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Abstract

We study categories of modules for Lie algebras with triangular decomposition,
which contain certain generalized Verma modules and are analogous to classical
category 0. We relate blocks of these categories to module categories over finite-
dimensional algebras, which turn out to be projectively stratified. Moreover, we
study tilting modules. Finally we show how to relate some of these situations to
similar ones over certain proper subalgebras of the given Lie algebra.
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1 Introduction

In [FKM1, FKM2, FKM3] we defined and studied certain categories of induced mod-
ules over simple complex finite-dimensional Lie algebras generalizing the celebrated BGG-
category O ([BGG]). In particular, it was shown that under certain natural assumptions
the blocks of such categories are equivalent to module categories over projectively strat-
ified algebras. Moreover, there exists an analogue of Soergel’s combinatorial description
(see [S1, S2, S3] for original results) and a satisfactory theory of tilting modules for these
blocks.

The main aim of this paper is to extend the results of [FKM1, FKM2, FKM3] to the
case of Lie algebras with triangular decomposition in the sense of [RW, MP]. Our goal is
to go far enough to prove an analogue of the BGG-reciprocity, to relate the local situation
to projectively stratified algebras and to develop a theory of tilting modules. Additionally
we describe indecomposable blocks and injective objects in our categories.

In the case of infinite-dimensional affine Lie algebras there exist three essentially dif-
ferent types of parabolic subalgebras ([F1]). It happens only for two types of parabolic
subalgebras that the corresponding Levi factor is a reductive finite-dimensional algebra.
We restrict our attention to these two types of parabolics. In the first part of the paper we
study (in a more general situation than that of affine Lie algebras) the so-called standard
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parabolic subalgebras, which can be viewed as a direct analogue of parabolic subalgebras
for simple finite-dimensional Lie algebras. In the second part of the paper we show that
the study of the parabolic subalgebras of the second possible type in most of cases reduces
to the standard parabolics over some well-defined subalgebra.

The paper is organized as follows. In Section 2 we present our basic setup. In Section 3
we define the main object of the paper — category O(P, A, H). Moreover, we prove an ana-
logue of the BGG-reciprocity. In Section 4 we study a block decomposition of O(P, A, H).
In Section 5 we relate the local situation in O(P, A, H) to projectively stratified finite-
dimensional algebras (as in [FKM1, Section 5]). In Section 6 we establish two equivalences
of categories in the case of induction from a well-embedded si(2, C)-subalgebra. In Sec-
tion 7 we develop a theory of tilting modules in O(P, A, H). Section 8 is devoted to the
study of non-standard generalized Verma modules for affine Lie algebras. These modules
are induced from a non-standard parabolic subalgebra having a finite-dimensional Levi fac-
tor. The structure of such modules in the case when the central element is non-degenerate
is studied in Section 9. Finally, in Section 10 we define a category O(B, A, H) of modules
for affine Lie algebra associated with a non-standard parabolic subalgebra and establish
the equivalence between O(B, A, H) and a category O(P', A’, H') for a certain subalgebra
in the case when the central element acts injectively on every object. Hence, in this case
all the results about O(P, A, H) can be easily extended to the category O(B, A, H).

2 Setting

Let & be a complex Lie algebra with a triangular decomposition (9,®,,Q.,0) ([MP]),
where § is a Cartan subalgebra, Q. is the set of roots of the positive part &, of &, and o
is an antiinvolution on &. Let Q = Q, U—Q, denote the set of all roots of &. For a € Q
denote by &, the corresponding root space in &. Fix a basis m of @, and a subset S of
7 such that the subalgebra ', generated by $ and all &,, where « is an integral linear
combination of elements from S, is reductive finite-dimensional. Denote by Qi the set of
positive roots of . Let 2A' = A ® $Hg, where 2 is semi-simple and $g is central in 2A'. Set
P =2 + &, and let N be a subalgebra of P generated by all &,, « € Q. \ QF. One has
P=UAoN

As in [FKM1, Section 3], we start with a category, A, of 2A'-modules, satisfying the
following conditions:

e A is a full subcategory of the category of finitely generated and $g-diagonalizable
2A'-modules;

e A carries an abelian structure, such that the endomorphism rings of simple objects
are C (this abelian structure may differ from the one on the category of 2A’-modules);

e for any simple finite-dimensional 2('-module F', the functor F ® _ is an exact endo-
functor on A.



A category, satisfying all the conditions above will be called admissible.

For any V' € A we may consider an induced module M (V) = Mp(V) = U(&) Quep) V,
where MV = 0. Usually the module M (V) is called a generalized Verma module (GVM),
provided the module V' is simple (see, for example [FKM1, Section 2] and the references
therein). We will say that M (V) is a GVM (resp. a standard module) if V' is a simple
(resp. projective) object in A. We remark that it is possible for simple objects in A to be
non-simple A'-modules (see [FKM2, Section 5] for an example).

It follows directly from the construction, that any M (V') is Hg-diagonalizable. Denote
by pg the projection of H* on $j with respect to the dual to the Cartan subalgebra of 2. If
V is a simple object in A, then $)g acts on V via some A € §j and the Hy-support of M (V)
coinsides with the set P(\) consisting of all $g-weights A — p, where p = 0 or y = pg(«) for
a non-negative integral linear combination « of roots from 9. Moreover, any GVM M (V)
has a unique maximal submodule, which decomposes into a direct sum of modules from A,
when viewed as an 2'-module. Let L(V) = Lp(V') denote the corresponding quotient.

Now we are in position to make our basic assumptions:

(A) The algebra & is an integrable 2-module under the adjoint action.

(B) Any object in A has finite length (in particular, for any M € A and for any finite-
dimensional 2A'-module F' the module /' ® M belonging to A has finite length in
A).

We note that, from the assumption (A), it follows automatically that all $y-weight
spaces of & are finite-dimensional.

3 Category O(P,A\, H)

In this Section we define and study a category of &-modules induced from 2 via the process
of parabolic induction. Our main result is Theorem 1, which establishes an analogue of
the BGG-reciprocity principle for such category.

Fix a finite subset H in $j and denote by O(P,A, H) the full subcategory of the
category of &-modules, which consists of all modules M satisfying the following conditions:

1. M is Hy-diagonalizable;

2. the $g support of M is a subset of P = Uycy P(N);

3. any $Hg-weight space of M is an 2A'-module of finite length;

4. viewed as an A'-module M decomposes into a direct sum of objects from A.
Assume that O(P, A, H) carries an abelian structure induced from that on A.

Lemma 1. O(P, A, H) is closed under operations of taking finite direct sums.

Proof. Obvious. O



Lemma 2. Let V be a simple object in A having the Hy-weight X\ € P. Then both M (V)
and L(V') are objects in O(P, A, H) and L(V) is a simple object. Moreover, the set of all
such L(V') ezhausts the set of simple objects in O(P, A, H) (up to isomorphism,).

Proof. Follows from the assumption (A) by standard arguments (see [FKM1, Proposi-
tion 2]). O

Lemma 3. Let M € O(P,A,H) and F be a Hy-weight &-module with finite-dimensional
Ha-weight spaces such that the Hy-support of F Q@ M is a subset of P. Then F @ M belongs
to O(P,A\, H).

Proof. Follows from the assumptions (A), (B) and admissibility of A. O

Denote by O/(P,A, H) the full subcategory of O(P, A, H) consisting of all finitely
generated modules. Clearly, all M (V) and L(V) as in Lemma 2 are objects in O (P, A, H).

Proposition 1. Assume that A has enough projective modules. Then every object of
Of(P, A, H) is a quotient of a projective in O(P, A, H).

Proof. Fix an indecomposable projective V' € A with an $)g-weight A € P. Denote by A the
subalgebra of U (&, ), generated by all graded components U(&..),, such that A+pg(u) & P.
Clearly, U(®,)/A is a completely reducible finite-dimensional 2'-module under the adjoint
action. Moreover, it is a P-module. Now set

I(V) = U(8) ®up) (U(®4)/A) ®up) V) -

Then Hom opa,m)(I(V), M) ~ Hom »(V, M) and hence I(V) is projective in O(P,A, H),
since V is projective in A. Now the rest is standard. O

It is clear that each I(V), constructed in Proposition 1, in fact, belongs to Of (P, A, H)
and has a finite standard filtration, i.e. a finite filtration, whose subquotients are standard
modules.

Corollary 1. There is a bijection between simple objects in O(P, A, H) and indecomposable
projectives in O(P, A, H) which are objects of O/ (P, A, H). Moreover, each indecomposable
projective as above has a standard filtration.

Proof. Analogous to that of [RW, Corollary 13]. O

Let V' be a simple object in A such that L(V') is a simple object in O(P, A, H). We
will denote by P(V') the corresponding projective cover, given by Corollary 1.

The notion of composition series in O(P, A, H) is not well-defined, however there is
a natural notion of the multiplicity of a simple object L in M € O(P,A, H) (see [S3,
Section 4]). We define (M : L) as the supremum of all numbers of occurrences of L as a
subquotient in a finite filtration (in O(P, A, H)) of M. It is easy to see that this number
is always finite, moreover, one also has (M : L(V)) = dim Hom o¢p A m)(P(V), M).



Lemma 4. Let M € O(P, A, H) have a standard filtration
O=MyCM,C---CM,=M,

such that M;/M;—y ~ M(V;), i = 1,2,...,n. Then, as an A'-module, M/(c(M)M) =~
i1 Vi

Proof. Analogous to that of [RW, Lemma 1]. O

Assume that M € O(P, A, H) has a standard filtration and M (V') is a standard module
in O(P,A,H). We can define [M : M(V)] to be the number of occurrences of M (V)
in a standard filtration of M. This number is independent of the choice of filtration by
Lemma 4. As any module in A has finite length, each standard module M (V') can be filtered
by generalized Verma modules and for simple W we set [M : M(W)] to be the number
of occurrences of M (W) in a generalized Verma flag, i.e. a filtration, whose quotients are
GVMs, of M. Now we can formulate the main result of this Section, which generalizes the
celebrated BGG-reciprocity principle ([BGG, RW]). We recall ([FKM1, Theorem 5]) that
A is said to satisfy the duality condition if for any two simple objects X and Y in A there
exists a constant i(X,Y’) such that for any simple finite-dimensional A’-module F' holds
(FRX):Y)=i(X,)V)(FQY): X).

Theorem 1. Assume that A satisfies the duality condition and decomposes into a direct
sum of full subcategories, each of them being the module category of some quasi-directed
(i.e projectively stratified with projective standard modules, [CPS2]) algebra. Then for any
two simple objects L(V') and L(W) from O(P, A, H) holds

[P(V): M(W)] = i(V,W)(V : V)(M(W) : L(V)),
where V is the projective cover of V in A.
Proof. Analogous to that of [FKM1, Theorem 5. O

Example 1. Let A be an admissible category of gemeric Gelfand-Zetlin modules from
[FKM1, Section 11]. It was shown there that A satisfies all conditions, necessary for
Theorem 1 with \(V,W) = (W : W)/(V : V). Hence, in this case the BGG-reciprocity can
be rewritten, as A

[P(V): M(W)] = (W : W)(M(W) : L(V)).

We also note, that (W : W) coincides with the cardinality of the orbit of X € H* under
the Weyl group action, where X is such that the central character of W coincides with the
central character of the Verma module (over ), parametrized by A.

Remark 1. Example 1 contains, in particular, the example of admissible A associated with
sl(2,C) induction described in [FKM1, Section 10].



4 Decomposition of O(P, A, H) into blocks

In the previous Section we obtained an analogue of the BGG-reciprocity for category
O(P,A, H). In [FKM1] it has been shown that for finite-dimensional & under some natural
conditions the indecomposable blocks of O(P, A, H) are equivalent to the module categories
of projectively stratified finite-dimensional algebras (see [FKM1, Section 5] for definition).
In the general case this is not true, since an indecomposable block of O(P, A, H) does not
necessarily contain only finitely many simple objects. In Section 6 we will “locally” relate
the general situation to projectively stratified algebras. As a first step, which we will make
here, decompose O(P, A, H) into blocks in a natural way, as it was done in [DGK] in the
classical situation. From now on we assume that A satisfies all the conditions of Theorem 1.

We begin with the following Lemma generalizing the Extension Lemma [H, Lemma 2.3].

Lemma 5. Let M (V) (resp. M(W)) be GVM’s corresponding to a simple V' (resp. W)
from A. If Extowpa,my(M(V), M(W)) # 0 then L(V) is a subquotient of M(W).

Proof. By virtue of Theorem 1 the proof is analogous to that of [H, Lemma 2.3]. O

Lemma 5 motivates the following definitions. Let A = A(H) denote the set of quiv-
alence classes of simple objects V' from A such that M (V) € O(P,A, H). This means
that L(V), V € A is a complete list of simple modules in O(P, A, H). We introduce an
equivalence relation ~ on A as the transitive closure of the relation ~ defined as follows:
VAW if and only if there exists Z € A such that both L(V) and L(W) are subquotients
of M(Z). Let A~ be the set of equivalence classes of ~ on .A. Now we are in position to
state the basic decomposition theorem for O(P, A, H) (see [DGK, Theorem 4.2] and [S3,
Theorem 4.2]).

Theorem 2. For x € A~ let O(P, A, H), denote the full subcategory of O(P, A, H) which
consists of all modules M, having simple subquotients L(V'), V € x only. Then

O(P,AH)=  O(P,A H),.

XEA™

Proof. Analogous to that of [S3, Theorem 4.2]. O

5 Relation to projectively stratified algebras

To relate a local situation in O(P, A, H) to projectively stratified algebras we will use the
classical arguments from the corresponding problem for quasi-hereditary (resp. stratified)
algebras, [CPS1, Theorem 3.5] (resp. [CPS2, Theorem 2.2.6]).

Fix a finite set H in P and let P = U/\Eﬁﬁ()\), where P()) consists of all Hy-weights
A+ p with g =0 or u = pg(a) for a non-negative integral linear combination « of roots
from M. Fix an indecomposable block x of O(P,A, H) and let T = T'(x, ﬁ) be the poset
of all simple objects V' € x whose Hg-weight belongs to P. Our main result in this Section

is the following Theorem.



Theorem 3. Assume that A is a direct sum of module categories of projectively stratified
algebras and T s finite. Then the algebra

A=End ¢ ( &y P(V))

V simple in T
is projectively stratified (see [FKM1, Section 5]).

Proof. Consider the functor A = Hom &(P,_) from O/(P, A, H) to the category of A-
modules. It is exact and sends a projective object P(V'), (for V simple in T) to a projective
module, and a simple object V' to a simple module. Define standard objects M(W), W
projective in A with L(W) € T, as A(M(W)). Then A transfers a standardly filtered object
from O(P, A, H) to a standardly filtered object in the category of A-modules. Induction
on the poset T as in [CPS1, Theorem 3.5] shows that all axioms of a projectively strat-
ified algebra are satisfied by this choice of standard modules and hence A is projectively
stratified. O

Corollary 2. Assume that A is a sum of module categories of projectively stratified alge-
bras, T is finite and the algebra A from Theorem 8 has a duality. Then for any simples
L(V), L(W) in T holds

[P(V): M(W)] = (W : W)(M(W) : L(V)),
where W is the projective cover of W in A.

Proof. 1t follows from the exactness of A that [P(V) : M(W)] = [A(P(V)) : A(M(W))]
and (M(W) : L(V)) = (A(M(W)) : A(L(V))). Now the statment follows from Theorem 3
and [FKM1, Theorem 4]. O

Using Corollary 2 one can extend the arguments from the previous Section to a more
general situation, where A is a sum of module categories of projectively stratified algebras.

6 Induction from si(2,C): two equivalences

Assume that |S| =1,1i.e. S = {a} and 2 ~ sl(2,C). For our convenience we fix a standard
basis Xi,, H, in 2. In this case there is a natural example of an admissible category,
A = A(V(a,b)), a,b € C, associated with an indecomposable dence 2-module V (a,b)
with one dimensional weight spaces, on which 0 # X_, € &_, acts bijectively ([FKM1,
Section 10]). Such module is uniquely determined by its weight a and the eigenvalue b of the
Casimir operator, ¢ = (H, + 1)? + 4X_,X,, acting on it. For a finite-dimensional & it has
been shown in [FKM2, Sections 3-5] that the corresponding categories of induced modules
have quite similar structure, moreover, they are equivalent to certain full subcategories of
O. The aim of this Section is to generalize these results to O(P, A, H). Note, that it was
shown in [FKM1, Section 10] that A satisfies all conditions of Theorem 1.
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According to the assumption (A4), X_, acts locally ad-nilpotently on &. Let U, denote
the localization of U(®) with respect to the powers of X_, ([M, Lemma 4.2]). Let 0, z € C
be the unique polynomial family of automorphisms of U,, such that 6,(u) = X* uX"] for
all u € U, and all z € Z ([M, Lemma 4.3]).

Theorem 4. The categories O(P,A(V(a1,b)), H) and O(P,A(V (as,b)), H) are (block-
wise) equivalent.

Proof. The proof repeats one from [FKM2, Theorem 1]. Clearly, we can assume a; # as.
Choose = € C such that a; = ay + xza. From our assumptions we also have x ¢ Z. By the
definition, X , acts bijectively on all modules from both O(P,A(V(a; b)), H), i = 1,2.
Thus, any such module can be trivially extended to a U,-module.

Let M be a U,-module and v € M such that H,v = av and ¢v = a’v. Then, for any
integer y, we have 0,(H,)v = XY Ho X" Yv = (a + 2y)v and 0,(c)v = XY X "Yv = d'v.
Since the family 6, is polynomial in y, 0,(H,)v = (a+2y)v and 0,(c)v = a'v for any y € C.
From this we get that 6, (resp. 6_,) is a well-defined functor from O(P,A(V(a4,b)), H)
to O(P,A(V (ag,b)),H) (resp. from O(P,A(V(az,b)),H) to O(P,A(V(a1,b)),H)). As
the composition of 6, and #_, is an identity, we easily conclude that these functors are
mutually inverse. The block version follows immediately. 0J

Fix a and b such that b = (a + 21 + 1)? for some [ € Z. Under this choice the simple
objects in A = A(V (a,b)) are not simple 2’-modules and hence, they have a non-trivial
X,-finite part. Denote by O the category of all $)-diagonalizable &-modules with finite-
dimensional weight spaces, whose support is contained into a finite union of supports of
Verma modules. For M € O(P, A, H) let E(M) be the subset of locally X,-finite elements
of M. Clearly, E(M) is a &-submodule of M.

Lemma 6. For M € Of(P,A, H) holds E(M) € O.

Proof. From the definition of A and O(P, A, H) it follows that each M € O(P, A, H) is
$H-diagonalizable with finite-dimensional weight spaces. Hence, so is E(M).
Since M is finitely generated, it has a finite filtration

O=MyCcMyC---CM, =M,

where each M;/M;_; is a subquotient of some GVM M (V (a;,b;)). Then the support of
E(M) is contained in the union of supports of Verma modules E(M(V (a;,b;))). This
completes the proof. O

By Lemma 6, we can consider E as a functor from Of(P, A, H) to O which acts on
homomorphisms by restriction. The main property of E is the following theorem. Denote
by O7 the full sucategory of O consisting of finitely generated modules.

Theorem 5. The functor E produces an equivalence between OF (P, A, H) and a full sub-
category of O.



The proof essentially repeats the arguments from [FKM2, Sections 4,5] and we divide
it into a sequence of lemmas.

Lemma 7. E(M) =0 if and only if M = 0, moreover, for any X\ € $* and for any k € N
big enough holds dim M)_x, = dim E(M)_kq-

Proof. Since M decomposes into a direct sum of objects from A it is enough to prove the
statment for A, which is done in [FKM2, Lemma 1]. O

From the standard sl(2, C) theory one easily derives that E(L(V (a,b))) is a &-module
having exactly one simple subquotient on which X_, acts injectively ([FKM2, Lemma 2]).
Denote by E(L(V (a,b))) the parameter of this simple highest weight subquotient of the
module E(L(V(a,b))). Now we can reduce the problem of calculating the multiplicities
of simple subquotients in M € O/(P, A, H) to the same problem in O/. In particular,
this reduces the problem about multiplicities of simples in a GVM to the corresponding
problem for O.

Corollary 3. For any M € O/(P,A, H) and any simple L € O/(P,A, H) holds (M :
L) = (E(M): L(E(L))).

Proof. Standard arguments using induction with respect to the poset of simple modules in
O (P, A, H) ordered with respect to their appearance as subquotients in GVMs. O

Lemma 8. Let Of(H) be the full subcategory of Of, consisting of modules, whose $gy-
support belongs to P. Then E sends projectives from O (P, A, H) to projectives in O (H).

Proof. Each projective occures as a direct summand of some I(V) (V projective in A), so
it is enough to prove that E(I(V)) is projective in Of(H). This follows directly from the
construction of I(V), projectivity of V' and the fact, that on 2'-level F commutes with
tensoring with finite-dimensional modules ([FKM2, Proposition 1]). O

Lemma 9. F is full and faithful on morphisms.

Proof. The second statement is easy. It is sufficient to prove
dimHom oy (p p gy (M1, My) = dim Hom os(E(M1), E(M;))

only. We know that the image of E belongs to O/(H). First we prove our result for
projective M;. Certainly, we can assume M; = P(V), where V is simple in A. Then
dimHom o7 (pa,m (P(V), Mz) = (M : L(V)). Further E(P(V)) is projective in O/ (H).
Using the same arguments as in [FKM2, Lemma 7, Proposition 2| one can show that
E(P(V)) ~ P(E(L(V))) and hence

A

dim Hom o (E(P(V)), E(Mz)) = (E(Mz) : L(E(L(V)))).

Now the statement follows from Corollary 3. By virtue of Proposition 1, the general case
now follows by the same arguments as in [FKM2, Theorem 2]. O

Proof of Theorem 5. Follows from Lemmas above. O



7 Tilting modules

In this section we follow [S3, Section 5] and [AHLU] to study tilting modules in O(P, A, H).
Our main result is the following Theorem, which is analogous to assertions in [R, D].

Theorem 6. Assume that A has a block decomposition with respect to the action of the
center, which is locally finite, with each block being the module category over a projectively
stratified algebra. Also assume that O(P, A, H) has a duality coming from the standard
Hopf algebra structure on &. Let V' be an indecomposable projective object in A such that
M(V) e O(P,A, H). Then there ezists a unique object T(V') € O(P, A, H) such that

1. Exté(P,A,H) (X, T(V)) =0 for any X € O(P,A, H) having a standard filtration;

2. T(V) has a (possibly infinite) filtration starting with M(V'), whose subquotients are
of the form M (W), where W is projective in A.

We will call the filtration from (2) also standard. The module T'(V') will be called inde-
composable tilting module corresponding to V. By a tilting module one usually understands
a direct sum of several T'(W).

To prove this Theorem we need some preparation, combined in the following Lemmas.
Till the end of the Section we work under the assumptions of Theorem 6. In order to
construct tilting modules we follow the procedure given by Ringel ([R]), which has been
modified by Soergel ([S3]) to cover filtrations of infinite length as well.

Lemma 10. Let A\, u € $5 and V be a simple (resp. indecomposable projective) module in
A such that X is an $Hy-weight of V in M (V). Then there exists only finitely many non-
isomorphic simples (resp. indecomp. projectives) W € A such that p is an Hy-weight of
W in M(W) and Hom o@pa,my(M(V), M(W)) or Ext}QW’A’H)(M(V), M(W)) is non-zero.

Proof. Clearly, from Hom o@pa,m)(M(V), M(W)) # 0 it follows (M(W) : L(V)) # 0.
From Lemma 5 we also know that Exté)(RA,H)(M(V),M(W)) # 0 implies (M (W) :
L(V)) # 0 and hence it is sufficient to show that there exist only finitely many non-
isomorphic simples (resp. indecomposable projectives) W € A such that p is an Hy-weight
of W and (M(W) : L(V)) # 0. As an 2-module we have that M(W), ~ W ® F for a
fixed finite-dimensional module F. Recall that A has a block decomposition with respect
to the action of the center, hence V' belongs to some block A;. Since F' is fixed, there exist
only finitely many blocks A;, 7 € J, such that W ® F has V as a composition factor for
some W € A; ([K, BG]). As each A; has only finitely many simples (resp. indecomposable
projectives) we obtain the statement of the Lemma. O

Lemma 11. For all objects V,W € A the vector spaces Hom opa,my(M(V), M(W)) and
Ext}g(P,A,H) (M(V), M(W)) are finite-dimensional.

Proof. Any $g-weight space of any module in O(P, A, H) is a module of finite length in
A. Let X be the $Hg-weight of V. Then we have a natural inclusion

Hom o(p,a,m(M(V), M(W)) < Hom A(V, M(W),)
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where the last space is finite-dimensional, since each block of A is a module category
over a finite-dimensional algebra. Let V' be a projective cover of V in A. Consider the

A

corresponding projective module P(V) from O(P,A, H), i.e. a projective in O(P, A, H)
such that there is an exact sequence

N A~

0—-K—>PV)->MV)—0
with K having a standard filtration. From this we get a surjection
Hom ogpim) (K, M(W)) = Extlp o iy (M(V), M(W)).
Now everything follows from the first half of the Lemma. 0

Let Q = A{)‘i |i € N}Abe a sequence of elements from P. For n € N set Q, = {\;]|1 <
1 S n} and Pn = U)\EQnP()\).

Lemma 12. Let Q2 be as above, and let V be a projective module in A such that M (V') €

O(P,A,H). Then for any n € N there erists exactly one (up to isomorphism) indecom-
posable object T =T (2, n, V) such that

1. EXt}D(P,A,H) (M(W),T) =0 for all indecomposable projective W € A with $y-weight
from P, N P;

2. There is an inclusion M (V') — T, whose cokernel has a finite standard filtration with
all subquotients of the form M(W), W projective in A with $Hg-weight from P, N P.

Proof. Using Lemmas 11 and 10 the proof repeats the one from [S3, Proposition 5.6]. [

Lemma 13. Under the conditions of Lemma 12 for any n > m € N there erists an
inclusion T(2,m, V) — T(Q,n,V) and the cokernel of each such inclusion has a standard
filtration with all subquotients of the form M (W), W projective in A with $Hg-weight from
(B \ Pn) N P.

Proof. Analogous to that of [S3, Proposition 5.7]. O
Lemma 14. Let V € A and F be a finite-dimensional A-module. Then Hom ¢(F,V) € A.

Proof. Denote by * the duality on A induced from that on O(P, A, H). We know that this
duality comes from the standard Hopf algebra structure on 2. We have Hom ¢(F,V) ~
(F ® V*)* as an 2A-module and everything follows from admissibility of A. O

For $)g-weight B-modules M; and M, let Hom (M;, Ms) denote the $Hg-weight set of
Ha-graded morphisms from M; to Ms. From Lemma 14 it follows, in particular, that
M(V)* is isomorphic to Hom »(U(®),V). We also know that for simple V, L(V) is
the socle of M(V)*. Unfortunately, in general the module M (V)* does not belong to
Of (P, A H).

Lemma 15. In O(P, A, H) there are enough injective modules.
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Proof. For M € O(P, A, H) the biggest Hy-weight &-submodule of Hom g (U(B), M),
which lies in O(P, A, H) (Lemma 14), is an injective module, containing M. O

Lemma 16. Let M € O(P,A, H) such that Exté(P,A,H)(M(W), M) =0 for all standard
MW) € O(P,A, H). Then Extop s my(N, M) = 0 for all N € O(P,A, H) having a
standard filtration.

Proof. Standard by virtue of Lemma 15 (see [S3, Lemma 5.10]). O

Proof of Theorem 6. Let Q be as above. Assume that P = U, (P, N P). Put T(V) =
lim,, o T(2, n, V). It is straightforward, that T(V') satisfies (1) and (2).

Using Lemma 16, the proof of the uniqueness of T'(V') is standard (see [S3, Theo-
rem 5.2]). In particular, T'(V') is independent of the choice of 2. O

Remark 2. It is easy to see that for A = A(V(a,b)) (see Section 6) the functor E sends
tilting modules from O(P, A, H) to tilting modules in O. So, in the same way as in [FKM2,
Section 10] the charcter of a tilting module from O(P,A, H) can be computed using the
character of the corresponding tilting module in O, which is known in many cases ([S3]).

During the proof of Theorem 6 we have obtained additional information about injective
modules in O(P, A, H). In the following Corollary we combine those parts of it concerning
simples.

Corollary 4. Each simple L in O(P, A, H) has an injective hull I(L) € O(P, A, H). Each
I(L) has an increasing filtration with quotients isomorphic to duals of standard modules
and under conditions of Corollary 2 there is a reciprocity formula

[I(L): M(W)] = (W : W)(M(W): L)
for any simple L(W) € O(P,A,H).

Proof. Follows from the properties of the duality. O

8 Non-standard generalized Verma modules for affine
Lie algebras

In this section we assume that & is an affine Lie algebra with a 1-dimensional center Z
spanned by an element c. Let 6 be an indivisible imaginary root of Q. Then the set of all
imaginary roots is Q™ = {kd|k € Z \ {0}}. Denote by G a Heisenberg subalgebra of &
generated by the root spaces &y;.

A subalgebra P C & is called parabolic if P D 9 and P+ 0 (P) = &. The classification
and the structure of all parabolic subalgebras in & was described in [F1]. Every parabolic
subalgebra has a Levi decomposition P = A’ & N where A’ is either finite-dimensional
reductive Lie algebra (type I) or an extension of a sum of some affine Lie subalgebras by
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a central subalgebra and by a certain subalgebra of the Heisenberg algebra G, generated
by the imaginary root spaces of &, (type II). The subalgebra 9 is called the radical of .
Note that 91 is solvable only in the case II.

We will work with a fixed parabolic subalgebra P = A’ & N of type I. Thus A’ is a
finite-dimensional reductive Lie algebra. Let ' = A& $Hg where 2 is semisimple and $gy is
central in 2'. For a subset 7" C Q we will denote by &(T') the subalgebra of & generated
by the root subspaces &, where o € T'. Finally, let H(T) = HN&(T).

Let 7 be a basis of the root system Q, Q. () be the set of positive roots with respect
to m and § € Q4 (m) be the indivisible imaginary root. For a subset 7" C 7 we will denote
by < T >, a root subsystem generated by T and §. Set < T >F=<T >, NQ,(m). Let
also @, (T) C Q. () denote the set of positive roots generated by 7.

It is easy to see that there are parabolic subalgebras 8 which do not correspond to
any triangular decomposition of & ([F2]). In fact, if P contains &, ks for some « and
infinitely many both positive and negative integers k£ then this parabolic subalgebra does
not correspond to any triangular decomposition of &. On the other hand we have the
following

Proposition 2. Let T C 7.

(i) If T is connected, then (H(< T >,),&(< T >1), < T >t 0) is a triangular decom-
position of B(< T >,);

(it) If T is not connected, then (H(< T >),&(< T >1),Q4,0) is a triangular decompo-
sition of &(< T >,);

(iii) Let T = U;/T; with all sets T; connected. Then &(< T >;) = 6T + G(T), where
ST =3 &, [, 8] =0, # j, & is the derived algebra of an affine Lie algebra
of rank |T;| + 1 for each i, [67,G(T)] = 0, G(T) C G, G(T) + (Gn &") = G,
&"TNG(T)=nN® = Z.

Proof. Statements (i) and (ii) are obvious. Note that in the case when 7" is not connected,
the root subsystem < 7" >, has no basis consisting of real roots (see [C, Remark 1.4]).
Statement (iii) follows from [F2, Proposition 3.2.]. O

Set &7 = &7 + § and my = &7 + G(T).

Proposition 3. Let P = A & N be a parabolic subalgebra of & of type I, i.e. A is finite-
dimensional reductive Lie algebra. Assume that &5 C N and Gyyrs TN for a real root o
and all integer k such that a+ kd € Q. Then there exist a basis m of Q, a root ag € T and
a subset T C mg =7\ {aw} such that

(i) The set T contains a basis of the root system of A and § € Q,(m);

(i) P =P(T) ® Ny where P(T) = A + &(< T >F) is a parabolic subalgebra of my, Nr
is generated by the spaces Bgips for all B € Q. (m) \ Q+(T') and all integers k for
which B+ ko € Q.
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Proof. The statements follow from [F2], Theorem 2.5. O

From now on we will assume that 8 = A’ @ N is fixed, &5 C N and that there exists
a real root « such that &, x5 C MNif a + kd € Q. In this case P is called non-standard
parabolic subalgebra. Then by Proposition 3, (i7), 8 = P(T") & 9y for a certain 7. It is
clear that ® = o(MN7) ®mr &Ny. Denote Pr = myp & Ny. This is a parabolic subalgebra of
& of type II. It follows from Proposition 2 that algebra ms has a triangular decomposition
m; @ HHmy.

Let A be an admissible category of 2'-modules and V' € A. We will make V into a
P-module with a trivial action of the radical 91. The module

My(V) =U(8) Quip) V

is called non-standard generalized Verma module ([F2]). As modules Mp(V), Mg(V) is
$Ho-diagonalizable. If V' is a simple object, then Mg(V') has a unique maximal submodule,
which decomposes into a direct sum of modules in A, when viewed as A’'-module. We
denote by Lg (V) the simple quotient of Mg (V).

Consider the subspace MT (V) = U(mr) Qup)nu(me) ¥V which is an $Hg-diagonalizable
mp-module. Module M7 (V) is a generalized Verma module over my if V is simple. In
this case we will denote by LT (V) the simple quotient of MT (V). We can also view it as
a P(T)-module with a trivial action of 9r.

Since Myg(V) is $Hy-diagonalizable module and ¢ is central then ¢ is diagonalizable on
Mg(V). We say that Mg(V) is non-degenerate if ¢ is non-degenerate on V.

Let T = U;T; be a decomposition of T into connected components and let &1 =
>, ®" be the corresponding decomposition of &*. Consider the tensor algebra Ar =
®;U(6") @ U(G(T)). Clearly, M*(V) is an Ap-module. Algebra G(T) has a natural
triangular decomposition G(T) = G(T)_ & Z & G(T), induced by the choice of positive
roots Q, (). Let M(cr) be a G(T)_-free rank one G(T)-module on which ¢ acts via the
scalar cy. Then we have the following standard fact.

Proposition 4. Let P=A' d@N=P(T) &Ny, A =A+9H, A= D;c,A; where all A, are
simple Lie algebras. Suppose that T = Ujc T; Uier I, with all T; and T being connected

2

and each T; containing a basis of the root system of A;. Denote $H; = HN &', i € I. If
V € A is simple then V is a P(T)-module with a trivial action of &4 for all § €< T >T
which are not the roots of A, V =~ ®je;V;, where V; is simple (in a proper category of
2;-modules) and $Hy-diagonalizable, H; acts on V via a weight \; € H for each i € I and

MT(V) ~ ®jes My, (V;) ®ier M(X;) ® M (cr)

as Ap-modules, where P; = A; + H+ &(< T >F) and M(N;) is the Verma module with
highest weight \; over &' with respect to the induced triangular decomposition of &:.

Proof. Follows from the construction of Myg(V). O
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Let @ be the abelian group generated by 7 and let @ be the abelian group generated
by 7. Every element of 3 € @@ can be written in the form # = a + kd for some o € Q
and we set ht"™(3) = |k|. If p = ¢ + kd with ¢ € Q and k € Z, then we denote by ht
(respectively ht; p) the number of elements of 7y (respectively o\ T) in the decomposition
of ¢. The universal enveloping algebra U(®) has a natural grading by the elements of Q.
fueU(®),and p=p+kd, p € Q, k € Z then we set ht; u = ht; u. The following is
the principle result of this Section showing the role of M* (V).

Lemma 17. If N # 0 is a submodule of Myx(V) then NN M* (V) # 0.

Proof. The proof is analogous to the proof of Lemma 5.4 in [F2]. Without loss of generality
we can assume that V' is simple in A. Let A € §j be the Hy-weight of V and 0 # v €
Nx_, where p = ¢ + kd, ¢ € Q, k € Z. Then we can write v = Y iy u;v;, where
u; € U(o(Mr)) are linearly independent, v; € M*(V)a_p;, pi = vi + 10, v; € Q,1; € Z.
Clearly, ht; u; = ht; u; for all ¢ and j. We will denote this number by ht; v and carry
out the proof by induction in ht; v. Assume that ht;v = 1. Then u; € &y, 44,5 With
; € Q1 (mg), hty ¢; = 1. We can also assume that htyp; > hty; if i < j. Choose sufficiently
large m € Z, such that ¢, —mé € Q, m > |k;| for all  and m — k, > > _._, |l;| for all
those ¢ for which htg; = ht ¢,. Now let 0 # 2 € &, 5. We have that zv; = 0 for all
and zv # 0. Clearly, zv € MT (V) which completes the proof in this case. If ht;v > 1 then
similar arguments (see the proof of [F2, Lemma 5.4]) and induction in ht; v complete the
proof of the Lemma. O

As an immediate consequence of Lemma 17 we have

Theorem 7. Let V' be a simple A'-module. Module My (V') is simple if and only if MT (V)
15 stmple as a mp-module.

Hence, Theorem 7 reduces the problem of simplicity of a non-standard generalized
Verma module Mg(V') to the problem of simplicity of a generalized Verma module M (V;)
(see [KM] for several examples) and Verma modules M ();) and M (cr) ([MP]).

9 Non-standard non-degenerate generalized Verma
modules

As in the previous Section we work here with a fixed non-standard parabolic subalgebra
B of & of type I. We study further properties of module Mg(V') in the case when c¢ is non-
degenerate on V. As in the case of Verma type modules worked out in [F2, Section 5.3],
under this condition the structure of Mg(V') is completely determined by the structure of
mp-module M7 (V).

Lemma 18. (i) Let cr # 0. Then the Verma module M (cr) is irreducible.
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(ii) Let V € A such that 0 € Specy, ¢, N be a submodule of MT(V), 0 # v € N and
v = ). uiv; where v, eV, u = > uijuy; € U(mg), uy € Bg,,, B € —Qi (),
Bij # Bir for j # k, and ht*™(8y;) is sufficiently large for all i and j. Then uj;v; € N
for all i, 7.

Proof. Statement (i) is standard. The proof of (ii) is analogous to the proof of [F2, Lemma
5.13]. Without loss of generality we may assume that |J| = 1. The general case is treated
similarly. Let v = ", usulvg, where u; € @, 5; # B; if i # j, B = i — kid, @i € Q,
k; € Z. Again without loss of generality we may assume that all u; are homogeneous,
u; € U(my),,—i,8, ki >> 1; for all 4 and j. Suppose first that |[I| = 1. Then v = uu'v,
with u € &, 5, ¢ € Q,u e U(mp)g_is, m >> 1> 0. If o = 0 then choose z € &5
such that [z,u] # 0. Since m > [, zu'vy = 0. Taking into account that 0 is not an
eigenvalue of ¢ on V', we obtain that zv € N is proportional to u'vy. Now consider the
case @ # 0. Choose a sufficiently large positive k£ such that £k < m, ¢ —kd € Q, k > [
and m — k > [. If m is sufficiently large, such k£ always exists. For 0 # z € &_ 45 we
have zv = zuu'vy = Gu'vy # 0, where @ € &_,,)5. Thus we came to the first case. Now
suppose that |I| > 1. Choose ¢;, € {¢;,i € I} with minimal ht ¢;,. If ht ¢;; = 0 then
choose k such that I; < k < k; for all i. Then for 0 # z € &5, 0 # v = Ziel\{io} T;u;vg
where @ = [z, u;] € g, 115 Induction on |I| completes the proof in this case. If ht ¢;, > 0
then choose k such that ¢ —kd € Q, [; < k < k; and [; < k;; — k for all + € I. Now for
0#z €& yrs we have Tv = U5uz vy + Zig\{io}[:ﬁ, u;lufvg, where @;, € B (—k;y)s- L we
reduced the number of summands then we can apply the induction in |I|. If not we use the
fact that the minimal height is 0 now and proceed as in the case above. This completes
the proof. O

Theorem 8. Let V € A, N be a submodule of Myx(V) and NT = NN MT(V). If Specy, ¢
does not contain 0 then

(i) N = U(&)Qupy)NT where Ny acts trivially on N, in particular, N ~ U(o(Nr))®c
NT as a vector space;

(i) If V is a simple object in A, then Ly(V) ~ U(®) Quepyy LT (V), where Ny acts
trivially on LT, in particular, Ly(V) ~ U(c(Mr)) ®c LT (V) as a vector space.

Proof. Lemma 17 guarantees that N7 # 0if n # 0. Also it is clear that the mp-module N
can be viewed as a Pr-module with a trivial action of 9. Hence all the tensor products
are well-defined. The proof of statement (i) follows the general lines of the proof of [F2,
Theorem 5.14]. Let 0 # v € N. Then v € 3 . ;u;v; where u; € U(c(N)) and v; € V.
Without loss of generality we may assume that |J| = 1. Hence, v = ) ,_; u;ujvy with
u; € U(c(Nr))u,, u; € U(my) and all u;’s are not multiples of each other. We can also
assume that ht; y; = hty p; for all 7 and j and denote this number by ht; v. We will show
by induction on hty v that ujvg € N for all ¢ which would imply statement (7). Suppose
first that ht; v = 1. Then u; € &_, 1m;5, @i € Q, ht; ¢; = 1 for all i. Let ¢;, € {y;} and
m is sufficiently large positive integer. Consider 0 # z € &, —ms. Then zu;vy = 0 for
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all 4 and 0 # zv = auj vy + Zz’el\{ig} iujvy where @ € S, —m)s, Ui = [z, u;], hty u; = 0.
Applying Lemma 18 we conclude that @uj vy € N. Taking into acount that 0 is not an
eigenvalue of c on V', we obtain that u;,vg € N just by applying an element y € &_y, 1ms
such that [y, @] # 0. It remains to apply the induction in |I|. Suppose now that ht; v > 1.
In this case the standard arguments (see the proof of [F2, Theorem 5.14]) show that there
exist ¢ € @ with ht; ¢ # 0, sufficiently large positive integer m and x € &,_,,5 such that
zv # 0 and hty zv < ht; v. Then we proceed by the induction in ht; v and in |I| using
also the fact that c is non-degenerate on V. Statement (i7) is an immediate consequence
of (7). O

Corollary 5. Let B =A N =P(T)dNy, V and V' be simple objects from A, er(V) #0
and cp (V') # 0. Then

Hom (Mg(V), My(V')) ~ Hom me (ME(V), ME (V).

10 An equivalence of categories

In this Section we study a category of &-modules which contains non-standard generalized
Verma modules in the case when c is non-degenerate. Let = A' @9 = P(T) ® Ny, A be
an admissible category of A’-modules that satisfy condition (B). Fix a finite set H € $}
and consider the category O(P(T), A, H) of mpr-modules as in Section 3. We assume that
O(P(T), A, H) carries a natural abelian structure induced from A. If V' is a simple module
in A with $g-weights in P then, by Lemma 2, both M7 (V) and LT(V) are objects in
O(P(T),A, H). Moreover, modules of type LT (V) exhaust all simple objects. Further,
O (P(T), A, H) will denote the full subcategory of O(P(T), A, H) consisting of all finitely
generated modules.

Denote by Kr the set of all integral linear combinations with positive coefficients of
elements from the set (< T >F U{8+ké|B € Qi (m) \ Q+(T)k € Z}) N (Q\ QF) (see
Section 2).

Let A € H% and P(\) = A — K7. We will assume H to be chosen in such a way that
Mec) # 0 for all A € H and P(\) ¢ P(p) for all A\, u € H.

Now we define a full subcategory, O(B, A, H), of the category of &-modules, which is
consisting of all modules M satisfying the following conditions:

1. The $Hy support of M is a subset of P = Uyeg P(\);

2. MT =37 .p M, is an object in O(P(T), A, H);

3. The module M is generated by M7,

If V is a simple object in A having an $g-weight in P, then both My(V') and Le (V)

are objects of O(*B, A, H). Also, any simple object of O(B, A, H) is isomorphic to Ly (V)
for some simple V' € A that has an $g weight in P.
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Let M € O(B, A, H) and L be a simple object in the same category. Then, as in the
case of O(P, A, H), we have a well-defined notion of multiplicity (M : L) of L in M. It
follows from Theorem 8 that (Mg (V) : Lys(V)) = (MT (V) : LT (V)).

It is obvious that any mpy-module W € O(P(T), A, H) has a generalized highest weight
series, i.e. a filtration

O=WoCcWi CWyC...

of submodules of W such that U;W; = W and W;/W;_; is a homomorphic image of M7 (V})
for some V; € A. A standard argument ([F2, Proposition 14.3]) shows that the same holds
for any object in O(B, A, H), i.e. any object M has a filtration

OZM()CMlCMQC...

of submodules such that UM; = M and M;/M;_, is a homomorphic image of Mg(V;) for
some V; € A.

Proposition 5. The category O(B, A, H) is closed under operations of taking finite direct
sums, submodules, which decompose into a direct sum of modules from A, when viewed as
A'-module, and the corresponding quotients.

Proof. The statement about direct sums is obvious. Let M € O(B, A, H) and N C M be
a submodule, which decomposes into a direct sum of modules from A, when viewed as 2'-
module. It is enough to show that N € O(P, A, H). Let NT =3 , N,. Since N” is an
myr-submodule of M”, N € O(P(T), A, H). Consider a generalized highest weight series,
0= DMy C M C...,of M, where M;/M,_, is a homomorphic image of Myg(V;), V; € A.
Set N, = NN M;, N, = N;/N;_1 and let NiT be the T-part of N;. Then U;N; = N and if
N; # 0 then NI # 0 by Lemma 17. It follows from Theorem 8 that N; is generated by N
implying immediately that NN; is generated by N/ as a &-module. Thus N is generated by
NT and the statement follows. O

Theorem 9. If \(c) # 0 for all A\ € H, then the categories O(B, A, H) and O(P(T),A, H)
are equivalent.

Proof. Define an exact functor F : O(B, A, H) — O(P(T), A, H) where F(M) = M" and
F(f) = f|yr forany M € O(B, A, H) and any f € Homeg(M,M'). W € O(P(T), A, H)
is an mp-module then we can view it as a Pr-module with a trivial action of 97 and define
a &-module Y (W) = U(®) Qup,) W € O(B, A, H). Hence, Y is an exact functor from
O(P(T),A,H) to O(B,A,H). If X € O(B, A, H) is an arbitrary homomorphic image of a
module Mg (V') then YoF(X) ~ X by Theorem 8. For an arbitrary object M € O(B, A, H)

consider a generalized highest weight series 0 = My C M; C .... Induction on ¢ shows that
Y o F(M;) ~ M; for all i and therefore Y o F(M) ~ M. Now Corollary 5 completes the
proof. O

Using Theorem 9 all the results from Section 3 to Section 7 can be easily transferred
to the category O(B, A, H). In particular, there is an analogue of the BGG-reciprocity,
a decomposition into blocks, a relation to projectively stratified algebras and a theory of
tilting modules.
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