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1. Introduction

This paper is motivated by the so-called (weak) Alexandru conjectures
as stated in the PhD Thesis [Fu1] of Alain Fuser and further popular-
ized in the series [Fu2, Fu3, Fu4, Fu5] of preprints and manuscript by
the same author and in the two arxive preprints [Ga1, Ga2] by Pierre-
Yves Gaillard (some further similar manuscript were available online
at different times). The conjectures concern certain homological prop-
erties of various categories of Harish-Chandra modules over real and
complex Lie algebras modeled on the classical properties of the BGG
category O from [BGG].

Given an abelian category A, Yoneda defined the extension groups
ExtdA(M,N) for any M,N ∈ A and d ≥ 0 using equivalence classes
of exact sequences of length d + 2. For any abelian subcategory B of
A with exact inclusion, the definition gives rise to a canonical map
ExtdB(M,N) → ExtdA(M,N) which is neither injective not surjective in
general. We say that B is extension full in A if these canonical maps are
isomorphisms for any M,N and d. Weak Alexandru conjecture could
be roughly simplified to the conjecture that certain subcategories of
categories of Harish-Chandra modules are extension full.

The property of being extension full in this context is motivated by a fa-
mous theorem of Cline, Parshall and Scott from [CPS1], which asserts
that the Serre subcategory associated with a coideal of the partially
ordered set indexing simple objects of some highest weight category C
is extension full in C. All definitions are designed so that this result
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of [CPS1], combined with well-known consequences of the Kazhdan-
Lusztig conjecture (see [Hu]), automatically implies that weak Alexan-
dru conjecture is true for the principal block O0, we prove this in detail
in Theorem 26 below. We also prove weak Alexandru conjecture for
thick category O0, but disprove it for a singular block in category O.
To the best of our knowledge, the general case of (weak) Alexandru
conjectures is still open. The result on singular blocks in category O
shows that the properties required by weak Alexandru conjecture are
less natural than and not equivalent to the extension fullness result in
[CPS1].

Extension fullness, the key notion behind weak Alexandru conjectures,
seems to be an interesting and non-trivial property. The aim of this
paper is to investigate extension fullness for various pairs of categories
of modules over complex semi-simple Lie algebras and basic classical Lie
superalgebras, which appear in the context of Alexandru conjectures.
Here is a short list of our main results:

• Category O is extension full in the category of weight modules.

• Thick categoryO is extension full in the category of all modules.

• The category of generalized weight modules is extension full in
the category of all modules.

• Computation of projective dimension, inside the thick cate-
gory O, of structural modules from the usual category O.

• Confirmation of weak Alexandru conjecture for the principal
block of thick category O and the associated category of Harish-
Chandra bimodules.

• Disproof of weak Alexandru conjecture for a singular block in
(thick) category O.

The paper is organized as follows. Section 2 provides necessary back-
ground from homological algebra. Section 3 gives several effective cri-
teria to check extension fullness for abelian categories in an abstract
situation. In Section 4 we prove that category O is extension full in the
category of weight modules and that thick category O is extension full
in the category of generalized weight modules. In Section 5 we show
that thick category O is extension full in the category of all modules
and even reduce computation of projective dimension for objects in the
thick category O to computation of projective dimension in the usual
category O. In Section 6 we focus on some basic homological proper-
ties in singular blocks of category O. Section 7 proves weak Alexandru
conjecture for regular blocks of (thick) category O and disproves it for
some singular blocks of (thick) O based on an examples described in
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Section 6. Finally, in Section 8 we extend our results to the category
of Harish-Chandra bimodules.

Despite of the fact that we do use some results from the first two papers
[Ma1, Ma2] in the series, the present paper is rather a complement to
than a continuation of [Ma1, Ma2].

2. Preliminaries

We denote by N the set of all non-negative integers. All subcategories
are assumed to be full. We abbreviate ⊗C by ⊗.

2.1. Extensions. We start with recalling the classical approach of
Yoneda, see [Bu] or [We94, Vista 3.4.6], to the definition of extension
groups in arbitrary abelian categories. For any abelian category A, two
fixed objects M,N ∈ A and d ∈ N, the set ExtdA(M,N) is defined as
follows. Consider the set of all exact sequences of length d+ 2,

(1) X : 0 → N → X1 → X2 → · · · → Xd → M → 0,

with X1, · · · , Xd ∈ A. Take two exact sequences X and Y of the above
form. If there are morphisms Xi → Yi, for 1 ≤ i ≤ d, such that the
following diagram commutes:

0 // N // X1
//

��

X2
//

��

. . . // Xd
//

��

M // 0

0 // N // Y1
// Y2

// . . . // Yd
// M // 0,

we set X ∼ Y . Then ExtdA(M,N) is the set of equivalence classes of
such exact sequences with respect to the equivalence relation gener-
ated by ∼. This set has the natural structure of an abelian group,
see [Bu].

By [Bu, Theorem 3.1], for any short exact sequence X ↪→ Y � Z in A
and any K ∈ A, there is the familiar long exact sequence
(2)
0 → HomA(Z,K) → HomA(Y,K) → HomA(X,K) →

Ext1A(Z,K) → Ext1A(Y,K) → Ext1A(X,K) →
Ext2A(Z,K) → Ext2A(Y,K) → Ext2A(X,K) → . . .

and similarly with K being the first argument.

2.2. Extension full subcategories. Consider an abelian category A
and an abelian full subcategory B. Assume that the inclusion functor
ι : B → A is exact. By definition, the inclusion of B into A induces
the canonical morphism of extension groups,

ϕd
M,N : ExtdB(M,N) → ExtdA(M,N),
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for any two objects M,N ∈ B and any d ∈ N. For convenience we
will leave out the reference to M,N and when we say that a property
holds for ϕd, it is understood that it holds for any ϕd

M,N . In general

the morphisms ϕd
M,N are neither injective nor surjective.

We say that B is extension full inA if and only if ϕd is an isomorphism
for every d ∈ N. Note that ϕ0 is always an isomorphism since B is a
full subcategory of A, while ϕ1 is an isomorphism if and only if B is
a closed subcategory (a Serre subcategory) of A. For convenience we
will slightly abuse notation and often write ExtdB(M,N) ∼= ExtdA(M,N)
to state the more specific property that ϕd

M,N is an isomorphism (in

other words, we always assume that if ExtdB(M,N) and ExtdA(M,N)
are isomorphic, the isomorphism is induced by ϕd

M,N).

We will often use the following easy observation which follows directly
from the definitions using [Bu, Theorem 3.1] and [Mc, Lemma III.1.4].

Remark 1. The maps ϕd give rise to a morphism (i.e. a chain map)
between the corresponding long exact sequences of the form (2) with
respect to categories B and A.

2.3. Projective and global dimension. For M ∈ A the projective
dimension pdAM ofM is the supremum of the set of all k ∈ N for which
there exists an N ∈ A such that ExtkA(M,N) 6= 0. If the category A
contains enough projective objects, the projective dimension of M ∈ A
coincides with the minimal length of a projective resolution of M in A.
The supremum of all the projective dimensions over all objects in A is
called the global dimension of A and is denoted by gl.dimA.

Given a short exact sequence A ↪→ B � C with A,B,C ∈ A, the long
exact sequence (2) implies the following inequalities:

pdAA ≤ max{pdAB , pdAC − 1};(3)

pdAC ≤ max{pdAA + 1 , pdAB}.(4)

2.4. Guichardet categories. Consider an abelian categoryA of finite
global dimension and let SA denote the class of simple objects in A.
An initial segment in A is the Serre subcategory I of A generated by a
subset SI ⊂ SA, for which the following condition is satisfied: for any
L,L′ ∈ SA such that pdAL

′ = pdAL− 1, L ∈ SI and Ext1A(L,L
′) 6= 0,

we have L′ ∈ SI .

An abelian category A of finite global dimension is called a Guichardet
category if every initial segment I is extension full in A.

2.5. Various categories of Lie algebra modules. Let g be a finite
dimensional semisimple complex Lie algebra and U(g) be its universal
enveloping algebra. Denote by b a Borel subalgebra of g with Cartan
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subalgebra h and nilradical n. Denote by I ′ an ideal of finite codimen-
sion in the local ring S(h)(0). The corresponding ideal in S(h) = U(h)
is denoted by I = S(h) ∩ I ′. Consider the following categories of g-
modules, see e.g. [BGG, Hu, So1, So3]:

• g-mod: The category of finitely generated U(g)-modules.

• W∞: The subcategory of g-mod consisting of generalized weight
modules; that is modules on which the action of h is locally
finite.

• WI : The subcategory of W∞-mod consisting of modules for
which the nilpotent part of the h-action factors over S(h)/I
(note that this requires adjustment of weights for each general-
ized weight space).

• O∞: The subcategory in W∞ of locally U(b)-finite modules.

• OI : The subcategory in WI of locally U(b)-finite modules.

• H: The category of finitely generated g-bimodules which are
locally finite for the adjoint action of g.

• k
χHl

θ: The subcategory in H of bimodules which are annihilated

by (kerχ)k on the left and by (ker θ)l on the right for two central
characters χ and θ.

• ∞
χ Hl

θ = ∪k∈N
k
χHl

θ;
k
χH∞

θ = ∪l∈N
k
χHl

θ;
∞
χ H∞

θ = ∪k∈N
k
χH∞

θ .

In particular, we have O∞ = ∪IOI and W∞ = ∪IWI . If I is chosen to
be the maximal ideal m in S(h)(0), we have Om = O, the BGG category
from [BGG]. Similarly, Wm = W is the category of finitely generated
weight modules. Simple objects in O∞ coincide with simple objects in
O. Objects of O∞ (and of OI) have finite length, so these categories
are both, artinian and noetherian. The categories O∞ and W∞ have
neither injective nor projective modules.

For each central character χ and every category X of g-modules defined
above we denote by Xχ the full subcategory of X consisting of all
modules with generalized central character χ.

For λ ∈ h∗ we denote by L(λ) ∈ O the simple highest weight module
with highest weight λ and by χλ the central character of L(λ).

2.6. Restricted duality. We conclude by recalling the usual construc-
tion of duality (i.e. a contravariant exact involutive equivalence) on
category OI . We use the transpose map τ on g described in [Hu, Sec-
tion 0.5]. The map τ fixes h pointwise and sends the root space gα
to g−α for each root α. The g-action on the classical dual module
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M∗ = HomC(M,C) is given by (gα)(v) = α(τ(g)v) for g ∈ g, v ∈ M
and α ∈ M∗.

For each µ ∈ h∗ and M ∈ OI denote by Mµ the h-submodule consist-
ing of all generalized weight vectors for weight µ. The dual module
(through τ |h = id) is denoted by (Mµ)∗. The nilpotent part of the
action of S(h) on (Mµ)∗ clearly factors over I and, moreover, we have
(M∗)µ ∼= (Mµ)∗. Then define

M? =
⊕
µ

(Mµ)∗ ∈ OI ,

canonically as a submodule of M∗. By definition, this leads to a du-
ality ? : O∞ → O∞, which also fixes every OI . This duality also
induces the usual duality on O as in [Hu, Section 3.2]. Similarly to
[Hu, Theorem 3.2(e)] we have

(5) Ext•O∞(M?, N?) ∼= Ext•O∞(N,M)

for any two M,N ∈ O∞.

2.7. Lie algebra cohomology. For a finite dimensional Lie algebra a,
the algebra cohomology of a with values in M ∈ a-mod satisfies

Hd(a,M) ∼= Extda(C,M) for d ∈ N,

see Corollary 7.3.6 in [We94]. We will need the following simple lemma.

Lemma 2. For any module V ∈ a-mod, for which there is a morphism
V � C, with C the trivial a-module, we have

Hdim a(a, V ) 6= 0.

Proof. From the Chevalley-Eilenberg complex in [We94, Corollary 7.7.3],
we know that Hdim a(a,C) 6= 0 and Hd(a,M) = 0, for d > dim a and
any M ∈ a-mod. The analogue of equation (2), with K = C in the
first argument, then yields

Hdim a(a, V ) � Hdim a(a,C),

which concludes the proof. �

3. Criteria for extension fullness

In this section we will derive some useful criteria for extension full-
ness. Our setup consists of an abelian category A and a full abelian
subcategory B. Further, we always assume that the inclusion functor
ι : B → A is exact.
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Lemma 3. Let A and B be as above. If all objects of B have finite
length, then B is extension full in A if and only if

ϕd
L,L′ : ExtdB(L,L

′) → ExtdA(L,L
′)

is an isomorphism for any two simple objects L,L′ ∈ B and any d ∈ N.

Proof. The “only if” statement is clear. We prove the “if” statement
by induction on the length of an object in B. Assume that we have
ExtdB(M,L′) ∼= ExtdA(M,L′) for all d ∈ N and for any simple L′ ∈ B
and M ∈ B of length smaller that or equal to i − 1. The module M
admits a short exact sequence N ↪→ M � K where N,K ∈ B have
length smaller than i.

Consider the chain map induced by ϕd between the long exact se-
quences of the form (2) constructed with respect to both of the cate-
gories A and B (see Remark 1). Now the isomorphism

ExtdB(M,L′) → ExtdA(M,L′)

follows from the Five Lemma (see e.g. [Mc, Lemma I.3.3]).

Now the proof that L′ can also be replaced by an arbitrary object of B
is similar. �
Lemma 4. Let A and B be as above. Assume that B has a full sub-
category B0 with the following properties

• B is the Serre subcategory of A generated by the objects of B0

• B0 has enough projective objects.

Then B is extension full in A if and only if, for d ∈ N, the map

ExtdB(P,K) → ExtdA(P,K)

is an isomorphism for every projective P in B0 and every K ∈ B0.

Proof. The “only if” statement is clear, so we prove the “if” statement.

We start by proving, by induction on d, that ϕd
M,K is always a monomor-

phism for arbitrary M,K ∈ B0. Since B is a Serre subcategory of A,
ϕ1 is an isomorphism. Now we assume that ϕi (restricted to B0) is
an monomorphism for i < d. Take arbitrary C,K ∈ B0, then there
is a P , projective in B0, such that there is a short exact sequence
X ↪→ P � C for some X ∈ B0. From (2) and Remark 1 we have the
following commutative diagram with exact rows:

Extd−1
B (P,K) //

ϕd−1
P,K

��

Extd−1
B (X,K) //

ϕd−1
X,K

��

ExtdB(C,K) //

ϕd
C,K

��

ExtdB(P,K)

ϕd
P,K

��

Extd−1
A (P,K) // Extd−1

A (X,K) // ExtdA(C,K) // ExtdA(P,K)
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Now, by assumption, ϕd−1
P,K and ϕd

P,K are isomorphisms and from the in-

duction step ϕd−1
X,K is a monomorphism. The Four Lemma (see e.g [Mc,

Lemma I.3.3(i)]) therefore implies that ϕd
C,K is injective, for arbitrary

C,K ∈ B0.

Now we prove, by induction on d, that ϕd
C,K is actually an isomorphism.

Assume ϕi is an isomorphism for i < d and consider P and X as in
the paragraph above. From (2) and Remark 1 we have the following
commutative diagram with exact rows:

Extd−1
B (X,K) //

ϕd−1
X,K

��

ExtdB(C,K) //

ϕd
C,K

��

ExtdB(P,K) //

ϕd
P,K

��

ExtdB(X,K)

ϕd
X,K

��

Extd−1
A (X,K) // ExtdA(C,K) // ExtdA(P,K) // ExtdA(X,K)

As ϕd−1
X,K is a bijection by the induction step, ϕd

P,K is a bijection by

assumptions, and ϕd
X,K is a monomorphism by the previous paragraph,

the Four Lemma implies that ϕd
C,K is an epimorphism.

By assumptions, any module in B has a finite filtration with quotients
in B0. The claim of the lemma now follows using the same argument
as in the proof of Lemma 3. �

The following result is a special case of Lemma 4, but we provide an
alternative proof, which is of interest in its own right.

Corollary 5. Let A and B be as above and assume that they both have
enough projective objects. If every projective object in B is acyclic for
the functor HomA(−, K) for any K ∈ B, then B is extension full in A.

Proof. Consider N ∈ B fixed. We need to prove that the functor
ExtjA(−, N), restricted to category B, is isomorphic to ExtjB(−, N).
We have the obvious isomorphism

HomB(−, N) ∼= HomA(−, N) ◦ ι,
of functors from the category B to the category Sets.

By assumption, the exact functor ι maps projective modules in B to
acyclic modules for the functor HomA(−, N). The classical Grothen-
dieck spectral sequence, see [We94, Section 5.8], therefore implies the
theorem. �

Now we consider an extra abelian category C, for which A (and there-
fore also B) is a full subcategory with exact inclusion. Denote by A∞

the Serre subcategory of C generated by objects of A. Furthermore we
denote by Ak, with k ∈ N, the subcategory of A∞ of objects which have
a filtration of length k with quotients inside A, then A∞ = ∪k∈NAk.
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We define similarly Bk and B∞ as subcategories in C, which are auto-
matically subcategories of Ak and A∞, respectively.

We show how the Yoneda extension groups in A∞, see Subsection 2.1,
can be seen as a direct limit of the corresponding extension groups
for Ak. For M,N ∈ A∞, we argue that the extensions ExtdA∞(M,N)
correspond to exact sequences

0 → N → X1 → X2 → · · · → Xd → M → 0,

where all modules M,N,X1, · · · , Xd are contained in Ak for some k
and where two such exact sequences are equivalent in A∞ if and only
if they are equivalent in (that is represent the same extension in) some
Al with l ≥ k. Indeed, an equivalence between two exact sequences
in A∞, as defined in Subsection 2.1, involves only a finite amount of
other exact sequences, so, in particular, a finite amount of modules.
Therefore all relevant exact sequences are contained in one particular
Al. This implies the following description.

Proposition 6. The extension groups ExtdA∞(M,N) where M and N
are in Ak0 ⊂ A∞ correspond to the limit of the directed system

ExtdAk(M,N) → ExtdAk+1(M,N), k ≥ k0,

where these morphism are in general neither injective nor surjective.

Corollary 7. Consider abelian categories B ⊂ A ⊂ C, with Bk and Ak

as defined above. If Bk is extension full in Ak for each k, then B∞ is
extension full in A∞.

Proof. To prove the isomorphism

ExtdB∞(M,N) ∼= ExtdA∞(M,N)

for every M,N ∈ B∞ and d ∈ N, we need to prove two statements
according to Proposition 6.

Statement I. Every exact sequence of the form (1), where all modules
are contained in some Ak and which is not a trivial extension in any of
the categories Al for l ≥ k, is equivalent to an extension in B∞.

Statement II. Every exact sequence of the form (1), where all modules
are contained in some Bk and which is not a trivial extension in any of
the categories Bl for l ≥ k, does not become a trivial extension in A∞.

We prove Statement I. By assumption, the extension given by (1) is
equivalent to one in Bk. Since the same extension is not trivial in Al

for an arbitrary l ≥ k, it is also a non-trivial extension in Bl. This
proves that this extension is equivalent to a non-trivial extension in
B∞. Statement II is proved similarly. �
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4. Category O and weight modules

The main result of this section is stated in the following theorem.

Theorem 8. Let g be a semisimple finite dimensional complex Lie
algebra and I ′ an ideal of finite codimension in S(h)(0).

(i) The category OI is extension full in WI .

(ii) The category O∞ is extension full in W∞.

First we note that OI is a Serre subcategory of WI and hence for
M,N ∈ OI we have

(6) Ext1OI (M,N) ∼= Ext1WI (M,N).

For each k ∈ N we can consider the ideal Ik = hkS(h), for which we use
the short-hand notation Ok = OIk and Wk = WIk . Then we arrive in
the situation described at the end of Section 3, with W∞ = ∪k∈NWk

and O∞ = ∪k∈NOk. For notational convenience we will work with the
ideals Ik even though the results hold generally.

For every k > 0 and λ ∈ h∗ we define the hk-module Vλ,k as U(h)/Jλ,k
where Jλ,k is the ideal of U(h) generated by all elements of the form
(h1 − λ(h1))(h2 − λ(h2)) · · · (hk − λ(hk)) where h1, h2, . . . , hk ∈ h. Fur-
ther, for n > 0 we define the g-module

Mn,k(λ) := U(g)
⊗
U(b)

U(b)/U(b)nn
⊗
U(h)

Vλ,k.

The following lemma is immediate from the definition.

Lemma 9. (i) We have Mn,k(λ) ∈ Ok.

(ii) Both Mn+1,k(λ) and Mn,k+1(λ) surject onto Mn,k(λ). Further-
more, the module M1,1(λ) is isomorphic to the classical Verma
module M(λ) with highest weight λ.

(iii) There is the following short exact sequence:

U(g)nn
⊗
U(h)

Vλ,k ↪→ U(g)
⊗
U(h)

Vλ,k � Mn,k(λ).

We denote the maximal direct summand of Mn,k(λ) belonging to the

subcategory Ok
χλ
, by M̃n,k(λ).

Lemma 10. For each d > 0 we have ExtdWk(M̃n,k(λ), L(ν)) = 0 for all
ν ∈ h∗ and all n � 0.

Proof. The result is trivial unless χν = χλ, so we assume that ν is in
the Weyl group orbit of λ. This leaves only a finite amount of choices
for ν.
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The module U(g) ⊗U(h) Vλ,k is projective in Wk. Lemma 9(iii) and
equation (2) therefore imply that we have

(7) Extd−1
Wk

(
U(g)nn ⊗U(h) Vλ,k, L(ν)

)
� ExtdWk(Mn,k(λ), L(ν)),

moreover, this is an isomorphism if d > 1.

The b-module U(b)nn ⊗U(h) Vλ,k has a resolution in terms of modules
U(b)⊗U(h) Vµ,k, where each µ ∈ h∗ is of the form

µ = λ+ α1 + · · ·+ αp,

where p ≥ n and αi’s are positive roots. This implies that the module

U(g)nn
⊗
U(h)

Vλ,k
∼= U(g)

⊗
U(b)

U(b)nn
⊗
U(h)

Vλ,k

has a projective resolution in Wk, by modules U(g)
⊗

U(h) Vµ,k, with
the same condition on µ.

According to the above, in order to prove that the left-hand side of
equation (7) is zero for d > 0, it suffices to show that the space

Homg

(
U(g)⊗U(h) Vµ,k, L(ν)

) ∼= Homh (Vµ,k, L(ν))

(where the isomorphism is given by adjunction) is zero, for µ as above.
For each ν, we can find an n large enough, such that all of weights µ
of the above form do not appear in L(ν). Taking the maximum over
this finite set of numbers yields the lemma. �

For every µ ∈ h∗, denote the projective cover of L(µ) in Ok by P k(µ).
Let W be the Weyl group of g.

Proposition 11. For n large enough, we have

M̃n,k(λ) =
⊕
w∈W

dim(L(w · λ)λ)P k(w · λ).

Proof. Lemma 10 for d = 1 and the isomorphism in (6) imply that

M̃n,k(λ) is projective in Ok, for n large enough. Furthermore, from
Lemma 9(iii) and the computation in the proof of Lemma 10 we get

Homg

(
M̃n,k(λ), L(w · λ)

) ∼= Homh

(
Vλ,k, L(w · λ)

)
,

which concludes the proof. �
Corollary 12. Consider M ∈ OI and P projective in OI . Then for
d > 0 we have

ExtdWI (P,M) = 0.

Proof. IfM is simple, this is an immediate consequence of the combina-
tion of Lemma 10 and Proposition 11. The general statement therefore
follows, using the usual arguments with long exact sequences, from the
fact that each module in OI has finite length. �
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Proof of Theorem 8. Claim (i) follows combining Corollaries 5 and 12.
Claim (ii) follows from claim (i) and Corollary 7. �

For I = m the category OI is the usual BGG category O. In this
case Theorem 8(i) states that category O is extension full in the cat-
egory of weight modules, which recovers an old result of Delorme, see
[De]. An important consequence is the following connection between
n-cohomology and extensions with Verma modules in category O, see
[Hu, Theorem 6.15(b)].

Corollary 13. For µ ∈ h∗ and N ∈ O we have

Homh(Cµ, H
k(n, N)) = ExtkO(M(µ), N).

Proof. The equality Homh(Cµ, H
k(n, N)) = ExtkW(M(µ), N) follows

immediately from the Frobenius reciprocity. The claim thus follows
from Theorem 8(i) for the case I = m. �

We would like to record the following observation.

Proposition 14. We have

gl.dimO = gl.dimW = dim g− dim h,

whereas the global dimensions of OI and WI are infinite if I 6= m.

Proof. The global dimension of O is well-known, see e.g. [Ma1, Propo-
sition 2], [Hu, Section 6.9] or [BGG]. The global dimension ofW follows
from the fact that a projective resolution inW is a projective resolution
for the relative (g, h)-cohomology.

The infinite global dimensions of OI and WI follow immediately from
considering a projective resolution in OI (respectively WI) of a projec-
tive module in O (respectively W). �

5. Category O∞

5.1. Category O∞ is extension full in g-mod.

Theorem 15. Let g be a complex semisimple finite dimensional Lie
algebra. Then both categories O∞ and W∞ are extension full in g-mod.

Before proving this, we note the following corollary.

Corollary 16. We have gl.dimO∞ = gl.dimW∞ = dim g.

Proof. Theorem 15 implies that the global dimension of O∞ and W∞

are smaller than or equal to dim g, the global dimension of g-mod. The
classical fact

Extdim g
g (C,C) = Hdim g(g,C) 6= 0,
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see Lemma 2, then shows that both global dimensions in question are
equal to this value. �

The remainder of this section is devoted to proving Theorem 15.

Lemma 17. Consider a finite dimensional abelian Lie algebra h and
the category F := ∪k∈NFk where Fk is the category of all finite dimen-
sional h-modules which are S(h)/hkS(h)-modules. Then the category
F is extension full in h-mod.

Proof. The commutative algebra S(h) is positively graded in the natu-
ral way with h being of degree one. The algebra S(h), being isomorphic
to the polynomial algebra in finitely many variables, is Koszul. Con-
sider the graded Koszul resolution P• of the trivial S(h)-module C (the
module structure on C is given by hC = 0). Then the −i-th compo-
nent P−i of this resolution is generated in degree i and P−i = 0 for
i > dim h.

For k ∈ N consider the algebra Ak := S(h)/hkS(h) together with the
functor Fk : S(h)-mod → Ak-mod given by M 7→ M/hkS(h)M . Ap-
plying Fk to P• gives a complex of projective Ak-modules which still
has homology C in the homological position zero and a lot of other
homologies in negative homological positions. However, all those ho-
mologies are concentrated in degrees ≥ k of our grading. Resolving
those homologies in Ak-mod we obtain that for k � 0 the graded
spaces Extdh(C,C) and ExtdAk

(C,C) agree in all degrees up to k − 1
for all d. Hence, taking the limit for k → ∞, yields isomorphism
ExtdF(C,C) ∼= Extdh(C,C).

Since all modules in F have finite length and C is the only simple
module in F , the result follows from Lemma 3. �

Frobenius reciprocity for extensions follows from adjunction between
derived functors. Since the category W∞ does not have projective
modules, we need the following lemma. We introduce the notation
C(h)I for the category of finite dimensional h-modules for which the
nilpotent part of the S(h)-action factors over I, with I an ideal as in
Section 2. Furthermore, we set C(h)∞ = ∪IC(h)I .

Lemma 18. For K ∈ C(h)∞, M ∈ W∞ and d > 0 we have

(8) ExtdW∞(Indg
hK,M) ∼= ExtdC(h)∞(K,ResghM).

Proof. There is an ideal J big enough such that both M and Indg
hK

belong to WJ . By Proposition 6, both the left-hand side and the right-
hand side of (8) are respectively given as limits of

ExtdWI (Ind
g
hK,M) and ExtdC(h)I (K,ResghM)
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over I ⊃ J . The isomorphism between these two extension groups for
every J follows from the usual Frobenius reciprocity. �
Lemma 19. Let I ′ be an ideal in S(h)(0) of finite codimension. If
P ∈ WI is projective and M ∈ W∞ is arbitrary, then the morphism

ExtdW∞(P,M) → Extdg(P,M),

is an isomorphism for all d ≥ 0.

Proof. Without loss of generality we may take

P ∼= U(g)⊗S(h) (S(h)/I ⊗ Cλ),

where Cλ = Vλ,1 is the simple 1-dimensional h-module corresponding
to λ. By Lemma 18, the proposed statement then reduces to

(9) ExtdC(h)∞(S(h)/I ⊗ Cλ,Res
g
hM) ∼= Extdh(S(h)/I ⊗ Cλ,Res

g
hM).

All modules in C(h)∞ decompose into generalized weight spaces and the
category decomposes into equivalent blocks corresponding to different
eigenvalues. It suffices to consider one block. The block corresponding
to 0 is exactly F from Lemma 17 and equation (9) is thus a consequence
of that lemma. �

Proof of Theorem 15. We apply Lemma 4, with A, B and B0 given by,
respectively, g-mod, W∞ and W . The fact that W∞ is extension full
in g-mod is therefore a consequence of Lemma 19 for the special case
I = m.

The fact that O∞ is extension full in g-mod is then an immediate
consequence of the result for W∞ and Theorem 8(ii). �

5.2. Projective dimensions in O∞. In this section we calculate pro-
jective dimensions inside category O∞ for modules in OI .

Theorem 20. (i) Consider M ∈ OI for some ideal I ′ in S(h)(0) of
finite codimension, with pdOIM < ∞, then

pdO∞M = dim h + pdOIM.

(ii) The minimal projective dimension of a module in O∞ is dim h.

Before proving this, we note that this results yields the projective di-
mension of all structural modules from O (that is simple, standard,
costandard, tilting, injective, projective modules) inside the category
O∞ by using the results in [Ma1, Ma2]. In particular, we have the
following corollary.

Corollary 21. Consider λ ∈ h∗ to be integral dominant. Then for
w ∈ W we have:
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(a) pdO∞L(w · λ) = dim g− l(w),

(b) pdO∞M(w · λ) = dim h+ l(w).

Proof. This is a consequence of the combination of Theorem 20 with
either [Hu, Theorem 6.9] or [Ma1, Propositions 3 and 6]. �

The remainder of this subsection is devoted to proving Theorem 20.

Lemma 22. For a projective P ∈ OI we have pdO∞P ≤ dim h.

Proof. For notational convenience we only consider the ideals Ik in this
proof. According to Proposition 11, every projective module in Ok is

a direct summand of some M̃n,k(λ) = (Mn,k(λ))χλ
, where λ ∈ h∗ and

n � 0. We prove that pdO∞M̃n,k(λ) ≤ dim h.

Take ν ∈ h∗ with χν = χλ. For d > 0, applying (2) inside the category
g-mod to the sequence from Lemma 9(iii) yields the exact sequence

Extd−1
g

(
U(g)nn ⊗U(h) Vλ,k, L(ν)

)
→ Extdg

(
M̃n,k(λ), L(ν)

)
→

→ Extdg
(
U(g)⊗U(h) Vλ,k, L(ν)

)
→ Extdg

(
U(g)nn ⊗U(h) Vλ,k, L(ν)

)
.

We take the projective resolution of U(g)nn
⊗

U(h) Vλ,k in Wk described
in the proof of Lemma 10. This resolution is given in terms of modules
of the form U(g)⊗U(h) Vµ,k with all µ 6≤ ν. As for such µ and for p > 0
we have

(10) Extpg
(
U(g)⊗U(h) Vµ,k, L(ν)

)
= Extph

(
Vµ,k, L(ν)

)
= 0,

our resolution is an acyclic resolution for the functor Homg(−, L(ν)),
which can be used to compute Extig(−, L(ν)). Since (10) is also true
for p = 0, we obtain that

Extig
(
U(g)nn ⊗U(h) Vλ,k, L(ν)

)
= 0 for i ∈ {d− 1, d}.

By Frobenius reciprocity we have

Extdg
(
U(g)⊗U(h) Vλ,k, L(µ)

) ∼= Extdh
(
Vλ,k, L(µ)

)
.

By Theorem 15 we have

Extdg
(
M̃n,k(λ), L(µ)

) ∼= ExtdO∞

(
M̃n,k(λ), L(µ)

)
.

The above now implies that, for d > 0,

(11) ExtdO∞(M̃n,k(λ), L(µ)) ∼= Extdh
(
Vλ,k, L(µ)

)
.

Since gl.dim h-mod = dim h, we get pdO∞M̃n,k ≤ dim h. �
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Using (11) one can even show that pdO∞M̃n,k = dim h, by consider-
ing the corresponding h-homology. However, this does not prove the
corresponding result for arbitrary projective modules because of the
nontrivial decomposition in Proposition 11.

Proof of Theorem 20. First we prove claim (ii). Consider M ∈ O∞,
it is a module of finite length with all simple subquotients from O,
therefore it has a weight λ such that Mλ 6= 0 and M contains no
vectors of higher weights. Similarly to the proof of Lemma 22 (as in
formula (11)) we have

Extdim h
O∞ (M̃n,1(λ),M

?) ∼= Extdim h
h (Cλ,M

?) ∼= Hdim h(h,C−λ ⊗M?).

This is non-zero by Lemma 2. Equation (5) therefore implies that M
has projective dimension at least dim h.

Now we prove claim (i) by induction on the projective dimension of M
inside OI . If the projective dimension is zero, the result follows from
Lemma 22 and the previous paragraph. We assume the result holds up
to projective dimension p− 1. For M ∈ OI , with pdOIM = p, there is
a P , projective in OI , and an N ∈ OI , with pdOIN = p− 1, such that
N ↪→ P � M . Formulae (3) and (4) yield

p+ dim h− 1 ≤ max{dim h , pdO∞M − 1}
pdO∞M ≤ max{p+ dim h , dim h},

which implies pdO∞M = p+ dim h. �

5.3. Projective dimensions in W∞.

Theorem 23. Let I ′ be an ideal in S(h)(0) of finite codimension. If
M ∈ WI satisfies pdWIM < ∞, then

pdW∞M = dim h + pdWIM.

Proof. From Lemma 18 and the algebra cohomology of h it follows
quickly that the projective dimension of projective modules in WI is
equal to dim h. The result then follows identically as in the proof of
Theorem 20. �

5.4. Basic classical Lie superalgebras. In this subsection we con-
sider basic classical Lie superalgebras, we refer to [Mu] for definitions.
We will denote a basic classical Lie superalgebra by g̃ and the un-
derlying Lie algebra of g̃ by g. An important property of these Lie
superalgebras is that the Cartan subalgebra of g̃ is equal to the one
of g. Therefore we have natural analogues of the categories introduced

in Subsection 2.5 and we denote the corresponding categories by ÕI ,

W̃I etc.
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Theorem 24. For a basic classical Lie superalgebra g̃ we have:

(i) The BGG category Õ is extension full in W̃.

(ii) The categories Õ∞ and W̃∞ are extension full in g̃-mod.

Proof. Consider a projective module P̃ in Õ. It is a direct summand of
Indg̃

gP for a projective module P in O. Using the Frobenius reciprocity,
we have

ExtdW̃(Indg̃
gP,M) = ExtdW(P,Resg̃gM),

which is zero for d > 0 by Corollary 12. Claim (i) now follows from
Corollary 5.

The same reasoning can be used to obtain the extension fullness of ÕI

into W̃I , for every ideal I ′ in S(h)(0) of finite codimension. Therefore,

Corollary 7 implies that Õ∞ is extension full in W̃∞.

Lemma 19 can be generalized immediately to basic classical Lie super-
algebras, since their Cartan subalgebra coincides with the one of the
underlying Lie algebra (alternatively, one can use the fact that projec-

tive modules in W̃I are induced from projective modules in WI and

Lemma 19). The fact that W̃∞ is extension full in g̃-mod then follows
from Lemma 4. �

6. Singular blocks in category O

6.1. Singular blocks in category O. Let λ be a dominant integral
weight for g and Wλ denote the stabilizer of λ in W with respect to the
dot action. Let w0 be the longest element in W and wλ

0 be the longest
element in Wλ. We also denote by a : W → N Lusztig’s a-function, see
[Lu1, Lu2].

Consider the corresponding singular block Oλ = Oχλ
. Then we have

the usual exact functors of translation out of and onto theWλ-wall:

θout : Oλ → O0 and θon : O0 → Oλ,

see [BG] for details. These functors satisfy

(12) θonθout ∼= Id
⊕|Wλ|
Oλ

.

Furthermore, the functor θoutθon is the unique indecomposable projec-
tive endofunctor of O0 sendingM(0) to the projective cover of L(wλ

0 ·0).
This functor is usually denoted θwλ

0
. The main result of this section is

the following observation.

Theorem 25. (i) The projective dimension of the simple Verma mo-
dule in Oλ equals a(w0w

λ
0 ).
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(ii) We have gl.dimOλ = 2a(w0w
λ
0 ).

(iii) The projective dimension of the dominant simple module in Oλ

equals 2a(w0w
λ
0 ).

Proof. Let L be the simple Verma module in Oλ. Then L ∼= θonL(w0 ·0)
and hence

θoutL ∼= θoutθonL(w0 · 0) = θwλ
0
L(w0 · 0)

is the indecomposable tilting module T (w0w
λ
0 · 0) in O0 with highest

weight w0w
λ
0 · 0. By [Ma2, Theorem 17], the projective dimension of

T (w0w
λ
0 · 0) equals a(w0w

λ
0 ). On the other hand, from (12) it follows

that θonT (w0w
λ
0 ·0) is a direct sum of copies of L. As projective functors

are exact and send projective modules to projective modules, it follows
that the projective dimensions of L and T (w0w

λ
0 · 0) coincide, proving

claim (i).

The parabolic-singular Koszul duality from [BGS] asserts that the
Koszul dual of Oλ is the parabolic subcategory OWλ

0 of O0 associated
to Wλ. We use the normalization of Koszul duality which maps simple
objects to indecomposable injective objects. By the graded length of a
module we mean the number of non-zero graded components with re-
spect to Koszul grading. Then Koszul duality maps a simple module of
projective dimension p to an indecomposable injective module of graded
length p+1 and reverses the quasi-hereditary order. Therefore Koszul
duality maps L to the dominant costandard module inOWλ

0 . We denote
the latter module by M , which thus has graded length a(w0w

λ
0 )+1, by

claim (i). The injective envelope I of the dual module M? (the dom-
inant standard module) is known to be projective-injective and hence
tilting, see e.g. [Ma2, Section 3]. This is the only tilting module which
contains the dominant simple as a subquotient. Therefore I is the
tilting module associated to the standard module M?, i.e. we have a
(unique up to a nonzero scalar) injection M? ↪→ I and a (unique up to
a nonzero scalar) surjection I � M and the image of the composition
of these two maps coincides with the simple socle of M . As the socles
of I and M? agree and, at the same time, the heads of I and M agree,
it follows that

graded length(I) = graded length(M) + graded length(M?)− 1.

Clearly, the graded lengths of M and M? coincide. In [Ma2, Sec-

tion 3] it is shown that all projective-injective modules in OWλ
0 have

the same graded length and that each projective module is a submodule
of a projective-injective module. This implies that the maximal graded
length of an indecomposable injective module in OWλ

0 is 2a(w0w
λ
0 ) + 1

which implies claim (ii).
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Claim (iii) follows from the fact that Koszul duality maps the dominant
simple module in Oλ to the antidominant injective in the parabolic
category and the latter module is automatically projective and hence
has maximal graded length, as mentioned in the previous paragraph.
This completes the proof. �

6.2. The sl3-examples. As described in [St, Section 5.2.1], any non-
trivial singular integral block of the category O for sl3 is equivalent to
the category of modules over the following quiver with relations:

(13) 1
a

** 2
c

**

b

jj 3
d

jj cd = 0, ab = dc.

Let Li for i = 1, 2, 3 be simple modules corresponding to vertices in
this quiver and Pi be their projective covers. Then P3, P2 and P1 have
the following Loewy structure, respectively:

L3

��
��

�
L2

��
��

�
??

??
?

L1

??
??

?

L2

��
��

�
L1

??
??

?
L3

��
��

�
L2

��
��

�
??

??
?

L1 L2

��
��

�
L1

??
??

?
L3

��
��

�

L1 L2

��
��

�

L1

A direct computation thus implies

pdL1 = 1, pdL2 = pdL3 = 2.

In particular, the global dimension of this module category equals 2.
All this fully agrees with Theorem 25 and with [MaO].

Further, it is straightforward to check that the minimal projective res-
olution of L3 has the following form:

0 → P3 → P2 → P3 → L3 → 0.

This implies that we have

(14) Ext2(L3, L3) 6= 0

in this module category.

6.3. Singular speculations. It would be interesting to generalize the
explicit description of homological invariants for structural modules in
the blockO0 described in [Ma1, Ma2], including projective dimension of
simple, standard, indecomposable tilting and indecomposable injective



20 KEVIN COULEMBIER AND VOLODYMYR MAZORCHUK

modules, to the singular case. Theorem 25 makes some steps in this
direction.

Using the same arguments as in the proof of Theorem 25 one shows that
computation of projective dimension of indecomposable tilting modules
in Oλ is equivalent to computation of projective dimension in O0 of the
modules θwλ

0
L(w ·0) where w is a longest coset representative in W/Wλ.

This is a special case of [Ma2, Problem 24].

7. Regular blocks of O and O∞ are Guichardet

Our main result in this section is the following.

Theorem 26. Let g be a semisimple complex Lie algebra.

(i) For χ a regular central character, both categories Oχ and O∞
χ are

Guichardet.

(ii) For θ a singular central character, the categories Oθ and O∞
θ are

not always Guichardet.

The first step in proving Theorem 26 is determining initial segments in
the categories O and O∞.

A coideal ΓW in the Weyl groupW , with respect to the Bruhat order ≥,
is a subset of W such that w′ ≥ w and w ∈ ΓW imply w′ ∈ ΓW . We use
the same conventions for the Bruhat order as in [Hu, Section 0.4].

An ideal Γ in h∗ is a subset such that λ′ ≤ λ and λ ∈ Γ imply λ′ ∈ Γ.
For an integral dominant λ ∈ h∗, we have w · λ ≥ w′ · λ if and only if
w ≤ w′, so there is a one to one correspondence between coideals in
W and ideals in h∗ contained in the orbit of a fixed integral regular
weight.

Lemma 27. (i) Consider a regular central character χ. The initial
segments in Oχ are the full Serre subcategories generated by a
set of modules of the form {L(λ)|λ ∈ Γ}, for Γ some ideal in
{λ ∈ h∗ |χλ = χ}.

(ii) The initial segments in O∞ are the Serre subcategories generated
by the initial segments in O.

Proof. We start with the principal block O0 and show that the initial
segments are the full Serre subcategories generated by a set of modules
of the form {L(w · 0)|w ∈ ΓW}, for ΓW some coideal in W .

By [Ma1, Proposition 6] we have pdOL(w) = 2l(w0)− l(w). The Ext1-
quiver of O0 is known as a consequence of the Kazhdan-Lusztig con-
jecture, see e.g. [AS, Section 7]. In particular, we have
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• if w′ ≥ w and l(w′) = l(w) + 1, then Ext1O(L(w), L(w
′)) 6= 0;

• if l(w′) = l(w) + 1 and w and w′ are not comparable, then
Ext1O(L(w), L(w

′)) = 0.

The first property implies that every initial segment in O0 corresponds
to an coideal in W . The second property implies that every coideal in
W corresponds to an initial segment. This proves claim (i) for O0.

Next, we consider an indecomposable block inside Oχ, for χ a non-
integral regular central character. By [So2], such a block is equivalent
to some regular integral indecomposable block in category O (possibly
for a different Lie algebra), where the equivalence preserves the high-
est weight structure. Since an equivalence of categories maps initial
segments to initial segments, claim (i) follows.

Now we turn to O∞ for arbitrary central characters. We argue that
the Ext1-quiver of O∞ is the same one as for O, up to loops (that is
self-extensions of simple modules). Imagine there is a module M 6∈ O
satisfying

L(λ) ↪→ M � L(λ′)

for λ, λ′ ∈ h∗. This module is clearly in O2. If λ′ 6≤ λ, then M is
a quotient of M(λ′) by the universal property of Verma modules. If
λ′ < λ we can use the duality ? on O2, which preserves O, to return to
the previous situation. Therefore λ = λ′.

Going from O to O∞, we therefore have that the extension quivers
coincide up to self-extensions and the projective dimensions of simple
modules coincide up to a shift by dim h, see Theorem 20. Therefore
claim (ii) follows. �

Lemma 27 allows us to apply a result on stratified algebras by Cline,
Parshall and Scott in [CPS2], or the special case of quasi-hereditary
algebras in [CPS1].

Proof of Theorem 26. Lemma 27(i) implies that, in every regular block,
the initial segments correspond to ideals in the poset of weights. The
property for Oχ with χ regular therefore follows from [CPS1, Theo-
rem 3.9(i)].

Indecomposable blocks of category OI are stratified (in the sense of
[CPS2, Definition 2.2.1]) with respect to the order ≤ on the weights,
see [So3, Lemma 8] and [So3, Theorem 7] or [KKM, Corollary 9(a)].
Take Γ an ideal in the poset (of a regular block) and let OI

Γ be the
Serre subcategory of OI generated by {L(λ) |λ ∈ Γ}. Then

ExtjOI
Γ
(M,N) → ExtjOI (M,N)
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is an isomorphism for any M,N ∈ OI
Γ, see e.g. [CPS2, Equation

2.1.2.1]. Corollary 7 then implies that

ExtdO∞
Γ
(M,N) → ExtdO∞(M,N)

is an isomorphism for any M,N ∈ O∞
Γ and d ≥ 0, so O∞

χ is Guichardet
by Lemma 27(ii), which proves claim (i).

For claim (ii), we consider the singular example for sl(3) described
in Subsection 6.2. In this example, the Serre subcategory generated
by the simple module L3 is an initial segment. This follows from the
calculation of the projective dimensions and

Ext1(L1, L3) = Ext1(L3, L1) = 0,

because the vertices 1 and 3 in the quiver (13) are not connected. Since
Ext1(L3, L3) = 0, this initial segment is semi-simple. However, it is not
extension full by (14). �
Remark 28. After Theorem 26(ii) it is natural to relax weak Alexan-
dru conjecture for O as follows: Let C be a singular block of O. For
d ∈ N let Cd denote the Serre subcategory of C generated by all simple
modules of projective dimension at most d. Is Cd extension full in C?

8. Harish-Chandra bimodules

Let χ be a regular central character and θ be a central character in
the same weight lattice as χ. The equivalences of categories in [BG,
Theorem 5.9] and [So1, Theorem 1] imply that for k ≥ 1 the category
Ok

θ is equivalent to both k
χH∞

θ and ∞
θHk

χ and that O∞
θ is equivalent to

both ∞
θH∞

χ and ∞
χH∞

θ . As a consequence, the claims of the following
result follow from Corollary 16, Theorem 20 and Theorem 26, respec-
tively.

Theorem 29. Let χ be a regular central character and θ be a central
character in the same weight lattice as χ.

(i) The global dimension of the category ∞
χH∞

θ is finite. If χ is inte-
gral, then the global dimension of ∞

χH∞
χ is dim g.

(ii) Consider M ∈ k
χH∞

θ with pdk
χH∞

θ
M < ∞, then

pd∞
χH∞

θ
M = dim h + pdk

χH∞
θ
M.

(iii) If θ is also regular, the categories ∞
θH∞

χ , ∞
χH∞

θ , 1
χH∞

θ and ∞
θH1

χ

are Guichardet.

We conclude with the result that, in spite of Theorem 15, the category
∞
χH∞

χ is not extension full in the category of bimodules.
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Proposition 30. The category ∞
χH∞

χ for χ a regular integral central
character is not extension full in the category of g-bimodules.

Proof. Without loss of generality we may assume that χ is the central
character of the trivial g-module C. As noted in Theorem 29, the global
dimension of the category ∞

χH∞
χ is dim g. The trivial g-bimodule C is

an object of ∞
χH∞

χ . Identifying g-bimodules with g ⊕ g-modules, we
find that

Ext2 dim g
g-mod-g(C,C) ∼= H2 dim g(g⊕ g,C) 6= 0,

by Lemma 2. This implies that

0 = Ext2 dim g
∞
χH∞

χ
(C,C) → Ext2 dim g

g-mod-g(C,C)

can not be an isomorphism. �

Acknowledgment. KC is a Postdoctoral Fellow of the Research Foun-
dation - Flanders (FWO). VM is partially supported by the Swedish
Research Council. We thank Vera Serganova and Catharina Stroppel
for useful discussions.

References

[AS] H. Andersen, C. Stroppel. Twisting functors on O. Represent. Theory 7
(2003), 681–699

[BGS] A. Beilinson, V. Ginzburg, W. Soergel. Koszul duality patterns in repre-
sentation theory. J. Amer. Math. Soc. 9 (1996), no. 2, 473–527.

[Bu] D. Buchsbaum. A note on homology in categories. Ann. of Math. (2) 69
(1959), 66–74.
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