


S-subcategories in O

V. Futorny? S. Konig and V. Mazorchuk!

Abstract
We prove that certain subcategories of O, consisting of complete modules having a
quasi Verma flag with respect to a Levi subalgebra, admit a combinatorial description
similar to Soergel’s results on category . Using the Enright completion functor we
also reprove Soergel’s character formula for tilting modules in O and Ringel self-
duality for the principal block of O.

1 Introduction

Let & be a simple complex finite-dimensional Lie algebra with a fixed Cartan subalgebra
$ and a fixed triangular decomposition & = 9N_ D HHN, . For such a situation, Bernstein,
Gelfand and Gelfand [BGG] defined their celebrated category O. Verma modules are pro-
duced by starting with a finite—dimensional $-module, inflating it to the Borel subalgebra
B, = H DN, and then inducing up to &-modules.

Basic properties of O are the following: There is a block decomposition such that each
block has finitely many simple objects (up to isomorphism); there exist enough projective
objects, and these are filtered by Verma modules — in modern terms: a block is equivalent
to the module category of a quasi-hereditary algebra — and there is the BGG-reciprocity
principle relating composition multiplicities in Verma modules to filtration multiplicities
of Verma modules in projective objects.

Moreover, Soergel ([S2]) has given a combinatorial description of the blocks of @ which
includes the following features: The endomorphism ring of the big projective module (in
the principal block) is the coinvariant algebra (which is isomorphic to the cohomology
algebra of the flag manifold). There is a double centralizer property relating the coinvariant
algebra with the algebra of the principal block (via the mutual actions on the big projective
module). Furthermore ([S3]), category O is its own Ringel dual.

The setup for defining O can be generalized as follows: Let P D 91, be a parabolic
subalgebra of &, P = A'@N, where N is nilpotent and A’ is reductive. Let also A’ = APH,
where 2l is semi-simple and $* is abelian and central. Then we can start with 2’-modules
as input for inflation to P and then induce up to produce generalized Verma modules. At
this point, there is no need to restrict attention to finite-dimensional 2I'~modules.
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Therefore, in [FKM1] we defined and studied a certain parabolic generalization O(P, A)
of the celebrated BGG category O. It has been shown that under some natural conditions,
these categories correspond to projectively stratified finite-dimensional algebras (but usu-
ally not to quasi-hereditary algebras) and there are analogues of the BGG-reciprocity
principle.

The main problem now is to find a combinatorial description in the spirit of Soergel’s
approach. We have studied a basic example of O(P, A) in [FKM2]. There we proved that
in the case, when 2 is isomorphic to sl(2,C), certain categories do appear, whose blocks
can be given a combinatorial description, analogous to Soergel’s description of 0. In fact,
the coinvariant algebra is the endomorphism algebra of the big projective module in the
principal block and there is a double centralizer property. The main tool in proving these
results was a special functor E, which produces an equivalence of O(P,A) with a full
subcategory of O. We took the idea to define and study this functor from [M]. As soon as
we constructed and investigated E, all the properties of O(P, A) can be deduced from the
analogous properties of O.

The image of E carries an abelian structure coming from O(P,A), and this abelian
structure is not inherited from that in O, hence it looks slightly mysterious from the Lie
theoretic point of view.

In the present paper we want to consider a general situation, i.e. we assume that 2
is an arbitrary semi-simple finite-dimensional Lie algebra. There are several examples of
O(P, A) for such situations (see, for example [FKM1, Section 11]), but we do not know
how to construct an analogue of the functor E for them. In the hope that the machinery,
worked out in [FKM2], should work in the general case, we tried to determine the candidate
image of F (if such an E would exist and have all necessary properties). This approach led
us to study certain subcategories in O, which possess a combinatorial description similar
to Soergel’s results on classical category 0. We call such categories S-subcategories. The
main result of this paper is a construction of a series of S-subcategories in O, which consist
of complete (in the sense of Enright, [E]) 2-modules having a quasi Verma flag. We also
prove that our category has enough tilting modules and the algebra of the principal block
is isomorphic to its Ringel dual.

The paper is organized as follows. In Section 2 we define the (new) notion of a module
with a quasi Verma flag in O. The usual notion of a module having a Verma flag seems
to be insufficient, at least we did not manage to work out the corresponding categories.
In Section 3 we recall Mathieu’s version of the Enright functor (which seems to be the
most convenient one for us) and establish its basic properties. We also recall the notion
of a complete module ([E]). In Section 4 we study the subcategory of O, which consists
of all complete modules having a quasi Verma flag and prove that it is admissible in the
sense of [FKM1]. The most difficult place here is to define an abelian structure (which, as
we already know, cannot be inherited from ). In Section 5 we study the corresponding
O(P,A) and prove that it is an S-subcategory in O (the last O is with respect to &). In
Section 6 we study a duality on O(P, A), the tilting modules in O(P,A) and prove the
Ringel self-duality for the principal block. Finally, in Section 7 we introduce a family of
subcategories of the category of modules with quasi Verma flag. These subcategories are
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parametrized by elements in the Weyl group, and we get the previously studied subcategory
as a special case. The main result in this section provides us with equivalences between
these categories. As a corollary, we obtain a new proof of the Soergel’s character formula
for tilting modules.

2 Modules with quasi Verma flag in O

Let 2 be a semi-simple complex finite-dimensional Lie algebra with a fixed Cartan sub-
algebra $g and the corresponding root system A. Fix a basis 7 in A and consider the
corresponding decomposition Ay UA_ of A and the corresponding triangular decomposi-
tion M_ @ Hy & N, of A. Consider the BGG category O of A ([BGG]) with respect to
the triangular decomposition above. We recall that O is a full subcategory in the cate-
gory of all A-modules and consists of all finitely generated, $g-diagonalizable and locally
U(MN,)-finite modules. For A € $} let M(A) (resp. L())) denote the Verma module (resp.
the unique simple quotient of the Verma module) with the highest weight A — p, where p
is half of the sum of all positive roots (|[D, Chapter 7]). We also choose a Weyl-Chevalley
basis X,, a € A, H,, o € 7 in .
We will say that a module M € O has a quasi Verma flag if there is a filtration

0=MyCM  CMyC---C My CM=M, (1)

such that M;/M; ; is isomorphic to a submodule of some M ()\;), i = 1,2,...,k. Denote
by F the full subcategory of O, which consists of all modules with quasi Verma flag.

Further we will need some easy properties of F. The filtration (1) will be called non-
degenerated if M;/M;_; is not zero for all ¢ = 1,2,..., k. We will also call k the length
of the filtration (1). We recall ([BGG]) that any module in O, and hence in F has finite
length.

Lemma 1. Let M € F. Then any two non-degenerate quasi Verma flags of M have the
same length. Moreover, this common length is equal to the number of simple subquotients
of M (taken with their multiplicities), which are isomorphic to Verma modules.

This follows from the fact that any Verma module has a simple socle, which is again a
Verma module (the unique simple Verma module in this block), [D, Proposition 7.6.3].

If M € F and (1) is a non-degenerate quasi Verma flag of M, we will call k the quasi
Verma length of M and will denote it by qVI(M). According to Lemma 1 this notion is
well-defined.

Lemma 2. Let M € F. Then for any o € m the operator X_, acts injectively on M.

A Verma module is free over U(1_), hence torsion-free. Its submodules are torsion-free
as well.



3 Enright functor (Mathieu’s version)

Fix for some time a root o € m. Let U, denote the Ore localization of U(2) with respect
to the multiplicative set {X* |7 € Z,}. It is well-defined according to [M, Lemma 4.2].
Denote by r, the endofunctor of O, obtained as a composition of the following functors:

o Uy, Quey —»
e restriction to U(2A),
e taking the locally X,-finite part.

By [De, Section 2], r, coincides with the Enright completion functor C, (see [E, Section 3]).
It is straightforward to check that r, is well-defined on O (see also [M, Appendix]|) and
Ta ©To = Tq. Order the elements of 7 in an arbitrary way: 7 = {ay,ag,...,a,} and set

T =Tg OTqy O+ 0Tq,
Lemma 3. Let M,N € O, M C N and o € w. Then
1. 1o(M) C 1o(N),
2. 1o(N/M) > 1o(N)/ro(M).
Follows from the left exactness of r, ([E, Proposition 3.17]).
Lemma 4. 1. Let P, = U(2) ®ue) —. Then Pyor, =740 P,.
2. Let P = A% + Ho + Ny be a parabolic subalgebra in A and let P = U(A)Qupy_ be
the functor of the corresponding induction. Then Por, =ry,0 P.

The first part follows from the natural identity U, ®u ) U(A) Quae) M ~ Uy Qu@te),
U(2A*)o®u(aia) M, where U(A), is the localization of U(2*) with respect to { X", |7 € Z.}.
The second part follows from the first one.

Lemma 5. Let A € $}, a € m and s, be the reflection with respect to . Then ro(M (X)) ~
M(A) if M(A) & M(s4(})) and ra(M (X)) = M(s4(A)) if M(A) C M(sa(X)).

This is a standard property of the Enright functor ([E, De]). We show, how it can be
easily deduced from Lemma 4. We recall that any Verma module over 2 can be obtained
from the Verma module over 2* using the functor P from Lemma 4. Now from Lemma 4 it
follows that it is enough to check the statement in the case 2 = A* for which it is trivial.

Lemma 6. Let M € O and oo € w. Then
1. from M € F it follows that M C ro(M),

2. from M € F it follows that qV1(r,(M)) = qVI(M),



3. M =ro(M) if and only if M, viewed as an A*-module, is an (infinite) direct sum of
projective modules from the corresponding category O. In particular, if M € F, then
as an A*-module, 7o,(M) coincides with the minimal direct sum of projective modules
containing M.

The first statement follows directly from Lemma 2. Let M = My D M_1 D ... be
a quasi Verma flag of M. Then r,(M) = ro(Myg) D ro(Mg_1) D ... is a filtration of
ro(M). Moreover, r(M;)/rqo(M;_1) is contained in r,(M;/M;_ ;) by Lemma 3. We know
that M;/M,;_y C M()\;) for some \; € $}. Hence, by Lemma 3 we have r,(M;/M;_,) C
ro(M(A;)). By Lemma 5, r,(M(A;)) is a Verma module and hence r,(M) has a quasi
Verma flag. Moreover, qV1(r,(M)) < qVI(M). According to the first statement we have
M C ro(M) and hence qV1(ry(M)) = qVI(M). The second statement is proved.

For the last statement we recall that r, or, = r,, so it is enough to prove only the first
part. By Lemma 4, it is enough to prove the last statement for 2l = 2A*. But in this case
it is trivial.

Recall that a module M is called a-complete if ro(M) ~ M ([E]) and complete if
rg(M) ~ M for all § € w. It is clear that M is complete if and only if r(M) = M. We will
denote by st F the full subcategory of F, consisting of all complete modules.

Lemma 7. For any M € F there exists k € N such that r*(M) =roro---or(M) € st F
(r occurs k times in the composition).

Follows from Lemma 6 and the fact that any Verma module has finite length.

Denote by st the composition 7 - - - o7 o7 in which r occurs |A | times. From [De| and
[H, Section 1.8] it follows that 7, o st(M) = st(M) for any M € F (even M € O) and
« € 7. Hence, st is a well-defined functor from F to st . Moreover, the objects in st F
are precisely those objects in F which are invariant (i.e. stable) under st. This explains
our notation.

Corollary 1. st(M (X)) is a Verma module for any A € 9.

Follows from Lemma 5.

4 An abelian structure and admissibility of stF;,;

Lemma 8. Let M,N € st F and f : M — N be a &-homomorphism. Then r(ker(f)) =
ker(f), i.e. ker(f) is complete.

Clearly, it is enough to prove this for 2 = 2A*. But in this case the statement is trivial.

Denote by st Fi,; (resp. Oyye) the full direct summand of st F (resp. O), which consists
of all modules, whose support belongs to the integral weight lattice. For N € O by a(NV)
we will denote the number of simple subquotients in N, which are Verma modules. Thus,
for N € F holds a(N) = qVI(N). The key statement of this Section is the following.



Proposition 1. Let M € st F;,; and N be a complete submodule in M. Then N € st Fj;,
moreover, there exists a quasi Verma flag of M of the form (1) such that M; = N for some
1.

To prove this we will need the following lemmas.

Lemma 9. Let M € O and o € w. Assume that X_, acts injectively on M. Then
ro(M)/M is a direct sum of finite-dimensional A-modules.

Since X_, acts injectively on M we have M C r,(M). Now the statement follows from
an sl(2)-computation.

Lemma 10. Let M and N be two complete modules in Oy, N C M. Then any simple
submodule in M/N is a simple Verma module. In particular, from a(M/N) = 0 follows
M=N.

Clearly it is enough to prove the first statement. Suppose that there is a simple sub-
module of M/N that has the form L()), for integral A which does not belong to the closure
of the antidominant Weyl chamber. Hence there is « € 7, such that L(\) is a direct sum
of finite-dimensional modules with respect to 2A*. Therfore, M /N has elements on which
X_ 4 acts locally nilpotent. But by Lemma 3 7,(M/N) D ro(M)/ro(N) ~ M/N D L(\),
which is impossible, because X, acts injectively on r,(M/N).

Lemma 11. Let N € st Fi, M be a complete module in Oy, and N C M. Assume
that a(M/N) = 1. Then M/N is a submodule of some Verma module, in particular,
M € st f'int'

We only have to prove that M /N is a submodule in some Verma module. Let M (u)
be the simple Verma subquotient of M/N. From Lemma 10 it follows that M (u) is the
simple socle of M/N. Indeed, consider the submodule M’ = M(u) + N in M. Let
M" = st(M'). Since a(M/M") = 0, we obtain M = M" from Lemma 10. On the other
hand, M"/N C st(M"/N) C st(M(u)) and the last is a Verma module. This completes
the proof.

Lemma 12. Let N, M € st F;;, N C M. Then any quasi Verma flag of N can be extended
to a quasi Verma flag of M.

We use induction in n = a(M) — a(N). If n =0, then M = N be Lemma 10. Now let
M’ D N be a complete submodule of M such that a(M') = a(M) — 1. To find such M’,
extend 0 C N C M to a composition series of M. Then there is a submodule M C M,
such that a(M) = a(M) —1 and M D N. Set M’ = st(M). We only have to show that
a(M') = a(M). The last follows from Lemma 9 and the fact that simple Verma modules
are direct sums of indecomposable strictly infinite-dimensional A*-modules for any o € 7.
Now assume that we have already constructed the extension of a quasi Verma flag from N
to M' (inductive assumption). By Lemma 11, M/M' is a submodule of a Verma module
and we obtain the desired quasi Verma flag for M.

[Proof of Proposition 1] We will prove the statement by induction in a(/N). First suppose

that a(N) = 0. Then, by Lemma 10, N = 0 and our statement for such N is obvious.



Now we prove the induction step. Suppose that the statement is true for any N’ such
that a(N') < a(V) and consider a submodule N’ C N such that a(N') = a(/N) — 1. Such
submodule exists since N has a composition series. We recall that N is complete and
set N" = st(N') C N. We have a(N") = a(N') < a(N) by the same arguments as in
Lemma 12, and now N” is complete. From the inductive assumption to N”, we get, in
particular, N” € st F;,,; and furthermore a(N/N") = 1. Hence, N € st F;,; by Lemma 11.
We complete the proof applying Lemma 12.

Now the definition of an abelian structure on st F;,; is quite transparent. Let M, N €
st Fint, and f : N — M an A-homomorphism. By Lemma 8 and Proposition 1, ker(f) €
st Fint. We define the ’image’ of f inside this category as st(Im(f)), which belongs to
st Fint by Proposition 1, and the ’cokernel’ of f as st(M/st(Im(f))). From Proposition 1
it follows that M/st(Im(f)) € Fin and hence st(M/st(Im(f))) € st Fine. Moreover, one
can see that qVI(N) = qVl(ker(f)) + qVI(st(Im(f))) and qVI(M) = qVi(st(Im(f))) +
qVI(st (M st(Im(f)))).

Lemma 13. The category st Fi,; with kernels, images and cokernels defined as above is
an abelian category.

We have to check the universal properties of the kernel and cokernel only. The universal
property of the kernel is trivial since the kernel in st F;,; coincides with the kernel in the
category of 2-modules. The universal property of cokernel follows easily from Lemma 8.

Proposition 2. st F;,; is admissible in the sense of [FKM1], i.e. it is an abelian category,
a full subcategory in the category of A-modules, it consists of finitely generated modules
and it is stable under tensoring with finite-dimensional A-modules.

st Fint 1s abelian by Lemma 13 and is a full subcategory in 0. Hence we only have
to check that st F;,; is stable under tensoring with finite-dimensional 2-modules. Let
M € st F;y and F be a finite-dimensional 2A-module. Clearly FF ® M € O;,;. We recall
that ' ® _ is an exact functor (in the category of all A-modules) and any F' @ M()),
A € 9% has a Verma flag ([BGG, D]). Hence F @ M € F. From the exactness of F' ® _
and the third statement of Lemma 6 it follows also that st F is stable under tensoring with
finite-dimensional modules. Hence F' ® M € st F, which completes the proof.

Lemma 14. The functor F'® _ is exact on st Fiy;.

Follows from Lemma 8 and [De, Theorem 3.1].

5 S-subcategories in O and the main result

The admissible category st F;;,; of 2-modules constructed in the previous Section extends
in a natural way to an admissible category A = A(st Fy;) of $%-diagonalizable A'-modules
(see [FKM1]). Consider the corresponding category O(P,A) of &-modules (see again
[FKM1]). It is clear that O(P, A) is a full subcategory of the category O for &. At the
same time OQ(P, A) is an abelian category, whose abelian structure is derived from one on



A. From Proposition 2 and Lemma 14 it follows that O(P, A) is closed under tensoring
with finite-dimensional modules, and F' ® _, F' finite-dimensional, is an exact functor on
O(P, A). Denote by E the natural inculsion functor from O(P,A) to O. We will use E in
order to emphasize that the abelian structures in O(P,A) and O are different.

Denote by Oy, the principal block of 0. We will say that a full subcategory M C O
is an S-subcategory if the following conditions are satisfied.

S1. M is an abelian category.

S2. M is stable under tensoring with finite-dimensional &-modules.
S3. Myiw = M N Oy 18 a direct summand of M.

S4. M has enough projective objects, which are also projective in O.
S5. The big projective module P in Oy, belongs to M.

S6. (Soergel’s double centralizer property) The finite-dimensional algebra, corresponding
to My is isomorphic to the endomorphism algebra of P, viewed as a module over
its endomorphism ring.

It is clear that O itself is an S-subcategory in . Another example of an & subcategory
in O was constructed in [FKM2] and coincides with the image of the functor E considered
in that paper.

The main result of this paper is the following statement.

Theorem 1. O(P, A(st Finy)) is an S-subcategory in O.

The rest of this Section will be dedicated to the proof of Theorem 1. In fact we will
prove a bit more than what is claimed in this Theorem. We start with the description of
projective modules in A and in O(P, A).

Lemma 15. A has a block decomposition with a unique simple module in each block.

It is enough to prove this for st F;,;, which we can decompose with respect to the central
characters st Finy = @yez@) St Fine(X) in a natural way. Let M be a simple module in
st Fint(x). Clearly, qVI(M) =1 and hence M = M ()), where A is an integral weight lying
in the closure of the dominant Weyl chamber, since M is complete. Now the uniqueness
of such M()) in st F,:(x) follows from the Harish-Chandra Theorem ([D, Theorem 7.4.5,
Proposition 7.4.7]).

Lemma 16. A has enough projective modules.

Again it is enough to prove the statement for st F;,;. Since any module in st F;,;
has finite length it is enough to construct a projective cover of the simple module M()),
where ) is an integral weight lying in the closure of the dominant Weyl chamber. Let
M(\) € st Fiu(x) for some x € Z(A)*. Let wy be the longest element in the Weyl
group and consider the projective module P(wg(\)). Obviously, there is an epimorphism



P(wo(A)) — M()). However, we have to show that P(wg()\)) is a projective object in
st Fint- {From Lemma 6 it follows easily that P(wg()\)) € st Fi,. Moreover, since P(wg(A))
is projective in O and by virtue of Lemma 1, we have dim(Hom (P (wo(A)), M)) = qVI(M)
for any M € st Fi,i(x). From this it follows that the functor Hom (P(wg(A)), —) is exact on
st Fint(x) and hence P(wg(A)) is projective in st Fy,s. Clearly, P(wg())) is indecomposable
since it is indecomposable in O and the top of P(wy(A)) coincides with st(L(wo(A))) =
M (X). This completes the proof.

Corollary 2. 1. O(P,A) has a block decomposition with a finite number of simple mod-
ules in each block.

2. O(P,A) has enough projective modules.

3. Any block of O(P,A) is equivalent to the module category over a finite-dimensional
projectively stratified algebra.

Follows from Lemma 15, Lemma 16 and [FKM]1, Sections 4, Section 5.

Proposition 3. Any indecomposable projective module in O(P, A) is also an indecompos-
able projective module in O. Furthermore, P(A\) € O(P,A) (for A € $*) if and only if A
15 ™UA-integral and belongs to the closure of the A-antidominant Weyl chamber.

Let V be a projective module in A. From the proof of Lemma 16 it follows that as an
2A-module, P is a direct sum of some P(u), where yu is 2-integral and belongs to the closure
of the antidominant Weyl chamber. Recall ([FKM1, Theorem 1]) that any projective in
O(P,A) can be constructed as a projection on a block of the module

P(V,k) =U(8) Q) (UM)/(UOMN) o V),
U(P)

where k is a big enough positive integer. Directly from the construction it follows that
any projective in O(P, A) is projective in O. Since the functor F' ® _ is exact for any
finite-dimensional F', the module P(V,k), as an 2A-module is also a direct sum of some
P(p), where p is -integral and belongs to the closure of the antidominant Weyl chamber.
This completes the proof.

Set O(P, A)riv = O(P,A) N Oy Tt is clear that O(P, A)y4 is a direct summand of
O(P,A).

Corollary 3. The big projective module from O belongs to O(P,A), moreover it is an
indecomposable projective object in O(P,A).

Obvious.

Corollary 4. The projectively stratified finite-dimensional algebra B associated with the
block O(P, Ay s a subalgebra of the quasi-hereditary finite-dimensional algebra A asso-
ciated with Oyiy. Futhermore, the canonical duality on A restricts to a duality on B.
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The first statement follows directly from Proposition 3. Let * denote the canonical
duality on O. To prove the second statement it is enough to show that P* € O(P, A) for
any projective P € O(P,A). We have already seen that as an 2-module, P is a direct sum
of some P(u), where p is 2-integral and belongs to the closure of the antidominant Weyl
chamber. Now the statement follows from the fact that each such P(u) is self-dual (i.e. a
tilting module).

We note that since O(P, A) is a full subcategory (E is a full functor), the endomorphism
ring of the big porojective module is the coinvariant algebra ([S2]). Now we can prove our
main result.

[Proof of Theorem 1] We only have to prove the Soergel’s double centralizer property.
For that purpose we are going to use abstract notations. Let A (resp. B) denote the
algebra associated with O(P, A)yip (resp. O(P, A)yin). According to Corollary 4, B is
a matrix subalgebra of A. Let e be the primitive idempotent of A such that Ae is the
big projective module in Oy.;,. Then Be is the big projective module in O(P, A)4, and
C = eAe = eBe is the coinvariant algebra, which is the endomorphism algebra of Ae and
Be. Let T = Hom 4(Ae, _) denote the functor used in Soergel’s proof ([S2]). Recall that
by Soergel’s Theorem ([S2, Struktursatz 2]) for any M € Oy, and any projective Q € Oy
holds

Hom 4(M,Q) ~ Hom c—eae(T'(M),T(Q))-

We start from B = Hom p(B, B). Since E is a full functor, we have Hom (B, B) ~
Hom 4(E(B), E(B)). Now applying Soergel’s result we obtain that Hom 4(E(B), E(B)) ~
Hom c4.(T(E(B)),T(E(B))). We know that eAe = eBe. Recall that F(Be) = Ae, hence
T(E(B)) = Hom 4(Ae, E(B)) = Hom 4(E(Be), E(B)) ~ Hom g(Be, B) = eB. Finally,

Hom ¢4.(T(E(B)),T(E(B))) ~ Hom .g(eB,eB).

By corollary 4, the algebra B has a duality, from which it follows that Hom .p.(eB, eB) ~
Hom .pe(Be, Be). This completes the proof.

6 Tilting modules in O(P,A)

In Corollary 4 we have shown that there exists a natural duality on B, or more generally on
O(P,A). We will denote this duality by *, as for 0. We also know that for any projective
P € O(P, A) the corresponding dual module P* € O(P, A) can be computed in O (i.e. the
dual modules to P in O(P, A) and in O are isomorphic). Having a duality it is natural to
consider the tilting modules.

Let V be an indecomposable projective module in A. Setting 9V = 0, we define an
induced module Mp(V) = U(8) ®y(py V, which we will call a standard module. Since V
is projective in A, as an A-module Mp (V) is a direct sum of projective modules in A and
hence is self-dual as an A-module.

Lemma 17. Let Mp(V) € O(P,A) be a standard module. Then the dual modules to
Mp(V) in O(P,A) and in O are isomorphic.
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We reduce our consideration to a block of O(P, A), which corresponds to a projectively
stratified finite-dimensional algebra. Let S be the partially ordered set of simple modules.
Then S also parametrizes the standard modules. From the construction of the projective
modules in O(P,A) it follows that Mp(V) can be written as P(V)/N, where P(V) is
an indecomposable projective module, N has a standard filtration and all the standard
subquotients of this filtration are bigger than Mp (V) with respect to S. We know that
the dual modules for P(V) in O(P,A) and O coincides. Now the statement follows by
induction in S.

We will call Mp(V)*, V is an indecomposable projective in A, costandard modules.
Consider the full subcategory F(A) (resp. F(v7)) of O(P, A) which consists of all modules
having a standard filtration (resp. costandard filtration), i.e. a filtration, whose quotients
are standard (resp. costandard) modules.

Corollary 5. Let M € F(A)U F(57). Then the dual modules to M in O(P,A) and in O
are tsomorphic.

Follows from Lemma 17 and exactness of the dualities.

A module M € F(A) N F(7) will be called a tilting module. Hence, by virtue of
Corollary 5, it should be a tilting module in O. It is known (see for example [KK]) that
any tilting module in O is a direct sum of indecomposable tilting modules and there is a
natural bijection between indecomposable tilting modules and simple modules in O. Let
T(M), A € ©* denote the unique indecomposable tilting module in O, whose Verma flag
starts with M (). First of all we determine the 7'()\) belonging to O(P, A).

Lemma 18. T(\) € O(P,A) if and only if ) is A-integral and belongs to the closure of
the A-dominant Weyl chamber.

Let M € O(P,A) be a module having a standard filtration. This filtration can be
refined to a Verma flag in O. Let M(\) be a Verma submodule in M occuring in this
Verma flag. Then M()) is complete in A and hence A is 2-integral and belongs to the
closure of the A-dominant Weyl chamber. Therefore, the only candidates for being in
O(P,A) are T()), which satisfy the condition of our Lemma.

Let wy denote the longest element in the Weyl group of 2. First consider 7'(x), where
w is 2A-integral and belongs to the closure of the 2(-dominant Weyl chamber, such that
M (wo(p)) is simple. Then T'(u) is a self-dual standard module and hence T'(i) € O(P, A).
To complete the proof we recall that O(P, A), F(A) and F(v/) are closed under tensoring
with finite-dimensional modules and any T'(A\) such that A satisfies the condition of our
Lemma can be obtained as a direct summand in 7'(1) ® F for some finite-dimensional F'

and some T'(u) as above ([CI]).

Theorem 2. Any tilting module in O(P, A) is a direct sum of indecomposable tilting mod-
ules of the form T()\), where X\ is A-integral and belongs to the closure of the A-dominant
Weyl chamber.

We have already proved that all T'()), where A is 2-integral and belongs to the closure
of the A-dominant Weyl chamber, are tilting modules in O(P, A). Recall that blocks of
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O(P, A) correspond to projectively stratified finite-dimensional algebras. Now the unique-
ness of an indecomposable tilting module corresponding to a given simple module follows
from an abstract result [AHLU, 2.1 and 2.2] on tilting modules over stratified algebras.

Consider again the algebra B, which corresponds to O(P, A)y, and let T be the direct
sum of all indecomposable tilting modules in O(P, A)4i. We recall that End (7') is usually
called the Ringel dual of B.

Theorem 3. B is isomorphic to its Ringel dual.

Let S denote the semi-regular U(®)-bimodule ([S1, S3]) and let A be the highest weight
of the trivial &-module. Let wy be the longest element in the Weyl group W of &. Then
the functor S ® ~ maps P(w()\)) to T(wwy(Ng)) for any w € W ([S3]). Note that if
w(Ag) belongs to the closure of the 2A-antidominant Weyl chamber, then wwg(Ag) belongs
to the closure of the A-dominant Weyl chamber. Hence S ® _ transfers projective modules
from O(P, Ay to tilting modules in O(P, A)yin. Thus S ® _ produces an isomorphism
between B and its Ringel dual.

7 Some other subcategories of F,;

In this Section we again restrict our attention to the algebra 2. Above we have been
working with the subcategory st F;,; of . Here we introduce other subcategories of F
and study a connection between them and st F;,;. As a corollary we construct a functor
with properties analogous to S ® _. We begin with the following observation.

Lemma 19. Let M, N; € F, N; C M and qVI(M) = qVI(N;), i € I. Then N = N N; €
F and qVI(N) = qVI(M).

The assumption qV1(M) = qVI(JV;) means that each module N; contains all the com-
position factors of M which are simple Verma modules. The same then is true for the
intersection N.

We use induction on qVI(M). For qVI(M) = 1 the statement follows from the fact
that any Verma module has a simple socle, which is a simple Verma submodule. Let us
prove the induction step. Fix a quasi Verma flag of M as in (1) and qV1(M) = k. Then
fori=1,2

O=MyNN, CM{NN, C MoyNN; C---CM_1NN; CM,NN; =N,

is a quasi Verma flag of N;. Moreover, this quasi Verma flag is non-degenerate since
qV1(V;) = qVI(M). By the inductive assumption, M, ; N N € F and its quasi Verma
length equals k£ — 1.Then N/(My_,; N N) is a non-trivial submodule in My /Mj_; and the
lemma follows.

Let W be the Weyl group of A. We will denote by < the Bruhat order on W (assuming
that the identity is the maximal element of W). Fix w € W and let wy be the minimal
element in W with respect to < (i.e. wp is the longest element in W). For M € F
let ¢, (M) denote the intersection of all submodules N in M which satisfy the following
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condition: (M : L(w'(\))) = (N : L(w'()\))) for any w' < w and any dominant A. By
Lemma 19, ¢,(M) € F. For any M, N € F and any homomorphism f : M — N one
has f(ow(M)) C @w(N), hence ¢, can be considered as a well-defined endofunctor of F,
which acts on the homomorphisms by restriction. Let min,, F;,; (resp. min, F) denote
the full subcategory of F;,,; (resp. F), which consists of all M such that f,,(M) = M. The
key result of this Section is the following statement.

Theorem 4. 1. The functors st : ming, Fy — st Fine and @y, @ st Fipe — ming, Fiyy are
mutually inverse equivalences of categories. In particular, min, F;,; has a natural
abelian structure.

2. For any M € st Fy, (resp. M € miny, Fin) and any finite-dimensional module F
holds @, (M ® F) ~ ¢,(M) ® F (resp. st(M @ F) ~ st(M) ® F). In particular,
min,, F;; 18 closed under tensoring with finite-dimensional modules.

The second statement follows from the first one and [De, Theorem 3.1}, so we have to
prove the first statement only. From Lemma 6 and Lemma 21 it follows that st(¢,,(M)) ~
M and @, (st(NV)) ~ N for any M € st Fip; and N € miny, Fp. (From Lemma 8 and
Lemma 10 it follows that ¢,, is faithful. Hence, to complete the proof we only have to
show that ¢, is full. Denote by min, F;,; the image ¢, (st Fi,;). Then min,, Fjp; is an
abelian category, whose abelian structure is inherited from st F;,; via ¢,. Moreover, we
know that ¢,, is faithful. Hence, min, F;,; and st F;,; are equivalent and it remains to
show that min,, F;,; is a full subcategory in min,, F;,;. We have to prove a lemma before
we can complete the proof.

Lemma 20. 1. Category min,, F;y; has a block decomposition with a unique simple mod-
ule 1n each block.

2. Category min,, Fins has enough projective modules, in particular the big projective
module in the principal block of O is projective in miny Fipg.

The proof is analogous to that of Lemma 15 and Lemma 16. We only note that simple
modules in min F;,; are Verma modules M (w(\)), and indecomposable projectives are
P(wy(N)), A integral dominant.

Now we return to the proof of Theorem 4 in order to prove that min, F;,; is a full
subcategory in min,, Fj,:. Let P be a projective in st Fi,.(x), x € Z(A)*. Then ¢, (P) = P
by Lemma 16 and Lemma 20. Moreover, we have for any M € st F;,;(x) an equality
dim Hom (P, M) = dim Hom (P, ¢,,(M)) = qVI(M), since P is projective in O.

Let M, N € st Fini(x) and f : ¢y, (M) — ¢y (V) be a morphism. Let P be the projective
cover of M, which is also the projective cover of ¢,,(M). Let a : P — ¢, (M) be a canonical
epimorphism. Since P is projective, there exists x : P — M and y : P — N such that
Yw(x) = a and @, (y) = f oa. We also have kera C ker f o a. Hence kerz C kery, since
0y is a Testriction. Therefore, for m € M we can define ¥(m) = y o 7' (m) and obtain
that v is a well-defined morphism and ¢,,(¢) = f. This completes the proof.

Corollary 6. All categories min,, F;,; are blockwise equivalent.
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Follows immediately from Theorem 4.

Remark 1. Having Theorem 4 available, one can produce more natural equivalences be-
tween the categories ming, Fip. Let o € m and s, be the simple reflection with respect to
a. Assume that w < w' and w = sqw’. Then ro and f,, are mutually inverse equivalences
between min,, Fpy and ming Fi,;. Indeed, we already have the abelian structure on both
min,, Fi,; and ming,: F;,,; inherited from st Fie and we know that v, and f,, are full, faithful
and exact with respect to the image. Moreover, r, sends simple (resp. projectives) from
min,, Fine to simples (resp. projectives) in min, Fi. Since any object in min,, Fiy has
finite length, everything follows by standard induction in the length of a module.

Set min F;,,; = min,,, Fj,; and min = f,,.

Lemma 21. M € min F;,; if and only if for any o € 7, the module M, when viewed as
an A*-module, is a direct sum of tilting modules in the corresponding category O.

Consider M as an A*-module. Let N be a maximal direct sum of tilting modules
contained in M. From the definition of r, we have r,(N) D M. Hence it is enough to
show that N is an 2-submodule of M. The last follows by standard arguments from the
fact that tilting modules are stable under tensoring with finite-dimensional modules and
U(2) is a direct sum of finite-dimensional U(2*)-modules under the adjoint action.

Corollary 7. Category min F;,; contains all tilting modules from Q.

Follows directly from Lemma 21, Theorem 4, and the fact that tilting modules are
stable under tensoring with finite-dimensional modules and [CI].

It is easy to see that the intersection of st F;,; and min F;,; is an additive closure of the
sum of all P(\), A integral antidominant. Moreover, the functors min and st have some
properties, which are analogous to that of Soergel’s functor S® _ (see Theorem 3). In fact,
one has the following.

Proposition 4. Let A be an integral dominant weight. Then for any element w € W holds
min(P(w()))) = T(wwe(N)) and st(T(wwe(N))) =~ P(w(N)).

It is enough to prove the first equality. In the simplest case we have min(P()\)) =
min(M (X)) ~ M(wy(N)) = T(we(A)). Moreover, for any finite-dimensional module F'
we have min(P(\) ® F) ~ T(wy(A)) ® F by Theorem 4. Now the statement follows by
induction applying the projection on the corresponding block of O.

Corollary 8. For integral dominant A and wy,ws € W there is an equality [T (w1 (X)) :
M(wa(N)] = [P(wiwo(A)) : M (wawo(A))]-

Follows from Proposition 4 and the fact that min and st are exact with respect to
the abelian structures on st Fj,; and min F,; (the last coming from st F,; via min) by
induction with respect to the Bruhat order on W.

In particular, this also gives an independent proof of Soergel’s character formulae for
tilting modules in the case of finite-dimensional algebras ([S1, S3]) and of Theorem 3.
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R InAthe same way as in Section 5, we can associate with min,, F;,; an admissible category
A= A(mirlw Fint) of $¥-diagonalizable A'-modules. It is not a big surprise that O(P, A)
and O(P, A) are closely connected. In fact, the following statement is true.

Theorem 5. O(P, A) and O(P, ) are blockwise equivalent.

It is easy to verify that st and f, can be extended to mutually inverse equivalences
between O(P,A) and O(P,A). The main point to be checked here is that f, (M), M €
O(P,A) is a B-module. This follows from the second statement of Theorem 4 and the fact
that U(®) is a direct sum of finite-dimensional A-modules under adjoint action. The rest
is standard.
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