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Abstract

We construct a generalization of the BGG—category O, whose blocks correspond
to projectively stratified algebras. We prove reciprocity formulae in these categories
and present two classes of examples.

1 Introduction

Since its definition by Bernstein, Gelfand and Gelfand ([BGG]) the category O has become
a basic object of study. It motivated the introduction of concepts such as quasi-hereditary
algebras ([CPS1]), BGG-algebras ([I]) and Harish-Chandra bimodules ([S]). Generaliza-
tions of O have been studied by many authors (see, for example, [CF, FP, FM, R, RW]).
Typically, the definition of Verma module is generalized by inducing from a parabolic sub-
algebra or by using infinite dimensional modules as input for the induction process. In
particular, the so-called category O% defined in [CF] and studied in [FP] discusses such a
setup, involving objects which are quite different from those in O. However, in [FP] it is
claimed that the situation still is described by quasi-hereditary algebras. Unfortunately,
there is a gap in the proof of Proposition 3.4 in [FP], and the BGG-duality claimed in [FP]
is in fact not true. To repair the situation one has to leave the class of quasi-hereditary
algebras and pass to what we call projectively stratified algebras. In this way, one can
keep the main features of the classical construction. The categories obtained in this way
contain the chosen class of generalized Verma modules. They have enough projective ob-
jects. These projective objects are filtered by generalized Verma modules. And there is an
analogue of the BGG-reciprocity formula.

The aim of this paper is to present a general construction that allows one to construct
analogues of the category O associated with a parabolic subalgebra of a simple finite-
dimensional complex Lie algebra. As an input for the induction process we choose simple
modules (not necessarily finite-dimensional). We study the obtained categories and show
that under some natural conditions they lead to projectively stratified algebras, which
generalize quasi-hereditary algebras. Moreover, some analogue of BGG-duality holds. In
particular, our construction can be applied to obtain the classical category O, its general-
ization by Rocha-Caridi ([R]) and the categories from [FM]. Moreover, it can also be used



to enlarge the mentioned O¢ category in such a way that we obtain projectively stratified
algebras and an analogue of the BGG-reciprocity (this example is discussed in detail in
Section 10). We present two different analogues of the BGG-reciprocity, and in particular,
we obtain some structural results on simple modules over Lie algebras by comparing these
analogues.

The paper is organized as follows: in Section 2 we collect basic information and describe
the set-up. In Section 3 we define two main objects of the paper: an admissible category
A (from which parabolic induction starts) and the category O(P, A) “derived” from A. In
Section 4 we describe conditions that lead to the existence of projective modules in O(P, A).
In Section 5 we show that under some natural assumptions O(P, A) decomposes into blocks
such that each block is the module category of a finite-dimensional algebra. Moreover, we
show that assuming such a decomposition for A with blocks being projectively stratified
algebras we obtain that the blocks of O(P,A) also correspond to projectively stratified
algebras. In Section 6 we prove an analogue of BGG-reciprocity for stratified algebras
having a duality. In Section 7 we show that under some arithmetical conditions on the
behavior of simple modules in A there is another natural analogue of BGG-reciprocity. In
Section 8 we compare these reciprocities and show that together they give some arithmetical
information about simple modules in A. In Section 9 we prove some auxiliary lemmas
necessary to construct examples of admissible A and O(P, A) having a block decomposition.
In Section 10 we describe in detail an example in which A is a category of dense si(2, C)
modules, which covers, in particular, the main example in [FM]| and improves the O*
category from [FP]. In Section 11 we discuss an example of a category of Gelfand-Zetlin
modules. Finally, in Section 12 we apply the main result of Section 8 to obtain some results
about Gelfand-Zetlin modules.

2 Preliminaries

For a Lie algebra 2 we will denote by U(2) the universal enveloping algebra of 2 and by
Z () the center of U(2).

Let B be an abelian subalgebra of . A &-module V is called a weight module (with
respect to B) if V = @yep+ V) where V), = {v € V | hv = A(h)v for all h € B}.

Let $ be a Cartan subalgebra of the semisimple complex Lie algebra & and let P be
a parabolic subalgebra of & with Levi decomposition P = (2 @ $Hg) & N where A is a
semisimple Lie algebra, Hg C 9, [, Hy] = 0 and D is nilpotent. Let A be the root system
of & & =HD>,cr Ga be the root decomposition of & and N =" A ) Ga be the root
decomposition of M. Set N_ = Zae—A(‘ﬂ) B,.

Let 2p denote the set of representatives of the isomorphism classes of simple A & Hg-
modules. Since )y is abelian and central it acts on any simple V' € ()p via some A € §g,
ie. huv = Ah)v for allv € V and h € 9Hy. Let V be an A & Hy-module (not necessarily
simple or indecomposable). We can consider V' as a P-module with the trivial action of O
and construct a &-module

Mp(V) =U(8) Quep) V.



If V is simple the module Mp(V') is usually called a generalized Verma module. The main
properties of the modules Mp(V') are collected in the following proposition ([CF]).

Proposition 1. Let V be an A & Hy-module. Then:
1. Mp(V) is a free U(N_)-module isomorphic to UM_) @ V as a vector space.

2. Assume that g acts on V via some X € $5. Then Mp(V) is a weight module with
respect to g and Mp(V)\ ~ V.

3. If V is simple then Mp (V') has a unique mazimal submodule.

4. Let W be a &-module generated by a simple P-submodule V' on which N acts trivially.
Then W is a homomorphic image of Mp(V).

Proof. Follows from the PBW-Theorem, the construction of Mp(V') and universal proper-
ties of the tensor product. O

For V € Qp we will denote by Lp(V') the unique irreducible quotient of Mp(V') which
occurs with multiplicity one in a composition series of Mp (V).

For a fixed basis S of the root system of 2 one can consider the S-Harish-Chandra
homomorphism ¢g (or generalized Harish-Chandra homomorphism) defined in [DFO]. Let
S($a) denote the symmetric algebra of g and K = Z(A) ® S($Hy). Let i : Z(B) — K be
the restriction of g to Z(®). It induces a natural map i* : K* — Z(®)* and the cardinal
|(5*)~1(9)| is finite for any 0 € Z(&)*.

A category A of Lie algebra modules is said to have a block decomposition if A = ®;A; is
a direct sum of full subcategories A;, each of which has only finitely many non-isomorphic
simple modules.

3 Admissible categories and category O(P, A)

Let A be a reductive complex finite-dimensional Lie algebra with semisimple part 2 and
let A be a full subcategory of the category of all finitely generated A-modules.

Definition 1. The category A will be called admissible if the following conditions are
satisfied:

1. A has an abelian structure (which is not necessary inherited from the category of all
modules) and the endomorphism ring of any simple object in A is C.

2. Any M € A is weight with respect to the center of 2.

3. For any finite-dimensional simple A-module F, F ® _ is an ezact endofunctor on A.



We note that, according to the last assumption, F'® M has finite length for any M € A.
So far it is not known whether this assumption is superfluous (see [K]).

In what follows we will always assume that A is an admissible category and will often
consider the objects in A only as A-modules. Let P = (A & Hy) & N be a parabolic
subalgebra of & with the Levi factor A & $Hg, where 2 is semisimple, $g is abelian,
(2, H] = 0 and A~ AD Hy.

Let A be an admissible category of 2-modules. Denote by O(P, A) the full subcategory
of the category of ®-modules consisting of modules which are

1. finitely generated;
2. N-finite;
3. direct sums of modules from A, when viewed as 2-modules.

Assume that the abelian structure on A naturally extends to an abelian structure on
O(P,A) and for any finite-dimensional -module F, F' ® _ is an exact endofunctor on
O(P, A) with respect to this abelian structure.

Proposition 2. 1. The modules Mp(W) and Lp(W) are objects of O(P,A) for any
simple W € A.

2. If V is a simple module in O(P,A) then V ~ Lp(W) for some simple W € A.

Proof. To prove the first statement it is enough to show that as an A-module Mp (W)
decomposes into a direct sum of modules from A. This follows from the fact that Mp (W) ~
UM ) ® W as a vector space by Proposition 1 and this isomorphism carries over the
decomposition of U(91_) as a direct sum of finite-dimensional 2-modules with respect to
the adjoint action. We conclude that Mp(W) € O(P, A) and also Lp(W) € O(P, A).

Let V be a simple module in O(P, A). Since V is 9-finite and $Hg-diagonalizable there
exists a non-zero element v € V such that 9v = 0 and hv = A(h)v for all b € $Hy and
some A € 5. Put V) = U(A)v. Then Nw = 0 for any w € V), implying that V) is a simple
A-module and V' ~ Lp (V) by Proposition 1. This completes the proof. O

The module M» (V') will be called standard module if V' is an indecomposable projective
in A. A module M € O(P, A) is said to have a standard filtration if there is a filtration

0O=MyCM, C---CM,=M
such that each M;/M;_, is a standard module.

Proposition 3. Let A be admissible and let V be a projective module in A. Fix a non-
negative integer k and consider (U(M)/(U(M)N*) as a P-module under adjoint action.
Then the module

P(V,k) = U(6) @) (UOY/(UMN) & V)

U(P)

has a standard filtration.



Proof. Since V is an $Hg-weight module, so is P(V, k). Moreover, since k is finite, among
all the weights of P(V, k) there exists a maximal, say A\, with respect to a natural order.
Consider the A-module P(V, k). The PBW theorem guarantees that the U(®)-submodule
generated by P(V k), in P(V,k) is U(M_)-free. Since U(®B) is a direct sum of finite-
dimensional 2-modules under the adjoint action, it follows that P(V, k), is isomorphic
to V ® F as an 2A-module for some finite-dimensional module F. Since A is admissible,
V ® F' € A. Further, as tensoring with a finite-dimensional module is an exact functor,
we conclude that V @ F = @, X (t) and each X (t) is projective in A. Since A is a maximal
weight it follows that all Mp(X(¢)) are submodules in P(V, k) so we can construct the
first steps of our filtration. Now one has just to proceed by induction. This completes the
proof. O

For a given standard filtration of a module M € O(P, A) we will denote by [M : Mp(V)]
the number of occurrences of Mp(V) as a subquotient of this filtration. Note that this
may depend on the choice of a standard filtration.

4 Projective objects in O(P,A)

The module P(V, k) constructed in Proposition 3 need not be projective in O(P,A) in
general. In order to construct projective modules in O(P,A) we have to assume that
O(P, A) has certain properties.

A direct summand (or block) O; of O(P,A) is said to be quasi-finite (respectively
finite) if the set of highest weights (with respect to g) of all simple modules in ©; is finite
(respectively O; contains only finitely many simple objects up to isomorphism). We will
say that O(P, A) has a quasi block decomposition if O(P, A) decomposes into a direct sum
of quasi-finite full subcategories. For example, by virtue of the finiteness of |(i*)~'(6)| (see
the note about the generalized Harish-Chandra homomorphism in Section 2) it is easy to
see that O(P, A) has a quasi block decomposition if any module in A is locally finite over
Z(21). In this case A = @gez(2)+ Ao, Where Ay consists of those M € A on which the ideal
of Z(2A) corresponding to 6 acts locally nilpotent. By the same argument, if each Ay has
only finitely many non-isomorphic simple modules, O(P, A) has a block decomposition.

Theorem 1. Suppose that O; is a quasi-finite block of O(P,A) and V is an indecomposable
projective in A such that Mp(V') € O;. Then for any k big enough, the O;,—projection P,
of P(V, k) is projective in O(P,A).

Proof. Let X\ be an $g-weight of V. Since O; is quasi-finite, there exist a positive integer N
such that M) My = 0 holds for all M € O;. Let k > N. From the construction of P(V, k) it
follows that there is a canonical isomorphism between Homeg (P;, M) and Homgyg g, (V, M;)
for any M € O(P, A) (here M; denotes the direct summand of M lying in O;). Since V is
projective in A we conclude that P; is projective in O(P, A), as stated. O

Corollary 1. Suppose that A has enough projective modules (i.e. any simple module is a
quotient of a projective module) and O; is a quasi-finite block of O(P,A), then
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1. O; has enough projective modules;
2. Every projective in O; has a standard filtration;

3. There is a one-to-one correspondence between the simple objects in O; and the inde-
composable projective objects in O;.

Proof. The second statement follows from Proposition 3. The first and the third ones
follow from Theorem 1 using the same arguments as in [BGG, Corollary 1]. O

Corollary 2. Suppose that A has enough projective modules and O(P, A) has a quasi block
decomposition, then

1. O(P,A) has enough projective modules;
2. Every projective in O(P, ) has a standard filtration;

3. There is a one-to-one correspondence between the simple objects in O(P,A) and the
indecomposable projective modules in O(P, A).

5 Finite-dimensional algebras arising from O(P, A)

Theorem 2. Suppose that A has enough projective modules and O; is a finite block of
O(P,A). Then O; is equivalent to the module category over a finite-dimensional algebra.

Proof. Consider the endomorphism algebra of the sum of projective covers of all simple
modules in O;. O

Corollary 3. Suppose that A has enough projective modules and O(P,A) has a block
decomposition. Then each block of O(P,A) is equivalent to the module category over a
finite-dimensional algebra.

Now we discuss which finite-dimensional algebras can appear in this way.

Definition 2. Let A be a finite dimensional algebra. A two-sided ideal J in A is called
projectively stratifying if J is generated (as a two-sided ideal) by a primitive idempotent
and J is projective as a left A-module.

The algebra A is called projectively stratified if there exists an ordering eq,...,e, of
the equivalence classes of primitive idempotents of A such that for each | the idempotent
e, generates a projectively stratifying ideal in the quotient algebra A/ < eq,...,e;_1 >.

This is equivalent to requiring that each projective module P has a filtration of the
following form: 0 = My C My C My C --- C M,, = P where M;,1/M, is a direct sum of
copies of the module (4/ < ej,...,€ >)- €41 which is projective over the quotient algebra
Al <eq,...,e >.

A projectively stratified algebra is a stratifying endomorphism algebra in the sense of
Cline, Parshall and Scott [CPS2, ADL]. Hence its derived category admits a stratification,
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that is a sequence of recollements, where the local algebras are the endomorphism rings E;
of the modules (A/ < e1,...,e_1>) e

Any quasi-hereditary algebra is projectively stratified. A projectively stratified algebra
A is quasi-hereditary if and only if all the rings E; are semisimple if and only if A has finite
global dimension ([CPS2, ADL]).

Theorem 3. Assume that A is a sum of module categories of projectively stratified algebras.
Then any finite block of O(P,A) also is the module category of a projectively stratified
algebra.

Proof. By Proposition 2 there is a natural bijection between simple objects in A and
O(P,A). The induction process can glue several blocks of A together into one block of
O(P,A). Assume that a finite block of O(P,A) is given and call it O;. Fix the direct
summand A; of A (in general, this is a product of several blocks) such that the above
bijection restricts to a bijection between A;-simples and O;-simples.

The functors occurring in the construction of projective objects in O(P,A) are exact
and hence transport filtrations from A to O(P, A). Start with a module V' which contains
(up to an isomorphism) at least one copy of each isomorphism class of each non-isomorphic
indecomposable projectives in A;. Then the tensor product (U(M)/(U(MN)I*)) @ V again
is projective (in A) and maps onto all projectives in A;. Hence it contains at least one
copy of each isomorphism class of indecomposable projectives in A;. A filtration of this
module as in the definition of projectively stratified algebra yields a similar filtration of
the induced U(®)-module. Since the number of isomorphism classes of indecomposable
projectives in the block O; equals the number of indecomposable projectives in A;, the
resulting filtration has the correct length. O

Note that we do not know in general how filtration multiplicities change during the
tensoring process.

Corollary 4. Under the conditions of Theorem 3 the following are equivalent for a finite
block O; of O(P,A):

1. The block O; is equivalent to the module category of a quasi-hereditary algebra.
2. The block O; has finite global dimension.
3. For any simple L(V') € O; the module V' is projective in A.
Proof. Obvious. O

In Section 10 we will construct an example of a projectively stratified non quasi-
hereditary algebra, arising in the way described above.



6 First analogue of BGG-reciprocity

For projectively stratified algebras there is an ’abstract’ version of BGG-reciprocity (see
also [ADL, GM] for some analogous results).

Theorem 4. Let A be a projectively stratified algebra over an algebraically closed field
k. Assume that A has a duality (i.e. a contravariant exact equivalence, which preserves
isomorphism classes of simple objects). Assume also that each projective A—module has a
filtration by “Verma modules” M (i) (indexed by i in I, the set of isomorphism classes of
indecomposable projective A-modules) satisfying (M (i) : L(i)) = 1 and (M (i) : L(j)) # 0
implies j < i. Denote by (i) the number [P(i) : M(i)] of occurrences of M(i) in a
mentioned filtration of P(i), which coincides with the dimension of the endomorphism ring
of the i-th standard module A(i) (see [CPS2]). Then for all i,j € I there is a BGG-
reciprocity (or Brauer-Humphreys-BGG reciprocity):

[P(3) : M(5)] = L(5)(M(5) = L())-

We note that the only properties of Verma modules needed here are the ones mentioned
in the assumptions. No universality is needed.

Proof. We proceed by induction along the filtration of A which makes it a projectively
stratified algebra. Let j be a maximal index. Write P(i) = Ae and P(j) = Af for
some primitive idempotents e and f. By the choice of j the trace ideal AfA is projec-
tive as a left module. We have Ae N AfA = (Af)! for some I which can be computed
as | = dimy Homy(Af, Ae)/l(j). By the condition on Verma modules, all occurrences of
M(j) in a filtration of A are inside the ideal AfA. Hence [P(i) : M(j)] = [ -1(j) =
dimy Homy(Af, Ae) = dimg(fAe). Applying the duality on A we get dimg(fAe) =
dimg(eAf) = (P(j) : L(i)). Again by the defining condition on Verma modules we have
(P() : L) = 1) - (M()) : L(3). O

When all I(i) = 1 we will obtain a quasi-hereditary algebra and the classical BGG-
reciprocity.

7 Second analogue of BGG-reciprocity

Here is another analogue of BGG-reciprocity, which covers not only the classical case but
also the examples to be discussed in Sections 10 and 11.

Theorem 5. Assume that A a block decomposition with each block being the module cat-
egory of a local algebra and O(P,A) has a block decomposition. Assume also that for
any simple modules X and Y in A there exists a constant i(X,Y) such that ((F ® X) :
V)=i(X,Y)(FQY) : X) holds for all finite-dimensional A-module F. (We will call this
condition the duality condition.) Then

[P(L(V)) : Mp(W)] = iV, W)I(V)(Mp(W) : L(V))
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holds for any two simple modules V' and W in A, where P(L(X)) is the projective cover of
L(X) in O(P,A) and I(X) is the multiplicity of a simple module X in its projective cover
X in A (which coincides with the length of X ).

Proof. By Theorem 3 each block of O(P, A) corresponds to a projectively stratified finite-
dimensional algebra. First we note that dim Hom(P(L(V)), M) = (M : L(V)) for any
module M € O(P,A). Thus we have only to show that

[P(L(V)) : Mp(W)] = iV, W)I(V) dim Hom(P(L(V)), Mp(W))

for any two simple modules V' and W in A. Fix a block O;. Clearly, we need to check our
equality inside O; only, so we can assume that L(V') and L(W) belong to O;. Let k be big
enough. Let P(V, k); be the direct summand of P(V,k) in O;. Then

P(V,kj= Y, nx(V)P(L(K))
L(K)€elrr(0;)

and
nk(V) = dim Home (P(V, k), L(K)) = dim Homggg, (V, L(K)).

In particular ng(V) = 0 if V £ K with respect to the order induced from £y and
ny (V) = 1. This allows us to proceed by induction. From the linearity of our formula
(in the induction step) we obtain that it is enough to prove that [P(V,k); : Mp(W)] =

i(V,W)I(V)dimHom(P(V, k)j, Mp(W)). Further it is clear that we only have to check
that [P(V, k) : Mp(W)] = i(V, W)I(V) dim Hom(P(V, k), Mp(W)). Clearly, from the con-
struction of P(V,k) it follows that there exists a finite-dimensional 2-module F' such
that [P(V,k) : Mp(W)] = (FQV) : W) = (V)(F®V) : W). On the other
hand dim Hom(P(V, k), Mp(W)) = dim Homgge, (V, Mp(W)) = dim Homy(V, F @ W) =
((F®W) : V) by the projectivity of V. Application of the duality condition for A completes

the proof. 0

8 Comparing these reciprocities

Comparing Theorem 4 with Theorem 5 one obtains the following result characterizing the
behavior of simple modules.

Theorem 6. Assume that A has a block decomposition with each block being the module
category of a local algebra and the duality condition is satisfied. Assume also that there
are only finitely many simples in A having the same central character and O(P,A) has a

duality (for some & and P). Then i(X,Y) = [(V)/I(X).

Proof. 1t is easy to see that all the conditions of both Theorem 4 and Theorem 5 are
satisfied, hence the statement follows by comparing the two reciprocity formulae. O



9 How to construct examples

In this section we give some technical results needed later for constructing examples of
categories A and O(P,A). Let 2 be a semisimple complex finite-dimensional Lie algebra
and let V' be a simple 2-module. Suppose that for any finite-dimensional 2-module F' the
module F' ® V has finite length. Denote by A = A(V) the set of isomorphism classes of
indecomposable direct summands of modules ' ® V', where F' runs through the set of all
simple finite-dimensional 2-modules and let A = A(V) be the closure of A under operations
of taking direct sums, submodules and quotients.

Lemma 1. Any module in A has finite length. Moreover, A is closed under tensor products
with finite-dimensional modules.

Proof. Assme first that there exists a finite-dimensional 2(-module F” such that V ® F' ~
N @ N' for some N’ € A. Then N ® F is a direct summand in (N & N') ® F and the last
is isomorphic to V ® F' ® F'. Since F' ® F' is finite-dimensional the statement follows from
Weyl’s theorem on complete reducibility of finite-dimensional 2-modules. For submodules
and quotients everything now follows from the exactness of tensor product with a finite-
dimensional module. O

Using the above lemma one can easily produce admissible categories over reductive
algebras having 2 as the semisimple part. By abuse of notation we will also denote the
obtained category by A = A(V'). By virtue of the Kostant Theorem ([K, Theorem 5.2]),
each module of A(V) is locally finite over Z(2).

Lemma 2. Any module in O(P, A) is locally finite over Z(®). Moreover, if, for any given
central character, A contains only finitely many simple modules with that central character
then any module in O(P,A) has finite length.

Proof. As it was mentioned in Section 4, O(P,A) has a quasi-block decomposition. Let
O; be a quasi-finite block. By induction in $)g-weights one see that each M € O; has a
filtration

OCMyC---CMy=M

such that each M;/M; 4 is a quotient of some Mp(V;). So, it is enough to prove the statment
for all Mp(V;). Using the generalized Harish-Chandra homomorphism, the action of Z (&)
on Mp(V;) can be computed from the actions of g and Z(2A) on V;, which are locally
finite, and the first statment follows.

If A contains only finitely many simple modules with that central character, then, as
observed in Section 4, O(P, A) has a block decomposition. Since any module M in O(P, A)
is finitely generated we have that each M, A € 95 is an A-module of finite length. Now the
statement follows from the properties of the generalized Harish-Chandra homomorphism
by the same arguments as in [D, Proposition 7.6.1]. O

In the case of a reasonable choice for V one can prove the assumptions required in
Corollary 2, Theorem 3, Theorem 3 or Theorem 5 by direct calculation, which will be
illustrated in the subsequent examples.
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10 The example 2 = si(2,C)

Let 2 = sl(2,C) with the standard basis {e, f,h} and let ¢ = (h + 1)? + 4fe be a Casimir
element. Let A’ be the category of all weight (with respect to Ch), torsion-free (i.e. e
and f act injectively) 2A-modules. As the centralizer of the Cartan subalgebra in U(%)
is commutative and generated by h and ¢, from [DFO, Lemma 3] it follows that simple
weight torsion modules are parametrized by pairs (), ) where A € C/2Z is the set of all
eigenvalues of h, 7 is the unique eigenvalue of ¢ and v # (A + 1)% for all A € A

Let X; and X, be simple modules in A’ parametrized by (Ay,71) and (g, ) respec-
tively. Suppose that Ext'(X, X5) # 0. Since ¢ belongs to the centre of U(2() we immedi-
ately obtain that 3 = 9. Also note that if V' is an indecomposable weight 2-module then
supp V' C f for some i € C/2Z implying that 5\1 = 5\2 and X; >~ X,. Also, there are no
non-trivial self-extensions of a simple module in A’ having an infinitesimal character.

Let V be a simple module in A’. Then applying [K, Theorem 5.1] one obtains that
for any finite-dimensional 2-module F' the module F' ® V' decomposes into a direct sum
of indecomposable modules of length not greater than 2. It is easy to see that if none
of the two simple modules X and Y is isomorphic to V (), 0) then the duality condition
(with i(X,Y) = 1) is equivalent to the following: for a fixed non-zero complex a and b
and for any non-negative integer n holds [{a,—a} N {b—n+ 2i|0 < i < n}| = |{b,—-b} N
{a — n + 2|0 < i < n}|, which can be easily verified. It follows by direct calculation
that i(V (), 0), V(X k?)) = 2, k # 0, thus the duality condition is satisfied. To claim that
A(V) (see Section 9) satisfies all conditions necessary for Corollary 1 we have only to check
the existence of projectives. If V = V(),7) and 7 not a square of an integer, then by
[K, Theorem 5.1] the module F' ® V is completely reducible for any finite-dimensional
2A-module F, hence there are enough projectives. Assume that v = k% k € Z_. Then it is

easy to see that the simple modules in A(V) are those of the form Vy = V(A (k + 21)?),

l €Z and Vo g = V(m, (k+20+1)?), 1 € Z. Hence, we can assume k = 0. Denote by
F; the unique [ + 1-dimensional simple 2-module and define an indecomposable extension,
Vi, of V, by ) i

FV(\0)=Ve V!,

where Hom(V',V}) = 0. Clearly, }7} has all subquotients isomorphic to V; and a straight-

forward calculation shows that V; is indecomposable. It follows immediately from the
following proposition that the modules V; are those needed.

Proposition 4. For any l,t € Z, all indecomposable summands of Vi ® Fy are of the form
Vs or Vi for s € 7.

Proof. 1f t <l then by [K, Theorem 5.1] the module V; ® F; is completely reducible, hence
our statement is true. Now we use an induction in t — [ = k. We have already seen that
for k£ < 0 our statement is true. Clearly, for ¢ = 1 the statement is also true since the only
V; ® F; which is not completely reducible is Vy ® F} for which the statement is trivial. Now
V, ® Fy is a direct summand in V; ® (F; 1 ® Fy) since F;, 1 @ Fy ~ F, @ F; 5 fort > 1, so
it is enough to prove the statement for V; ® (F;_1 ® F1) ~ (V, ® F1) ® F;_1. The module
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Vi® F; either decomposes into a direct sum of some Vj or is isomorphic to Vi. For V,®F,_;
everything follows from the inductive assumptions. Further Vi ® F;_ 1 ~ Vi ® F1 ® F;_4
and the statement follows. ]

Thus A(V) is admissible. It follows from [FM, Section 3, Example 2] (or from the

arguments above) that for V' = V(\,v) with v # k? for any k € Z, any simple module
in A(V) is projective. Suppose that V = V(S\, k%) for some k € Z. Tt follows from direct
calculation, that for any [ € Z the modules V (], (k + 2{)?) and V(/\/-\f:/l, (k420 +1)?) are
in A(V), from which we deduce that A(V') does not depend on the choice of £ mod 2. We
can assume k = 0. Set A(A) = A(V), and from our restriction on A we have A ¢ Z. Now it

is easy to see that the modules V' (A, (k+21)?), V(m, (k+20+1)?), | € Z exhaust the set
of simple modules in A(/N\) Moreover, any indecomposable module in A(/N\) is isomorphic
to either V; or V, for s € Z.

Let o € A, 2 ~ 5l(2) be a subalgebra of & generated by &, and let P = (AD Ha) ©N
be a parabolic subalgebra of &. Let A be an admissible category A()) (the case A =
A(V (X, ¢)) for ¢ not a square integer has been considered in [FM, Section 5.3] and there
it has been shown that in this case all blocks are highest weight categories). It follows by
the arguments of Section 4 that O(P, A) has a block decomposition. Applying Theorem 3
we obtain that any block of O(P,A) is the module category over a finite-dimensional
projectively stratified algebra. Applying Theorem 5 we obtain that for a simple W € A

which is not isomorphic to V'(}, 0) as an 2%-module the following two equalities are satisfied
[P(L(V)) : Mp(W)] = 2(Mp(W) : L(V)),

and
[P(L(V)) : Mp(V (},0))] = (Mp(V(},0)) : L(V)).

11 Gelfand-Zetlin example

Let 2 ~ sl(n,C) and X;, Y;,7=1,2,...,n—1 be the set of canonical generators of 2. Fix
a doubly indexed complex vector [I] = (;;))=,"" satisfying the following conditions:

i=1,2,...,m
e lii—lLiy¢gZioralli=1,2,...,n—-1,1<j<k<j
o lii—liyixygZforalli=1,2,...,n—-1,5=1,2,...4,k=1,2,...,i+ 1.
Set S([l]) to be the set of all tableaux [¢] satisfying the following conditions:

o tpi=Il,;forall j=1,2,...,n;

] ti,j—li,jEZforalliz1,2,...,n—1,j=1,2,...i.

12



Let V([!]) be the complex space with basis S([{]). It is known ([DFO2]) that the formulae

i H(tiﬂ,k —tij) ) ; H(tiq,k —ti;)
Xilt] = ;— Tl — 1) (L] +[67]), Yilt] = ; T — ) ([¢] = [67])

k#j k#j

define on V/([l]) the structure of a simple A-module. Moreover, it follows from a direct
calculation with Kostant’s theorem ([K, Theorem 5.1]), that the only simple subquotients
which can appear in F' ® V([I]) for finite-dimensional F' are of the form V([s]), where
Sij = lij, © < mnand s,; —lp; € Z. Let A = A(V([l])) be constructed as in Section 9.
As non-isomorphic simples in A have different central character ([DFO2, Section 2]), A
has a block decomposition with respect to central characters with a unique simple in each
block. Further, it is also known ([DFO2, Proposition 31]) that self-extensions of V([l])
depend only on the action of the so-called Gelfand-Zetlin subalgebra, generated by £ and
the union of centers of si(m,C), m = 1,2,...,n embedded into the left upper corner (i.e.
sl(m, C) is generated by X;, ¥;, i =1,2,...,m —1). Applying [K, Theorem 5.1] to each
center separately we obtain (from the choice of [{]) that all Ext are finite-dimensional and
controlled by Z(2). Moreover, it also follows from [K, Theorem 5.1] that the lengths of
indecomposable modules in F' ® V([l]) are bounded for all finite-dimensional F. From
this we easily deduce that A has enough projective modules, hence, taking into account
the arguments in Section 4 and Section 9 we conclude that all conditions of Theorem 3
are satisfied. Thus any block of O(P,A) corresponds to a projectively stratified finite-
dimensional algebra.

Now we are going to show that the technical condition of Theorem 5 is also satisfied,
hence an analogue of the BGG-reciprocity holds. For this we need some auxiliary results.

Lemma 3. Let A be a simple finite-dimensional complex Lie algebra, § be its Cartan
subalgebra and W be the Weyl group. For \,u € $* set A ~ p if and only if A € W -
(here w - p = w(u+ p) — p is the standard dot-action of W). Then for any A\, u € $H* and
any simple finite-dimensional A-module F' holds

WX Y dimF,=|W-pul > dimF,.

viv+A~p vivtpu~A

Proof. Let Wy (resp. W,) be the subgroup of W stabilizing A (resp. ). Then we can
rewrite our equality in the form

Wl Y dimF, =[W,| Y  dimF,.

viv+A~p viv+pu~A

Let wy,ws,...,w, be all the elements of W and define v; by v; + A = w; - . We can
rewrite the last equality as w; ' - A = pu — w; ' (v;). Since dim F; = dim Fy¢) for all £ € H*
and w € W we conclude that both the left hand side of the desired equality coincide with
Yo ,dimF, and the right hand side coincide with >  dim F_,,. The statment now
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follows from dim F, = dim F,y(,) = dim F_,, where wy is the longest element in the Weyl
group. ]

For § € Z(A)* and A € $* we will write § = () if 6 is the central character of the
Verma module M (A) (with highest weight A — p). We recall that any simple module in
A = A(V([l])) is uniquely determined by its central character.

Lemma 4. Let V([s]) and V([t]) be two simple modules in A and F a simple finite-
dimensional A-module. Assume that 0(u1) and 6(us) are the central characters of V([s])
and V ([t]) respectively. Then the number of simple subquotients of the module V ([s]) ® F
isomorphic to V ([t]) equals ) dim F,,, where the sum is taken over all v such that p+v ~

Ha.

Proof. Let I" be the Gelfand-Zetlin subalgebra of & ([MO]). First we note, that from [DFO,
Proposition 21] it follows that each simple finite-dimensional -module decomposes into a
direct sum of simple (and thus one-dimensional, since I' is commutative) non-isomorphic
[-modules. Moreover, the same is true for any V([l]) as defined in this section (follows
from [DFO, Proposition 21, Section 2.3]).

As the second step we remark, that from the construction of V([{]) and [DFO, Propo-
sition 21] it follows that two modules V'([I']) and V([I?]) such that Ij; = I?; for all
1 <i<n-—1and all j are isomorphic if and only if their central characters coincide.

Now, as it was noted above, by a direct application of [K, Theorem 5.1] one can easily
determine the possible simple subquotients of V'([s]) ® F', for example in the following way:
a module V ([s']) with s, = s;; for all 1 <4 < n —1 and all j, having a central chracter
O(ps) can occur as a simple subquotient in V ([s]) ® F' if and only if Wy intersects the
set 1 + P(F), where P(F') states for the support of the module F'. We will also denote by
15(F ) the corresponding multi-support, i.e. the support, in which all weights are counted
with their multiplicities.

Denote by I a natural subalgebra of I', which is the Gelfand-Zetlin subalgebra of
U(sl(n — 1)). By construction, the module V([!]) is dense with respect to I (i.e. its I"-
support coincides with a weight lattice) and ['-weight subspaces are one-dimensional. Since
tensoring with a finite-dimensional module preserves the weight lattice, we conclude that
V([s]) ® F is a dense module and all non-trivial ["-weight subspaces of it are of dimension
dim F'. Hence, applying [DFO, Corollary 33|, we obtain that the length of V([s]) ® F' equals
dim F'.

Now we want to substitute V' ([s]) by a finite-dimensional module E. Suppose that E lies
far enough from the walls, i.e. the length of E ® F' equals dim F.. We will call a I'"-weight
subspace of E generic provided the dimension of this weight subspace in £ ® F' equals
dim F'. Clearly, any E lying far from the walls has a generic I'-weight subspace. Fix F
lying far from the walls and a generic I''-weight x (i.e. E) is a generic ['-weight subspace).
Fix z € Z(®). Choose a basis in (E ® F'), and write the characteristic polynomial f,(X)
of z in this basis. Let A be a highest weight of E. ;From the Littlewood-Richardson rule
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we obtain

EX)==x[ J] &@X=00+X)(2)). (1)
NEP(F)

Note that from the Gelfand-Zetlin formulae, which define the action of the generators
of & on finite-dimensional modules, it follows that the coefficients of f,(X) are just the
rational functions in the entries of the tableau corresponding to x. Since we can find
sufficiently many modules E lying far from the walls and sufficiently many generic I"-
weight subspaces in E' we conclude for any generic ['-weight x in any simple module M,
defined using Gelfand-Zetlin formulae, the polynomial f,(X) has also the form (1) (where

6(A) is the central character of M).
To complete the proof we only have to recall that the modules V ([I]) were constructed
using Gelfand-Zetlin formulae and, as it was mentioned above, any I''-weight subspace of
V ([1]) is generic. O

Combining Lemma 3 and Lemma 4 we obtain that for two simple modules V'([s]) and
V([t]) from A having central characters 6(u,) and 6(us2) respectively holds

iV ([s)), V([t)) = W - (u2)l/ W - ()]

Thus all conditions of Theorem 5 are also satisfied and the corresponding analogue of
BGG-duality holds.

12 Application of Theorem 6 to the last example

Fix [I] as in Section 11 such that l,; € Z for all 1 < i < n. Now we are going to
apply Theorem 6 to obtain some structural results about A = A(V([l])). To be able
to apply Theorem 6 we only have to check that the category O(P,A) constructed in
Section 11 has a duality. For this we note (see [DFO]) that each module in O(P,A)
decomposes into a direct sum of finite-dimensional modules with respect to a commutative
subalgebra K in U(®) generated by the flag of centers mentioned in Section 11. Further the
canonical Chevalley involution on & stabilizes K pointwise. Thus we can define a duality
on O(P, A) by standard arguments (dualizing each finite-dimensional space separately, see
[FM, Section 5.5]). Applying now Theorem 6 we get

iV ([sD), V(D) = WPV ([e) /WP V([s))) = [W - () /W - ()]

Moreover, this enables us to compute [(P(V([t]))) precisely. In fact, take [s] such that
Spi = 0 for all 4. In this case |W - (u1)| = 1 and, clearly, [(P(V([s]))) = 1. Hence
[(P(V([t])) = |W - (u2)| and we can combine this into the following corollary.

Corollary 5. Let A = A(V([l])), for [l] as in Section 11 such that l,,; are integers for all
i, and let V ([s]) be a simple module in A having the central character x (i.e. the central
character of the simple highest weight module with the highest weight \). Then the length
of the projective cover of V([s]) in A equals |W - (N)|.
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This allows us to reformulate the BGG-reciprocity for the Gelfand-Zetlin example:
Corollary 6. Keep the notation of Section 11. Then there holds the reciprocity formula
[PV ([2]) : Mp(V([s))] = W - (N)[(Mp(V([s]) - LV ([2]))),

where X is the central charachter of V ([s]).
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