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Abstract

We prove that the finitistic dimension of a properly stratified algebra having a
simple preserving duality and for which every tilting module is cotilting, equals twice
the projective dimension of the characteristic tilting module. As a corollary we get
that the global dimension of a quasi-hereditary algebra with duality equals twice the
projective dimension of the characteristic tilting module. As another corollary we
obtain an affirmative answer to the conjecture of Erdmann and Parker. Finally, we
calculate the finitistic dimension of the blocks of certain parabolic generalizations of
the category O.

1 Introduction and the main result

The notion of properly stratified algebras, which appeared in [DI], seems to be the most
elaborated notion, generalizing the classical notion of quasi-hereditary algebras, [CPS1],
(see [CPS2] for a more general class of standardly stratified algebras). On the other hand,
certain algebras, which arise in parabolic generalizations of the BGG category O, [FKM],
or algebras, describing certain blocks of the category of Harish-Chandra bimodules, [KKM],
turned out to be not quasi-hereditary but properly stratified.

An important homological invariant of algebras (and their module categories) is the
homological (or global) dimension. For quasi-hereditary algebras it is finite and was studied
by many authors, see for example [BGG, CPS2, Ko2, Ko3, Pal, Pa2, To, Xi].

In the case of properly stratified algebras the global dimension is infinite, unless the
algebra is quasi-hereditary. However, it was shown in [AHLU1] that the finitistic dimension
of a properly stratified algebra is finite, which makes this notion an appropriate substitution
of the global dimension in the case of quasi-hereditary algebras. Some upper bounds for
the finitistic dimension of certain properly stratified algebras were obtained in [AHLUI,
AHLU2, MP].

Almost all quasi-hereditary and properly stratified algebras, which naturally appear
in applications (for example algebras of the category O, Schur algebras), possess a simple
preserving duality. In all known examples it was noted that the finitistic (global) dimension
of such algebras equals 2k for some integer £ > 0 and this £ has various interpretations in
terms of the combinatorial data.



This motivated the authors of [MP] to formulate the conjecture that this number £ coin-
cides with the projective dimension of the characteristic tilting module (see [Ri, AHLU2J).
In the quasi-hereditary case even a stronger conjecture was formulated in [EP].

In the present paper we prove both conjectures for properly stratified algebras with
duality, for which tilting and cotilting modules coincide (the last property holds for all
quasi-hereditary algebras, and for properly stratified algebras it can be considered as an
analogue of self-injectivity for local algebras). Our main result is the following theorem:

Theorem 1. Assume that A is a properly stratified algebra having a simple preserving
duality, and such that every tilting A-module is cotilting. Then fin.dim(A) = 2p.d.(T),
where T s the characteristic tilting module.

Corollary 1. Assume that A is a quasi-hereditary algebra having a simple preserving
duality. Then gl.dim(A) = 2p.d.(T'), where T is the characteristic tilting module.

We remark that in [KKM] the conjecture [MP, Conjecture 1] is proved for certain
properly stratified algebras with duality, in which tilting and cotilting modules do not
coincide.

The paper is organized as follows: in Section 2 we introduce necessary definitions
and notation. Theorem 1 is proved in Section 3. Further, in Section 4 we give some
applications of this result, in particular, we describe its connection with the notion of
good filtration dimension in Subsection 4.2 and with the notion of exact Borel subalgebra
in Subsection 4.6. We prove the conjecture of Erdmann and Parker in Subsection 4.4,
and calculate the finitistic dimension of the properly stratified algebras, which appear as
parabolic generalizations of the BGG category O, in Subsection 4.5. In Subsection 4.3 we
discuss some homological invariants for modules, inspired by the conjecture of Erdmann
and Parker. These invariants are then used in the proof of this conjecture.

2 Some definitions, notation and conventions

Let A be a finite-dimensional associative algebra over an algebraically closed field, k. By a
module we will always mean left module, and by A-mod we denote the category of finite-
dimensional left A-modules. For a primitive idempotent, e = ¢; € A, we will denote by
L(7) the corresponding simple module, by P(7) the projective cover of L(z) and by (i) the
injective envelope of L(i). We say that A is properly stratified (see [Dl]) if the following
properties hold:

1. There is a linear order < on a complete set {ej,es,...,e,} of primitive orthogonal
idempotents of A, which we assume to be given by the natural ordering of the indexes.

2. There is a family, {A(i)}, i = 1,2,...,n, of A-modules, such that the module P(j)
surjects on A(j) for every j, and the kernel of this map is filtered by A(7), i > j.



3. There is a family, {A(i)}, i = 1,2,...,n, of A-modules, such that the module A(j)
surjects on L(j) for every j, with the kernel of this map being filtered by L(i), i < j,
and such that the module A(j) is filtered by A(j) for every j.

The modules A(i) are called standard modules and the modules A(i) are called proper
standard modules. In the dual way we also define costandard modules V(i) and proper
costandard modules V(7). We denote by F(A) (resp. F(A), resp. F(V), resp. F(V))
the full subcategory in the category of all A-modules, consisting of all modules, filtered
by A(i) (resp. A(i), resp. V(i), resp. V(i)), i = 1,...,n. We denote by T(i) and C(3)
the indecomposable tilting and cotilting modules respectively, which correspond to i (see
[AHLU2|). We set I = @} ,1(i), P =@} P(i) and V = @], V(i).

For an A-module, N, we denote by add(/V) the full subcategory in A-mod, which
consists of all modules M, isomorphic to a direct summand of some N' [ > 0. We

have F(A) N F(V) = add(T) and F(A) N F(V) = add(C), where T = @&} ,T(i) and
C = @ ,C(i) are the characteristic tilting and cotilting modules respectively.

Throughout the paper we assume that A has a simple preserving duality, that is there
exists an exact, involutive, and contravariant equivalence ° on A-mod, which preserves
isomorphism classes of simple modules. In this case ° swaps A(i) with V (i), A(i) with
V(i), P(i) with I(i), and T (i) with C(i). Throughout the paper we also assume that
T(i) =2 C(3) for all 4.

For an A-module M we denote by p.d.(M) (resp. i.d.(M)) the projective (resp. injec-
tive) dimension of M. By fin. dim(A) (resp. gl. dim(A)) we denote the projectively defined
finitistic (resp. global) dimension of A.

A properly stratified algebra A of finite global dimension is quasi-hereditary and vice
versa. Moreover, gl. dim(A4) < oo if and only if A(i) ~ A(i) for all 5. In this case we
automatically obtain 7'(7) ~ C(3) for all 4.

Denote by B = End4(7T) the Ringel dual of A. The algebra B is always stratified.
For B-modules we will use the same notation as for A-modules, adding the subscript B.
The functor F(_) = Homu(7,_) : A—mod — B-mod maps T'(i) to the indecomposable
projective module Pg(7) over B (see [Ri, AHLU2]).

As usually we will use Com, K and D to denote the category of complexes, the ho-
motopic category and the derived category respectively. For an A-module M we denote
by M* the complex in Com®(A) such that M® = M and M*® = 0 for all i # 0. We call
a complex, C* € Com(A), minimal provided that it does not contain direct summands of
the form

0o NSNS0, (1)

where N € A-mod. Since F(Com(add(T))) = Com(add(gB)), we have that a complex
C* € Com(add(T)) is minimal if and only if all differentials in F'(C*) are zero modulo the
radical. A complex C* = {C; : i € Z} such that C; = 0 for all s < 0 will be called positive.



3 Proof of the main result

Under assumptions of Theorem 1 we have the inequality fin. dim(A) < 2p.d.(T) by [MP,
Corollary 2| (see also Appendix for a different proof). Set £ = p.d.(T). To prove Theorem 1
it is enough to show that there exist M, N € A-mod such that Ext%(M, N) # 0. In fact,
after some preparation, we will prove that there exists 4 such that Ext%(V (i), A(i)) # 0.

Let M = add(7T") or M = add(C) or M = add(A). Following [Ha, Chapter III(2),
Lemma 2.1] the canonical functor K®(M) — DP(A) is full and faithful, hence for every
C?,C3 € Com®(M) we have

Home(A) (CIa Cy ) = Home(A) (CI,CE)- (2)
Proposition 1. Let M € A—mod and assume that there exists a minimal complex

Cy: e 0— Ty S B I 00— (3)

in Com(add(T)), such that H'(CY) = M for some t € {0,...,s}, and HP(CY) = 0 for all
p #t. Then Ext¥ (M, M°) # 0.

Proof. First we apply ° to (3) and obtain the following complex:

o
8—2

CA: ...—>0—>TS°3—_1>T:_1—>...A>T5’—>0—>..., (4)

where T stays in degree 0. Since 77 = T; for all i we get that CX € Com(add(T)).

7
Moreover, we have that the unique non-zero homology of C% is H~*(C%) = M°. Hence in

the derived category D°(A) the complexes (M°)* and M* are isomorphic to the complexes
CA[—t] and Cg[t] respectively. Then we have

Ext’ (M, M°) = Hom s 4y (Cy, C3)-
Using (2) and applying the functor F' thereafter, we get
Home(A) (Ce, Ci) = Home(A) (C%,CZ) = Home(B) (F(Ce), F(Ci))

Hence, to complete the proof it is enough to construct a non-zero morphism from F(CY)
to F(CX) in K°(B).

Lemma 1. Let Py = F(T}), QY = F(T?), j = 0,...,s, and g; = F(f;), h; = F(f?),
7=0,...,5s—1. Then the diagram

0 g0 1 g1 gs—1 s
. 0 _PJ(B) _Pé) PQ*
a & ﬁ
(s) _hs—1 hy (1)P ho (o>k
= Qp T ()% Ry 0 0—

where ® is any isomorphism, represents a non-zero morphism in K b(B).
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Proof. Let us first note that all morphisms in both rows of the diagram are radical mor-
phisms because of the minimality of (3) and (4). Hence Img, C rad Pg) and Im hy C

rad Qg)). This implies that for any « and § as depicted on the diagram we have Im(hg o
a+ fogy) Crad Qg). Therefore hg o a + 3 o gy # ®, which completes the proof. O

Applying the duality to [AHLU2, Proposition 2.2] we get that every V(i) has a finite
resolution by cotilting (=tilting) modules. Let iy be such that the following minimal tilting
resolution of V(iy) has the maximal possible length m:

0— T I Ty 3 21 5 Ty — V(i) — 0. (5)
Lemma 2. m = k, that is the length of the resolution (5) equals p.d.(T).

Proof. For X € F(V) we denote by mx the minimal [ for which there exits an exact
sequence 0 = Y; — --+ = Yy — X — 0, where all Y; are tilting modules. Applying Ringel
duality, we see that myx equals the maximal 7 such that Ext’,(X,T) # 0. In particular, for
any X € F(V) we have my < my. Using [Ha, Section III, 3.2] we have m; = p.d.(T) = k.
Applying Hom(_,T) to the short exact sequence V — I —» K, where K € F(V), we get
m; = my. The last implies m = my = m; = k. ]

Theorem 1 now follows by applying Proposition 1 to M = V(ig), t = k, with C¥ being
the resolution, obtained from (5). O

4 Applications

4.1 Quasi-hereditary algebras

As we have already noted in the introduction, Theorem 1 immediately implies the following
result, which covers many results from [EP, KKM, MP, Pal, Pa2]:

Corollary 2. Assume that A is a quasi-hereditary algebra having a simple preserving

duality. Then gl.dim(A) = 2p.d.(T).

4.2 Connection with good filtration dimension

Let M be any family of A-modules. Let N be an A-module and assume that there exists
a (possibly infinite) exact sequence

0— M, —...— My — My — N —0, (6)

where M; € M for all i. The minimal j for which a sequence of the form (6) exists is called
M -filtration dimension of N and will be denoted by dimy,(/N). Dually, the minimal j for
which there exists (if any) a (possibly infinite) exact sequence of the form

00— N-—My— M — ... — M; — 0,
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where M; € M for all 4, is called M-filtration codimension of N and will be denoted by
codimp(N). These concepts were introduced in [FP].
If A is properly stratified then both dimzx)(/N) and codimzg)(/N) are finite for every
N € A-mod, see [MP, Corollary 1]. Hence we can define dim zx(A4) and codim g (A) as
the supremum of the values of dimzx) (V) and codimz(N) on N € A-mod respectively.
We refer the reader to [CZ, MP, Pal, Pa2| for details and properties of these notions.
From Theorem 1 and [MP, Theorem 1] we immediately get:

Corollary 3. Let A be as in Theorem 1. Then

fin. dim(A) = 2dimx)(4) = 2 codimy g (A).

4.3 More on good filtration dimension

In contrast with the other parts of the paper, in this subsection we work under the as-
sumption that A is any properly stratified algebra.

Lemma 3. 1. Let
X i 0 — Xy S x I (7)

be a (possibly infinite) compler in Com(add(T)) or in Com(add(C)). Assume that
Hi(X*) =0 for all i > 0. Then H(X*) € F(A).

2. Let ;
X e — X S Xy — 00— ...

be a (possibly infinite) complex in Com(add(T')) or in Com(add(C)). Assume that
Hi(X*) =0 for alli < 0. Then HY(X*) € F(V).

Proof. We prove the first statement and the second one is proved by dual arguments.
Recall that F(A) = {M € A-mod : Ext}(M,V) = 0} (see [D], Theorem 5(v)]).
Applying Hom4(_, V) to the short exact sequence

0— ker(fz) — Xz — ker(f,-“) — 0, 1> 0,

and using T,C € F(A), we get Ext® (ker(f;), V) = Ext® (ker(fi;1), V) for all k& > 1.
Since i.d.(V) < oo, the proof follows by induction. O

Unfortunately to ensure that every M € F(A) appears as H(X*®) for some X* as in
(7) requires an additional assumption. To proceed we will need the following standard
statement:

Lemma 4. 1. Let Y* be a positive complex in Com(F(A)). Then there exists a positive
complex J* € Com(add(T)), which is quasi-isomorphic to Y*. Moreover, for Y* €
Com’(F(A)) we get J* € Com®(add(T)).



2. Let Y* be a positive complex in Com(F(V)). Then there exists a positive complex
J* € Com(add(C)), whose shift is quasi-isomorphic to Y*. Moreover, for Y* €
Com®(F(V)) we get J* € Com®(add(C)).

Proof. We again will prove only the first statement. The proof of the second one is similar.
Let . .
oL —0—Y, By S Sy I

For a complex X* and j € Z we denote by t;X* the j-th truncation of X', which is
the complex defined via: ;X" = X*, i < j; ;X" = 0, ¢ > j, and the differential on all
corresponding places in X'* and t;X* coincide.

Set V7 = t;°. First we show that there exists a positive complex J* € Com®(add(T)),
which is quasi-isomorphic to V7, and such that ;75 = J;" for all j < N.

We prove this statement by induction in j. As Y; € F(A) for all 4, we can choose
for every i a finite tilting coresolution, ¢; : ¥;* — Ty € Com(add(T)). Existence of this
coresolution proves the statement for j = 0.

Let J, € Com’(add(T)) be a positive complex, which is quasi-isomorphic to Vi1

The morphism g;_; induces the following triangle in K b(A):

Vi — YV B+ 1] — Vi)
By inductive assumptions we have quasi-isomorphisms ®; ; : V! ; — J°; and 0jl—7 +
1] - Y?[-j + 1] — T¢[-j + 1]. Using the formula (2) from Section 3, there exists a
morphism of complexes 1; : J | — Ty [—j + 1], which represents in D?(A) the morphism
pi[—j+1]o g;_10 <I>]111- The morphism v; makes the sub-diagram, represented by solid
arrows in the diagram (8) below, commutative in D?(A):

g].'_ 1

N R— -V Y[+ 1] - ;1] (8)
@ lqn_l lw[m] 1]
\ v

Cone(th;)[—1] > Ty Vi Ty [—j + 1] > Cone(y;)

Taking cone of v, we extend the diagram (8) to a morphism of distinguished triangles
in D’(A), which happens to be an isomorphism since both ®; ; and ; are. Obviously,
Cone(t;)[—1] is a positive complex and ®; is a quasi-isomorphism, and we set J?,, =
Cone(t;)[—1]. Moreover, by construction we get t;7°, = J.

The property t;Jy = J; for N > j allows us to define the limit complex J°, such that
t;,J°* = J}, j > 1, together with a quasi-isomorphism ® : Y* — J°. The statement that

Y* € Com’(F(A)) implies J* € Com®(add(T)) is obvious. O

Lemma 5. Assume that all tilting A-modules are cotilting.

1. For any M € F(A) there exists a (possibly infinite) complex

X' 00— X, D x, I (9)
in Com(add(T)) such that H'(X*) =0 for all i > 0 and H°(X*) = M.
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2. For any M € F(V) there exists a (possibly infinite) complex

X X, X, —0—
in Com(add(T)) such that H'(X*) =0 for all i < 0 and H°(X*) = M.

Proof. We prove again only the first statement and the proof of the second one is dual. Let
T3, be an injective coresolution of M. All injective modules admit a finite resolution by
cotilting modules, and hence by tilting modules. Moreover, the length of such resolution is
always bounded by i.d.(C) =i.d.(T) (see the proof of [AHLU2, Proposition 2.2]). Apllying
the second statement of Lemma 4 we get for some j > 0 the complex

y.i ...—)O—)Y_]‘E)Y_j+1fi>l..., (10)
in Com(add(7")) which is quasi-isomorphic to M*.

From Lemma 3 it follows that ker(f;) = Yy/ ker(fy) € F(A). From this and M € F(A)
we get Yp/Im(f 1) € F(A). Since F(V) is closed under taking cokernels of monomor-
phisms, we get Im(f_;) € F(V) by induction. Now Im(f_;) € F(V) and Y,/ Im(f_,) €
F(A) implies that the the short exact sequence

0 — Im(f_y) — Yy — Yy/Im(f-1) — 0.

splits. That is Y,/ Im(f_) is a tilting module. This implies that the complex

= 0 — Yo /Im(fo1) L v L

where fo is the induced map, consists of tilting modules, and has a unique non-zero ho-
mology, which is concentrated in degree 0 and isomorphic to M. O

The lemmas above are necessary to study the following invariants of A-modules. Let
M be a family of A-modules and M € A-mod. Assume that for some finite ¢ there exists
a (possibly infinite) s and a complex

X o —0— X xS X 0— (11)

such that X; € M for all i, H'(Xy,) ~ M and H?(X};) = 0 for all p # ¢t. Then the minimal
possible ¢ for which a complex of the form (11) exists will be called M-invariant of M and
denoted by inv (M).

Dually, if for some finite ¢ there exists a (possibly infinite) s and a complex

R e 00— Y By Iy 00— (12)

such that Y; € M for all 4, H~*(Y3,) ~ M and H?(Y},) = 0 for all p # ¢, then the minimal
possible ¢ for which a complex of the form (12) exists will be called M-coinvariant of M
and denoted by coinv(M). In both cases we will call the minimal possible s the degree
of the (co)invariant.



Lemma 6. Let M € A-mod.

1. invugq(ry(M) is defined and has a finite degree if and only if p.d.(M) < oo if and
only if dimza) (M) < co. Moreover, in this case invagqery(M) = dimza)(M).

2. coinvaaqc)(M) is defined and has a finite degree if and only if i.d.(M) < oo if and
only if dimz(vy(M) < co. Moreover, in this case coinvagqcy(M) = dimgy)(M).

Proof. We prove the first statement and one proves the second statement by dual argu-
ments. It is obvious that p.d.(M) < oo if and only if dimza) (M) < oco.

Let inv,aa(r) (M) =t < oo and assume that it has finite degree s. Then from X3, we
get an exact sequence

0— Xo 2 x, I "3 x, P ker(f) — M 0. (13)

Recall that F(A) is closed under taking the kernels of epimorphisms. Since A, is bounded
and consists of tilting modules, which, in fact, belong to F(A), we obatin ker(f;) € F(A)
and thus dimza) (M) < t.

On the other hand, assume that dimza)(M) =t < oo and let

0—Zg -2z, 2 . 237 237 s M—0 (14)

be an exact sequence such that all Z; € F(A). Applying the first statement of Lemma 4
to the resolution of M, obtained from (14), we get a complex Y* € Com’(add(T’)), which
is positive and quasi-isomorphic to the complex M*[—t|. This implies inv,qq¢r)(M) < t,
moreover, the degree of this invariant is finite. 0J

Lemma 7. Assume that all tilting modules for A are cotilting.
1. invaqaer) (M) is defined for all M € A-mod and invagary(M) = dimg iz, (M).
2. coinvada(ry(M) is defined for all M € A-mod and coinvaqacr) (M) = dimz)(M).

Proof. We prove the first statement and one proves the second statement by dual argu-
ments. As in the proof of Lemma 5, considering an injective coresolution of M, we obtain
a complex in Com(add(T)) of the form (10) such that H'(Y*) = 0 for all i # 0 and
H(Y*) = M. Hence invaqqcry(M) is defined.

Assume now that dimyx) (M) =t < co. If ¢t = 0, then M € F(A) and we have
inv,qq¢ry(M) = 0 by Lemma 5. Let now ¢ > 0. Using the dimension shift, from the short
exact sequence

0 — Im(f_y) — ker(fy) — M — 0

we have dimzz)(Im(f-1)) =t — 1 by [MP, Lemma 1]. Now for all 4 = 1,...,¢ — 1 from
the short exact sequences

0 — Im(f ;) =ker(f;) — Y ;, — Im(f,;) —0



we analogously obtain dim g, (ker(f-¢+1)) = 0 that is ker(f_41) € F(A). Since F(V) is
closed under taking cokernels of monomorphsims, we get Im(f_;) = ker(f_;11) € F(V) by
induction and thus ker(f_;,1) is a (co)tilting module. This implies that the complex

Vi oo 0= ker(f o) = YVoen oy Yoipo T

belongs to Com(add (7)) and satisfies H*(V3,) = 0 for alli # 0 and H°(Y},) & M, implying
iIlVadd(T) (M) S t.
Finally, let inv,qq(r) (M) =t < co. Then from X7}, (see (11)) we get an exact sequence

0— Xo L% x5 I3 X, I ker(f) — M >0 (15)

and an exact sequence

0 —>ker(ft) — Xt —>Xt+1 —_— ...

By Lemma 3 we have ker(f;) € 7(A) and thus dim gz, (M) < from (15). This completes
the proof. m

Corollary 4. Assume that all tilting modules for A are cotilting. Then for all M € A-mod
with p.d.(M) < 0o holds dimz(a)(M) = dimyz)(M).
Corollary 5. Let A be as in Theorem 1 and M € A-mod. Then

p-d.(M) < dim}-(A)(M) +p.d.(T).

Proof. It is obvious that p. d.(M) is finite if and only if dimz(a) (M) is. Having M, for which
dimz(a)(M) =t < oo, we consider the bounded tilting complex (11) for M. Analogously
to Lemma 4 we construct a new complex, in which we substitute all tilting modules X; by
their projective resolutions and the statement follows. O

4.4 Conjecture of Erdmann and Parker

In [EP, 5.3] the following conjecture is formulated: let A be a quasi-hereditary algebra
having a simple preserving duality °, and M be an A-module such that codimzv)(M) = 1.
Then Ext%(M°, M) # 0.

Let A be as in Theorem 1 and M € A-mod. Combining Lemma 6 with Proposition 1
we immediately obtain an affirmative answer to the conjecture of Erdmann and Parker:

Corollary 6. Let M € A-mod and dimza)(M) =t < co. Then Ext’ (M, M°) # 0.
We remark that, following the proof of Proposition 1, one can get the following:

Proposition 2. Let A be as in Theorem 1. Assume that there exists an indecomposable
tilting module T (i) such that k = p.d.(T(:)) > p.d.(T'(j)) for all j #i. Let M, N € A-mod
be such that dimza) (M) = codimgy)(N) = k. Then Ext’(M, N) # 0.

The conditions of Proposition 2 are satisfied for example for the algebras of the regular
blocks of the BGG category O.
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4.5 S-subcategories in O

Let g be a complex semi-simple Lie algebra, g = n_ @ bh @& n, be a fixed triangular de-
composition of g and O be the BGG-category O for g. We refer the reader to [MP] or
[FKM] for detailed notation. Fix dominant integral weights A and p and denote by W, the
stabilizer of u in the Weyl group W. Denote by O* the block of O corresponding to A. Let
I, ..., I, be a complete list of pairwise non-isomorphic indecomposable W),-antidominant
injective modules from O* and I = ®%_,I;. Denote by O%(\, i) the full subcategory of
O*, consisting of all modules M, which have a copresentation 0 — M — I* — I®. This
category is a block of an S-subcategory in O, associated with Enright’s completion functor,
see [FKM]. In particular, in [FKM, Section 5] it was shown that OS(\, i) is equivalent
to the module category of a properly stratified algebra. This equivalence endows O%(), p)
with an abelian structure, which is not inherited from that on O, but the usual duality on
O naturally induces a duality on O%(\, p).

Tilting modules in O(\, i) are described in [FKM, Section 6] and are exactly the W,-
dominant tilting modules in O*. In particular, they are self-dual and hence cotilting. As an
immediate corollary of Theorem 1 we get the following strengthening of [MP, Theorem 3]:

Corollary 7. The following numbers are equal.
(4

(ii

The finitistic dimension of OS(\, ).
Twice the projective dimension of the characteristic tilting module in OS(\, u).

(iii) Twice the A-filtration dimension of OS(\, p).

)
)
)
) Tuwice the projective dimension of the self-dual standard module in OS(A, p).

(1w

4.6 Connection with exact Borel subalgebras

Let A be a quasi-hereditary algebra having a simple preserving duality, and B be an
exact Borel subalgebra of A in the sense of [Kol]. From [Kol, Proposition 2.6] and [CZ,
Theorem 3.3] it follows that projective dimensions of the characteristic tilting modules for A
and B coincide, and this common value equals the global dimension of B. As an immediate
corollary of Theorem 1 we obtain the following strengthening of [CZ, Theorem 3.3].

Corollary 8. gl. dim(A) = 2gl. dim(B).

We remark that it is shown in [Ov] that for every quasi-hereditary algebra A there
exists a Morita equivalent algebra A’, having an exact Borel subalgebra. So Corollary 8
can always be used to compute the global dimension of A.
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5 Appendix: fin.dim(A4) < 2p.d.(T)

In this Appendix we would like to present a short proof of the inequality fin.dim(A) <
2p.d.(T). This inequality was originally proved in [MP, Corollary 2], following the ideas
of [CZ]. We assume that A is an in Theorem 1.

Since all tilting modules are cotilting, we have that all cotilting modules, in particular
A(1) = V(1), have finite projective dimension. From the short exact sequence

0—- K —C(i) > V(i) =0,

where K is filtered by V(j), j < i, we get, by induction in ¢, that all V(i) have finite
projective dimension. This implies that all I(:) € F(V) have finite projective dimension.
Using ° we get that all P(¢) have finite injective dimension. Since every module embeds into
an injective module, it follows that fin. dim(A) equals the maximal j such that Ext?, (1, P) #
0. So, to complete the proof we have only to show that Ext’(I,P) = 0 for all j >
2p.d.(T). From the tilting coresolution for P (see proof of [AHLU2, Proposition 2.2])
we get codimz(v)(P) < p.d.(T) and, dually, dimza)(/) < p.d.(T). Let A7 (resp. Vp)
be the complex (11) (resp. (12)) for I (resp. P), for M = add(T). Using (2) we get
Hom pe(4) (X7, Vp[l]) = 0 for all [ > 0 and thus for s = 2p.d.(T") — codimgv)(P) —
dim gy (1) > 0 we have

Ext’, (I, P) = Hompsa) (X7, Vplj — 2p.d.(T) + 5]) = 0
for all j > 2p.d.(T), completing the proof.
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