover ch KN =ch K xch N. Indeed,
the character formula follows from the free action of K. Clearly, KN is a K-module and
an $)-module. As [N*, K] C K, KN is a M%-module. So, it is enough to show that KN is
closed under the action of X,. This now follows from the fact that [X,, K] C UM_ @ $)
and X,N = X, M =0.

Step 5. For each 1 < ¢ < k there exists a 91®-submodule, N;, of M such that
ch M/N; = ch M;. Moreover, we can choose N; such that N; C N;yi. Indeed, as M; is
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a MN¢-submodule of M ~ M*, we can apply * and obtain a M* = (MN$)*-submodule of
M ~ M*, whose quotient is isomorphic to M. As * preserves the character this is exactly
N; we need. The statment about inclusions for N;’s follows from the opposite inclusions of
M;’s and contravariantness of *.

Step 6. Set I; = KN;. By Steps 4 and 5 we have chI; = ch K x (ch M — ch M;).
Clearly, X_, acts injectively on I;. Inducing I; up to U(c) and shifting by 6, we obtain a
filtration, L;, of L by D*-modules. Moreover, as X_, acts injectively on K,chK changes
to T during the induction process, therefore we obtain that ch L; = T x (ch M — ch M;).
Note that N (A, p)* ~ N(A,p) as N(A,p) is a-stratified and hence L* ~ L since * preserves
the character of the module and L is completely determined by (A, p). Applying the duality
one more time we get that there exists a filtration of L ~ L* by U(P)-modules L; such
that chL; =ch L —ch I:, Now the desired result for this filtration L; follows from the fact
that chL =T x ch M (Theorem 11.1.1). O
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12 Categories O(P, L), I: Definition and basic proper-
ties
In the next four Chapters we present some recent results concerning the structure of certain
categories connected with GVMs. These results were obtained in [FM4, FKM1, FKM2,
FKM3, KIMa|, where the reader can find all necessary technical details. We also use some
classical results from [BGG3, RC, RCW2, CF, FP|. We start in this Chapter with a defini-
tion of our categories in a general situation and fix all the notations from Chapter 4. Our
goal here is to study basic properties analogous to those of the category O, in particular,

decomposition into a direct sum of module categories over associative finite-dimensional
algebras and different analogues of the BGG reciprocity.

12.1 Admissible categories

Let £ be a full abelian subcategory of the category of all finitely generated 2A’'-modules.
The category £ will be called admissible if the following conditions are satisfied:

1. Any M € L is finitely generated.
2. Any M € L is weight with respect to the center of 2I'.

3. For any finite-dimensional simple 2’-module F' the functor F' ® _ preserves £ and
exact.

In this Chapter we will always assume that £ is an admissible category and will often
consider the objects in £ only as 2-modules.

Let £ be an admissible category of 2'-modules. Denote by O(P, L) the full subcategory
of the category of ®&-modules consisting of modules which are

1. finitely generated;
2. N-finite;
3. a direct sum of modules from £, when viewed as 2'-modules.

Proposition 12.1.1. 1. The category O(P, L) is closed under the operations of taking
submodules, quotients, finite direct sums and under tensoring with finite-dimensional
B-modules.

2. The modules Mp(V') and Lp(V') are objects of O(P, L) for any simple V € L.
3. If V is a simple module in O(P, L), then V ~ Lp(V) for some simple V € L.

Proof. Statement (1) is obvious. To prove (2), it is enough to show that Mp(V) as an
2A-module decomposes into a direct sum of 2A-submodules in £. This follows from the fact
that Mp(W) ~ U(M_) ® W as a vector space by Proposition 4.2.1 and this isomorphism
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carries over the decomposition of U(M_) as a direct sum of finite-dimensional a-modules
with respect to the adjoint action. We conclude that Mp(W) € O(P, L) and also Lp(W) €
O(P, L).

Let V be a simple module in O(P, L). Since V is N-finite and Hy-diagonalizable, there
exists a non-zero element v € V such that 9v = 0 and hv = A(h)v for all h € H, and
some A € 5. Put V), = U(a)v. Then NMw = 0 for any w € V) implying that V) is a simple
a-module and V' ~ Lp (V) by Proposition 4.2.1. This completes the proof. O

12.2 Projectives in O(P, L)

Proposition 12.2.1. Let £ be admissible and let V' be a projective module in L. Fix a
non-negative integer k. Then the module

P(V,k) = U(6) Q) (UO)/(U(MN) V)

U(P)
admits a (possibly infinite) filtration
0=VWWcWc---cV,c---CVy=P(V,k)

with components indezed by a linearly ordered set I, such that for any 0 < i € I the module

Vil > Vi

k<i
is isomorphic to Mp(W5;) for some projective W; € L.

Proof. Since V is a Hg-weight module, so is P(V, k). Moreover, since k is finite, among
all the weights of P(V, k) there exists a maximal, say A, with respect to the natural order.
Consider a A-module P(V, k). The PBW theorem guarantees that the U(®)-submodule
generated by P(V, k), in P(V, k) is U(D(A))-free. Since U(®) is a direct sum of finite-
dimensional 2-modules under the adjoint action, it follows that P(V, k), is isomorphic to
V ® F as a U-module for some finite-dimensional module F'. Since £ is admissible we
can decompose V' ® F' into a direct sum of modules in £. Further, since tensoring with
a finite-dimensional module is an exact functor we conclude that V ® F = ;X (¢) and
each X () is projective in £. Since A is a maximal weight, it follows that all Mp (X (t)) are
submodules in P(V, k) and so we can construct the first step of our filtration. Now one
just proceeds by induction completing the proof. O

The filtration obtained in Proposition 12.2.1 will be called the standard filtration. For a
given standard filtration of V' we will denote by [V : Mp (V)] the number (finite or infinite)
of i such that Mp(W;) is isomorphic to Mp (V). The module P(V, k) constructed above
need not to be projective in O(P, L) in general. In order to construct some projective
modules in O(P, L) we have to assume that O(P, L) has certain properties.

A direct summand (or block) O; of O(P, L) is said to be quasi-finite (resp. finite) if the
set of highest weights (with respect to £g) of all simple modules in O; is finite (resp. O;
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contains only finitely many simple objects up to isomorphism). We will say that O(P, L)
has a quasi block decomposition if O(P, L) decomposes into a direct sum of quasi-finite
full subcategories. For example, from Corollary 4.3.3 it follows, that O(P, L) has a quasi
block decomposition if L = @,ez+(a)Ly, Where Ly consists of those M € L such that
(z — x(2))*m = 0 fo all z € Z(6), m € M and some k € N. By the same argument, if
each L4 has only finitely many non-isomorphic simple modules, then O(P, £) has a block
decomposition.

Theorem 12.2.1. Suppose that O; is a quasi-finite block of O(P, L) and V is an indecom-
posable projective in L such that Mp(V) € O;. Then for k big enough, the O;—projection
of the module P(V, k) is projective in O(P, L).

Proof. Let \ be an Hy-weight of V. Since O; is quasi-finite, there exist a positive integer
N such that for any M € O; holds MMM, = 0. Let k¥ > N. From the construction of
P(V, k) it follows that there is a canonical isomorphism between Home (P (V, k), M) and
Homgy (V, M;) for any M € O(P, L) (here M; denotes the direct summand of M lying in
O;). Since V is projective in £ we conclude that the direct summand of P(V, k) lying in
O; is projective in O(P, L), as stated. O

Corollary 12.2.1. Suppose that L has enough projective modules (i.e. any module is a
quotient of a projective module) and O; is a quasi-finite block of O(P, L), then

1. O; has enough projective modules;,
2. Every projective in O; has a standard filtration;

3. There is a one-to-one correspondence between the simple objects in O; and the inde-
composable projective objects in O;.

Proof. The second statement follows form Proposition 12.2.1. The first and the third ones
follow from Theorem 12.2.1 using standard arguments. O

Corollary 12.2.2. Suppose that L has enough projective modules and O(P, L) has a quasi
block decomposition, then

1. O(P, L) has enough projective modules;
2. Every projective in O(P, L) has a standard filtration;

3. There is a one-to-one correspondence between the simple objects in O(P, L) and the
indecomposable projective modules in O(P, L).

12.3 Blocks of O(P, L)

Theorem 12.3.1. Suppose that L has enough projective modules, O; is a finite block of
O(P,L) and any object in O; has finite length. Then O; is isomorphic to the module
category of a finite-dimensional algebra.
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Proof. Consider the endomorphism algebra of the sum of projective covers of all simple
modules in O;. O

Corollary 12.3.1. Suppose that L has enough projective modules, O(P, L) has a block
decomposition and any object in O(P, L) has finite length. Then each block of O(P, L) is
1somorphic to the module category of a finite-dimensional algebra.

Now we discuss which finite-dimensional algebras can appear in Corollary 12.3.1. For
this we need some abstract notation. Let A be a finite dimensional algebra. A two-sided
ideal J in A is called projectively stratifying if J is generated (as a two-sided ideal) by
a primitive idempotent and J is projective as a left A-module. The algebra A is called
projectively stratified if there exists an ordering eq,...,e, of the equivalence classes of
primitive idempotents of A such that for each [ the idempotent e; generates a projectively
stratifying ideal in the quotient algebra A/ < ey,..., e >.

This is equivalent to requiring that each projective module P has a filtration of the
following form: 0 = My C My C My C --- C M, = P where M;.1/M; is a direct
sum of copies of the module (A/ < ey,..., e, >)- e which is projective over the quotient
algebra A/ < ey,...,e; >. Any projectively stratified algebra is a stratifying endomorphism
algebra in the sense of Cline, Parshall and Scott [CPS2]. Any quasi-hereditary algebra is
projectively stratified. A projectively stratified algebra A is quasi-hereditary if and only
if all the rings E; are semisimple if and only if A has finite global dimension (see [CPS2]).
We will disscuss projectively stratified algebras in general, especially those related to the
example of O(P, L) to be presented in Chapter 13, in Chapter 15.

Theorem 12.3.2. Assume that A is a sum of module categories of projectively stratified
algebras. Then any finite block of O(P, L) (if it exists), such that all its objects have finite
length, also is the module category of a projectively stratified algebra.

Proof. By Proposition 12.1.1 there is a natural bijection between simple objects in £ and
O(P, L). The induction process can glue several blocks of £ together into one block of
O(P, L). Assume that a finite block of O(P, L) is given and call it O;. Fix the direct
summand £; of £ (in general, this is a product of several blocks) such that the above
bijection restricts to a bijection between L;-simples and O;-simples.

The functors occuring in the construction of projective objects in O(P, L) are exact
and hence transport filtrations from £ to O(P, £). Start with a module V' which contains
(up to an isomorphism) at least one copy of each isomorphism class of each non-isomorphic
indecomposable projective in £;. Then the tensor product (U(N)/(U(H)N*)) @V is again
projective (in £) and maps onto all projectives in £;. Hence it contains at least one copy
of each isomorphism class of indecomposable projective modules in £;. A filtration of this
module, as in the definition of projectively stratified algebra yields a similar filtration of
the induced U(®)-module. Since the number of isomorphism classes of indecomposable
projectives in the block O; equals the number of indecomposable projectives in £;, the
resulting filtration has the correct length. O

The following Corollary from Theorem 12.3.2 is obvious.
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Corollary 12.3.2. Under the conditions of Theorem 12.8.2 the following are equivalent
for a finite block O; of O(P, L):

1. The block O; is equivalent to the module category of a quasi-hereditary algebra.
2. The block O; has finite global dimension.

3. For any simple L(V') € O; the module V' is projective in L.

12.4 Reciprocities in O(P, L)

In this Section we give two different generalizations of BGG reciprocity for O(P, £). The
first is based on dualities on projectively stratified algebras and the second is based on some
numerical properties of simple modules in £. We also disscuss a connection between them.
The first analogue of BGG reciprocity is an abstract property of a projectively stratified
algebra.

Theorem 12.4.1. Let A be a projectively stratified algebra over an algebraically closed field
k. Assume that A has a duality (i.e. a contravariant exact equivalence, which preserves
simple objects). Assume also that each projective A-module has a filtration by “Verma
modules” M (i) (indexed by i in I, the set of isomorphism classes of indecomposable projec-
tive A-modules) satisfying (M (i) : L(i)) = 1 and (M) : L(j)) # 0 implies j < i. Denote
by U(i) the k—dimension of Ends(A(7)), wher A(i) is the i-th standard module (see also
Chapter 15), which equals [P (i) : M(i)]. Then for all i,j € I there is a BGG-reciprocity

)
[P(2) : M(5)] = 1(7)(M(5) = L(7))-

Note that the only properties of Verma modules needed here are the ones mentioned
in the assumptions. No universality is needed.

Proof. We proceed by induction along the filtration of A which makes it a projectively
stratified algebra. Let j be a maximal index. Write P(i) = Ae and P(j) = Af for
some primitive idempotents e and f. By the choice of j the trace ideal AfA is projec-
tive as a left module. We have Ae N AfA = (Af)! for some [ which can be computed
as | = dimy Homa(Af, Ae)/l(j). By the condition on Verma modules, all occurences of
M(j) in a filtration of A are inside the ideal AfA. Hence [P(i) : M(j)] = [ -1(j) =
dimy Homa(Af, Ae) = dimg(fAe). Applying the duality on A we get dimy(fAe) =
dimg(eAf) = (P(j) : L(i)). Again by the defining condition on Verma modules we have

(P(7) : L()) = 1(5) - (M(3) : L(7))- m

We note, that if all /(i) = 1 we will obtain a quasi-hereditary algebra and the classical
BGG-reciprocity. We remark that all the results above are also true if the notion of a
simple &-module and a simple object in £ do not coincide.

The second analogue of the BGG reciprocity is the following Theorem.
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Theorem 12.4.2. Suppose that L has a block decomposition, with each block being the
module category over a local finite-dimensional associative algebra. Suppose also that for
any simple modules X and'Y in L there exists a constant i(X,Y") such that for any finite-
dimensional a-module F holds (F® X):Y) =X, Y)(FQ®Y) : X). (We will call this
condition the duality condition.) Then for any two simple modules V and W in L holds

[P(L(V)) : Mp(W)] = i(V,W)I(V)(Mp(W) : L(V)),

where P(L(X)) is the projective cover of L(X) in O(P,L) and [(X) is the length of the
projective cover X of X in L.

Proof. By Theorem 12.3.2 each block of O(P, L) corresponds to a projectively stratified
finite-dimensional algebra. First we note that dim Hom(P(L(V)), M) = (M : L(V)) for
any module M € O(P, L). Thus we have only to show that

[P(L(V)) : Mp(W)] = i(V, W)I(V) dim Hom(P(L(V)), Mp(W))
for any two simple modules V and W in L. Fix a block O;. Clearly, we need to check our
equality inside O; only, so we can assume that L(V') and L(W) belong to O;. Let k be big
enough. Let P(V, k); be the direct summand of P(V,k) in O;. Then

P(WV,k);= Y ng(V)PL(K))

L(K)elrr(0y)
and
ng (V) = dim Homg (P(V, k), L(K)) = dim Homg (V, L(K)).

In particular ng(V) = 0 if V £ K with respect to the order induced from §, and
ny (V) = 1. This allows us to proceed by induction. From the linearity of our formula
(in the induction step) we obtain that it is enough to prove that [P(V,k); : Mp(W)| =

i(V,W)(V)dimHom(P(V, k);, Mp(W)). Further it is clear that we only have to check
that [P(V, k) : Mp(W)] = i(V, W)I(V) dim Hom(P(V, k), Mp(W)). Clearly, from the con-
struction of P(V,k) it follows that there exists a finite-dimensional a-module F' such
that [P(V,k) : Mp(W)] = (FQV) : W) = (V)((F®V) : W). On the other
hand dim Hom(P(V, k), Mp(W)) = dim Homggg, (V, Mp(W)) = dim Homg(V, F @ W) =
((F®W) : V) by the projectivity of V. Application of the duality condition for £ completes

the proof. O

Comparing Theorem 12.4.1 with Theorem 12.4.2 one obtains the following result char-
acterizing the behavior of simple modules.

Corollary 12.4.1. Assume that L has a block decomposition with enough projective mod-
ules and a unique simple module in each block. Assume also that there is only finitely
many simples in L having the same central character and O(P, L) has a duality (for some
& and P). If for any two simple X and Y in L with projective covers P(X) and P(Y)
respectively there exists a constant i(X,Y) such that for any finite-dimensional a-module
F holds((FRX):Y)=i(X,)V)(FQY): X) theni(X,Y) =[(P(Y))/(P(X)).
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Proof. Tt is easy to see that all the conditions of both Theorem 12.4.1 and Theorem 12.4.2
are satisfied, hence the statement follows by comparing the two reciprocity formulae. [

12.5 Gelfand-Zetlin example

In this Section we present an example of an admissible category L consisting of generic GZ-
modules. Assume that 2 is gl(n, C) (or sl(n,C)). We retain the notation from Chapter 7.
Let [1] be a tableau satisfying the conditions

® lji—lp; € Z for all k < n and all i # j;
® lpi—lkr1; € Z for all k < n and all ¢, 7,

and let V([1]) be the corresponding generic GZ module. It follows directly from Lemma 8.3.1
that the category £ = L([1]) of all subquotients of V([1]) ® F, where F runs through the
set of all finite-dimensional 2A-modules, is admissible. From the arguments, presented in
Section 12.2, we easily obtain that the corrsponding O(P, L) has a block decomposition
and, from Theorem 12.3.2, it follows that each finite block of O(P, £) is a module category
over a projectively stratified algebra.

There is a natural duality on O(P, L), which corrspondts to ¢ and defined in a standard
way (see, for example, [FM4] or [FKM1]). Hence, we have an abstract BGG reciprocity on
O(P, L):

[PLV[IMW)D) : MV (1) )] =
[PLV[IER)D) : MV [IE) ] - MV ([H2)]) = LV [HA)D))-

We note that, from Section 8.3, it follows that each indecomposable block of £ has a
unique simple module. In particular, this means that [P(L(V([1(2)]))) : M(V([1(2)]))]

A

equals the length [(V([1(2)])) of the projective cover V([1(2)]) of V([1(2)]) in £. Hence,
we have

[PLVIW)])) = MV (1) D)) = (V) DMV ([12)]) = LV ([LD)]))-
To prove the second BGG reciprocity we need the following result.

Lemma 12.5.1. Let & be a simple finite-dimensional complex Lie algebra, $ be its Cartan
subalgebra and W be the Weyl group. For \,u € $* set A ~ p if and only if A € W -
(here w - p = w(u+ p) — p is the standard dot-action of W). Then for any A\, pu € $H* and
any simple finite-dimensional &-module F' holds

WA Y dimF, = [Wu| Y dimF,.

Viv+A~p viv+tpu~A

87



Proof. Let W, (resp. W,) be the subgroup of W stabilizing A (resp. ). Then we can
rewrite our equality in the form

Wul Y dimF,=[W,| Y  dimF,.

Vv RS TSDN

Let wq, wo, ..., wy be all the elements of W and define v; by v; + A = w; - . We can rewrite
the last equality as w; ' - A = g — w; '(1;). Since dim Fy = dim F,,( for all £ € H* and
w € W we conclude that both the left and the right hand sides of the desired equality
coincide with

i dim F),
i=1

and the lemma follows. O

Combining Lemma 12.5.1 and Lemma 8.3.1, we obtain that for two simple modules
V([1(1)]) and V([1(2)]) from £ having central characters x,, and x,, respectively holds

VM D VIR D) = W (p2)l/IW ()]

Thus all conditions of Theorem 12.4.2 are also satisfied and the corresponding analogue
of BGG reciprocity holds. Since we have both reciprocities, we can apply Corollary 12.4.1
and obtain for [1(1)], [{(2) ], 1, o as above

iV D, VI 1) = PV L) DN/UPV([LM))) = W (k2)l/IW (1)

If we fix [[(1) | such that [(1),,; = 0 for all 7, we will have |W (u;)| = 1 and [(P(V([I(1)])))-
Hence [(P(V([1(2)]))) = W (u2)|- We can now combine this in the following statement:

Theorem 12.5.1. 1. For any simple generic V([1]), having the central character x,,
the length of the projective cover of V([1]) in L = L([1]) equals |W(u)|.

2. The BGG reciprocity in O(P, L), L = L([!]) has the following form:

[PLV WD) : MV [IE) )] = W (wI(MV ([L2)]) - LV ([UD)])),

where x,, is the central character of L([1(2)]).
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13 Categories O(P, L), II: Induction from s((2, C)

In this Chapter we specialize the situation studied in the previous Chapter to the case
A ~ sl(2,C). Our goal is a more detailed study of the corresponding categories. We will
show that corresponding O(P, L) are equivalent to full sabcategories of classical O, which
possess an analogue of Soergel’s combinatorial description and have reach in content theory
of tilting modules.

13.1 Functor £

During Sections 13.1 — 13.3 we study, in detail, the category O(P, L) in the case A ~
s[(2,C) and L is associated with a module V(a,b), a,b € C (see Section 5.3). This is
exactly the case which corresponds to GVMs M (), p), studied in Chapter 6. We begin by
describing the category O(P, L) more precisely. We retain the notation from Chapter 6.

Call a weight 2A-module V' with finite-dimensional weight spaces admissible, provided
f acts bijectively on V. By definition, any V(a,b) is admissible. Let £ = £(V(a,b))
denote the full subcategory of the category of A-modules, which consists of all admissible
submodules and all admissible quotients of all modules having the form V' (a,b) ® F', where
F is a finite-dimensional 2-module. One can easily see that £ inherits the abelian structure
from the category of all 2-modules, i.e. L is closed under taking kernels and cokernels of
homomorphisms. Moreover, L is closed under taking finite direct sums. One can extend
L to the corresponding admissible category £ = £(V (a,b)) of 2-modules. Set O(P, L) =
O(P, L(V (a,b))).

Since any V(a,b) is a generic GZ module over 2, we know from Section 12.5 that £
has a block decomposition with a unique simple in each block and that the length of any
projective in L is either 1 or 2. It is easy to see that this length equals 2 if and only if b is
the square of a positive integer. Moreover, it follows from Section 5.4 that V (a, (Vb +1)?),
i € Z is a complete list of simple objects in £(V (a,b)). First of all, we establish an
equivalence of certain categories O(P, L).

Theorem 13.1.1. The categories O(P, L(V (a1,b))) and O(P, L(V (az,b))) are (blockwise)

equivalent (i.e. they are independent on a).

Proof. To prove this we will use Mathieu’s localization (see Section 5.5). We can assume
that a; # as. Since C is one-dimensional over itself, there exists z € C such that a; =
as + xa. Moreover, x ¢ Z according to our assumption. By the definition of O(P, L), f
acts bijectively on any module V- € O(P, L). Thus any V can be trivially extended to a
Us-module.

Now suppose that M is a Us-module and 0 # v € M such that Hyv = av for
some ¢ € C. We know, from Lemma 5.5.1, that 6,(H,)v = (a + 2y)v for any y € C.
From this, it follows immediately that the twist by 6_, (resp. 6,) is a well-defined
functor from O(P,L(V(ai,b))) to O(P,L(V(az,b))) (resp. from O(P,L(V(as,b))) to
O(P, L(V(a1,b)))). Since the composition of 6, and 6_, is an identity, we easily con-
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clude that these fuctors are mutually inverse. The block version follows immediately. This
completes the proof. O

According to Theorem 13.1.1, the properties of the category O(P, L(V (a,b))) do not
depend on a. Recall that for a fixed b there exists at least one V' (a,b) which is not simple.
More precisely, if b is a square of an integer, such V(a,b) is unique and if b is not a
square of an integer, there are precisely two non-isomorphic non-simple modules V' (a', b)
and V(a",b). Let V(I,b) be a non-simple module. The aim of this Section is to define and
investigate a functor from O(P, L(V (1,b))) to O.

For M € O(P,L) = O(P,L(V(I,b))) denote by E(M) the space of locally e-finite
elements of M. Since e is locally ad -nilpotent, F(M) is a ®-submodule of M. We know,
that any module in O(P, £) has finite length as a -module. From this one deduces, that
E(M) € O. We define E by restriction on homomorphism ¢ : M — N to E(yp) : E(M) —
E(N). Thus E is a well-defined functor from O(P, L) = O(P, L(V (I,b))) to O.

Theorem 13.1.2. Let M € O(P, L).
1. E(M) =0 if and only if M = 0.

2. dim(M,_ko) = dim(E(M),—ka) holds for any p € supp(M) and for any k € N big
enough.

For any finite-dimensional &-module F' holds E(M @ F) = E(M) ® F.
E sends projectives from O(P, L) to projectives in O.
E sends indecomposable modules to indecomposable modules.

For f: M — N holds E(f) =0 if and only if f =0.

NS & %

If M is a simple object in O(P, L), then E(M) has a unique simple highest weight

submodule, say L(E(M)), E(L) € $*. Moreover, for any M € O(P, L) and any
simple L € O(P, L) holds (M : L) = (E(M) : L(E(L))).

8. Let P(L) be the projective cover of a simple L € O(P, L£). Then E(P(L)) = P(E(L)).
9. E is a full functor.

Proof. We will give the scheme for the proof. The reader can consult [FKM2| for more
details.

The functor E is defined on A-modules, so statements (1), (2), (3) and (7) follow from
trivial s[(2, C) computation. Now (4) follows from (3) and Section 12.2. (6) is obvious.

Prove (5). Assume that M € O(P, £) is indecomposable, but E(M) = Ny & N, is a
non-trivial decomposition in O. Let M; =v € M | X* v € N;, for some k € N, i =1,2. It
is easy to see that M = M; & M,; moreover, both M;, i = 1,2 are &-submodules in M.
This contradicts our assumption. This proves (5). Now (8) follows from (4), (5) and (7).
To complete our proof we have to prove only (9).
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Clearly, it is enough to show that, for any M, N € O(P, L), holds
dim Hom@(p,ﬁ) (M, N) = dim HOIH(Q(E(M), E(N))

From (7) and (8) it follows that this is true if M is a projective module. Assume that M is
indecomposable. Let P(M) be a projective cover of M. It is enough to prove that for any
f:E(M)— E(N) there is ¢ in O(P, L) such that f = E(¢). We have that E(P(M)) is a
projective cover of E(M). Let z: E(P(M)) — E(M) be a canonical epimorphism. Since
P(M) is projective, there exists an epimorphism z : P(M) — M and a homomorphism
y: P(M) — N such that z = E(z) and f oz = E(y). For m € M set ¢(m) = yox~1(m).
We have to show that this is a well-defined map. But ker z C ker f o z, hence ker z C kery
since X, acts bijectively on P(M) and E acts on homomorphisms by restriction. This
means that 1 is well-defined. Since both z and y are &-morphisms we deduce that v is
also a G-morphism. Clearly, E(v) = f, since E is just restriction. This completes the
proof of our theorem. O

Corollary 13.1.1. O(P, L) is equivalent to a full subcategory of O. Moreover, the image
of a block of O(P, L) is contained in a block of O.

Theorem 13.1.2 also answers the question about multiplicities of simple subquotients in
GVMs (analogue of Kazhdan-Lusztig Theorem), reducing this question to the solved one
in 0.

Corollary 13.1.2. Let Vi,V be simple in L. Then (M(V1) : L(V2)) = (E(M(W)) :

A

L(E(L(V2))))-

13.2 Soergel’s Theorems

Using Theorem 13.1.2 it is possible to obtain an analogue of Soergel’s combinatorial de-
scription of algebras, arising from O(P, £). Here we retain the notation from Section 3.7.
Consider the principal block, Oy = O(x), ), of O and the big projective module P(wq(Ag))
in it. Suppose that b is the square of an integer. Denote by O(P, L), the direct summand
of O(P,L(V(l,v))) which has a non-trivial image in Oy, under E. Since E acts block-
wise and Oy, is indecomposable, such indecomposable O(P, L), is unique. Let L be a
simple object in O(P, £) such that E(L) = wy()e). L exists, since f acts injectively on
L(wo(No)) = M (wy(Ag)). Call the projective module P(L) in O(P, L), the big projective
module. We remark that P(L) can be characterized as the unique indecomposable projec-
tive in O(P, L)¢rin, such that any GVM from this principal block occurs as a subquotient
in a standard filtration of P(L). The following Theorem is a direct analogue of the first
part of Theorem 3.7.4.

Theorem 13.2.1. Endop ) (P (L)) ~ Endo(P(wp - 0)). In fact, Endop,c)(P(L)) is the
cotnvariant algebra.

Proof. Follows from Theorem 13.1.2 and [S1, Endomorphismensatz 3]. O
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Using Theorem 13.1.1, one can generalize this result to arbitrary O(P,L(V (a,b))),
where b is the square of an integer. The next result generalizes Soergel’s double centralizer
Theorem (second part of Theorem 3.7.4).

Theorem 13.2.2. Let B denote the (projectively stratified finite-dimensional) algebra as-
sociated with O(P, L)yi- Then B is isomorphic to the endomorphism algebra of the big
projective module, viewed as a module over its endomorphism ring.

It is more convenient to prove this theorem in an “abstract” setting which we are going
to introduce now. Let A (resp. B) denote the algebra associated with the principal block
of O (resp. O(P, L)). We recall, that according to Theorem 13.1.2 and Corollary 13.1.1,
B is a (matrix) subalgebra of A. Let e be the primitive idempotent of A such that Ae is
the big projective module in Oy,. Then Be is the big projective module in O(P, L)
and C = eAe = eBe is the coinvariant algebra, which is the endomorphism algebra of Ae
and Be. Let T = Homy(Ae, ) denote Soergel’s functor ([S1]). Recall, that by Soergel’s
Theorem ([S1, Struktursatz 2]), for any M € Oy, and any projective @ € Oy, holds

HOIHA(M, Q) ~ HomC:eAe(T(M)7 T(Q))

Proof of Theorem 13.2.2. We start from B = Hompg(B, B). Applying Theorem 13.1.2,
we have Hompg(B, B) ~ Homy(E(B), E(B)). Now applying the mentioned result by So-
ergel we obtain Hom 4 (E(B), E(B)) ~ Hom(T(E(B)),T(E(B))). We know from Theo-
rem 13.2.1, that eAe = eBe. Recall that F(Be) = Ae, hence T(E(B)) = Hom(Ae, E(B)) =
Hom4(E(Be), E(B)) ~ Hompg(Be, B) = eB. Finally,

Homea.(T(E(B)),T(F(B))) ~ Hom,p.(eB, eB).

Now we note that B is a matrix subalgebra of A and we can apply duality on A to the
last endomorphism ring, obtaining Hom,g.(eB, eB) ~ Hom,p.(Be, Be), which completes
the proof. O

We note that in the proof above, we can also apply the canonical duality on B, men-
tioned in [FP, FKM1].

13.3 Tilting modules

In this Section we develop the theory of tilting module for O(P, L) = O(P,L(V (1,b))).
As a preliminary result we have to investigate a family of tilting modules in O. There is a
general result about tilting modules for stratified algebras ([AHLU]), but we are going to
use a more symmetric definition of tilting modules for O(P, £); we will have to do some
preliminary work. Retain the notation from Section 3.7.

Assume that A € $* is such that s4(\) = A + ka for some k£ € N. Consider the
indecomposable projective module P(\) € O. Clearly, there exists a Verma flag P(\) =
Py, D PP D P, D ... of P(\) such that Py/P; ~ M()\) and Pi/Py ~ M(s4())). Set
P()\) = P(\)/P,. Then P()\) has a Verma flag with M ()) on the top and M (s4()\)) on
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the bottom. Define a class K(a) of modules in O as follows: if A € $* is such that
sa(A) — X € (Za '\ {0}) then K (a) contains M()); in the other case, K () contains P())
if s4(A) — A € N and K () contains P(s,(\)) if A — s4()\) € Na.

Denote by O;(«) (resp. Oy()) the full subcategory of O, containing all modules which
admit a filtration with subquotients from K («) (resp. with subquotients of the form M*,
M € K(«)). Since any module in K («) has a Verma flag, we have O () C O1, Oa(0) C O,
and O(K(«)) = O1(a) NO2(a) C O1 N O4. Hence any module in O(K («)) (if there is any)
is a tilting module. So to determine O(K («)) we have to find out which indecomposable
tilting modules belong to it.

Lemma 13.3.1. For any M € K(«) (resp. M such that M* € K(«)) and any finite-
dimensional &-module F' the module F @ M belongs to O1(a) (resp. Oz(a)).

Proof. Follows from the exactness of FF ® _ by standard arguments combined with the
observation that we are considering objects which are induced from projective objects. [

Proposition 13.3.1. T (\) € O(K(«)) if and only if either so(A) — X &€ Za \ {0} or
A — 5q(A) € N

Proof. 1If so(A)—X & (Za\{0}) then, according to the definition of K («), any Verma module
(resp. dual Verma module), occuring in the Verma flag (resp. dual Verma flag) of T'(\)
belongs to K () (resp. is of the form M* for some M € K(«)). Hence T'()\) € O(K(a)).

Recall that any increasing Verma flag of T'(\) starts with M ()). From the definition of
K () it follows that for any A € $* such that s,()\) — A € Na there are no modules in K(«)
such that their increasing Verma flag starts with M (). Since any filtration with quotients
from K(«) can be extended to a Verma flag, we obtain that in the case s,(A\) — A € Na
the module T'(\) cannot belong to K ().

So we only have to prove that T(\) € K(«) in case A — s4(\) € Na. This will follow
easily if we recall the inductive construction of tilting modules via tensoring with finite-
dimensional modules. Suppose that A is such that A — s,(\) € Naw and M (s4(A)) is simple.
Then T'(A) ~ P(s4()\)), by the construction of P(sq())) and hence T'(\) € O;(c). But
T'()) is also self-dual as a tilting module in the category O, hence T'(\) € Oz(c). Finally,
T(A\) € O(K(w)).

Now we note, that from Lemma 13.3.1 it follows that O(K («)) is stable under tensoring
with finite-dimensional modules. In particular, it means that if we fix A as in the previous
paragraph, then 7(\) ® F belongs to O(K(«a)) for any finite-dimensional &-module F'.
To complete the proof we only need to recall that any T'(u) with p — s,(¢) € Na occurs
as a direct summand in T(\) ® F' for some \ as in the previous paragraph and some
finite-dimensional F' ([CI]). O

The modules in O(K («)) will be called strong tilting modules. Later we will see that
they are closely related to tilting modules in O(P, L). Since A satisfies the conditions of
Proposition 13.3.1, we have.

Corollary 13.3.1. The big projective module is a strong tilting module.

93



Let £ = L(V(I,b)), b the square of an integer. In order to introduce the notion of
a tilting module in O(P, L), we need a natural duality on O(P,L). This can be easily
done, using o for O(P, L(V (a,b))), in the case when V(a,b) is a simple a-module. The
same direct construction for the case O(P, L(V (I,b))) does not work, because dualization
does not preserve the bijectivity of the action of f. In fact, e acts bijectively on the dual
module. There are two ways to solve this problem. The first way is to fix a non-integer
x and to define a duality * on O(P, L) as the composition of 6, the natural duality on
0.(O(P, L)), which can be constructed via o (here everything works since both e and f
act bijectively on 0,(O(P, L))), and 0_,. The second way is to compose o with the natural
automorphism of & corresponding to the simple reflection s,. We choose the second way
and from now on for M € O(P, L) we will denote by M* the corresponding dual module.

Let G(A) (resp. G(v7)) denote the full subcategory of O(P, L) which consists of all
modules having a standard filtration, i.e. a filtration, whose subquotients are isomorphic
to Mp(W), with W being a projective in £ (resp. a dual standard filtration, i.e. a
filtration whose subquotients are isomorphic to Mp(W)*, W projective in £). A module,
M € O(P, L), will be called a tilting module if M € G(A) N G(7).

So far, we do not know if there is any tilting module in O(P,L). The aim of this
section is to describe all tilting module in O(P, £). We recall that our definition of tilting
module does not coincide with the general definition in [AHLU]. The difference is in the
definition of G(v7). In [AHLU]J, the existence of a filtration is required, whose subquotients
are isomorphic to Mp(W)*, where W is simple in £. Our condition is more restrictive.
Taking into account the uniqueness of characteristic tilting modules for standardly strati-
fied algebras (this class includes, in particular, projectively stratified algebras) in [AHLU],
we only have to show that for any simple L = Lp(W) € O(P, L) there exists an indecom-
posable tilting module T(L) € O(P, L) such that the standard filtration of 7'(L) starts

Lemma 13.3.2. For any M € G(A) (resp. M € G(v7)) and any submodule N occuring
in a standard filtration (resp. dual standard filtration) of M holds E(N) C E(M) and
E(M/N) ~ E(M)/E(N).

Proof. Follows from the definition of £ and the fact that M ~ N & (M/N) as a U-
module. O

Lemma 13.3.3. Let T be a tilting module in O(P,L). Then E(T) is a strong tilting
module in O.

Proof. From the definition of K(«), it follows immediately that for any projective W € L
holds E(Mp(W)) € K(«). Now, by Lemma 13.3.2, the standard (resp. dual standard)
filtration of T is sent by E to a filtration whose subquotients are elements of K («a) (resp.
with subquotients, dual to modules in K («)). This completes the proof. O

Lemma 13.3.4. For any strong tilting module T' € O, there exists a tilting module T €
O(P, L) such that E(T) ~T"'.
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Proof. Clearly, it is enough to prove this statement for indecomposable T, so we can
suppose that 7" = T'()\). First, assume that M (s,())) is a simple &-module. Clearly, M ())
belongs to the image of F, hence M(\) = E(Mp(W)) for some simple object W € L. Let
W' be the projective cover of W. From the definition of K(«) one immediately obtains
T(\) = E(Mp(W')). Now the statement follows from Theorem 13.1.2, the inductive
construction of strong tilting modules, and the remark that tilting modules in O(P, £) are
self-dual. O

Theorem 13.3.1. For any simple object L = Lp(W) € O(P, L) there exists exactly one
indecomposable tilting module T(L) € O(P, L) such that the standard filtration of T (L)
starts with Mp(W'"), where W' is a projective cover of W in L. The set T(L), where L
runs through simple modules in O(P, L) is a complete set of indecomposable tilting modules
in O(P, L). Any tilting module is a finite direct sum of indecomposable tilting modules.

Proof. Existence follows from Lemma 13.3.4. The rest follows from [AHLU, 2.1 and 2.2].
0

We have already proved the existence of tilting modules in O(P, £). Now we are going
to determine the formal character of a tilting module. Clearly, it is sufficient to do this
for an indecomposable module T'(L), where L is a simple module in O(P, L). Further, by
the definition, T(\) has a standard filtration, hence it has a filtration by Mp (W), where
W € L is a simple object. Since Mp(W) is an extension of two Verma modules (with
respect to a different basis in &), its character is known. So the problem is to determine
the multiplicities [T'(L) : Mp(W)]. We solve this problem by reducing it to the recently
solved analogous problem for O (see [S4]).

Theorem 13.3.2. Let Wy and Wy be simple objects in L. Denote by (W) the length of
the projective cover Wy of Wy in L. Then

[T(Lp(Wh)) : Mp(W2)] = L(W3)[E(T (Lp(Wh))) : E(Mp(W2))]-

Proof. Set m = [T(Lp(W1)) : Mp(W3)]. Then m = [(W3)[T(Lp(W1)) : Mp(W3)] and by
Lemma 13.3.2, [T(Lp(Wi)) : Mp(W3)] = [E(T(Lp(W1)) = E(Mp(WE))]. IF 1(W}) = 1
then Wy = W and we are done. Otherwise, it follows, from the definition of K(«),

that the number of Verma modules in a Verma flag of E(Mp(W})) equals 2; moreover,
[E(Mp(W3)) : E(Mp(Ws))] = 1. This completes the proof. O

According to Lemma 4.3.1, E(T(Lp(W7))) is a strong tilting module. In particular,
it is a tilting module in O. Furthermore, F(Mp(W53)) is a Verma module in O, hence,
the multiplicity [E(T(Lp(W1))) : E(Mp(W3))] can be computed by Soergel’s Theorem,
[S4, Theorem 5.12 and Theorem 6.7]. We also note, that again, applying the Mathieu’s
functors 6,, one extends the above results to an arbitrary category O(P, L(V (I, 7))).

Finally, if one looks at the proof of [S4, Theorem 2.1], one sees that it implies another
interesting result for the principal block O(P, L) 4.4, of O(P, L). We keep the notation from
[S4]. Let S = S; denote the semi-regular bimodule, associated with a semi-infinite character
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6. As it was shown in [S4], the functor S ®y@) - maps an indecomposable projective
P(w(M\)), A € PtH, w € W, into an indecomposable tilting module T (wwy(N)) € O, where
wy is the longest element of the Weyl group. Comparing Theorem 13.1.2, (8) with the
definition of strong tilting module we see that for any indecomposable projective module
P(L) € O(P, L) the module S ®y () E(P(L)) is an indecomposable strong tilting module.
If we recall Lemmas 13.3.3 and 13.3.4 and the fact that S®y(e)— is an equivalence of certain
categories ([S4, Section 2]) preserving short exact sequences, we obtain the following result:

Theorem 13.3.3. The projectively stratified algebra of O(P, L)y is its own Ringel dual
(see [R1, KIKo] for detail).
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14 Catogories O(P, L), III: Case of arbitrary 2

The aim of this Chapter is to generalize the machinary worked out in Chapter 13 in order
to study categories O(P, L) in the case of arbitrary 2, in particular, we want to study
O(P, L) from the Gelfand-Zetlin example (Section 12.5). We will proceed by defining and
analyzing an appropriate candidate for the image of “virtual” functor E. Only in the last
Section we will construct an analogue of E for the Gelfand-Zetlin example.

14.1 Complete modules having a quasi Verma flag in O

Let O = O(2) be the classical BGG-category O associated with the standard triangular
decomposition of . A module, M, from O is said to have a quasi Verma flag if there
is a filtration, 0 = My C M; C --- C My = M, such that each M;/M; ; is a (non-zero)
submodule in a Verma module. As each Verma module has a simple socle, which is itself
a Verma module, the length of a quasi Verma flag does not depend on the choice of a flag
and equals the number of simple Verma subquotients of M.

Fix a Weyl-Chevalley basis in 2. With any simple root « we can associate an elementary
Enright completion, r,, defined as the composition of the following three functors ([E, Dh,
Mal). The first one is an induction from U = U(2) to the Mathieu’s localization Ug of U
with respect to the powers of X_,. The second one is the restriction back to U and the last
one is taking the locally X,-finite part. Clearly r, : O — O and r, o7, = 4. It is known
that (on objects which are torsion-free over 91_) the functors r, satisfy the braid relations
(main result in [De]), hence for any element w of the Weyl group W we can define the
corresponding composition r,,. Now by Enright completion we will mean r = r,,,, where
wy is the longest element in W.

A module, M, from O is said to be complete if r(M) = M. Our main object of interest
here is the full subcategory K of O which consists of all complete modules having a quasi
Verma flag and integral support.

Theorem 14.1.1. M € K if and only if it is a kernel of homomorphisms between two
modules, each of which is a direct sum of projective covers of simple Verma modules (with
integral parameters).

Proof. Assume that 0 - M — P, — P; is exact with P;, P, being direct sums of projective
covers of simple Verma modules. As P, is projective, it has a Verma flag and hence each
its submodule has a quasi-Verma flag. Moreover, with respect to any sl(2) — subalgebra
associated with a simple root, both P, and P, are direct sums of projective, therefore com-
plete modules. Direct verification in sl(2) case shows that the kernel of any homomorphism
between complete modules is complete. We obtain that r,(M) = M for any simple root «
and hence M is complete.

Conversely, since M has a quasi Verma flag and socle of any Verma module is a simple
Verma module, the injective envelope P, of M is a direct sum of injective envelops of
simple Verma modules, which are isomorphic to the corresponding projective covers. Now,
as both M and P, are complete, each X_, acts injectively on the socle of P;/M and hence
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this socle is a direct sum of simple Verma modules. This means that the injective envelope
of P;/M is also a direct sum of injective envelops (=projective covers) of simple Verma
modules. [

Corollary 14.1.1. K is an abelian category and decomposes to a direct sum of module
categoriers over local algebras.

Proof. This follows from abstract nonsence for an endomorphism algebra of a projective-
injective module in the corresponding block of O. O

Corollary 14.1.2. For any finite-dimensional A-module F', F® _ preserves K and is exact
on K.

Proof. Follows from the fact that F'® _ preserves category of projective-injective modules.
U

14.2 Soergel’s Theorems

Consider the category O(P, L) for £ = K as in the previous Section. It is clear that this
O(P, L) coincides with the full subcategory of O(®) consisting of all A-complete mod-
ules with integral 2-weights. Decomposing O(P, L) with respect to Z(®&) we get that
2-complete projective modules from O are projective in O(P, L) and hence indecompos-
able projectives in O(P, L) are precisely 2-complete indecomposable projectives in O. In
particular, all projective covers of simple Verma modules belong to O(P, £). As in Sec-
tion 13.2 by a principal block of O(P, L) we will mean the direct summand lying in the
principal block of O.

Theorem 14.2.1. The algebra associated with the principal block of O(P, L) is isomorphic
to the endomorphism algebra of the big projective module from O(P, L) viewed as a module
over its endomorphism algebra.

Proof. Analogous to that of Theorem 13.2.2. O

14.3 Tilting modules

For an indecomposable projective, V, in L call Mp(V) a standard module. Since V is self-
dual and projective in £, Mp(V'), as an 2A-module, is a direct sum of self-dual projective
modules in L.

Lemma 14.3.1. Let Mp(V) € O(P, L) be a standard module. Then the dual modules to
Mp(V) in O(P, L) and in O are isomorphic.

Proof. We reduce our consideration to a block of O(P, L), which corresponds to a pro-
jectively stratified finite-dimensional algebra. Let S be the partially ordered set of simple
modules. Then S also parametrizes the standard modules. From the description of pro-
jective modules in O(P, L) it follows that Mp (V') can be written as P(V)/N, where P(V)
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is an indecomposable projective module, N has a standard filtration and all the standard
subquotients of this filtration are bigger than Mp (V) with respect to S. We know that
the dual modules for P(V) in O(P, L) and O coincides. Now the statement follows by
induction in S. O

We will call Mp(V)*, V is an indecomposable projective in L, costandard modules.
Consider the full subcategory O; (resp. Oj) of O(P, L) which consists of all modules
having a standard filtration (resp. costandard filtration), i.e. a filtration, whose quotients
are standard (resp. costandard) modules.

Corollary 14.3.1. Let M € O; U Oy. Then the dual modules to M in O(P,L) and in O
are tsomorphic.

Proof. Follows from Lemma 14.3.1 and exactness of the dualities. O

A module M € O; N O, will be called a tilting module. Hence, by virtue of Corol-
lary 14.3.1, it should be a tilting module in @. Now we have to determine those T'())
belonging to O(P, L).

Lemma 14.3.2. T(\) € O(P, L) if and only if X is A-integral and belongs to the closure
of the ™A-dominant Weyl chamber.

Proof. Let M € O(P, L) be a module having a standard filtration. This filtration can be
refined to a Verma flag in O. Let M () be a Verma submodule in M occuring in this Verma
flag. Then M ()) is complete in £ and hence A is 2-integral and belongs to the closure of
the 2A-dominant Weyl chamber. Therefore, the only candidates for being in O(P, L) are
T (M), which satisfy the condition of our Lemma.

Let wg denote the longest element in the Weyl group of 2[. First consider T'(u), where
i is 2A-integral and belongs to the closure of the 2-dominant Weyl chamber, such that
M (wo(p)) is simple. Then T'(p) is a self-dual standard module and hence T'(1) € O(P, L).
To complete the proof we recall that O(P, L), O; and O are closed under tensoring with
finite-dimensional modules and any 7'(\) such that A satisfies the condition of our Lemma

can be obtained as a direct summand in 7'(z) ® F for some finite-dimensional F' and some
T(u) as above ([CI]). O

Theorem 14.3.1. Any tilting module in O(P, L) is a direct sum of indecomposable tilting
modules of the form T()), where \ is A-integral and belongs to the closure of the A-
dominant Weyl chamber.

Proof. We have already proved that all T'(\), where A is 2-integral and belongs to the
closure of the 2A-dominant Weyl chamber, are tilting modules in O(P, L). Recall that
blocks of O(P, L) correspond to projectively stratified finite-dimensional algebras. Now the
uniqueness of an indecomposable tilting module corresponding to a given simple module
follows from an abstract result [AHLU, 2.1 and 2.2] on tilting modules over stratified
algebras. O
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Consider again the algebra B, which corresponds to the principal block of O(P, £) and
let T be the direct sum of all indecomposable tilting modules in O(P, L) -

Theorem 14.3.2. B ~ End(7), ie. B is Ringel self-dual.

Proof. Let S denote the semi-regular U(®)-bimodule ([S4]) and let Ay be the highest weight
of the trivial &-module. Let wy be the longest element in the Weyl group W of &. Then the
composition of S® _ with the graded duality maps P(w()\)) to T (wwp(Xg)) for any w € W
([S4]). Note that if w(\g) belongs to the closure of the A-antidominant Weyl chamber, then
wwy(Ag) belongs to the closure of the 2A-dominant Weyl chamber. Hence the composition
of S ® _ with the graded duality transfers projective modules from O(P, L), to tilting
modules in O(P, L), producing an isomorphism between B and its Ringel dual. O

14.4 Equivalence with the Gelfand-Zetlin example

Assume that 2 = sl(n, C) and let F denote the admissible category generated by a simple
generic Gelfand-Zetlin module with integral central character, defined in Section 12.5.

Theorem 14.4.1. There exists a canonical equivalence of categories between F and IC,
which commutes with F ® _, F finite dimensional. In particular, categories O(P,F) and
O(P,K) are equivalent and hence Soergel’s Theorems and tilting theory can be stated for

O(P,F)

Lemma 14.4.1. Fiz x € Z(2A)*. Then the lengths of the indecomposable projectives in
Fy and in K, are the same and this common number coincides with the number of non-
isomorphic Verma modules (over 2) having central character x.

Proof. Let [ be the number of non-isomorphic Verma modules over 2 having central char-
acter x. That the length of the indecomposable projective in F, equals [ is proved in
Section 12.5. For K, it can be shown as follows. Recall that the indecomposable pro-
jective in IC, is the big projective module P()), where A belongs to the closure of the
antidominant Weyl chamber. Moreover, its length in K, coincides with the composition
multiplicity (P(A) : L(A)). As L()) is a simple socle of each Verma module in O,, the
last number equals the length of any Verma flag of P()\). By BGG-reciprocity and the
mentioned description of the socles of Verma modules, each Verma module from O, occurs
exactly once in any Verma flag of P()). Hence, the length of P()) in K,, which coincides
with the length of a (quasi) Verma flag of P(\), equals . O

Lemma 14.4.2. Assume that we have already constructed an exact functor, f, from F to
K, which commutes with F ® _ for any finite-dimensional F, faithful on morphisms and
sends (for each x) the simple from F, to the simple from K, inducing an isomorphism on
the endomorphism rings. Then f is the desired equivalence, which proves Theorem 14.4.1.

Proof. Denote by x the central integral character of a simple-projective Verma module. For
this x, the simple module in F; (or ;) coincides with the corresponding indecomposable
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projective. As F'® _ is exact on both F and K and f commutes with F'® _, we get that f
sends the indecomposable projective from F, to the indecomposable projective in K, for
any x. As f is exact, it sends simples to simples. All F, and K, are module categories over
local algebras. Moreover, f acts blockwise, so it is enough to prove that f : F, — K, is
an equivalence. But the lengths of the indecomposable projectives in F, and K, coincide
by Lemma 14.4.1. Since f preserves the endomorphism ring of a simple and is exact, we
derive that f is full on morphisms and the final statement follows from the exactness of

e O

By Lemma 14.4.2, to prove Theorem 14.4.1 we need only to construct an exact functor
from F to K, which commutes with all F ® _, is faithful on morphisms and sends simples
from F to simples in I preserving the central character and the endomorphism ring of any
simple. We will construct this functor composing several m? and l,. Hence, as the next
step we review some properties of these functors.

Fix a simple root a and denote by () the sl(2, C) subalgebra of 2 associated with a.
Let £, denote the full subcategory of the category of all finitely-generated 2(«)-modules,
which consists of all direct summands of the modules F'® M, where F' is finite-dimensional
and M is a finitely generated weight module with one-dimensional weight spaces and such
that X_, acts bijectively on M. Let M, denote the full subcategory of the category of all
finitely generated 2A-modules, which consists of all modules M, that can be decomposed
into a direct sum of modules from £, when viewed as 2(«)-modules. It is easy to see
that £, (resp. M,) inherits an abelian structure from the category of all 2(a) (resp. )
-modules .

Let £* denote the full subcategory of the category of all finitely generated 2A(«)-
modules, which consists of complete modules having a quasi-Verma flag from the cor-
responding category O. Let M denote the full subcategory of the category of all finitely-
generated A-modules, which consists of all modules M, that can be decomposed into a
direct sum of modules from £ when viewed as 2(a)-modules. £* has a natural abelian
structure with usual kernels and cokernels defined for f : M — N as r,(N/ro(M)). In a
natural way, this abelian structure can be extended to M. In the following Lemma we
will refer to this abelian structure on M*%.

Lemma 14.4.3. [, : M, — M*® is exact, commutes with F® _ for any finite-dimensional
F and faithful on morphisms.

Proof. All properties can be checked on the 2((«)-level, where they are trivial. O

Lemma 14.4.4. For any v € C we have that m : My, — M, s exact and faithful on
morphisms.

Proof. Follows directly from the definitions of m? and M,. O

Lemma 14.4.5. Let MSZ denote the full subcategory of M, consisting of all Gelfand-
Zetlin modules having strong tableauzr realization. Then for any x € C the functor m%
sends MSZ into itself and its restriction to this category commutes with F ® _ for any
finite-dimensional F.
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We note, that the category M, does not contain all Gelfand-Zetlin modules (even not
those having a strong tableaux realization) if « is not the first simple root. We also note
that the statement can be easily extended to mZ : (I,(MS?)) — MEZ.

Proof. Let X, = X, for some ¢ € {1,2,...,n — 1}. By exactness of mZ we have only to
prove the statement for simple objects from MS%Z. Let M be a simple object in MS%Z. As
Y; acts bijectively on M, there is a finite number of I'-weight generators v;, j € J such
that the corresponding tableaux [t; | satisfy the following condition: #; |, = #], for all
l=1,2...,¢—1. Hence X;_;v; =0 for all j. Moreover, Xv; = 0 for any X corresponding
to a positive root having X; ; as a summand and all other summands of the form Xj,
k < i—1. Y; commutes with all Z(sl(k,C)), k # 4, and with (H,)". By polynomiality
of Mathieu’s twist, m% sends an H,-weight vector of weight y to an H,-weight vector
of weight y + 2z. Now let ¢ € Z(sl(i,C)) and cv; = y;v;. From X,_jv; = 0 we get
(X1, Xi2]Vi =0, [[Xi_1, Xi_2], Xi—3]v; = 0 and so on. Thus we can apply the generalized
Harish-Chandra homomorphism. We obtain ¢; € Z(sl(i — 1,C)) and H € S(£)) such that
mZ(c)v; = mi(c; + H)vj. We conclude that the images of all v; are I'-weight vectors, thus
implying m%(M) € MEZ. Moreover, one sees that mZ(M) is a simple object of MSZ,
which can be precisely computed in terms of [ti’l] and z. Now the statement about F' ® _
follows from Lemma 8.3.1. O

Lemma 14.4.6. Both functors l, and m{ respect the action of the center. In particular,
they respect (generalized) central characters.

Proof. Obvious. O
Lemma 14.4.7. Both l, and m% commute with parabolic inductions.

Proof. Trivial. O

Lemma 14.4.8. Let P be a parabolic subalgebra of a semi-simple Lie algebra & and V' be
a simple module over the Levi factor of P which is turned into a P-module via the trivial
action of the nilradical. Then any endomorphism of the module U(®) ®upy V' (which
usually is called a generalized Verma module associated with P and V') is scalar.

Proof. U(®) ®uy(p) V is generated by V' and any endomorphism of U(&) Q@u(p) V sends
the unique copy of V in U(®) Qu(py V into itself. Now the statement follows from [D,
Proposition 2.6.5]. O

Proof of Theorem 14.4.1. By virtue of Lemmas above we need only to find a composition of
different m?Z and [, which sends simples from F to simples in JC preserving their endomor-
phism rings. These endomorphism rings equal C in the case of F by [D, Proposition 2.6.5].
We note, that simple objects in /C are not simple 2-modules but coincide with projective
Verma modules (which are quite far from being simple 2-modules) which also have C as
endomorphism ring.

Using usual induction together with exactness of parabolic induction and Lemma 14.4.7,
it is sufficient to construct a composition of different m? and [, which sends simples from
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F to the generalized Verma modules over o induced from simple Gelfand-Zetlin modules
having strong tableaux realization over the parabolic subalgebra with simple Levi part
generated by X;, Y;, ¢ > 1. In fact, on each step the endomorphism ring will be preserved
by Lemma 14.4.8 and iterating this process inductively we will end up with a Verma module
from O. As both m? and [, respect the central character, the result will be in the correct
block of O. As we will also see later, on each step we will obtain a module, complete with
respect to some r,, where « is a simple root, so that the final module will be complete.
This will prove our Theorem. Using the integer shift of tableaux one can also see that it
is sufficient to construct such a composition for one fixed simple module from F.

So, fix some V([l]) € F such that the upper row of [/] defines the projective Verma
module in O (this means that the entries of the row decrease). The only Y; acting bijectively
on V([I]) is Y;. Let X, = X;. Then, clearly, V([I]) € ME&Z and from the proof of
Lemma 14.4.5 it follows that m{ (V ([l])) ~ V([s]), where s; ; =, j, ¢ > 1 and s11 = [11+2z.
Choose z such that I 1 4+ 2z = lo; and consider the module M; = [,(mZ(V ([l]))). It is
generated by a I'-weight vector corresponding to the tableau [s] as above. Let us show
that Y5 acts bijectively on M. Indeed, any tableau [p] appearing as a basis element in M;
satisfies the condition ps1 — p11 € Z; because of the local nilpotency of X;. Assume that
P21 = p1,1 and consider the set P of all tableaux obtained from [p] by integer shift of po».
Applying Y5 to any tableau from P and using Gelfand-Zetlin fomulae we see that we can
reduce either py; or pao by 1, but p,; —1 < p;; and hence in fact we can only reduce ps 5.
This means that Y; sends any tableau from P into a (non-zero by Gelfand-Zetlin formulae)
multiple of another tableau. From this we obtain that Y5 acts bijectively on the subspace
generated by P, moreover this subspace is a simple dense module over 2(3). Letting Y}
act on all tableaux with ps; = p1,1 we will obtain all basis elements of M;. This means
that M is generated by a direct sum of simple dense 2(3)-modules. From the fact that
U(%A) is a direct sum of finite-dimensional 2(f)-modules under adjoint action we get that,
as an A(f)-module, M; is a direct sum of subquotients of the modules V ® F', where V is
simple dense and F' is finite-dimensional. This means that Y5 acts bijectively on M; and
M, € Mgz . Hence we are allowed to apply mj.

Again from the proof of Lemma 14.4.5 one gets that this is equivalent to changing s 5,
which can be choosen arbitrarily, for example equal to s3 ;. Now we can apply m? and make
51,1 equal to sg9 = s31. Again applying mg we can achieve s91 = s39. As our tableaux
are defined up to permutations of the elements in each row, we can have s;; = 591 = 53
and sg9 = s39. Now it is clear that proceeding with other simple roots as above we will
be able to arrive at a module N generated by a I'-weight element v corresponding to the
tableau [t] defined as follows: t¢,; = l,; for all ¢, t,_1; = l,—y,; for all 4 > 1, ¢;; =t,, for
all 7 and t;; = t,_1; for all £ < n. By Lemma 14.4.3, this module will be automatically
ro-complete, i.e. 7,(N) = N. (Hence, at the very end of the induction process we get a
complete module.) But one also has X.,v = 0 for any positive root vy containing . From
this we get that N is isomorphic to a generalized Verma module induced from a simple
Gelfand-Zetlin module, N, over the parabolic subalgebra with simple Levi part generated
by X;, Vi, i > 1. From t,,_1; —t,_1; &€ Z we have that N has a strong tableaux realization.
Now induction completes our proof. O
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15 Categories O(P, L), IV: Projectively startified al-
gebras

As it was already shown in Chapter 12, quite often the categories O(P, L) docompose into a
direct sum of module categories over projectively stratified (associative finite-dimensional)
algebras. The aim of this Chapter is to transfer the Lie-algebraic machinery of construction
of GVMs (standard module) via induction from a parabolic subalgebra P of & to the
associative level. In other words, for a projectively statified algebra associated with a
block of O(P, L), studied in Chapter 13, we are going to show that it’s standard modules
can be induced from a natural “parabolic” subalgebra. This Chapter is quite abstract and
we will return to O(P, £) only in the last Section, where we will prove the above result.
Our abstract setup requires some new definitions and notation. The results presented in
this Chapter are the content of [KIMa] and generalize the corresponding results for quasi-
hereditary algebras ([Koel, Koe2, Koe3]). Since we will use a definition of projectively
stratified algebra slightly different from those given in Section 12.3, we start with defining
all main objects of this Chapter.

15.1 Abstract setup

We let A be a finite dimensional algebra over k, an algebraically closed field. When we
want to make clear over which algebra we are taking a module we will give an indication via
subscripts. Let J = AeA be a two-sided ideal in A, generated by a primitive idempotent e.
J is called left projectively stratifying (resp. projectively stratifying) if it is a projective left
(resp. two-sided) A-module. If we can order the equivalence classes ey, ..., e, of primitive
idempotents of A such that for each [ the idempotent e; generates a left projectively
stratifying (resp. projectively stratifying) ideal in the quotient algebra A/ < e, ..., e 1 >,
then A is called left projectively stratified (resp. projectively stratified) (compare with
Section 12.3). We will indicate the (left) projectively stratified structure on an algebra, A,
by the pair (A, <) with < the above order on the idempotents. Left stratified algebras have
already been studied by Cline, Parshall and Scott ([CPS2]) under the name of standardly
stratified algebras.
Two lemmas follow immediately from this definition.

Lemma 15.1.1. Let (A, <) be a projectively stratified algebra. Then (A%, <) is projec-
tively stratified (with the same order on the isoclasses of primitive idempotents).

Lemma 15.1.2. Let A be an algebra with an order < on the isomorphism classes of prim-
itive idempotents. Then (A, <) is projectively stratified if and only if both (A,<) and
(A%, <L) are left projectively stratified.

First, we remark that that the definition of projectively stratified algebra in Section 12.3
coressponds to the present definition of left projectively startified algebra. As an example
of a left projectively stratified algebra which is not projectively stratified, consider the
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algebra of the quiver I' with two vertices {a, b}, three arrows {a : @ = b, § : b — a,
v :a — a} and relations v2 = 0, ya = 0, 87 = 0, and Baf = 0.

We also note that a left projectively stratified algebra is a stratifying endomorphism
algebra in the sense of Cline, Parshall and Scott [CPS2] and all quasi-hereditary algebras
are projectively stratified. It is also the case that a left projectively stratified algebra is
quasi-hereditary if and only if it has finite global dimension [AHLU, CPS2].

Let (A, <) be a (left) projectively stratified algebra. In what follows we will denote by
L()) the simple A-module which corresponds to ey, and will call A a weight. We will also
denote by P(\) (resp. I())) the corresponding projective cover (resp. injective envelope).
Following [CPS2], for a simple A-module L, corresponding to the idempotent ey, we define
the standard module A(X) as A/q,,...ey,,)ex and costandard module V(A) as the largest
submodule of I(\) having factors L(u) with u < A\. We note that each projective has a
standard flag, i.e. a filtration whose quotients are standard modules.

Let (B, <) be a finite-dimensional algebra with < a partial order on the set of equiva-
lence classes of simple modules. (B, <) is called quasi-directed if Ext%, (L, L') # 0 for some
k implies L' < L. By a quasi-local algebra we will mean a direct sum of local algebras.

For a quasi-directed algebra B call an indecomposable module M local if all its simple
composition factors are isomorphic. Call it projectively local if it is projective over the
maximal quasi-local subalgebra of B (whose existence will be proved in Section 15.3).

Let S be a quasi-local subalgebra of an algebra B. We say B is S-diagonalizable if B
is projective as left and right S-module. A quasi-directed algebra diagonalizable over its
maximal quasi-local subalgebra will be called pyramidal.

Definition 15.1.1. Let (A, <) be a projectively stratified algebra and B and C subalgebras
of A.

1. We will call B an exact Borel subalgebra of A if
e there is a one-to-one correspondence between the simples of B and the simples
of A;
e (B, 2) is pyramidal with the opposite order induced from the simples of A;
e the tensor induction functor A ®p _ s exract;

e A®p _ sends the projectively local B-module V' to the standard A-module of the
same weight;

2. We will call C a A-subalgebra of A if

e there is a one-to-one correspondence between the simples of C' and the simples
of A;
e (C,2) is pyramidal with the order induced from the simples of A;

e for each weight © the indecomposable projective Ae; occurs exactly once in the
decomposition of the projective A-module A @¢c Ce;;
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o fizing epimorphisms k(i) : A Q¢ Ce; — A(i), one has isomorphisms k(i)|ce;
1® Ce; = A(i).

The importance of the last condition on exact Borel subalgebras can be seen from the
example A = k[z]/(z*) and B = k[z?]/(z*) C A. In this example the unique standard
objects are the algebras and induction clearly doubles the length of modules.

In the remainder of the paper, set ¢ < j if and only if ¢ < j. The first symbol will
indicate quasi-directedness and the second will indicate a projectively stratified structure.

Definition 15.1.2. Let A be an algebra and < be a total order on the set of equivalence
classes of simple A-modules. Let B and C be subalgebras of A such that BNC = S
s a quasi-local subalgebra of A containing at least one representative from the classes of
isomorphisms of primitive idempotents, mazimal in both B and C. Assume that (B, 2)
and (C,2) are pyramidal. Call (B,C) a parabolic decomposition of A provided that the
multiplication in A induces isomorphisms C ®s B ~ A as left C-modules and right B-
modules.

We have chosen this terminology to reflect the fact that the major example we know
comes from tensor induction from a parabolic subalgebra of a Lie algebra.

15.2 Module-theoretic characterization of projectively
stratified alghebras

A quasi-hereditary algebra (A, <), can be characterized by the existence of standard mod-
ules A(7) having simple subquotients L(k) with £ < ¢ and L(¢) occuring once, and such
that the projective P(j) has a standard flag with sections A(z) with j < ¢ among which
A(7) occurs exactly once. Left projectively stratified algebras ([CPS2, Section 2.2]) have
the same module-theoretic characterization except that the multiplicity of L(7) in A(3)
may exceed one.

Theorem 15.2.1. (A, <) is left projectively stratified if and only if there exist modules
A(i) such that

(i) there is a surjection ¢; : A(i) — L(i) whose kernel has composition factors L(j),
J <
(i1) P(i) surjects onto A(i) and the kernel of this map has a standard flag with sections
A(f), 7 £ i.
Proof. Let A be left projectively stratified and A(7) be the standard modules defined in
Section 15.1. Then () is automatically satisfied since the standard module, A(7) is defined

over the algebra A/(e,,...,e;;1) and this algebra only has simple modules of the required
type. To prove (i7) we proceed by induction. Let e = e,, be the maximal (with respect to
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<) primitive idempotent of A. We have P(n) = A(n) and by [DR, Statement 7] we have
a bijection

Ae Rope €A — AeA.

Now Ae Qcae €A ~ Ae @4 Hom(Ae, A) and so if Ae;, i # n, appears as a direct summand
of AeA then there is a surjection of Ae onto Ae; and this contradicts the indecomposability
of Ae. This completes the proof in one direction.

To prove the converse, suppose we have standard modules satisfying conditions (i) and
(17). Let e = e, be the maximal primitive idempotent. Then Ae = P(n) = A(n) and we
have a surjection

Ae Qepe €A ~ Ae ®ca. Hom(Ae, A) — Ae, A.

Now, Ae ®q4e Hom(Ae, A) ~ Ae Qeae B; Hom(Ae, Ae;). So, the image of Ae ®c4. €A is
the direct sum of its images in each projective of A. We show that the image of Ae ®¢ac
Hom(Ae, Ae;) in P(i) is a direct sum of copies of Ae. This will follow if we prove the
existence of a short exact sequence,

0— M =®A(n) — P@i) - M —0,

with M having a standard flag with sections A(j), j < n. From the projectivity of A(n)
we have that any N with 0 - N’ - N — A(n) — 0 is isomorphic to N' & A(n)
thus by induction on the length of the standard flag we have the result. The image of
Ae ®c.4. Hom(Ae, Ae;) in P(i) certainly contains M’. Since there are no non-zero maps
A(n) — M, M'is this image. So, AeA is a sum of projective modules and, hence, projective
and left projectively stratifying. The projectives of A/AeA are the projectives of A modulo
the trace of P(n) = A(n) and so have flags satisfying (i7) and with the exception of n all
standard modules remain unchanged. By induction in the number of idempotents, we are
then done. O

Corollary 15.2.1. Let (A, <) be an algebra. Then (A, <) is quasi-directed if and only if
(A, <) is left projectively stratified with projective standard modules.

Proof. 1f (A, <) is left projectively stratified with projective standard modules then (A, <)
is quasi-directed by definition. Now assume that (A, <) is quasi-directed. Define A(i) =
P(i). Condition (77) is trivial and condition (7) follows by directedness. O

One can clearly obtain the notion of right projectively stratified algebras by requiring
right projectivity of the stratifying ideals.

Corollary 15.2.2. (A, <) is right projectively stratified if and only if there exist a choice
of costandard modules V(i) such that

(i) there is an injection ; : L(i) — V(i) whose cokernel has composition factors L(j),
JS
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(i1) V(i) injects into I(i) and the cokernel of this map has a costandard flag with sections

V(5), j £ 1.
Proof. Pass to the opposite algebra. The functor Hom(_, k) carries injectives into projec-
tives and costandard modules into standard modules. Now apply Theorem 15.2.1. O

Corollary 15.2.3. (A, <) is projectively stratified if and only if there exist a choice of
standard modules A(i) and costandard modules V(i) satisfying necessary conditions from
Theorem 15.2.1 and Corollary 15.2.2.

15.3 Pyramidal algebras as projectively stratified algebras

From the theory of quasi-hereditary algebras we have that an algebra (A, <) is directed
(i.e. Ext(L,L") # 0 implies L € L') if and only if it is quasi-hereditary with projective
standard modules. We have already seen (Corollary 15.2.1) that the same relationship
holds between quasi-directed and left projectively stratified algebras. In this Section, we
examine pyramidal algebras; in fact, we prove that all pyramidal algebras are projectively
stratified.

Lemma 15.3.1. Let (B,S) be a quasi-directed algebra. Then the mazimal quasi-local
subalgebra S of B is isomorphic to @;e;Be;.

Proof. Clearly, S’ = @®;e;Be; is a subalgebra of B. Because of the directedness of B no
endomorphisms of Be; can factor through a non-isomorphic projective, so each e;Be; is
local, and hence S’ is quasi-local. Now let P be an indecomposable summand of S. Then
P equals Se; is local and so e;Se; = Se; is a subalgebra of e;Be; and hence S C S'. O

Lemma 15.3.2. Let (B, ) be quasi-directed. Then the projectively local module K (i) is
isomorphic to Be;/N, where N is the trace of all P(j) with j < i.

Proof. Because of the directedness of B we have

Bei = e,-BeZ- D ZejBei

j<i

as a vectorspace. For each element of e;Be; there is a map for P(j) to P(i) covering it, so
> j<iejBei C N. But [Be; : L(i)] = [e;Be; : L(i)] by directedness of B. This completes
the proof. O

Proposition 15.3.1. Let (B, <) be a pyramidal algebra. Then (B, <) is projectively strat-
ified.

Proof. (B, <) is left projectively stratified by Corollary 15.2.1. Now consider B?. Then the
algebra (B, 2) is quasi-directed. This implies that a left projective B°’-module P (i) has
only L(j) with ¢ < j as composition subquotients. Since B? is pyramidal, each P(7) has a
projectively local flag, whose subquotients satisfy the same order condition. Let S be the
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maximal quasi-local subalgebra of B. Choose for B?, A(i) = €;5%¢;. By Lemma 15.3.2
these are the projectively local modules. Then these standards clearly satisfy conditions
(1) and (47) of Theorem 15.2.1, and so (B?, <) is left projectively stratified. And now, by
Lemma 15.1.2, (B, <) is projectively stratified. O

Thus, a pyramidal algebra (B, <) has both (B, <) and (B, >) projectively stratified
structures. To finish this Section we give necessary and sufficient conditions for a quasi-
directed algebra to be projectively stratified. We begin with the following Lemma.

Lemma 15.3.3. Let e be a primitive idempotent in a quasi-directed algebra (B,<) and
X an eAe-module. Then X ®.p. eB is right B-projective if and only of X is right eBe-
projective.

Proof. 1If X.p. is projective, then X is free over eBe and hence X ®.g. eB is right B-
projective. On the other hand, suppose X ®.p. eB is right B-projective. Let L be the
maximal local top of eB. X has top (L)", where L is the unique simple eBe-module. We
have an exact sequence

0—=T%5 (eBe)" - X — 0.

Inducing to B we have

T ®cpe eB 2 (eBe)" ®cpe €B S X ®epe B — 0.
Since X surjects on (L), we have the following chain of surjections
X ®cpe B = (L ®cpe eB)" = (L ®cpe L)" — L™

X ®epe €B is projective and must contain, as a direct summand, the projective cover,
(eB)™, of L™. This implies that « is an isomorphism, § = 0 and, last, §-e = 0. But
B-e=¢: T QpeBe — (eBe)" Qc.pe eBe is non-zero if X is not projective. This
contradiction proves the Lemma. O

And this Lemma allows us to give the following characterization of when a quasi-
directed algebra is projectively stratified.

Proposition 15.3.2. Let (B,<) be quasi-directed. Then the following conditions are
equivalent.

(i) B is projectively stratified.
(ii) the mazimal quasi-local subalgebra S of B is an exact Borel subalgebra.

(iii) Be is eBe-projective for every primitive idempotent e.
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Proof. ((¢) < (i7)) By [DR, Statment 7] we have Be Q.s. eB ~ BeB, where e is the
maximal primitive idempotent. So BeB is right B-projective if and only if Be is right
eSe-projective (Lemma 15.3.3).

((i7) = (i4)) Since B®g _ is exact, B is a right flat, hence right projective ([Fa, 11.31])
S-module. Then Be is a projective S module and hence projective eSe-module.

((413) = (i1)) We have B ®s - = @®;Be; ®¢,s¢; — and hence exact since each Be; is
e;Se;-projective. Now we just need to prove that this functor carries Ag(i) = e;Se; to
Apg(7). Set e = ¢;. We have B ®g eSe = B Q.5 €Se = Be Q5. eSe = Be = Ag(i). O

15.4 Brauer-Humphreys reciprocities

We will now prove an appropriate generalization of the classical Brauer-Humphreys re-
ciprocities; this will be the refinement of [ADL, Theorem 2.5] in our situation. As is usual,
[M : A(i)] (resp. [M : V(i)]) is the number of occurrences of A(i) (resp. V(7)) in a
standard (resp. costandard) flag of M, should it exist. Similarly, for a simple L, [M : L]
means the corresponding composition multiplicity.

Theorem 15.4.1. Let (A, <) be a projectively stratified algebra. Then for any pair of
weights © and j we have
dimy (End(A(5)))[P(2) :
dimy (End(V (j)))[1(i)

A= [V(G) : LG,
V(i) =[AG) : L()].
Proof. By duality it is sufficient to prove the first. By induction it is sufficient to prove it
for maximal j = n. In this case P(i) = Ae;, P(n) = A(n) = Ae, and I(n) = V(n). Set
I =[P(i) : A(n)]. From the proof of Theorem 15.2.1, this is equal to
- dimy Homy4 (P(n), P(7))

~ dimg End4(P(n))

that is Ae; N Ae, A = (Ae,)'. So, it remains to show that dimy, Hom(P(n), P(i)) = [I(n) :
L(7)]. Passing to the opposite algebra we have

]
]

dimg Hom(P(n), P(i)) = dimg(e, Ae;) = dimy(e; A%e,,)
= dimy Hom 4 (A%e;, A%e,) = [A%e, : L(i)] = [I(n) : L(7)].
O
And as corollary we get a weakened form of Theorem 12.4.1.

Corollary 15.4.1. Assume that A is projectively stratified and has a duality (i.e. a con-
travariant exact equivalence on the category of A-modules, which preserves simples). Then

dimy(End(A(5)))[P(0) : AQG)] = [A@G) : L))

Proof. The duality carries standards to costandards and we have [A(i) : L(j)] = [V(3) :
L(j)], which completes the proof. O
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15.5 Duality between exact Borel and A-subalgebras

In this Section we explore the left-right symmetry of projectively stratified algebras and
their exact Borel and A-subalgebras. For the remainder of the paper we will assume that
the projectively stratified structures on exact Borel and A-subalgebras are given by the
same order on the idempotents of the algebra. With this projectively stratified structure
the fourth condition of an exact Borel subalgebra can be rephrased by: tensor induction
carries standard modules to standard modules.

Lemma 15.5.1. Let (A, <) be a projectively stratified algebra. Then
Ext}y (A(1), V(7)) = 0
unless k =0 and i = j.

Proof. Assume k > 0. Let m be the maximum of ¢ and j. Put e = > ) ., e, and put
A" = A/AeA. Over this algebra A(m) is projective and V(m) injective. Thus we have for
k # 0 Ext® (A(i), V(5)) = Ext¥, (A®G), V(5)) = 0 ([CPS2, 2.1.2]). If kK =0, i # j then the
image of any map ¢ : A(i) — V(j) must have L(7) as top and other composition factors
L(j), j < i, since it is a quotient of A(7). If this map is non-zero then L(7) is a composition
factor of V(j) that is ¢ < j. But then every submodule of V(j) has composition factor
L(j) which forces j < i. O

Let (B,2) be an exact Borel subalgebra of a projectively stratified algebra (A4, <).
In the case that A is quasi-hereditary the standard objects are induced from simple B-
modules. In the general case, this no longer holds; however, these modules, A 4(i) =
A ®p Lg(i), which we will call substandard modules, continue to play an important role
(see also [AHLU]). In particular, A(i) has a A(i)-flag.

Lemma 15.5.2. Let (A, <) be a projectively stratified algebra with an exact Borel subal-
gebra B. Then

Ext’y (A(3), V(4)) = 0,
unless k =0 and i = j.

Proof. For k=0, A(i) is an image of A(i) and the statement follows from Lemma 15.5.1.
Consider k # 0. Let [ be the maximal of i and j. Then A(i) and V(j) are modules over
A/{egs1,---,e,) and so (by [CPS2, 2.1.2]) we may assume that [ = n. If j = n, then V(j)
is injective and the current Lemma clearly holds. So now assume i = n and j < ¢ and
consider the exact sequence

0—= N — A() = A®) = 0.

Apply Homu(—, V(j)) and pass to the long exact sequence. We get Ext! (A(:),V(j)) =0

and Ext'/'(A(i),V(4)) ~ Ext!;(N,V(5)). And the Lemma follows from the standard
dimension shift arguments. O
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Lemma 15.5.3. Let (B, 2) be an exact Borel subalgebra of a projectively stratified algebra,

(A,<). Then for all weights, dimEnd4(A4()\)) = dim Endg(Ag(})).
Proof. We prove the Lemma by induction. Let n be the maximal weight. We have
dim Endx (Ax(n)) = dimHomx (Px(n), Ax(n)) = [Ax(n) : Lx(n)]

for both X = A or X = B. By the last condition for an exact Borel subalgebra we have
[Aa(n) : La(n)] = [Ap(n) : Lp(n)] and the statment follows for the maximal weight.
Induction is clear. O

Proposition 15.5.1. Let (A, <) be a projectively stratified algebra and (B, 2) a pyramidal
subalgebra of A with the same poset of isoclasses of primitive idempotents. Then B is an
exact Borel subalgebra of A if and only if for each weight i, restriction from A to B induces
an isomorphism V 4(i) ~ V(i) as B-modules.

Proof. Assume that B is an exact Borel subalgebra of A. We compare dimensions of V 4(%)
and Vp(i). Using Theorem 15.4.1 we have

dimy V(i) = Zdimk Lx(7)[Vx (i) : Lx(j)] =
= ZdimEnd(Ax(i)) dimy Lx (5)[Px(j) : Ax(i)] = dimEnd(Ax (4))[X : Ax ()]

J

for both X = A and X = B. By the exactness of induction, [A : A4(¢)] = [B : Ag(i)]. By
Lemma 15.5.3, dim End(A 4(7)) = dim End(Ap(7)) and so dimy V 4(i) = dimy V 5(3).

From Lemma 15.5.2 it follows that the functor Homa(_, V4(j)) is exact on A-modules
having a substandard flag. Thus Hompg(_, V 4(j)) is exact on the category of B-modules.
So, V 4(j) containing Vg(j) is an injective B-module. The previous dimension count says
that they are, in fact, equal.

Now assume that for each weight 4, restriction from A to B induces an isomorphism
V(i) ~ V(i) as B-modules. Since (B, 2) is pyramidal, (B, <) is projectively stratified by
Lemma 15.3.1 with injective costandard modules (Corollary 15.2.1 and Corollary 15.2.3).
We want to prove that A is right projective over B implying A ® g _ is exact. The right
standard modules for A (and both right standard and projective over B) are V 4(4)*, so, as
a right projective A-module, A has a V 4(¢)*-flag, the last being a direct sum decomposition
over B.

We are finished when we show that A ®p _ sends projectively local B-modules to
standard A-modules. Let K (i) be a projectively local B-module corresponding to the
weight 7. First we show dimyg(A®p K (7)) = dim, A4(7). We have d := dimg(A®p K (7)) =
dimy (Homp (K (i), A*))*. Since A is a right projective B-module, A* is left injective and
as such decomposes into a direct sum of injective B-modules, V(7). On each summand
we have

0, L F 7

dimy Homp (K(l), Vg (])) - {dimk EndB(K(i)) 1= 7;
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this follows from the fact that Vg (i) = (e; B)* implies [V (i) : Lp(i)] = [K(¢) : Lp(i)]. Now
dim Endp(K(i)) = [K (%) : L(7)] because K (i) is projective in the category of B-modules
filtered by Lp(i). Thus d equals dimy Endg (K (7)) - [A* : Vg(i)] = dimy Endg(K (7)) - [A* :
V4(7)]. Further, dimy End4(V4(7)) = dimy Endaer(Aper (7)) = dimg Endper (K (3)*) =
dimy Endp(K (7)) by Lemma 15.5.3. Applying Brauer-Humphreys reciprocity we get

d = dimy Endp(K (i)) - [A" : Va(i)] =
= Zdimk Ends(Va(3)) - [1a(§) : Va(i)] - mult a4 (I4(5)) =

J

= D840 : La(i)] - mult4(Pa(5) = dimic(Aa(0).

From the quasi-directedness of B and adjunction we have that A® g Pg(i) has P4(i) as a
direct summand exactly once and all other direct summands (if any) are of the form P4(5),
j > i. So, for the largest weight we have As(n) = Pa(n) = A®p Pg(n) = A®p K(n).
Now we proceed by induction. We have an exact sequence:

00—V — Pg(i) > K(i) >0
with V filtered by K(j), j > i because Ap(j) = K(j). By exactness of A ®@p _ we obtain
0> A®pV — A®p Pp(i) > A®p K(i) — 0,

and by the inductive hypothesis, A ®p V is filtered by A 4(j) with j > i. Now, since P4(%)
occurs as a summand of A ® g Pg(i), there is a surjection of A ®p Pp(i) onto A,(i) and
the kernel V' is the the sum of the images of all possible maps from P,4(j) for j > i. Hence
V C V' and thus A ®p K (i) surjects onto A,(i) and the isomorphism follows from the
dimension count. O

Corollary 15.5.1. B is an ezact Borel subalgebra of a projectively stratified algebra (A, <)
if and only if B is a A-subalgebra of (A%, ).

Proof. Follows from Proposition 15.5.1, its proof and the duality of the conditions for a
A-subalgebra and the equivalent conditions for an exact Borel subalgebra. O

15.6 Projectively stratified structure of algebras with parabolic
decomposition

In this Section we prove a Theorem relating parabolic decomposition to projectively strat-
ified algebras. It generalizes the corresponding result for quasi-hereditary algebras [Koe2,
Theorem 4.1]. The proof closely follows the ideas of the proof there.
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Theorem 15.6.1. Let A be a finite-dimensional algebra and < be a total order on the set
of isomorphism classes of simple A-modules. Assume that (B, 2) and (C, <) are pyramidal
basic subalgebras, whose intersection BN C = S is the mazrimal quasi-local subalgebra of
both B and C. The following statments are equivalent.

(i) The algebra A is projectively stratified with an exact Borel subalgebra B and a A-
subalgebra C.

(i1) (B,C) is a parabolic decomposition of A.

Proof. Assume we have listed the idempotents in A (and hence in B and C') with respect
to the natural total order.

((¢) = (i1)) We proceed by induction on the number of direct summands in S (the
number of weights). If S is local, then A = B = C' = S and we are done. Assume S is
not local and e = e, is the maximal primitive idempotent in A. Since A is projectively
stratified, AeA is a projectively stratifying ideal and hence is projective, as left A-module.
In particular, by [DR, Statement 7], we have that the multiplication in A induces a bijection

Ae Rope €A — AeA.

We also have eAe = eSe, since e is the maximal primitive idempotent. We have the
identifications

Ay(n) ~ Ac(n) ~ Ce
by the definition of A-subalgebra and Corollary 15.2.1, and
Va(n)" ~ Vg(n)" ~eB
by dual arguments (Corollary 15.5.1). We get a bijection
Ce Rese €B ~ Ae ®pp0 €A >~ AeA,

compatible with left C' and right B multiplication. Continuing by induction (see arguments
in [Koe2, Theorem 4.1]) we see that k-dimensions of both sides of

C®sB— A

are equal. We are done.

((i7) = (7)) Let e = e, be the maximal primitive idempotent. We wish to show that
AeA is projectively stratifying. Since B and C' are quasi-directed, we have eC' = eC'e = eSe
and Be = eBe = eSe are projectively local modules. First we show that eSe = eAe (this
says Enda(A4(n)) ~ Endc(Ac(n))). We have

eAe ~ eC ®g Be >~ eSe Qg eSe ~ eSe Q5. eSe ~ eSe.

114



Analogously,

Ae~(C ®g Be ~(C ®geSe ~ C Qes. eSe ~ Ce
and

eA~eC ®s B~eSe®s B ~eSe®ese B~ eB.

Now, since B and C' are pyramidal they are projective over S both as left and right modules.
So Ae = Ce (resp. eB = eA) is a right (resp. left) projective eSe-module. Thus they are
free over eSe and so Ae ®.s. €A is projective as left and right A-module. And the Theorem
follows from standard induction. O

15.7 Construction of algebras with given parabolic decomposi-
tion

In this Section we give a general construction of a projectively stratified algebra having
given exact Borel and A-subalgebras. The central Theorem of this Section allows us to
construct a projectively stratified algebra as an extension of a projectively stratified algebra
with a pyramidal algebra. In the case that the projectively stratified algebra has a parabolic
decomposition, the extension will as well.

To state the Theorem we assume the following set-up: Given a semi-local algebra S
by an S-algebra we will mean an algebra Ts(M)/I, where M is an S-bimodule, finite-
dimensional over k. Let (A4, <) be a basic projectively stratified algebra with an exact
Borel subalgebra B. Let (D,<) be a basic pyramidal algebra. Assume that B and D
have isomorphic maximal quasi-local subalgebras, S (in particular, they have the same
set of idempotents). To fix notation then A ~ Ts(My)/I4, B ~ Ts(Mg)/Ip and D ~
Ts(Mp)/Ip. Let A" =Ts(Ma® Mp)/(Ia+Ip+ {(a®sd|a€ Mas,d € Mp)).

Theorem 15.7.1. Let A, B, D and A’ be defined as above. A’ is projectively stratified and
isomorphic to D®gs A as left D-module and right A-module. B is an exact Borel subalgebra
of A" via the embedding b — 1®b. If C ~ Ts(M¢) is a A-subalgebra of A containing S,
then A’ has a A-subalgebra C' ~ Ts(Mc & Mp)/(Ic + Ip + {(c®s d|c € Mc,d € Mp)).
Last, C' ~ D ®g C as left D-module and right C-module.

Proof. By construction, we have appropriate module isomorphisms: A’ ~ D ®¢ A (and
when relevant C' ~ D®g (). Let e be the maximal primitive idempotent. Then e = e®ge
(=1®se€). So, J=AeA =DRsC-e®se-DRsC =D ®g AeA. Since D (resp. AeA)
is a two-sided projective D (resp. A)-module, J is a two-sided projective A’-module and
A’ is projectively stratified by induction.

We prove B is an exact Borel subalgebra of A’. To begin, D ® s A ®p _ is exact, since
A ®p _ is exact and D is pyramidal and hence flat over S. By induction, D ®¢ A ®p _
sends standard B-modules to standard A’-modules. Indeed, let e be the maximal primitive
idempotent. D®sA®pBe ~ DRgAe ~ (DRsA)(1®ge), which is A’-standard. It remains
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to show that [A'®p Lp(i) : La(i)] = 1. Now A’ ®p Lg(i) = D®s AQp Lg(i). Since B is an
exact Borel subalgebra of A, we have [A®p Lg(i) : L(i)] =1 and [A®p Lp(i) : La(j)] # 0
implies j < i. We are done, if we show [D ®g La(j) : La(j)] = 1 and [D ®g La(j) :
L (k)] # 0 implies k£ < j, for this would clearly imply that [A'®p Lp (i) : La(i)] = 1. But
D ®s La(j) = > pe;exDe; ®s La(j) and [3 4, exDej ®s La(j) : Ls(m)] # 0, m < j and
s0 [D ®s La(j) : La(k)] # 0 implies k < j. Further, [>°,; exDe; ®s La(j) : Ls(j)] =1
implies [D ®gs L4(j) : La(j)] = 1. The remaining statements follow arguments already
seemn. U

Corollary 15.7.1. In the case that C = A we have that A’ ~ C ®g B is a parabolic
decomposition.

15.8 Parabolic decomposition of projectively stratified algebras
attached to blocks of O(P, L)

We have mentioned that our motivation stems from categories O(P, £). In this Section
we give a parabolic decomposition for algebras of O(P, L) studied in Chapter 13. So,
throughout this Section we fix the notation from Chapter 13.

Theorem 15.8.1. For every block of O(P, L) there is an algebra, A, with parabolic de-
composition, whose module category is equivalent to this block.

We will prove this by explicit construction of A and its exact Borel and A-subalgebras.
We require more terminology. For the rest of the section we fix a block, O;, of O(P, L)
assumed to have finitely many simples. For a weight A and a weight &-module V set
VIA] = ®kezVrska, which is closed under the action of .

Recall (Section 12.5), that indecomposable modules from £ have the form V'(a,b) or
V (a,b), which is a self-extension of V(a,b). For simple V € £ denote by V its projective
cover (in L), which is either V itself or its self-extension. Given M € O;, a weight A and
abe Cset

My, = {v € M) | there exists k € N such that (¢ — b)¥v = 0}.

Since, as an A'-module, M decomposes into a direct sum of objects from £, one has that
My, = {v € My|(c — b)*>v = 0}. For a simple module L € O; denote pz, its a-highest
weight. Then L{ur] ~ V(ar,by,) for some a;, and by,. Put Vi, = V(ayz,by).

Lemma 15.8.1. Let L be a simple module in O;. There exists a projective module P
such that Home(P", M) ~ M, ,, for any M € O;.

Proof. Set u = pr, a =ar and b = b. We can pick k € N big enough such that MM, =0
for any M € O; and consider the -module

Pr=U(8) @ (UO)/UET) & V:).

U(P)

Now we can take P” to be the O;-projection of P*. That Home(PY, M) ~ M, for any
M € O; is identical to the classical argument in [BGG2, Theorem 2. O
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Since the a-highest weight of L is unique up to shifts by «, P* is independent of the
choice of this a-highest weight. Now we take

A:End@< b PL).

L simple in O;

Clearly, the category of A-modules is equivalent to O;.

Consider an 2'-submodule VX =1®1® V,, in PL and set M, = U(M_)VE. Let A(L)
denote the standard module associated with L. We have A(L) ~ U(&) ®u(p) V. For any
simple L € O; fix the canonical generator, p(L) = 1® 1 ® v, of P*, where v is a canonical
generator of V; then the map ¢ — ¢(p(L)) is a C-isomorphism between Home(P", M)
and M, 5, for any M € O,.

Lemma 15.8.2. Any surjection P* — A(L) induces an U(M_)-isomorphism M, —
A(L).

Proof. Let ¢ : P* — A(L) be a surjection. It carries p(L) to a generator of A(L) and hence
it induces an X_,-isomorphism Mp[ur] — A(L)[ur]. Now the statment follows from the
fact that UM_) = U(M™) @c U(X_,) and that both M, and A(L) are U(M(A))-free. O

Lemma 15.8.3. M}, is an A -module.
Proof. Follows from the construction of PX and the definition of Mj,. O

Lemma 15.8.4. Assume that ¢ : P* — P is a homomorphism and ¢(p(L;)) € My,.
Then o(Mg;) C Mg,.

Proof. By definition, p(L;) generates V% as 2'-module. Since ¢ is an 2'-homomorphism,
Lemma 15.8.3 says that (V%) C M** and the statment follows from the fact that My, =
UM_)V% and the fact that My, is stable under left U(M_)-multiplication. O

Proof of Theorem 15.8.1. First we prove the existence of a A-subalgebra in A. Denote by
I an indexing poset of simple modules in O;. Put

C = @ {p € Home(P¥, P1) | p(p(L;)) € My, }.
kel

C C A is a vectorspace, which is a subalgebra by Lemma 15.8.4. By Lemma 15.8.2,
C has trivial intersection with the kernel of the projection A — @,crA4(¢). Clearly,
C is quasi-directed and contains a maximal quasi-local subalgebra which is isomorphic
to @jer End(A(j)). Now, we have to prove that the vectorspace Ce; is large enough,
i.e. dimcg(Ce;) = dimg(Aa(j)). Let t = dimg(A4(j)). By the definition of A and by
Lemma 15.8.1, we have

t=) dimc(Homg(P™ A(L;)) = D dimc(A(Ly)u, by,) =

kel kel

= dime((M,)u,, ) = Y dime(exCe;) = dime Ce;.

kel kel
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So, we have only to show that C' is pyramidal. The maximal quasi-local subalgebra of

Cis

S = @P{v € Home (P", PL) [ o(p(L;)) € Mz, }.

jeI

We will show that C is right S-projective. Left projectivity can be proved analogously. In
fact, we will show that for any j, k € I

ejCer = { € Home (P", P™) | ¢(p(L;)) € My, }

is a free right e, Seg-module. Recall that M}, maps bijectively onto A(Ly) for any surjection
from P+ to A(Lg). Let Mp(Vy,) be the generalized Verma module associated with L.
It follows from the description of £ that either Mp(Vy,) ~ A(Ly) or A(Lg) is a self-
extension of Mp(Vy,). Let M* denote a vectorsubspace of My, , which maps bijectively
on Mp(Vy,) under any composition P — A(Ly) — Mp(Vg,). Such M* clearly exists.
Now, an eSe;, basis of e;Ce; is given by any linear basis of the vectorspace of all maps
¢ € Homg (P, PL*) such that ¢(p(L;)) € M*. Hence, e;Cey, is ey Sey-free.

Since A has a A-subalgebra and there is a duality on ;, one has that A has an exact
Borel subalgebra; the statement follows. O
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16 Extended sl(3,C) example

In this Chapter we illustrate all the results obtained above for the case of the Lie algebra
s[(3,C). In order to simplify the presentation we will recall all notation and adjust them
to our fixed situation.

So we set & = sl(3,C) — the Lie algebra of 3 x 3 complex matricies with zero trace.
Denoting by e; ; the matrix units we have the standard basis e; 9, €23, €13, €21, €32, €31,
e1,1 — €22, €22 — e33. We fix the Cartan subalgebra §), which consists of diagonal matrices.
Then the root system A of & is of type As, hence we can choose the basis 7 = {a, 3} in
A, corresponding to the roots e; » and ey 3 and then A} = {«, 3, + §}. We fix the Weyl-
Chevalley basis X, = €12, Xg = €23, Xoyg =€13, X g =€21, X g=¢€32, X 4 5 = €31,
H, = e11 —ex9, Hg = ex5 — e33. The Weyl grop W is generated by s, and sg and is
isomorphic to the symmetric group S3. We also have p = a4+ 3. For A € $* we will write
A = (AM(Hqa), A(Hp)). Hence @ = (2,-1), § = (—-1,2) and p = o+ 3 = (1,1). Under
this choice, 91, (resp. M ) is the subalgebra of strictly upper-triangular (resp. strictly
lower-triangular) matrices and B is the subalgebra of upper-triangular matrices.

Let P be a non-trivial parabolic subalgebra of & containing B (i.e P # B and P # &).
Using the symmetry of the Dynkin diagram we can assume, that P = 8B & &_,. Hence,
we have A ~ sl(2,C) is generated by &., and has a basis X_,, X,, H,. Then A" =
AP H(A), where H(2A) is one dimensional with generator H, + 2Hg. Further 7(A) = {a},
AR)y = {a}, W(R) is generated by s, and is isomorphic to the symmetric group Ss.
Then M =GB Bqip5, NA) =& 3B G_, 5, po = (1,—1/2), p* = (0,3/2). We also have
c=(Hy+1)+4X ,X,.

16.1 Modules M()\,p) and L(\,p)

Let V(a,b), a,b € C, be the A-module with basis v;, ¢ € Z and the following action of
generators: X_o,v; = vi_1, Hov; = (a + 2i)v;, Xov; = (b — (a + 2i + 1)?)/4v;,1. Choose
A € §* such that (A — p)(Hy) = a, i.e A = (A, A0) and Ay = a+ 1, Ay € C. Set p* = b.
Then the module M (), p), which we will denote by M (A1, Ag, p), is, by definition,

M(\,p) = U(8) X) V(a,b),
U(P)

where X3V (a,b) = X415V (a,b) = 0and (H,+2Hg)v = (A1 +2X3—2)v for any v € V (a, b).
Inside K£* the module M (A;, Ao, p) has a unique simple quotient L(\1, Ao, p) = L(A, p).

First of all we will obtain information about the support of M (A1, A, p). Clearly,
A — p € supp(M (A1, A9, p)). Since X_, acts bijectively on M (A, Ao, p), we obtain that,
together with any p, supp(M (A1, Ao, p)) contains also p + ko for all k € Z. Hence A — p +
ka € supp(M (A1, A2, p)). Further, M (A, Ay, p) is UM(A)) = U(&_p & G_,_p)-free and
we obtain

Supp(M()\la)\Q:p)) = {/\ - ,0+k0[ - m/B | ke Z7m € Z-l-}
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In Section 10.2, we have seen that there exists ¢ € Z such that the U({Xig))-module
U({X41p))v; is simple infinite-dimensional. Hence supp(L(A1, A2, p)) = supp(M (A1, A2, p)).

Finally, in this Section, we also calculte the dimensions of the weight spaces in M (Aq, Ag, ).
For k € Z and m € Z,, we have that dim(M (A1, A2, P)a—p+ka—ms) equals the number of
decompositions of mf as za + yf + z(a + ), where x € Z and y,z € Z,. Clearly, this
last equals m + 1. Hence

dlm(M()\l, )\2, p),\_p+ka_mg) =m+ 1.

16.2 Inclusions and multiplicities

We can view (A(, A2, p) as an element of C* = 2. According to Theorem 6.3.1, M (p1, o, q)
is a submodule in M (A1, Ag,q) if and only if p = A —mpB+ ka, m € Z,, k € Z, and either
m=0and ¢ = £p or m = nF(\,p) = (A +2X2 £ p)/2 and ¢*> = (p FnE(\,p))% Hence,
for n € N, we can consider the hyperplanes H(n,4) = {(A1, A2, p) | A1 + 2\ £p—2n = 0}.
Let H be the union of all H(n,+), n € N. Then we have, that M (A, Ao, p) is a simple
object in K if and only if (Ay, Ay, p) € Q\ H. In this case L(A1, Ag,p) = M (A1, A2, D).

From Theorem 6.3.1, it follows also that, for (Ay, Ao, p) € H(n, %), one has M(\; +
n,Ay — 2n,p Fn) C M(M, A, p). In particular, the maximal (in K£®) submodule in
M (A1, A2, p) coincides with some M (A;+n, A\o—2n, pn). Moreover, using Theorem 6.3.1, it
is easy to describe this maximal submodule precisely. For (A1, Ao, p) € H(n1,+)NH (ng, —),
p > 0 we always have n; > ns and hence the maximal submodule in M (A, Ay, p) coincides
with M (A1 + na, Ay — 2n9,p + ny). In other cases, it coincides with the unique Verma
submodule in M (A + ng, Ay — 2n9, p + ng).

Now let M (A1, A9, p) be a non-simple (in £*) GVM and M (A\; +n, Ay — 2n,pFn) be its
maximal submodule. Then we have L(\;, Ao, p) = M (A1, Ao, p)/M (A1 + 1, Ay — 2n,p F n)
and, hence, we can compute the dimensions of the weight spaces in L(A1, A9, p):

m+1, m<n

dlm(L()\la )‘Qap))\—p+ka—mﬂ) = { .
n, m>=2n

In our situation the multiplicities of simple subquotients in a GVM can be also obtained
directly from Theorem 6.3.1. In fact, we have that (M (A1, Ao, p) : L(u1, p2,q)) = 1 if and
only if M (uy, pe,q) C M(A1, A2, p). In the other case, the corresponding multiplicity is just
0.

16.3 BGG resolution

According to Section 16.2, the maximal submodule (in %) of M (A1, A2, p) is either 0 (in
this case M (A1, Ao, p) = L(A1, A2, p)) or coincides with M (1, us, q) for some (1, po, ) € 2.
In the first case, we have a trivial resolution

0— M()\l,)\z,p) — L()\l, )\Q,p) — 0.

120



In the second case, we also have a straightforward resolution of L(\;, Ag, p) by GVMs:
0 — M(p1, pi2, q) = M(A1, A2,p) = L(A1, Az, p) — 0.

So, it is not necessary to apply Theorem 10.1.2 and Corollary 10.2.1. However, we have
that W7 is generated by sz ad isomorphic to S,. Further,

Pa)** = | (Hmn,+)nH(m,-)), P(a)"=s.s5P(c)""

m,nEN

And for (A1, A2, p) € P(a)™ U P(a)t we have
0 — M(sg(A1, A2, ) = M(A1, Az, p) = L(A1, Ao, p) — 0.

This is the BGG resolution of L(Aq, Aa, p).

16.4 Weyl formula

The character formula for any L(Aq, A2, p), (A1, A2, p) € €, can be easily obtained from the
resolutions given in the previous Section. Nevertheless, we will calculate ch(L(Aq, A2, p))
for (A1, A2, p) € P(a)*" U P(a)" using Theorem 11.1.1. We have K = {—a — g}, p' =
(—1/2,1), and hence, for any element (A1, Ay, p) € P(a)TTUP(a)T, there exists an element
a(A1, A2, p) € H* such that

1 e,\+p’ . 655()\—1—(1()\1,Az;p)-f-p')—a()\l,)\mp) oo .
ch(L(A; Ae,)) = T X g x ) e

We can rewrite this as
400 ) [ele) )
ch(L(A1, A2, p)) = ( Z 6”‘) X (Z ez(_"‘_ﬁ)) X (AP + P F g e (VDB
1=—00 1=0

where N = (8, (A1, A2, p))r according to the choice of a(A1, Az, p)-

16.5 Tableaux realization

The module M (A1, A2, p) does not always have a tableaux realization. Sometimes it is
convenient to change the basis 7 of the root system, in order to obtain a tableaux realization
of this module. In this Section, we construct two series of GVMs over sl(3,C) (gl(3,C))
with their tableaux realization. We note that we will obtain GVMs with respect to different
choices of 7 and 7(2). We retain the notation from Section 7.1 and Section 8.4.

As the first case, consider a tableau [1] € C®, which satisfies the following conditions:

L4 l2,1 - 52,2 ¢ Z;
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o l3;,=1ly;,1=1,2.
Consider the set B([[]), which consists of all tableaux [¢] such that
o t3;=13;,1=1,2,3;
® ly;—to;, €Ly, 1=1,2
ol —t,, €L

Then all the tableaux from B([[]) are good and the set B([!]) is closed under GZ formulae.
So, the GZ formulae define on the vectorspace M*([1]), with the basis B([[]), the structure
of a 8-module. It follows from the GZ fomulae that M*([1]) is a GVM and is a-stratified if
and only if ;1 —lo; € Z, 1 = 1, 2. In the a-stratified situation the space of all semiprimitive
generators of M*([1]) is generated by [1] +i[d"1], i € Z.

As the second case, consider a tableau [1] € C®, which satisfies the following conditions:

° 52,1 - 12,2 ¢ Z;

g l3,1 = 52,1 = 11,1-

Consider the set B([!]), which contains all tableaux [¢] such that
® l3;=13;,1=1,2,3;
® lyo—120 €Z;

] lil—ti,1€Z+,i=1,2;

® i1 =>111.

Then all the tableaux from B([[]) are good and the set B([]) is closed under GZ formulae.
So, the GZ formulae define on the vectorspace M?([1]), with the basis B([[]), the structure
of a &-module. It follows from the GZ fomulae that M?([1]) is a GVM and is 3-stratified if
and only if l3; —ly 2 & Z, 1 = 2, 3. In the [-stratified situation the space of all semiprimitive
generators of M?([1]) is generated by [1] + i[6>?], i € Z.

16.6 Schubert filtration

Let (A1, A2,p) € P(a)™ U P(a)*. Since W™ consists of two elements, the Schubert fil-
tration of L(A1, Ay, p) will contain only two terms L(\1, Ag,p) = L D Ly, so we have only
to construct the first term L. According to Sections 11.2 and 11.3, Ly should be a P-
module, supp(Lg) = supp(L(Ai, A9, p)), and all non-trivial weight spaces of Ly should be
one-dimensional.

The construction of Ly is quite transparent. We will not use the tricks used in the
proof of Theorem 11.3.1 and will construct Lg directly. Let M (uq, p2,q) be the maximal
submodule in M (A1, A2, p). Then either g = p+n or ¢ = p — n for some n € N. Consider
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the 2-module V (a,p?) from the definition of M (A, Ay, p). Clearly, 1 ® V(a,p?) C L.
Now consider the second A-level, My = @rezM (M, A2, D)r—p—pika- As a A-module, M is
isomorphic to F», ® V (a,p*), where F, is a simple two-dimensional %-module. Hence, the
subquotients of M, are V(a, (p £ 1)?), counted with their multiplicities. If p = 0, then
M, is indecomposable and we add to Ly the submodule V(a,1). Clearly, this gives us a
P-module. If g =p+n (resp. ¢ =p—n) and p # 0, then we can add both V' (a, (p £ 1)?)
obtaining a new P-module. We choose p —1if ¢g=p+n and p+1if ¢ = p —n. Now we
continue the procedure above, applying it to the chosen V(a, (p & 1)?). As a limit we will
obtain the desired P-module Ly having the necessary dimensions of the weight spaces. It
is also clear that the above conditions uniquely define Ly in M (A1, Ao, p) /M (p1, o, q)-

16.7 Category O(P, L)

To describe the category O(P, L) for our case, we first study the category L£(V (a,b)) of
2-modules. According to the equivalence given by Mathieu’s functor (Theorem 13.1.1), it
is enough to consider the case of a non-simple V (a,b), i.e the case V (I, b), ([+1)*> = b.

If b is not the square of an integer, the module V([,b) ® F decomposes into a direct
sum of V(I,b;), i = 1,2,...,dim(F) for any simple finite-dimesional 2-module F. Hence
all indecomposable object of £(V (a, b)) are simple and have the form V (I, (vVb+1)?), i € Z.
This last follows directly from Kostant’s Theorem.

Now suppose that b is the square of an integer. Then the simple objects in L£(V (I,b))
are V(1,4%), i € Z. Hence L(V(I,b)) = L(V(1,0)). Moreover, if i > 0, then £(V (a,b)) also
contains a length two selfextension V(I,7%) of V(I,4%), which occurs as a direct summand
in V(I,0)® F for any simple F', such that dim(F) > i. Moreover, from Kostant’s Theorem,
it follows that V(I,42), i € Z, and V(I,i?), i € N exhaust all indecomposable modules in
L(V(1,0)). For i € N we have a natural non-split extension

0— V(1,i%) = V(I,%) = V(I,i%) — 0.
Applying the functor E we obtain the following sequence.
0— E(V(,3%) — BE(V(1,i%)) — E(V(1,i%) — 0.

Clearly, E(V (l,7?)) is a Verma module with the central character %, hence E(V(I,4%)) =
M(i), i € Z. Further, V(I,i?) is projective in £(V(I,0)), hence E(V(I,i%)) is also pro-
jective and thus E(V(I,42)) = P(—i), i € N, is the big projective module. Now we can
rewrite the above sequence as

0— M(i) » P(—i) — M(i) — 0.

This sequence is not exact in O, but it is exact in the image of E. This shows that the
image of E does not inherit the abelian structure from O. We also recall that M (i), 1 € N
is projective in O. By virtue of the last exact sequence, it is no longer projective in the
image of E. It’s projective cover there coincides with P(—i).
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Now we are ready to turn to s[(3,C). We will restrict our consideration to the principal
block O(P, L)trin, where £ = L(V(1,0)). We know that O(P, L)y, is a full subcategory
of Oyrin, so first we recall the stucture of Oy,. The Verma modules in Oy, are M (o +
B), M(a), M(B), M(—ca), M(—f3), M(—a — (). Thus the simple modules in Oy,;, are
L(a+ B), L(a), L(B), L(—a), L(—=p), L(—a — B) and the projective modules in Oy,
are P(a + ), P(a), P(8), P(—a), P(—3), P(—a — ). We know that L(« + 3) is the
trivial (one-dimensional) &-module, M(« + ) = P(a + () is the big Verma module,
L(—a— ) = M(—a— () is the unique socle in any Verma module in Oy, and P(—a — ()
is the big projective module. Set I = {a + 3,a, 3, —a, —f3, —a — f}. Since M(—a — [3)
is the unique socle in any Verma module from O.,, from BGG reciprocity we obtain
[P(—a— ) : M(A\)] =1, for any X\ € I. We also recall that s,(a+ ) = 3, sg(a+ ) = a,
sgse(a+ B) = =0, sasp(a+ B) = —a, Sasgsa(a+ B) = sgsass(a+ 3) = —a — f.

Now we can describe the image E(O(P, L)y) of E. For this we have to recall our
s[(2, C) description of £. According to this description, E(O(P, L)) contains only those
Verma modules whose highest weight generators generate a non-simple 2-module. Hence,
E(O(P, L)) contains only M (a+ 3), M(«), M(—f). The corresponding simple objects
in E(O(P, L)) are the unique quotients of M(« + ) (resp. M(«), resp. M(—pf)),
which are the extensions of L(a + ) and L(f) (resp L(«) and L(—«), resp. L(—f)
and L(—a — (3)). We note, that the mentioned extension of L(—3) and L(—«a — () is
in fact M(—f). According to our description of projective modules (Theorem 13.1.2),
E(O(P, L)) contains P(3), P(—a) and P(—a — (). As in the sl(2,C) case, the abelian
structure on E(O(P, L)4iy) comes from O(P, L) and is different from that on O. For
example, in E(O(P, L)) we have a natural exact sequence

0— M(a+p)— P(B) > M(a+ ) —0,

which is not exact in O.

In E(O(P, L)4iv) we also have the standard modules S(5), S(—a) and S(—a—/), which
are induced from the projective modules in £. They can be presented as self-extensions of
Verma modules in E(O(P, L) i):

0= Ma+p)—SB) — Ma+p3)—0,

0— M(a) > S(—a) = M(a) — 0,

0— M(-p8) = S(—a—f8) = M(-f) — 0.

Now we can say something about the structure of projective modules. We know (Propo-
sition 12.2.1) that any projective in E(O(P, L)) has a standard filtration. In fact,
P(B) =8S(B8), P(—a) D S(B) and P(—«)/S(B) ~ S(—«a) and finally, P(—a— 3) D P(—«)
and P(—a — 3)/P(—a) ~ S(—a — f).
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It is easy to see, that the projectively stratified finite-dimensional algebra, which cor-
responds to E(O(P, L)), has infinite global dimension. Really, the minimal projective
resolution of M (a + ) in E(O(P, L)) has the form

...P(8) = P(B) = P(B) = M(a+3) =0,

and thus, is infinite. Here we also note that the big Verma module M (« + (), which is
projective in O, is no longer projective in E(O(P, L);iy); moreover, as we have seen, it
has an infinite minimal projective resolution. We also note, that in contrast with classical
O, simple modules in E(O(P, L)») can have self-extensions. For example, the standard
module S(—a—f3) is a self-extension of M (—/) and the last one is simple in E(O(P, L) riv)-

Now a little bit about the tilting modules. The indecomposable tilting modules in
Opriv are T(X), A € I. According to Lemma 13.3.4 and Proposition 13.3.1, E(O(P, L)riv)
contains only T'(—f), T(a) and T(a + §). It is clear, that T'(—f) ~ S(—a — () and
T(a+ f) ~ P(—a — (). According to Soergel’s character fomula, T'(«v) has a standard
filtration, T'(a) D S(—«) and T(a)/S(—a) ~ S(—a — f).

Further, the functor S ®ue) - sends P(—a — 3) to itself T'(a 4 ) ~ P(—a — f3),
P(—a) to T'(«) and P(8) to T(—03). Hence, it produces the statement that the algebra of
E(O(P, L)) coincides with its own Ringel dual.
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