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Abstract

We study the category O(P, A), where A is an admissible category of dense weight
sl(2)-modules. We give a combinatorial description of projectively stratified alge-
bras, arising from O(P,A) and prove a double centralizer property. Moreover, we
determine the characters of tilting modules in O(P,A) and prove that the finite-
dimensional algebra associated with the principal block of our O(P,A) is its own
Ringel dual.

1 Introduction

Together with its definition in [BGG], two basic facts of the category O, associated with a
simple complex finite-dimensional Lie algebra &, were established. The first states that O
decomposes into blocks, each of which is a module category over a finite-dimensional algebra
(these algebras belong to the class of quasi-hereditary algebras, defined later in [CPS1]).
The second one is the celebrated BGG reciprocity between simple, projective and Verma
modules in O. Another crucial result about O was obtained much later by Soergel in [S2].
There a combinatorial description of the finite-dimensional algebras which correspond to
blocks of O was given. In the case of the principal block of O, the combinatorial datum of
this description is the so-called coinvariant algebra together with the big projective module
(Soergel has obtained in [S2] a combinatorial description of this module structure over the
coinvariant algebra).

Verma modules are produced by inflating a one-dimensional module over a Cartan
subalgebra to a Borel subalgebra and then inducing up to . A well-known generalization
involves replacing the Cartan subalgebra by a (larger) reductive subalgebra and the cor-
responding Borel subalgebra by a parabolic subalgebra. Such generalized Verma modules
have been studied both for the special case where the input for inflation and induction still
is a finite dimensional module and for more general cases where one starts already with an
infinite dimensional module. In this way, many new simple &-modules can be produced
as quotients of generalized Verma modules and, together with a new class of modules,
constructed by Mathieu ([M]), this completes the classification of simple weight modules
with finite-dimensional weight spaces ([F, M]).



In [FKM] we dealt with the question of generalizing the definition of O in such a
way that generalized Verma modules are included. We proposed a natural generalization
O(P, A) of O, which corresponds to an admissible category A of (infinite-dimensional in
general) modules over a parabolic subalgebra P of &. In fact, we have shown that under
some natural conditions, the obtained categories decompose into blocks, each of which
is a module category over a finite dimensional algebra. In contrast to the classical case,
this finite dimensional algebra usually is not quasi-hereditary. However, it is projectively
stratified and thus the theory of stratified algebras (developped by Cline, Parshall and Scott
[CPS2] for quite different sorts of examples) can be applied. We also found an analogue of
BGG reciprocity.

The aim of this paper is to obtain an analogue of Soergel’s combinatorial description
for O(P,A) in the case, when the semisimple part of the Levi factor of P is isomorphic
to sl(2,C) (see [FKM, Section 10]). In particular, we show (Theorem 3 and Corollary 7
in Section 6), that the combinatorial datum is again the coinvariant algebra and the big
projective module in the principal block of O(P, A).

Theorem A. Let P(L) be the big projective module in the principal block of the category
O(P,A(V(A,7))). Then End opa)(P(L)) is the coinvariant algebra.

Moreover, Theorem 4 in Section 7 provides us with a double centralizer property.

Theorem B. Let B denote the (projectively stratified finite-dimensional) algebra as-
sociated with the principal block O(P, A)yin. Then B is isomorphic to the endomorphism
algebra of the big projective module, viewed as a module over its endomorphism ring.

We also construct tilting modules in O(P, A) and determine their characters. In Section
10 (Theorem 7) we establish Ringel self-duality.

Theorem C. The projectively stratified algebra of the principal block O(P, A)yip is its
own Ringel dual.

The paper is organized as follows. In Section 2 we introduce our main objects. In
Section 3 we use Mathieu’s localization technique to reduce the study of an arbitrary
category O(P,A) to a special case A = A(V(l,)). In Section 4 we define a functor
E : O(P,A(V(l,v))) — O and establish its basic properties. In fact, we show that it
transfers generalized Verma modules to Verma modules and projective objects to projective
objects. In Section 5 we prove that O(P,A) is equivalent to a full subcategory of O. In
Section 6 we determine the endomorphism algebra of the big projective module in the
principal block of O(P,A). In fact, we prove that this is the coinvariant algebra. In
Section 7 we establish the double centralizer property for O(P,A). In Section 8 we define
and investigate a subclass of tilting modules in O which we call strong tilting modules.
Further, in Section 9 we define a notion of tilting module in O(P,A) and prove their
existence and uniqueness. In fact, we show, that E transfers a tilting module in O(P, A)
into a strong tilting module in O and this map is bijective. Finally, in Section 10 we
determine the multiplicities of generalized Verma modules occuring in a standard filtration
of a tilting module in O(P, A) and prove that the projectively stratified algebra associated
with the principal block of O(P, A) is isomorphic to its Ringel dual.
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2 Main objects

Let 24 denote the Lie algebra si(2,C) with a fixed root basis e = X, f = X 4, h = H,,
where « is a root of 2. For v € C and A € C/2Z let V(),~) denote the unique weight
2A-module (see [FM1]), satisfying the following conditions:

1. X is the support of V (), ) and all weight spaces of V(A,~) are one-dimensional,
2. 7 is the unique eigenvalue of the Casimir operator C' = (h + 1) + 4fe on V(),7),
3. f acts bijectively on V' (), 7).

Clearly, V(),v) is an indecomposable 2A-module, generated by any V(\, )1k, 1t € A for
k € N big enough.

Call a weight 2A-module V' with finite-dimensional weight spaces admissible, provided
f acts bijectively on V. By definition, any V'(),~) is admissible.

Let A = A(V(),7)) denote the category of 2-modules, defined as follows: the objects
of A are all admissible submodules and all admissible quotients of all modules having the
form V(\,7) ® F, where F is a finite-dimensional 2-module; the homomorphisms of A are
those homomorphisms of 2-modules, whose kernel is an admissible module. Clearly, A is
an abelian category (i.e. that it is closed under operations of taking admissible submodules
and quotients), moreover, A is closed under taking finite direct sums.

Remark 1. In the case, when V (\,7) is simple (this means v # (I+1)? for alll € \), any
submodule in V(X\,v) @ F, where F is finite-dimensional, is admissible (see, for example,
[CF]). The objects of A are all the quotients and submodules of modules V (), ) ® F.

In the case, when V(A7) is not simple, A still is a full subcategory of the category of
A-modules. Tt is easy to see, that A inherits an abelian structure from the category of all
A-modules. In fact, let My and My be two weight modules with finite dimensional weight
spaces and let ¢ : My — My be a morphism. Then f acts injectively on ker(yp) C M.
Using the bijective action of f on My (which has finite dimensional weight spaces) we also
get that f acts surjectively on ker(p). In a similar way, one can check that f acts bijectively
on coker(¢p).

Now let & be a complex simple finite-dimensional Lie algebra and P be a parabolic
subalgebra of & such that P = (AP Hy ) DN, AD Hy reductive, N nilpotent, Hy abelian and
2 as above. The category A can be extended in a unique way to a category A = A(V (), 7))
of 2 = A P Hy-modules, which satisfies the following conditions:

1. any M € A belongs to A, when viewed as an 2-module,
2. any M € A is HHg-diagonalizable,

3. for any M € A and any $g-diagonalizable finite-dimensional 2-module F the module
M ® F decomposes into a direct sum of indecomposable modules from A,



4. the homomorphisms in A are those homomorphisms of 2-modules, whose restriction
to A belongs to A.

Following [FKM, Section 3], we define O(P, A) to be the category of &-modules, whose
objects are finitely generated and -finite G-modules, which decompose into a direct sum
of modules from A, when wieved as U-modules and whose homomorphisms are those ho-
momorphisms of &-modules, whose kernel decomposes into a direct sum of modules from
A, when viewed as an U-module. By [FKM, Section 4], O(P, A) has a block decomposition
(with finitely many simples in each block) and by [FKM, Section 10], this decomposition
can be choosen such that each block is equivalent to the module category over a projectively
stratified finite-dimensional algebra. Moreover, if v is not a square of an integer, this alge-
bra is quasi-hereditary and in all cases there is an analogue of the BGG-reciprocity. From
Remark 1 it follows, that the category O(P, A) is a full subcategory of the category of all
®-modules and it inherits the abelian structure from the last category. Further, O(P, A)
is closed under taking finite direct sums and under tensoring with finite-dimensional &-
modules. Moreover, tensoring with a finite-dimensional &—module is an exact functor also
with respect to the new abelian structure.

3 Mathieu’s localization and the first equivalence

The aim of this section is to prove the following result:

Theorem 1. The categories O(P,A(V (A1,7))) and O(P,A(V (Xe,7))) are (blockwise) equ-
ivalent (i.e. they are independent on \).

To prove this we will use Mathieu’s localization, proposed in [M] as a tool for classifying
simple dense modules with finite-dimensional weight spaces. We refer the reader to [M] for
all technical details.

Denote by Uy the localization of U(®) with respect to the powers of f = X_, and let 6,,
z € C be the unique polynomial family of automorphisms of Uy, such that 6, (u) = fPuf=*
for all w € Uy and all z € Z.

Proof. We can assume that A; # Ay. Since C is one-dimensional over itself, there exists
x € C such that A\; = Ay + za. Moreover, x ¢ Z according to our assumption.

By definition of O(P, A), f acts bijectively on any module V € O(P,A). Thus any V
can be trivially extended to an Ug-module.

Now suppose that M is an Us-module and 0 # v € M such that H,v = av for some
a € C. Then for any integer y we have 0,(H,)v = fYH,f Yv = (a + 2y)v. Since the
family 6, is polynomial (in y) by definition, we have, that 6,(H,)v = (a + 2y)v for any
y € C. From this it follows immediately, that the twist by 6 , (resp. 6,) is a well-defined
functor from O(P,A(V(A1,7))) to O(P,A(V(A2,7))) (resp. from O(P,A(V()A2,7))) to
O(P,A(V(A1,7)))). Since the composition of , and 6_, is an identity, we easily conclude
that these fuctors are mutually inverse. The block version follows immediately. This
completes the proof. O



4 From O(P,A) to O

According to Theorem 1, the properties of the category O(P,A(V(A,7))) do not depend
on A\. Now we recall that for a fixed y there exists at least one V(A,7y), which is not
simple. More precisely, if v is a square of an integer, such V' (A, ) is unique and if v is not
a square of an integer, there are precisely two non-isomorphic non-simple modules V() 7)
and V(X" 7). Let V([,) be a non-simple module. The aim of this section is to define and
investigate a functor from O(P,A(V(I,7))) to O.

For M € O(P,A(V(l,7))) denote by E(M) the space of locally e-finite elements of
M. Since e is locally ad-nilpotent, E(M) is a &-submodule of M. On morphisms, F is
restriction of a homomorphism ¢ : M — N to E(p) : E(M) — E(N). We note, that from
[FKM, Section 10, Section 4] it follows that any object M in O(P,A(V(l,7))) has finite
length (as a &-module). Hence F(M) also has a finite length. Thus we obtain, that E
is a well-defined functor from O(P,A(V (I,7))) to O. Our main goal in this and some of
the next sections is to study the properties of this functor £. We note that an analogous
functor was used in [M, Lemma Al].

Lemma 1. E(M) = 0 if and only if M = 0.

Proof. We have to prove the “only if” part. Since E(M) is defined as the locally e-finite
part of M and e is locally ad-nilpotent, F(M) is an -module (moreover, it is a &-module).
By definition of O(P, A(V(1,7))), M decomposes into a direct sum of modules from A, thus
it is sufficient to prove our statement for indecomposable modules in A.

Suppose, that « is not a square of an integer. Then any indecomposable in A has the
form V(),4) for some A € C/2Z and 4 € C and is not simple (see [FKM, Section 10]
or [FM2, Example 2] or directly apply [K, Theorem 5.1]) by our assumption on A. Since
V(A,4) is not simple and f acts bijectively on it, it should have a non-zero highest weight
submodule. Hence its subspace of locally e-finite elements is non-zero.

Now suppose that 7y is a square of an integer. Then, by [FKM, Section 10], any
indecomposable module in A is either some non-simple V' (},4) or is a self-extension of
some V(S\,ﬁ/), moreover, this self-extension in A exists if and only if V(j\,‘y) itself has
length 3. For V (), 4) everything is clear (analogous to the previous case). To complete the
proof, consider a self-extension V' € A of some V(),4) of length 3. By definition of A, there
is a finite-dimensional 2-module F such that V' is a direct summand of F ® V/(}, ). Since
V(A,4) has a non-zero highest weight submodule and tensoring with a finite-dimensional
module is an exact functor, we conclude, that the space of locally e-finite vectors in V' is

non-zero. ]

Corollary 1. Under the notations of Lemma 1 the following holds: For any pu € supp M
and any k € N big enough M, . belongs to the locally e-finite part of V.

Proof. Follows directly from the proof of Lemma 1. O

We recall, that any module in O(P, A) is a weight &-module with finite-dimensional
weight spaces ([CF]). Recall, that any M € O(P,A) has finite length. From this and
Corollary 1 we deduce the following:



Corollary 2. Let M € O(P,A(V(,7))). Then for any p € supp M and for any k € N
big enough we have dim M,,_y, = dim E(M),_a.

Lemma 2. Let L € O(P,A(V(1,7))) be a simple object. Then E(L) contains a unique
stmple subquotient on which X_, acts injectively.

Proof. First we remark that, according to our choice of V([,~y), E(L) is not zero. Let L be
a simple subquotient of F(L) on which X_, acts injectively. Let A be the highest weight of
E(L) and X be the highest weight of L. If A — X' ¢ Za, then, inducing our modules back
to Uy, we get a non-trivial submodule of L on which X, acts bijectively. This is impossible
because L is assumed to be simple. Hence A — )\ € Ne, and, as E(L) is a quotient of
a Verma module, X , acts on E(L)/ L locally nilpotent. This implies the uniqueness of
L. O

For a simple object W € A we will denote by Lp(W) the unique simple (as an object
in O(P, A)) quotient of Mp(W). We note, that Lp(WW) is a simple &-module if and only
if W is a simple 2A-module. The next statement one more times generalizes the ideas used
in the proof of Lemma 1:

Lemma 3. Let M € O(P,A(V(l,7))) and F be a finite-dimensional &-module. Then
EM®F)~EM)®F (as &-modules).

Proof. The inclusion E(M)® F — M ® F factors through E(M @ F'). Exactness of - @ F
for a finite-dimensional F' implies the assertion. O

Lemma 4. Let W be a simple object in A(V (,7)) and Mp(W) € O(P,A(V(1,7))). Then
E(Mp(W)) is a Verma module in O.

~

Proof. Recall that W is not simple and isomorphic to some V(A A). We have that
E(Mp(W)) ~ Mp(W), where W is the locally e-finite part of W. Since W is a Verma
module over 2 we obtain that Mp(W) is a Verma module over &. O

The following statement describes the key property of E.

Proposition 1. The functor E sends projective objects from O(P,A(V (1,7))) to projective
modules in O.

Proof. First we consider the case & = 2. According to [FKM, Section 10], an indecompos-

~

able projective object in A is either some V' (A, %) or its selfextension of length two, which
appears as a direct summand in F ® V (I, ) for some finite-dimensional F. If V' (},4) itself
is projective, then % is not the square of an integer and hence the corresponding e-finite
part is the unique simple (=projective =Verma) module in the indecomposable block of
category 0. This means that in this case the statement is true. If v is the square of an
integer, we can assume that v = 0. Thus V([,) is projective in A (see [FKM, Section 10]
again) and its e-finite part is projective in O. In this case to obtain the statement we only

need to recall that the functor F' @ _ is exact.



Now consider the general case. Recall the construction of projective modules in O and
O(P,A) ([BGG, Section 4], [FKM, Section 4]). In O(P,A) any projective occures as a
direct summund in the pojection on the corresponding block of a module having the form

P(V,k)=U(&) Q) (UM)/UOMN*) V),
U(P)

where k is a big enough positive integer and V is a projective in A. Clearly, E commutes
with the induction from P to &. Applying now Lemma 3 we have

E(P(V,k)) = U(8) @) ((UM/(UEYN) ® E(V)).
u(P)

Now E(V) is projective in the corresponding sl(2) category O. ;From this and the con-
struction of P(V, k) it follows that if the projection of P(V, k) on the block of O(P, A) is
projective, then the corresponding projection of E(P(V,k)) on the block of O is also pro-
jective. To complete the proof, we just have to mention that £ commutes with projections
on blocks. O

5 Further properties of E: the second equivalence

The aim of this section is to study F in more detail. In fact we will prove that F is a full
functor and that it induces an equivalence between O(P, A) (A as in Section 4) and a full
subcategory of O. Till the end of the section we assume that A = A(V(I,7)), where V([,7)
is a non-simple module as in Section 4.

Lemma 5. Let M and N be in O(P,A) and ¢ : M — N be a non-zero homomorphism
(of &-modules). Then the p(E(M)) # 0.

Proof. Let m € M be such that ¢(m) # 0. Recall that f acts injectively (even bijectively)
on M and N, and by Corollary 2 there exists a positive integer k such that f¥-m € E(M).

Now o(f*-m) = f*-p(m) # 0. O

Corollary 3. E produces an equivalence of O(P, A) with a (not necessary full) subcategory
of O.

So far we have no evidence, why FE should be a full functor. The rest of this section
will be devoted to establishing this fact. According to Lemma 2, for any simple object
L € O(P, A) there exists a unique simple subquotient LofE (L) on which f acts injectively.
Since E(L) belongs to O, it is characterized by its highest weight, which we will denote
by E(L). So, using the usual notation for the simple quotient of a Verma module ([D]),
we can write that L ~ L(E(L)). As usual, for a &-weight A by P()) we will denote the
projective cover of L(A) (in O). For a simple L € O(P, A) denote by P(L) its projective
cover in O(P,A).



Lemma 6. For any M € O(P,A) and any simple L in O(P,A) holds (M : L) = (E(M) :
L(E(L))).

Proof. We can restrict our attention to a block of O(P, A), which is a module category
over a projectively stratified algebra ([FKM, Theorem 3]). Now the statement follows
from Corollary 2 by induction with respect to the poset indexing simple modules in our
blOCk. m

From Lemma 6 one can easily deduce an analogue of the Kazhdan-Lusztig (Conjec-
ture=) Theorem for generalized Verma modules Mp(W), where W is a simple object in
A (this was proved first time in [KM]). In fact, we just reduce the problem to the known
result for category O (see [BB, BK, S2]).

Corollary 4. Let W be a simple object in A and L be a simple object in O(P,A). Then
(Mp(W) : L) = (M(E(Lp(W))) : L(E(L))).

Proof. First we note that E(Mp(W)) is a Verma module and M (£ 5(Lp(W))) € E(Mp(W)).
Moreover, E(Mp(W))/M(E(Lp(W))) is a direct sum of finite-dimensional 2(-modules,
lﬁence (L(;J(Mp(W)) : L(E(L))) = (M(E ( p(W))) : L(E(L))). The rest follows frorél

Lemma 7. E(M) is indecomposable if and only if M is indecomposable.

Proof. Clearly, it is enough to prove that E(M) is indecomposable as soon as M is inde-
composable. Suppose that E(M) = N; @ N,. Since f acts injectively on E(M) it acts
injectively on both N;, i = 1,2. Recall, that N;, + = 1,2 are &-submodules in M. Let
M;, i = 1,2 denote the set of all v € M such that f*¥(v) € N; for some k big enough.
From Corollary 1 it follows that M = M; & M, as a vector space. Since f is a locally ad-
nilpotent element in & it follows that both M;, i = 1, 2 are &-submodules. This contradicts
the assumtion, that M is indecomposable. O
Proposition 2. E(P(L)) ~ P(E(L)).

Proof. By Lemma 7, E(P(L)) is indecomposable, since so is P(L). Hence we only need to
compute the unique simple quotient N of E(P(L)). Let L ~ Lp(W) for some simple W € A
and P (W) be the projective cover of W in A. Clearly, N is isomorphic to the unique simple
quotient of E(Mp(P(W))) and hence to the unique simple quotient of Mp(E(P(W))). Let
W' be the top of E(P(W)). From the proof of Proposition 1 it follows that Mp(W') ~
M(E(L)) and thus N ~ L(E(L)). O

Corollary 5. Let M € O(P,A) and @ be a projective object in O(P,A). Then
dim Hom ¢p ) (Q, M) = dim Hom o(E(Q), E(M)).

Proof. Clearly, we can assume, that @) ~ P(L) for some simple L € O(P,A). Then we
have dim Hom o(p ) (P(L), M) = (M : L) and dimHom o(E(P(L)),E(M)) = (E(M) :
L(E(L))) by Proposition 2. Now the statement follows from Lemma, 6. O
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Corollary 5 and Lemma 5 suggest that E should be a full functor. Now we are able to
prove this.

Theorem 2. For any M,N € O(P,A) holds
dim Hom o(p.a) (M, N) = dimHom o(E(M), E(N)).

Proof. First we note that by Corollary 5 the statement is true, when M is a projective
module in O(P,A). Clearly, we can assume that M is indecomposable. Let P(M) be a
projective cover of M. By virtue of Lemma 5 it is enough to prove that for any ¢ : E(M) —
E(N) there is ¥ in O(P, A) such that ¢ = E(¢)). We have that E(P(M)) is a projective
cover of E(M). Let a : E(P(M)) — E(M) be a canonical epimorphism. By Lemma 5
and Corollary 5, there exists an epimorphism z : P(M) — M and a homomorphism
y: P(M) — N such that a« = E(z) and ¢ oa = E(y). For m € M set ¢)(m) = yox '(m).
We have to show that this is a well-defined map. But kera C ker ¢ o a, hence ker xz C kery
since f acts bijectively on P(M) and E acts on homomorphisms by restriction. This means
that 1 is well-defined. Since both z and y are B-morphisms we deduce that v is also a
&-morphism. Clearly, E(¢) = ¢, since F is just a restriction. This completes the proof of
our theorem. O

Corollary 6. E is a full functor. In particular, O(P, A) is equivalent to a full subcategory
of O. Moreover, the image of a block of O(P,A) is contained in a block of O.

6 Analogue for O(P,A) of Soergel’s Endomorphism
Theorem

Recall ([S2]), that the principal block of O is the block Oy, containing the trivial (one-
dimensional) &-module. Let L(u;), i = 1,2,...,n be a complete list of simple modules
in Oy4,. Note, that A = {p;} coinsides with the orbit of 0 under the dot action of the
Weyl group of & (see, for example [D] or [S2]). Following [S2] we will call the projective
module P(wyq - 0), where wq is the longest element in the Weyl group, the big projective
module. Let 7 be the square of an integer and denote by O(P, A)s4, the direct summand
of O(P,A(V(l,7))) which has a non-trivial image in Oy;, under E. Since E acts blockwise
and Oy, is indecomposable, such indecomposable O(P, A)4, is unique. Let L be a simple
object in O(P, A) such that E(L) = wq- 0. It exists, since f acts injectively on L(wg - 0) =
M (wy-0). Now the results of the previous section (in fact, Corollary 5 and Lemma 5) make
it possible to describe the endomorphism algebra of the “big projective” module P(L) in
O(P, A)riv- This is a direct analogue of the Soergel’s result for Oy, (which we also use
in the proof).

Theorem 3. Let A = A(V(l,7)). Then End op.a)(P(L)) ~ End o(P(we - 0)). In fact,
End op,a)(P(L)) is the coinvariant algebra (see [S2]).



Proof. Follows from Corollary 5, Corollary 6, Lemma 5 and [S2, Endomorphismensatz 3].
]

Consider O(P,A(V(A,7))) for v being the square of an integer and A € C/2Z. Let
z € C be such that 8, moves O(P,A(V([,7))) to O(P,A(V(A,7))). Call ,(P(L)) the big
projective module in the principal block 6,(O(P, A(V (I,7)))triv) of O(P,A(V(A,7))).

Corollary 7. End oAy (0:(P(L))) is the coinvariant algebra.
Proof. Follows from Theorem 3 and Theorem 1. O

Remark 2. [t is easy to see, that, as in the category O, the big projective module in
O(P,A) can be characterized as the unique indecomposable projective in the principal block
of O(P,A) such that any Verma (or, in notation of [FKM], generalized Verma) module
from the principal block occurs as a subquotient in the standard filtration of this projective
module.

7 Analogue for O(P,A) of Soergel’s Double Central-
izer Theorem

The next result is analogous to Soergel’s description of the algebra corresponding to the
principal block of O (see [S2]). It is usually called the double centralizer property.

Theorem 4. Let B denote the (projectively stratified finite-dimensional) algebra associated
with O(P, A)yrin. Then B is isomorphic to the endomorphism algebra of the big projective
module, viewed as a module over its endomorphism ring.

It is more convenient to prove this theorem in “abstract” notations which we are going
to introduce now. Let A (resp. B) denote the algebra associated with the principal block of
O (resp. O(P, A)). We recall, that according to Section 5, B is a (matrix) subalgebra of A.
Let e be the primitive idempotent of A such that Ae is the big projective module in Oy.;,.
Then Be is the big projective module in O(P, A)y, and C = eAe = eBe is the coinvarian
algebra, which is the endomorphism algebra of Ae and Be. Let T'= Hom 4(Ae, _) denote
the Soergel’s functor ([S2]). Recall, that by Soergel’s Theorem ([S2, Struktursatz 2]), for
any M € Oy, and any projective QQ € Oy, holds

Hom A(M; Q) ~ Hom C:eAe(T(M): T(Q))

Proof of Theorem 4. We start from B = Hom (B, B). Applying the results from Sec-
tion 5, we have Hom g(B,B) ~ Hom 4(E(B),E(B)). Now applying the mentioned
result by Soergel we obtain Hom 4(F(B), E(B)) ~ Hom ..(T(E(B)),T(E(B))). We
know from Theorem 3, that eAe = eBe. Recall, that E(Be) = Ae, hence T(E(B)) =
Hom ,4(Ae, E(B)) = Hom 4(E(Be), E(B)) ~ Hom g(Be, B) = eB. Finally,

Hom ¢4.(T(E(B)),T(E(B))) ~ Hom .p.(eB,eB).

10



Now we note, that B is a matrix subalgebra of A and we can apply the duality on A to the
last endomorphism ring, obtaining Hom .g.(eB, eB) ~ Hom .g.(Be, Be), which completes
the proof. O

Remark 3. According to [FP] or [FKM, Section 12] there is a canonical duality on B
which can also be applied directly in the proof of Theorem /.

8 Strong tilting modules in O

The rest of the paper will be devoted to the construction and study of tilting modules
in O(P,A). Since by [FKM, Theorem 3| any finite block of O(P,A) corresponds to a
projectively stratified algebras, one can just use an abstract result from [AHLU] to state the
existence and uniqueness of (characteristic) tilting module for each block of O(P, A). Their
result generalizes Ringel’s fundamental theorem [R] from quasi-hereditary to standardly
stratified algebras.

However we are going to use a slightly more symmetric definition of tilting module,
which is more natural in our case. This means that we will not be able to apply results
from [AHLU] directly, in particular, we will have to prove the existence of tilting modules.
Finally, we will determine the multiplicities of generalized Verma modules occuring in a
standard filtration of an indecomposable tilting module, thus determining the character of
this tilting module. This generalizes the recent result of Soergel ([S3]).

First we recall the notion of tilting modules for O and study them from another point
of view. The Chevalley anti-involution o on & give rises to a duality (i.e. an exact con-
travariant equivalence, preserving simple objects) on O (see, for example [J, Section 4.10]).
For M € O we will denote by M* the corresponding dual module in 0. We note, that
L(A)* ~ L(X) for any A € $*. Let F(A) (resp. F(v)) denote the full subcategory of O,
which consists of all modules in O having a Verma flag, i.e. a filtration whose subquo-
tients are Verma modules (resp. a dual Verma flag, i.e. a filtration, whose subquotients are
MA)*, A € 9%). Amodule M € O is called tilting module, if it belongs to F(A)NF (). It
is known, that indecomposable tilting modules are naturaly parametrized by simple mod-
ules, hence by A € $H* ([R]). We will denote by T'()\) the indecomposable tilting module
which corresponds to A € $* (i.e. whose Verma flag starts with M ())).

Let o denote the simple root of & which corresponds to the subalgebra 2 and s, denote
the corresponding simple reflection on $*. Suppose that A € $* is such that s,(\) = A\ +ka
for some k£ € N. Consider the indecomposable projective module P(\) € O, Clearly, there
exists a Verma flag P(A\) = Py D P, D P, D ... of P(\) such that Py/P, ~ M()\) and
Pi/Py ~ M(s4(\)). Set P(\) = P()\)/P,. Then P()) has a Verma flag with M()) on
the top and M (s,(\)) on the bottom. Define a class K(«) of modules in O as follows: if
A € ©* is such that s4(A) — A € (Za'\ {0}) then K(«) contains M ()); in the other case
K () contains P()) if sq()\) — A € Na and K(a) contains P(sq())) if A — s4()) € Nov.

Denote by F(A), (resp. F(V)a) the full subcategory of O, containing all modules
which admit a filtration with subquotients from K(«) (resp. with subquotients of the form
M*, M € K(«)). Since any module in K(a) has a Verma flag, we have F(A), C F(A),
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F(V)a C F(v) and O(K(a)) = F(A)a N F(V)a € F(A) N F(vy). Hence any module in
O(K(«)) (if there is any) is a tilting module. So to determine O(K («)) we have to find
out which indecomposable tilting modules belong to it.

Lemma 8. For any M € K(«) (resp. M such that M* € K(«)) and any finite-dimensio-
nal &-module F the module FF @ M belongs to F(A)q (resp. F(V)a)-

Proof. Follows from the exactness of FF ® _ by standard arguments combined with the
observation that we are considering objects which are induced from projective objects. [

Proposition 3. T()\) € O(K(«)) if and only if either so(\) — A € Za\ {0} or A—s4(N) €
No.

Proof. If s4(A)—A & (Za\{0}) then, according to the definition of K («), any Verma module
(resp. dual Verma module), occuring in the Verma flag (resp. dual Verma flag) of T'())
belongs to K(«) (resp. is of the form M* for some M € K(«)). Hence T'(\) € O(K(«)).

Recall that any increasing Verma flag of T'()) starts with M (A). ;From the definition of
K («) it follows that for any A € $* such that s,(\) — A € Na there are no modules in K(«)
such that their increasing Verma flag starts with M (). Since any filtration with quotients
from K («) can be extended to a Verma flag, we obtain that in the case s,(\) — A € N
the module T'(\) cannot belong to K(«).

So we only have to prove that T(\) € K(«) in case A — s4(\) € Na. This will follow
easily if we recall the inductive construction of tilting modules via tensoring with finite-
dimensional modules. Suppose that A is such that A — s,(\) € Naw and M (s4(A)) is simple.
Then T()\) =~ P(s4())) by the construction of P(sq())) and hence T(\) € F(A),. But
T()) is also self-dual as a tilting module in the category O, hence T'(\) € F(5/)q. Finally,
T(\) € O(K(a)).

Now we note, that from Lemma 8 it follows that O(K () is stable under tensoring
with finite-dimensional modules. In particular, it means that if we fix A as in the previous
paragraph, then 7T'(\) ® F' belongs to O(K(«)) for any finite-dimensional &-module F.
To complete the proof we only need to recall that any 7'(u) with p — s,(¢) € Na occurs
as a direct summand in T(\) ® F' for some \ as in the previous paragraph and some
finite-dimensional F' ([CI]). O

The modules in O(K («)) will be called strong tilting modules. Later we will see that
they are closely related to tilting modules in O(P, A).

Corollary 8. The big projective module is a strong tilting module.

Proof. Obvious. O

9 Tilting modules in O(P, A)

Let A = A(V(l,v)) as in the previous sections. In order to introduce the notion of a
tilting module in O(P, A) we need a natural duality on O(P, A). This can be easily done
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using o for O(P,A(V (A,7))) in the case, when V (), ) is a simple A-module (see [FP] or
[FKM, Section 12]). The same direct construction for the case O(P, A(V (I,7))) does not
work, because dualization does not preserve the bijectivity of the action of f. In fact, e
acts bijectively on the dual module. There are two ways to solve this problem. The first
way is to fix a non-integer z and to define a duality * on O(P,A) as the composition of
0., the natural duality on 6,(O(P, A)), which can be constructed via ¢ (here everything
works since both e and f act bijectively on 6,(O(P, A))), and 6_,. The second way is to
compose ¢ with the natural automorphism of & corresponding to the simple reflection s,.
We choose the second way and from now on for M € O(P,A) we will denote by M* the
corresponding dual module.

Let G(A) (resp. G(v7)) denote the full subcategory of O(P,A) which consists of all
modules having standard filtration, i.e. a filtration, whose subquotients are isomorphic to
Mp(W), where W is projective in A (resp. a dual standard filtration, i.e. a filtration,
whose subquotients are isomorphic to Mp(W)*, where W is projective in A). A module
M € O(P,A) will be called a tilting module if M € G(A) NG(V).

So far we do not know if there is any tilting module in O(P, A). The aim of this section
is to describe all tilting module in O(P, A). We recall that our definition of tilting module
does not coincide with the general definition, used in [AHLU]. The difference is in the
definition of G(v7). In [AHLU]J, the existence of a filtration is required, whose subquotients
are isomorphic to Mp(W)*, where W is simple in A. Our condition is more restrictive.
Taking into account the uniqueness of characteristic tilting module for standardly stratified
algebras (this class includes, in particular, projectively stratified algebras) in [AHLU], we
only have to show that for any simple L = Lp(W) € O(P, A) there exists an indecompos-
able tilting module T (L) € O(P, A) such that the standard filtration of T'(L) starts with
Mp(W).

Lemma 9. For any M € G(A) (resp. M € G(v7)) and any submodule N occuring
in a standard filtration (resp. dual standard filtration) of M holds E(N) C E(M) and
E(M/N) ~ E(M)/E(N).

Proof. Follows from the definition of E and the fact that M ~ N & (M/N) as an 2-
module. O

Lemma 10. Let T be a tilting module in O(P,A). Then E(T) is a strong tilting module
in O.

Proof. ;From the definition of K(«) it follows immediately, that for any projective W € A
holds E(Mp(W)) € K(a). Now, by Lemma 9, the standard (resp. dual standard) filtration
of T is sent by E to a filtration with subquotients from K («) (resp. with subquotients,
dual to modules in K («)). This completes the proof. O

Lemma 11. For any strong tilting module T' € O there exists a tilting module T € O(P, A)
such that E(T) ~T".
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Proof. Clearly, it is enough to prove this statement for indecomposable 77, so we can
suppose that 77 = T'()\). First, assume that M (s,())) is a simple &-module. Clearly, M ())
belongs to the image of E, hence M (\) = E(Mp(W)) for some simple object W € A. Let
W' be the projective cover of W. From the definition of K(«) one immediately obtains
T(\) = E(Mp(W')). Now the statement follows from Lemma 3, the inductive construction
of strong tilting modules as in the proof of Proposition 3 and the remark that tilting
modules in O(P, A) are self-dual. O

Theorem 5. For any simple object L = Lp(W') € O(P, A) there ezists a unique indecom-
posable tilting module T(L) € O(P,A) such that the standard filtration of T(L) starts with
Mp(W"), where W' is a projective cover of W in A. The set T(L), where L runs through
simple modules in O(P, A) is a complete set of indecomposable tilting modules in O(P, A).
Any tilting module is a finite direct sum of indecomposable tilting modules.

Proof. Existence follows from Lemma 11. The rest follows from [AHLU, 2.1 and 2.2]. O

10 Characters of tilting modules: Analogue for O(P, A)
of Soergel’s Character Formula

In Section 9 we proved the existence of tilting modules in O(P, A). The aim of this section
in to determine the formal character of a tilting module. Clearly, it is sufficient to do this
for an indecomposable module 7T'(L), where L is a simple module in O(P, A). Further, by
the definition, 7(\) has a standard filtration, hence it has a filtration by Mp (W), where
W € A is a simple object. Since Mp(W) is an extension of two Verma modules (with
respect to a different basis in &), its character is known. So the problem is to determine
the multiplicities [T'(L) : Mp(W)]. We solve this problem by reducing it to the recently
solved analogous problem for O (see [S3]).

Theorem 6. Let W, and Wy be simple objects in A. Denote by [(W3) the length of the
projective cover Wy of Wy in A. Then

[T(Lp(W1)) : Mp(W2)] = L(W3)[E(T (Lp(W1))) : E(Mp(W2))]-

Proof. Set m = [T(Lp(W1)) : Mp(Ws)]. Then m = I(W3)[T(Lp(W1)) : Mp(W3)] and
by Lemma 9, [T'(Lp(Wh)) : Mp(W3)] = [E(T(Lp(Wh))) : E(Mp(W3))]. If (W;) =1
then Wy, = W, and we are done. Otherwise, it follows from the definition of K(«),

that the number of Verma modules in a Verma flag of E(Mp(W,)) equals 2, moreover,
[E(Mp(W3)) : E(Mp(W3))] = 1. This completes the proof. O

Remark 4. According to Lemma 10, E(T(Lp(W1))) is a strong tilting module. In particu-
lar, it is a tilting module in O. Furthermore, E(Mp(W53)) is a Verma module in O, hence,
the multiplicity [E(T(Lp(W1))) : E(Mp(Ws))] can be computed by Soergel’s Theorem, [S3,
Theorem 5.12 and Theorem 6.7].
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Remark 5. Applying the functors 0, one extends the above results to an arbitrary category

O(P, A(V(1,7)))-

Finally, if one looks at the proof of [S3, Theorem 2.1], one sees that it implies another
interesting result for the principal block O(P, A)yiy of O(P,A). We keep the notation
from [S3]. Let S = S5 denote the semi-regular bimodule, associated with a semi-infinite
character 6. As it was shown in [S3], the composition of the functor S ®ye) - with
the graded duality D maps the indecomposable projective P(w())), A dominant, into the
indecomposable tilting module T'(wwy(A)) € O, where wy is the longest element of the Weyl
group. Comparing Proposition 2 with the definition of strong tilting module we see that for
any indecomposable projective module P(L) € O(P, A) the module D(S ®y ) E(P(L)))
is an indecomposable strong tilting module. If we recall Lemma 10, Lemma 11 and the
fact that S @y (e) — is an equivalence of certain categories ([S3, Section 2]) which preserves
short exact sequences, we obtain the following result:

Theorem 7. The projectively stratified algebra of O(P, A)ys is its own Ringel dual (see
[R, KK] for detail).
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