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Abstract

In this paper we discuss generalizations of the concepts of good filtration di-
mension and Weyl filtration dimension, introduced by Friedlander and Parshall for
algebraic groups to properly stratified algebras. We introduce the notion of the fini-
tistic A-filtration dimension for such algebras and show that the finitistic dimension
for such an algebra is bounded by the sum of the finitistic A-filtration dimension
and the V-filtration dimension. In particular the finitistic dimension must be finite.
We also conjecture that this bound is exact when the algebra has a simple preserv-
ing duality. We give several examples of well-known algebras where this is the case,
including many of the Schur algebras, and blocks of category 0. We also give an
explicit combinatorial formula for the global dimension in this case.

1 Introduction

The study of homological invariants like the global or finitistic dimension of an algebra
is very important for understanding the structure of its module category. In this paper,
we discuss generalizations of the concepts of good filtration dimension and Weyl filtration
dimension, introduced by Friedlander and Parshall, [FP], to properly stratified algebras.
The structure of a properly stratified algebra requires the existence of four different families
of modules, called standard, proper standard, costandard and proper costandard modules,
and we study the notion of filtration dimensions with respect to all these families. The
notions of filtration dimensions with respect to proper standard and proper costandard
modules were recently introduced and studied by Zhu and Caenepeel in [CZ]. In [CZ]
these notions are related to the projective dimension of the characteristic tilting modules,
however, no relation to, for example, the finitistic dimension was given.

In the present paper, we relate the filtration dimensions with respect to proper standard
and proper costandard modules with the finitistic dimension of the properly stratified
algebra, obtaining some upper bound for the last one. These bounds are usually much
better than the classical bounds, obtained in [AHLU1]. Moreover, we conjecture that
the bound we obtain is exact when the algebra has a simple preserving duality. It also



happens that the finitistic dimension of a properly stratified algebra is related to the
finitistic filtration dimensions with respect to the standard and costandard modules.

We give several examples of well-known quasi-hereditary algebras where our bound is
optimal, including many of the Schur algebras, and all blocks of the BGG category O.
The last example is considered in detail and in many cases we give an explicit combi-
natorial formula for the global dimension. Unfortunately, we did not manage to find an
elegant argument for the category O and were forced to use the (very non-trivial) Koszul
duality theorem of Beilinson-Ginzburg-Soergel, [BGS]|, and Backelin, [Bal, and the recent
description of Koszul quasi-hereditary algebras due to Agoston-Dlab—Lukécs, [ADL].

As one of the corollaries of our results we also get upper bounds for the finitistic
dimension of the parabolic generalizations of O, considered in [FKM]. It is known that
these categories appear as categories of Harish-Chandra bimodules, [KM].

2 Properly stratified algebras

Throughout the paper A will denote a basic finite-dimensional associative algebra over an
algebraically closed field, k. By a module we will always mean left module. For a primitive
idempotent, e = e;, we will denote by L(¢) the corresponding simple module, by P(i) the
projective cover of L(i) and by I(7) the injective envelope of L(i). We say that A is properly
stratified if the following properties hold:

1. There is a given linear order, <, on a complete set, {ei,es,...,e,} of primitive
orthogonal idempotents. We will always assume that this order is given by the
natural ordering of the indices.

2. There is a family, {A(i)}, i = 1,2,...,n, of A-modules, such that the module P(j)
surjects on A(j) for every j, and the kernel of this map is filtered by A(z), i > j.

3. There is a family, {A(i)}, i = 1,2,...,n, of A-modules, such that the module A(j)
surjects on L(j) for every j, with the kernel of this map being filtered by L(i), i < j;
and such that the module A(y) is filtered by A(j5) for all j.

The modules A(i) are called standard modules and the modules A(j) are called proper
standard modules. In a dual way we also define costandard modules V(i) and proper co-
standard modules V(i). We denote by F(A) (resp. F(A), resp. F(V), resp. F(V)) the
full subcategory in the category of all A-modules, consisting of all modules, filtered by A(7)
(resp. A(j), resp. V(i), resp. V(i)).

From now on, throughout the paper all algebras will be assumed to be properly strati-
fied.

An A-module M € F(A)NF(V) is called tilting and an A-module M € F(A)NF(V) is
called cotilting. By [AHLUZ2] (see also [Ri] for the setting of quasi-hereditary algebras) every
tilting (resp. cotilting) module is a direct sum of indecomposable tilting (resp. cotilting)
modules, the later being in a natural bijection with simple modules. For 7 = 1,...,n we
denote by T'(i) (resp. S(7)) the indecomposable tilting (resp. cotilting) modules, whose
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every A (resp. V) filtration starts (resp. ends) with A(i) (resp. V(i)). The modules
T =?! ,T(i) and S = & ,S(i) are called the characteristic tilting and the characteristic
cotilting modules respectively.
A properly stratified algebra, A, as above is quasi-hereditary if and only if it has a finite
global dimension, and it has finite global dimension if and only if A(i) ~ A(:) for all j.
We say M has a A-resolution (resp. A-resolution) of (possibly infinite) length [ if we
have a resolution

0O—-Xi =X 1= —=>X1=2Xg—-M—=0

with all X; € F(A) (resp. F(A)). Dually we say M has a V-resolution (resp. V-resolution)
of (possibly infinite) length [ if we have a resolution

0O+ M-—=>Xg=- X1 = =2Xi1—2X,—=0

with all X; € F(V) (resp. F(V)).

Since the projectives P(i) € F(A) C F(A) and the injectives are in F(V) C F(V),
these resolutions exist for all A-modules.

We define the A-filtration dimension of M, abbreviated A.f.d.(M), to be the minimal
length of a finite A-resolution of M, should one exist and A.f.d.(M) = oo otherwise. We
similarly define A.f.d.(M), V.f.d.(M) and V.f.d.(M).

For the properly stratified algebra A we also define

V.f.d.(A) = sup{V.f.d.(M) | M € A — Mod},
A.f.d.(A) = sup{A.f.d.(M) | M € A — Mod}.

As we will see in Corollary 1 both V.f.d.(4) and A.f.d.(A) are finite for any properly
stratified algebra A.

If a properly stratified algebra A is not quasi-hereditary then there are A-modules,
for which the A-filtration dimension is infinite and there are A-modules, for which the V-
filtration dimension is also infinite. Indeed, it is fairly obvious that the projective dimension
of any A-module of finite A-filtration dimension is finite since the projective dimension of
every A(i) is finite. Dually, the injective dimension of any A-module of finite V-filtration
dimension is finite since the injective dimension of every V(i) is finite. Now the desired
conclusion follows from the remark above that A is not quasi-hereditary if and only if the
global dimension of A is infinite. Taking this into account it makes sense to define for the
properly stratified algebra A

fin. V.f.d.(A) = sup{V.f.d.(M) | M € A— Mod with V.f.d.(M) < oo},
fin. A.f.d.(A) = sup{A.f.d.(M) | M € A —Mod with A.f.d.(M) < oo}.

Since A(i) € F(A) and V(i) € F(V) for all i it follows immediately that A.f.d.(M) <
A.f.d.(M) and V.f.d.(M) < V.f.d.(M) for all A-modules M. Since all projective mod-
ules belong to F(A) and all injective modules belong to F(V), we also have A.f.d.(M) <
p.d.(M) and V.f.d.(M) <i.d.(M) for all A-modules M.
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Remark 1. Note that V.f.d.(A) is defined for A as an algebra not for A = 4A considered
as a left A-module. In fact, since all projective A modules belong, by definition, to F(A) C
F(A), we always have A.f.d.(4A) = 0 = A.f.d.(4A). However, later on we will see that
V.f.d.(A) = V.f.d.(,A).

3 Main results

We start with the following lemma.

Lemma 1.

]

A.f.d.(M) = sup{d | Ext*(M,V(i)) # 0 for some i}
A.f.d.(M) = sup{d | Ext®(M,V(i)) # 0 for some i}
V.f.d.(M) = sup{d | Ext*(A(i), M) # 0 for some i}
V.f.d.(M) = sup{d | Ext*(A(i), M) # 0 for some 1}
Proof. The proof of these statements follows exactly as in the quasi-hereditary algebra case

[FP, Proposition 3.4] using dimension shifting once we have that these statements are true
in degree zero. That is we have

M € F(A) if and only if Ext(M,V(j))=0foralli>0andall j €l

and similarly for the other cases. But these properties are true for properly stratified
algebras using, for example, [D]l, Theorem 5] (see also [DRI1] for the setting of quasi-
hereditary algebras). O

Corollary 1. 1. We have,
A.f.d.(A) =sup{i.d.(V(4)) | j €T} =i.d. S <
V.f.d.(A) =sup{p.d.(A(§)) | j €T} =p.d.T < 0
where S and T are the respective characteristic cotilting and tilting modules for A
(see [AHLU2]).
2. We have that V.f.d.(A) = V.f.d.(4A4).

Proof. It is clear using the previous lemma that A.f.d.(A) = sup{i.d.(V(j)) | j € T'}.
This is also equal to i.d.(S) where S is the characteristic cotilting module for A using
the dual version of [CZ, Proposition 2.2]. Similar remarks hold for V.f.d.(A). Now by
[AHLU1, Proposition 1.8] and its dual version, all A(j) and V(j) have finite projective
and injective dimensions respectively, hence the first statement.

The second statement now follows from the first one and the remark that, because
of the fact that Hom(A(¢), _) is covariant, the long exact sequence associated with the
sequence 0 — K (i) — P(i) — L(i) — 0 implies that the (finite) supremum

sup{d | Ext*(A(i), M) # 0 for some 7}

is achieved on some projective A-module. O



Remark 2. In the case wheni.d.(4A) < oo one also gets that fin. V.£.d.(A) = V.f.d.(4A)
by the same arquments as used in the proof of the second statement of Corollary 1.

Lemma 2. Let A be a properly stratified algebra, then we have the following inequalities
fin. A.f.d.(A) < A.f.d.(A)

fin. V.£.d.(A) < V.f.d.(A).

Proof. We prove the first statement, the second is similar.

Let M be an A-module with finite A-filtration dimension. Then we have a finite
A-tesolution for M. Since each A()) is filtered by A(u)’s, such a resolution is also a
A-resolution for M. Hence A.f.d.(M) < A.f.d.(M) < cc.

Now suppose M has finite A-filtration dimension d. So there exists 7 such that
Ext?(M,V(i)) is non-zero. We claim that Ext*(M, V(i) is also non-zero. Since d =
A.f.d.(M) > A.f.d.(M) we have that Ext/(M,V(i)) and Ext?(M,V(i)) are zero for
j > d. Since A is properly stratified we have the following short exact sequence for V(7)

0—+K—=V(E)—V(E) —0 (1)

where K (possibly zero) is filtered by V(i)’s. We now apply Ext*(M, —) to the short exact
sequence (1) to get

oo = Ext4(M, K) — Ext4(M, V(i)) = Ext?(M, V(i) = 0

where the last zero follows by the argument above. But by assumption on i, Ext?(M, V(i)
is non-zero. Hence Ext?(M, V(i) is also non-zero. Thus A.f.d.(M) =d = A.f.d.(M) if
A.f.d.(M) is finite. Hence we have fin. A.f.d.(4) < A.f.d.(A4). O

We denote the projectively defined finitistic dimension of A by fin. dim(A). We here
note that the left-right symmetry of the concepts in the following theorem means that it
applies equally well to the injectively defined finitistic dimension.

Theorem 1. Let A be a properly stratified algebra, then we have the following

fin. dim(A) < fin. A.f.d.(A) + V.f.d.(4) <
< V.f.d.(A) +A.f.d.(A) = p.d.(T) +1i.4d.(5).

Proof. Let M € A— Mod with finite projective dimension. Then M has finite A-filtration
dimension and so has a finite A-resolution of length at most fin. A.f.d.(A). The end term
of this resolution has a A-filtration and hence has finite projective dimension bounded
by V.f.d.(4). Hence the projective dimension of M is bounded by fin. A.f.d.(A) +
V.f.d.(A). The other inequalities follow using Corollary 1 and Lemma 2. O



Remark 3. There are “classical” bounds for the global dimension of a quasi-hereditary
algebras and the finitistic dimension of a stratified algebras, obtained in [DR2] and [AHLU1]
respectively. These bounds are given as 2m — 2, where m denotes the number of pairwise-
non-isomorphic simple modules. The number m can be even substituted by one plus the
hewght of the minimal possible partial order on simple modules, which allows the prescribed
stratified structure. However, many examples are known (see [ADL, AHLU1, AHLU2,
DR3]), when one can show that the classical bound is not exact. One good example is the
following algebra An, which is the path algebra of the quiver

ai a2 as An—2 an—1
17 ™27 ™3 AR B )
O~ — O < — @ ~___— ~— 0 <« —©
b1 b2 b3 bp—2 bn—1

modulo the relations a;b; = 0 for all possible i.

This algebra is quasi-hereditary and the number of simple modules, n, for this algebra
coincides with one plus the height of the minimal possible partial order on simple modules,
which allows the prescribed quasi-hereditary structure. However, it is easy to calculate that
the global dimension of this algebra is in fact 2. At the same time it is also quite easy to
calculate that for this algebra we have T = S and p.d.(T) = i.d.(T') = 1 and therefore
fin.dim(A,) =2 =2-p.d.(T) = p.d.(T) +1i.d.(T). This shows that the bound obtained in
Theorem 1 can be more effective than the “classical” one.

Actually, it is easy to see that p.d.(T) = sup{p.d.(A(?)) | 1 <i<n} <n-—1 for any
properly stratified algebra with n simples, arquing exactly in the same way as the quasi-
hereditary case. (See [DR1].) We dually havei.d.(S) < n—1 and thus p.d.(T)+p.d.(S) <
2n — 2.

Suppose A has a simple preserving duality, that is an exact involutive and contravariant
equivalence preserving simple modules. Thus it swaps A(i) with V(i) and A(i) with V(i).
Then fin. A.f.d.(A) = fin.V.f.d.(4) < V.f.d.(4) = A.f.d.(A) = p.d.(T) = i.d.(S).
Theorem 1 then gives us that fin. dim(A) < 2p.d.(T). As we have a large class of examples
for which equality holds we formulate the following conjecture.

Conjecture 1. Suppose A is properly stratified and has a simple preserving duality. Then
fin. dim(A) = 2p.d.(T).

In the case where A is quasi-hereditary this reduces to showing that the global dimension
of A is twice its V-filtration dimension. We can at least show this when V.f.d.(A4) = 1.

Lemma 3. Let A be a quasi-hereditary algebra with simple preserving duality denoted °
and with V.f.d.(A) = 1. Then the global dimension of A is two.

Proof. Since V.f.d.(A) = 1 there is a simple L(i) for A with V.f.d.(L(3)) = 1. The result
now follows using [Pal, Lemma 2.6] which says that Ext*(L(i), L(i)) = Hom(Q°, Q) # 0
where @ is the quotient V(i)/L(7) and Q° is its dual. O



Conjecture 1 is also true for quasi-hereditary algebras which satisfy a particular prop-
erty. Namely that there is a partial order < on the set of equivalence classes of primitive
idempotents such that the algebra is quasi-hereditary with respect to (arbitrary linear ex-
tensions of) this order and for which g < A implies V.f.d.(L(n)) < V.f.d.(L(\)). This
property holds for generalized Schur algebras whose weights are regular ([Pa2]) and the
regular block of category O (follows from [Ca] or the last remark in [BGG]). Although this
property is far from being true in general. A proof of the conjecture for algebras satisfying
this property will appear in [EP].

In [CZ, Section 3] it is shown that for the quasi-hereditary algebras having an exact
Borel subalgebra (in the sense of Konig, [Ko]) the characteristic tilting module over the
Borel subalgebra induces up to a characteristic tilting module over the original algebra,
moreover, the projective dimensions of these two modules coincide. The arguments from
[CZ, Section 3] easily extend to properly stratified algebras with an exact Borel subalgebra
in the sense of [KIM], where we refer the reader for all definitions and examples. Until the
end of this section we assume that A is a properly stratified algebra and B is an exact
Borel subalgebra of A. Both A and B are properly stratified. Hence, to distinguish the
corresponding structural modules, we will add the subscript A or B to them, respectively.

Lemma 4. fin. dim(B) = p.d.(T5).

Proof. Since B is pyramidal (see [KIM]), the characteristic cotilting B-module is injective.
This, together with Theorem 1, implies p.d.(7s) < fin.dim(B) < p.d.(Ts) +i.d.(Sg) =
p.d.(T's) and hence the statement. O

Lemma 5. Let B be an exact Borel subalgebra of a properly stratified algebra, A. Then
for any B-module M having a standard filtration (as a B-module) the A-module A @ M
has a standard filtration (as an A-module), moreover, p.d.(A®p M) < p.d.(M).

Proof. The idea is the same as in [CZ, Lemma 3.2]. Since B is an exact Borel subalgebra
of A, the functor A ®p _ is exact and sends projective B-modules to projective A-modules
(see [KIM, Section 4]). Hence it sends the minimal projective resolution of M to some
projective resolution of A ® g M implying p.d.(A ®p M) < p.d.(M).

That A ® g M has a standard filtration follows from the exactness of A ® g _ and the
fact that this functor sends standard B-modules to standard A-modules. 0J

Corollary 2. Let A be a properly stratified algebra with a duality ° and B be an exact
Borel subalgebra of A. Denote by Ty and Tg characteristic tilting modules for A and B
respectively. Then

fin.dim(A) < 2p.d.(T4) < 2p.d.(Tp) = 2fin. dim(B).

Proof. As A has a duality, we have Sy ~ T and hence p.d.(T4) = i.d.(T3) = i.d.(Sa).
Theorem 1 now implies fin. dim(A) < 2p.d.(T4).

Further, we have p.d.(T4) = sup{p.d.(A4(4)) : i = 1,...,n}. That B is an exact Borel
subalgebra of A guarantees by definition that A®p Ap(i) ~ A4 (i) for all i. Now Lemma 5
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implies sup{p.d.(A4(7)) : i = 1,...,n} < sup{p.d.(Ap(i)) : i =1,...,n}. Again we use
sup{p.d.(Ag(7)) : i =1,...,n} = p.d.(T) and finally get p.d.(Ts) = fin. dim(B) from
Lemma 4. This completes the proof. O

4 Examples

4.1 Schur algebras

Our first example is the Schur Algebra. Let k& be an algebraically closed field of char-
acteristic p and G = GL,(k), the general linear group over k. Let E be the natural
n-dimensional representation of G and E®" its r-fold tensor product. Let G act diagonally
by g(e1®---Qe.) =g-e1®---® g-e,. This representation defines a ring homomorphism
Y : kG — Endg(F) and the span of the image of ¢ is denoted by S(n,r) = Sk(n,r) and is
called the Schur algebra, |Gr].

We know that the global dimension of S(n,r) is twice its A-filtration dimension in
various cases.

(i) 7 < n [Do, Section 4.8]
(ii) n =2 or 3 [Pal, Theorems 3.7 and 5.12]

(iii) p > n or if p = n and r is a multiple of p [Pa2, Theorems 5.8 and 5.9]

4.2 Category O

Let g be a complex semi-simple Lie algebra, g = n_ & h & n,, be a fixed triangular
decomposition of g, and W be the Weyl group of g. The BGG category O, [BGG], is
defined as the full subcategory in the category of all g-modules, which consists of all
finitely generated, h-diagonalizable and U(n)-locally finite modules. With respect to the
action of the center Z(g) of the universal enveloping algebra, the category O decomposes
into a direct sum of blocks O%, § € Z(g)*, defined as follows:

O’ = {M € O| there exists k € N such that (z — 0(2))*M =0 for all z € Z(g) } .

The characters § € Z(g) are in a natural bijection with dominant weights A € b*, [Di,
Section 7.4]. For a dominant A € h* the simple modules in the corresponding block O%
are in a natural bijection with the right cosets of W modulo the stabilizer W* of A in W
under the dot-action w - A = w(A + p) — p, where p is half the sum of all positive roots.
The principal objects of O are the Verma modules M(p) = U(g) ®u(pen,) Cu, Where
the h & ni-module structure on C, = C is given by (h + n)c = pu(h)c, h € h, n € n and
¢ € C. In the language of quasi-hereditary algebras Verma modules are called standard
and usually denoted by A(y) ([Ri]). The module M (1) has a simple top, denoted by L(u)

and such modules constitute an exhaustive list of simples in O.



The Chevalley anti-involution on g naturally extends to a duality, °, on O, which is
a contravariant, involutive equivalence, preserving simple modules, see e.g. [Ir3]. We set
V(u) = M(p)° and denote by T'(u) the indecomposable tilting modules, whose any Verma
flag starts with M (u). We also denote by T'(f) the characteristic tilting module for O°.

Studying blocks O one can always assume that 6 is integral, according to the com-
binatorial description of O provided by [So]. For a fixed integral § let Ay denote the
dominant highest weight corresponding to @, which is given by [Di, Section 7.4]. For a
dominant integral weight ;1 we denote by W, the stabilizer of u in W with respect to the
dot-action. Let a(p) be the regular subalgebra of g, which corresponds to W, i.e. which
is generated by root elements representing roots occurring in reflections in W,. Using the
notation A = )y we denote by O(), ) the full subcategory of O, consisting of all modules
M, which are locally finite as a(u)-modules. If S denotes the set of simple roots for W,
then the category O(\, u) is the block 0% of the parabolic category Og of Rocha-Caridi,
[RC].

Let B = a(u) + b + ny be the parabolic subalgebra of g, n(u) be its nilpotent radical,
and h* C b be the center of the Levi factor of 3. For a simple finite-dimensional module
V and v € (h*)* we define a P-module structure on V via (a + h + n)v = av + v(h)v,
a € a(p), h € b*, n € n(u) and v € V. The module M(V,v) = U(g) ®up) V is called the
generalized Verma module, associated with V', B and v. Clearly M(V,v) € O(A, ). In the
quasi-hereditary structure the modules M (V,v) are the standard modules.

Theorem 2. The following numbers are equal.
(1) The global dimension of the block O(\, u).

(1) The Loewy length of the direct sum of all projective-injective modules in the category
O(—wo(p), ) minus one.

(131) Twice the projective dimension of the characteristic tilting module for O(A, p).
(i) Twice the A-filtration dimension of O(\, u).
(v) Twice the projective dimension of the simple (generalized) Verma module in O(\, ).

Proof. 1t follows from [RC]|, that O(\, u) is a module category over a quasi-hereditary
algebra, and it is clear that ° restricts to a duality on O(A, ). Hence the equality of (i)
and (iv) follows from Corollary 1.

The equality of (4i7) and (v) can be deduced by the following arguments. Any simple
Verma module in O(\, p) is tilting and hence (v) does not exceed (iii). At the same time,
it was shown in [CI], that every tilting module can be obtained as a direct summand of
the tensor product of the simple Verma module from O(A, ) with a finite-dimensional
module. Since the functor of tensoring with a finite-dimensional module is exact and
sends projectives to projectives (see e.g. [Ja]), any projective resolution of the simple
Verma module is sent to a projective resolution of the resulting tensor product. Hence



the projective dimension of the characteristic tilting module is less than or equal to the
projective dimension of the simple Verma module.

Further, the categories O(\, ) and O(—wg(u), A) are Koszul dual to each other, [BGS,
Ba]. Hence the global dimension of O(\, p1) coincides with the maximal non-zero degree in
the Koszul grading of the quasi-hereditary algebra of O(—wg(u), A). The Koszul grading on
the algebra induces a grading on the projective modules. Since indecomposable projectives
have simple tops, this grading gives the radical filtration of the projective modules by [BGS,
Proposition 2.4.1]. And the radical filtration is a Loewy filtration. Hence the maximal
non-zero degree in the Koszul grading of the quasi-hereditary algebra of O(—wq(u), A)
equals the maximal Loewy length of the indecomposable projective modules minus 1. Any
projective module is filtered by generalized Verma modules ([RC]) and hence the simples,
occurring in the socle of any projective module are precisely those, which can occur in the
socles of generalized Verma modules. According to Irving’s self-duality theorem [Irl], the
projective covers of these simple modules are self-dual and hence injective. In particular,
every projective module from O(—wg(u), A) is a submodule of a projective-injective module
from O(—wo(u), A). Therefore the maximal Loewy length is achieved on the direct sum of
all projective-injective modules in O(—wy(p), A). This proves the equality of (7) and (i).

The inequality (i) < (iv) follows from Theorem 1 and to complete the proof it is now
enough to show that (i7) > (v).

Let M; = L; be asimple Verma module in O(\, p) and {L; : i = 1,...,t} be a complete
list of pairwise non-isomorphic simples in O(\, ). Then the module Ext*(L;, ®!_,L;) is
projective in the Koszul dual of O(\, i), which is O(—wq (i), A) by [Bal. Since the simple
module L; is also standard, the corresponding idempotent can be considered as the mini-
mal element with respect to the partial order equipping O(\, ) with the structure of the
module category over a quasi-hereditary algebra. Since both O(A, 1) and O(—wg(u), A) are
Koszul and quasi-hereditary, we can apply [ADL, Theorem 2.6] and get that the module
Ext*(Lq, ®_,L;) corresponds to the maximal index for O(—wg(u), \) and hence is a pro-
jective standard module, N say. Since any standard module has a simple top, the graded
Koszul filtration of this module is a Loewy filtration (in fact it is the radical filtration by
[BGS, Proposition 2.4.1]) and hence the Loewy length [ of N equals the projective dimen-
sion p of Ly plus 1. From [Ir2, Proposition 3.1] it now follows that the Loewy length of
some projective module in O(—wp(u), A) is at least 21 — 1 = 2p + 1 and thus (ii) > (v).
This completes the proof. O

A combination of (i7) with the results of Irving, [Ir2, Theorem 4.3], on the Loewy length
of projective modules in Og, allows one to give in many cases a combinatorial formula for
the global dimension of O (A, ). This can be done in all cases, when [Ir2, Theorem 4.3] is
applicable. In particular, according to [IS], this is always the case for g = sl(n, C).

Let W# denote the set of the minimal coset representatives in W/W,. For w € W* we
denote by w the longest element in the Weyl group, generated by all simple reflections s,
satisfying [(ws) < I(w). We set t(u) to be the maximal length of w for all w € W*.

Corollary 3. Suppose that the assumptions of [Ir2, Theorem 4.3] are satisfied, then the
global dimension of O()\,0) = OY equals 2t()).
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Proof. By Theorem 2, the global dimension of O(),0) equals the maximal Loewy length
of the indecomposable projective injective module in O?. So if the assumptions of [Ir2,
Theorem 4.3| are satisfied, we can apply this theorem and get that the maximal Loewy
length equals 2t()\) + 1. O

Let w! and wy denote the longest element in W# or W respectively.
Corollary 4. The global dimension of O(0, ) equals 2(1(wo) — l(w})).

Proof. By Theorem 2, the global dimension of O(0,\) equals the Loewy length of the
unique projective injective module in 0. Now the result follows from [Ir2, Section 3]. [

4.3 S-subcategories in O

We retain the notation from the previous subsection. Let A and p be dominant integral,
A=) for 0 € Z(g)*. Let further I, ..., I; be a complete list of pairwise non-isomorphic
indecomposable W ,-antidominant injective modules from OY and I = @;_,I;. Denote by
OS5 (), p) the full subcategory of O, consisting of all modules M, which has a copresentation
0 — M — I* — I°. This category is a block of an S-subcategory in O, associated with
Enright’s completion functor, which was defined and studied in [FKM]. In particular, in
[FKM, Section 5] it was shown that OS(\, i) is equivalent to the module category of a
properly stratified algebra. This equivalence gives O°(\, 1) an abelian structure, which
is not inherited from O. In fact, simple objects in OS(\, i) are not simple g-modules in
general. It is also known, [KM], that O (A, p) is equivalent to certain blocks of the category
of Harish-Chandra g-bimodules, [BG], with the diagonal right action of the center of g. It
the latter category simple objects are precisely simple g-bimodules.

Tilting modules in O%(\, ) are described in [FKM, Section 6] and are exactly the
W,-dominant tilting modules in O%. As an immediate corollary of the previous section we
get.

Theorem 3. The following numbers are equal and give an upper bound for the finitistic
dimension of a block of O%(\, ).

(1) Twice the projective dimension of the characteristic tilting module in the block of

O (A, ).
(i) Twice the A-filtration dimension of the block of OS5 (), p).

(131) Twice the projective dimension of the self-dual standard module in the block of the
category OS5 (\, ).

Proof. The equality of (i) and (4¢) follows from Corollary 1. Using [FKM, Section 6], the
equality of (i¢) and (u4¢) is proved by the same arguments as the analogous statement in
Theorem 2. O
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