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Abstract. We study finitary 2-categories associated to dual projection func-
tors for finite dimensional associative algebras. In the case of path algebras of
admissible tree quivers (which includes all Dynkin quivers of type A) we show
that the monoid generated by dual projection functors is the Hecke-Kiselman

monoid of the underlying quiver and also obtain a presentation for the monoid
of indecomposable subbimodules of the identity bimodule.

1. Introduction

Study of 2-categories of additive functors operating on a module category of a finite
dimensional associative algebra is motivated by recent advances and applications of
categorification philosophy, see [CR, Ro, KL, Ma] and references therein. Such 2-
categories appear as natural 2-analogues of finite dimensional algebras axiomatized
via the notion of finitary 2-categories as introduced in [MM1]. The series [MM1,
MM2, MM3, MM5, MM6] of papers develops basics of the structure theory and
the 2-representation theory for the so-called fiat 2-categories, that is finitary 2-
categories having a weak involution and adjunction morphisms. Natural examples
of such fiat 2-categories are 2-categories generated by projective functors, that is
functors given by tensoring with projective bimodules, see [MM1, Subsection 7.3].
Fiat 2-categories also naturally appear as quotients of 2-Kac-Moody algebras from
[KL, Ro, We], see [MM2, Subsection 7.1] and [MM5, Subsection 7.2] for detailed
explanations. There are also many natural constructions which produce new fiat
2-categories from known ones, see e.g. [MM6, Section 6].

Despite of some progress made in understanding fiat 2-categories in the papers
mentioned above, the general case of finitary 2-categories remains very mysterious
with the only general result being the abstract 2-analogue of the Morita theory
developed in [MM4]. One of the major difficulties is that so far there are not that
many natural examples of finitary 2-categories which would be “easy enough” for
any kind of sensible understanding. In [GrMa], inspired by the study of the so-called
projection functors in [Gr, Pa], we defined a finitary 2-category which is a natural
2-analogue of the semigroup algebra of the so-called Catalan monoid of all order-
decreasing and order-preserving transformations of a finite chain. This 2-category
is associated to the path algebra of a type A Dynkin quiver with a fixed uniform
orientation (meaning that all edges are oriented in the same direction).

The main aim of the present paper is to make the next step and consider a similarly
defined 2-category for an arbitrary orientation of a type A Dynkin quiver and, more
generally, for any admissible orientation of an arbitrary tree quiver. There is one
important difference, which we will now explain, between this general case and the
case of a uniform orientation in type A. The basic structural properties of a finitary
2-category are encoded in the so-called multisemigroup of a 2-category as defined in
[MM2, Subsection 3.3]. Elements of this multisemigroup are isomorphism classes
of indecomposable 1-morphisms in our 2-category. It turns out that for a uniform
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orientation of a type A Dynkin quiver any composition of projection functor is
either indecomposable or zero. This fail in all other cases in which the orientation
is not uniform as well as for all admissible tree quivers outside type A. This is the
principal added difficulty of the present paper compared to [GrMa].

For technical reasons it turns out that it is more convenient to work with a dual ver-
sion of projection functors, which we simply call dual projection functors. Roughly
speaking these are the right exact functors given by maximal subfunctors of the
identity functor. The first part of the paper is devoted to some basic structure
theory for such functors. This is developed in Section 3 after various preliminar-
ies collected in Section 2. In particular, in Proposition 8 we make the connection
between projection and dual projection functors very explicit. This, in particular,
allows us to transfer, for free, many results of [Gr, Pa] to our situation.

Section 4 contains basic preliminaries on 2-categories. In Section 5 we define finitary
2-categories given by dual projection functors and also finitary 2-categories given by
non-exact ancestors of dual projection functors which we call idealization functors.
Section 6 is the main part of the paper and contains several results. This includes
classification of indecomposable dual projection functor in Theorem 21 and also
the statement that composition of indecomposable dual projection functors for
any admissible orientation of a tree quiver is indecomposable, see Proposition 23.
Our classification is based on generalization of the Dyck path combinatorics in
application to subbimodules of the identity bimodule for admissible tree quivers as
described in Subsections 6.5, 6.6, 6.7 and 6.8.

Proposition 23 mentioned above implies that the multisemigroup of the 2-category
of dual projection functors associated to any admissible orientation of a tree quiver
is, in fact, an ordinary semigroup. This observation automatically makes this semi-
group into an interesting object of study. In Section 7 we give a presentation for
this semigroup in Theorem 30 and also for the semigroup of all idealization func-
tors in Theorem 29. Our proof of Theorem 29 is rather elegant, it exploits the
idea of decategorification: the canonical action of our 2-category on the underlying
module category gives rise to a linear representation of a certain Hecke-Kiselman
monoid from [GM]. Proof of Theorem 29 basically reduces to verification that this
representation is effective (in the sense that different elements of the monoid are
represented by different linear transformations). This effectiveness was conjectured
in [GM] and proved in [Fo]. Theorem 30 requires more technical work as the monoid
of indecomposable dual projection functors is not a Hecke-Kiselman monoid on the
nose, but after some preparation it also reduces to a similar argument.

Acknowledgment. The first author is supported by priority program SPP 1388
of the German Science Foundation. The second author is partially supported by
the Swedish Research Council, Knut and Alice Wallenbergs Stiftelse and the Royal
Swedish Academy of Sciences.

2. Preliminaries

2.1. Notation and setup. In this paper we work over a fixed field k which for
simplicity is assumed to be algebraically closed. All categories and functors con-
sidered in this paper are supposed to be k-linear, that is enriched over k-Mod. If
not explicitly stated otherwise, by a module we always mean a left module.
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For a finite dimensional associative k-algebra A we denote by A-mod the (abelian)
category of all finitely generated A-modules. By A-Mod we denote the (abelian)
category of all A-modules. We also denote by A-proj the (additive) category of all
finitely generated projective A-modules and by A-inj the (additive) category of all
finitely generated injective A-modules.

We denote by mod-A the category of all finitely generated right A-modules and
define proj-A and Mod-A respectively.

We denote by A-mod-A the category of all finitely generated A-A–bimodules. De-
note by AFA the category of all additive k-linear endofunctors of A-mod. This is
an abelian category since A-mod is abelian.

Abusing notation, we write ∗ for both the k-duality functors

Hom-k(−,k) : A-mod → mod-A and Homk-(−,k) : mod-A→ A-mod.

Let L1, L2, . . . , Ln be a complete and irredundant list of representatives of isomor-
phism classes of simple A-modules. Then L∗

1, L
∗
2, . . . , L

∗
n is a complete and irredun-

dant list of representatives of isomorphism classes of simple right A-modules. For
i, j = 1, 2, . . . , n, set Lij := Li ⊗k L

∗
j . This gives a complete and irredundant list of

representatives of isomorphism classes of simple A-A–bimodules. For i = 1, 2, . . . , n
we denote by Pi and Ii the indecomposable projective cover and injective envelope
of Li, respectively.

When working with the opposite algebra, we will add the superscript op to all
notation.

2.2. Trace functors. With each N ∈ A-mod one associates the corresponding
trace functor TrN : A-mod → A-mod defined in the following way:

• For every M ∈ A-mod, the module TrN (M) ∈ A-mod is defined as the

submodule
∑

f :N→M

Im(f) of M .

• For every M,M ′ ∈ A-mod and every f : M → M ′, the corresponding
morphism TrN (f) : TrN (M) → TrN (M ′) is defined as the restriction of f
to TrN (M).

Directly from the definition it follows that TrN is a subfunctor of the identity
functor for every N . We denote by ιN : TrN ↪→ IdA-mod the corresponding injective
natural transformation.

Lemma 1. Let N ∈ A-mod.

(i) The functor TrN preserves monomorphisms.

(ii) If N is projective, then TrN preserves epimorphisms.

(iii) We have TrN ◦ TrN ∼= TrN .

Proof. Let f :M →M ′ be a monomorphism. In the commutative diagram

M
� � f // M ′

TrN (M)
TrN (f) //

?�

ιM

OO

TrN (M ′)
?�

ιM′

OO
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we have f ◦ ιM is a monomorphism. Hence TrN (f) is a monomorphism as well.
This proves claim (i).

Let f :M →M ′ be an epimorphism and g : N →M ′ any map. If N is projective,
then there is h : N → M such that g = f ◦ h. Hence Im(g) = f(Im(h)) showing
that TrN (M) surjects onto TrN (M ′). This proves claim (ii).

Claim (iii) follows directly from the definition of TrN . This completes the proof of
the lemma. �

We remark that, in general, TrN is neither left nor right exact (even if N is projec-
tive). Indeed, let A be the path algebra of the quiver 1 // 2 , P1 be the inde-

composable projective A-module k Id // k , L1 be the simple A-module k // 0
and L2 be the simple A-module 0 // k . For N = P1, applying TrN to the short
exact sequence

0 → L2 → P1 → L1 → 0,

gives the sequence

0 → 0 → P1 → L1 → 0

which has homology in the middle position.

2.3. Projection functors. For N ∈ A-mod we define the corresponding projec-
tion functor PrN : A-mod → A-mod as the cokernel of the natural transformation
ιN . Let πN : IdA-mod � PrN denote the corresponding surjective natural transfor-
mation. The following properties of projection functors appear in [Pa, Gr]:

• For any N , the functor PrN preserves epimorphisms.

• If N is simple, then the functor PrN preserves monomorphisms.

• If N is simple and Ext1A(N,N) = 0, then PrN ◦ PrN ∼= PrN .

• If N and K are simple and Ext1A(K,N) = 0, then

PrN ◦ PrK ◦ PrN ∼= PrK ◦ PrN ◦ PrK ∼= PrN ◦ PrK .

• If N and K are simple and Ext1A(N,K) = Ext1A(K,N) = 0, then

PrN ◦ PrK ∼= PrK ◦ PrN .

For the record, we also point out the following connection between the functors
PrN and TrN .

Lemma 2. For any fixed N , the functor TrN is exact if and only if the functor
PrN is exact.

Proof. For an exact sequence X
f
↪→ Y

g
� Z in A-mod consider the commutative

diagram

TrN (X)� _

ιN (X)

��

TrN (f) // TrN (Y )� _

ιN (Y )

��

TrN (g) // TrN (Z)� _

ιN (Z)

��
X

� � f //

πN (X)
����

Y
g // //

πN (Y )
����

Z

πN (Z)
����

PrN (X)
PrN (f) // PrN (Y )

PrN (g) // PrN (Z)
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Here all columns are exact by construction and the middle row is exact by assump-
tion. Therefore the Nine Lemma (a.k.a. the 3× 3-Lemma) says that the first row
is exact if and only if the third row is exact. �

3. Dual projection functors

3.1. Idealization functors. The algebra A is an A-A–bimodule, as usual. Ten-
soring with this bimodule (over A) is isomorphic to the identity endofunctor of
A-mod. We identify subbimodules of AAA and two-sided ideals of A. For each two-
sided ideal I ⊂ A denote by SuI the endofunctor of A-mod defined in the following
way:

• For every M ∈ A-mod, the module SuI(M) is defined as IM .

• For every M,M ′ ∈ A-mod and f : M → M ′, the morphism SuI(f) is
defined as the restriction of f to IM .

We will call SuI the idealization functor associated to I, where the notation Su
stands for “Sub”.

Let γ : SuI ↪→ IdA-mod denote the injective natural transformation given by the
canonical inclusion IM ↪→ M . Directly from the definition we obtain that for any
two two-sided ideals I and J in A we have

(1) SuI ◦ SuJ = SuIJ .

Furthermore, if I ⊂ J , then we have the canonical inclusion SuI ↪→ SuJ .

3.2. Exactness of idealization. Here we prove the following property of ideal-
ization functors.

Lemma 3. Let I be a two-sided ideal in A.

(i) The functor SuI(M) preserves monomorphisms.

(ii) The functor SuI(M) preserves epimorphisms.

Proof. Claim (i) follows from the definition of SuI and the fact that the restriction of
a monomorphism is a monomorphism. To prove claim (ii), consider an epimorphism
f : M � M ′, v ∈ M ′ and a ∈ I. Then there is w ∈ M such that f(w) = v and
hence af(w) = f(aw) = av. As aw ∈ SuI(M), we obtain that av belongs to the
image of SuI(f), completing the proof. �

We note that SuI is neither left nor right exact in general. Indeed, consider the
algebraA = k[x]/(x2), let L be the simpleA-module and set I := Rad(A). Applying
SuI to the short exact sequence

0 → L→ AA→ L→ 0,

we obtain the sequence

0 → 0 → L→ 0 → 0

which has homology in the middle position.
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3.3. Idealization functors versus trace functors. Let I be a two-sided ideal
of A. Since both SuI and TrN are subfunctors of the identity functor, it is natu-
ral to ask when they are isomorphic. In this subsection we would like to present
some examples showing that, in general, these families of functors are really differ-
ent.

Lemma 4. If A is not semi-simple, then SuRad(A) is not isomorphic to any trace
functor.

Proof. We have SuRad(A)(A) = Rad(A) 6= 0 as A is not semi-simple. Hence
SuRad(A) is not the zero functor, in particular, it is not isomorphic to Tr0. At
the same time, let L := A/Rad(A). Then SuRad(A)(L) = 0. On the other hand,
for any non-zero N ∈ A-mod the module N surjects onto some simple A-module.
As every simple A-module is a summand of L, we have TrN (L) 6= 0. The claim
follows. �

Lemma 5. If N is simple and not projective, then TrN is not isomorphic to any
idealization functor.

Proof. Let f : P � N be a projective cover of N . As N is not projective, TrN (f)
is the zero map. We also have the obvious isomorphism TrN (N) ∼= N . At the
same time, each idealization functor preserves epimorphisms by Lemma 3(ii). The
obtained contradiction proves the statement. �

3.4. Definition of dual projection functors. Recall that, for any additive func-
tor F : A-proj → A-mod, there is a unique, up to isomorphism, right exact functor
G : A-mod → A-mod such that the restriction of G to A-proj is isomorphic to
F. As AA is an additive generator of A-proj, the condition that the restriction
of G to A-proj is isomorphic to F is equivalent to the condition that the A-A–
bimodules F(A) and G(A) are isomorphic. The functor G is isomorphic to the
functor F(A)⊗A −, see [Ba, Chapter 2] for details.

For an ideal I in A define a dual projection functor corresponding to I as a functor
isomorphic to the functor

DpI := SuI(A)⊗A − : A-mod → A-mod.

Directly from the definition we have that DpI is right exact.

Lemma 6. If A is hereditary, then the functor DpI is exact for any I.

Proof. As SuI(A) ⊂ A and A is hereditary, the right A-module SuI(A) is projective.
This means that DpI is exact. �

Corollary 7. If A is hereditary, then DpI ◦ DpJ
∼= DpIJ for any two two-sided

ideals I, J in A.

Proof. Note that for hereditary A the functor DpI preserves A-proj. Because of
exactness, established in Lemma 6, it is thus enough to prove the isomorphism
when restricted to A-proj where it reduces to formula (1). �
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3.5. Special dual projection functors. The radical of A coincides with the rad-
ical of the A-A–bimodule AAA and we have a short exact sequence

0 → Rad(A) → AAA →
n⊕

i=1

Lii → 0.

For every i = 1, 2, . . . , n, this gives, using canonical projection onto a component
of a direct sum, an epimorphism AAA � Lii. Let Ji denote the kernel of the latter
epimorphism. We will use the shortcut Fi for the corresponding dual projection
functor DpJi

. Setting ni := dim(Li) for i = 1, 2, . . . , n, we have an isomorphism of
left A-modules as follows:

Ji ∼= Rad(Pi)
⊕ni ⊕

⊕
j 6=i

P
⊕nj

j .

3.6. Dual projection functors versus projection functors. In this subsection
we explain the name dual projection functors.

For i = 1, 2, . . . , n denote by Gi the unique, up to isomorphism, left exact endo-
functor of A-mod satisfying the condition that

Gi|A-inj
∼= PrLi |A-inj.

For example, we can take

Gi = HomA((PrLi(A
∗))∗,−),

see [GrMa, Subsection 2.3] for details. In other words, Gi is the unique left exact
extension of the projection functor corresponding to the simple module Li.

Proposition 8. There is an isomorphism of functors as follows: Fi
∼= ∗ ◦Gop

i ◦ ∗.

Proof. Both Fi and ∗ ◦ Gop
i ◦ ∗ are right exact functors and hence it is sufficient

to prove that they are isomorphic on A-proj. For the additive generator A of the
latter category we have

(Gop
i (A∗))∗ ∼= Hom-A(Pr

op
L∗

i
(A∗)∗, A∗)∗ ∼= HomA-(A,Pr

op
L∗

i
(A∗))∗ ∼= (PropL∗

i
(A∗))∗

and thus the claim of our proposition amounts to finding a natural isomorphism
between (Fi(A))

∗ ∼= J∗
i and PropL∗

i
(A∗).

Applying ∗ to the exact sequence Ji ↪→ A � Lii results in the exact sequence
L∗
ii ↪→ A∗ � J∗

i . As L∗
ii

∼= Lii and all other simple subbimodules of A∗ are of
the form Ljj for some j 6= i, the submodule TropL∗

i
(A∗) coincides with L∗

ii. This

implies that there is a bimodule isomorphism J∗
i
∼= PropL∗

i
(A∗) which completes the

proof. �

Proposition 8 allows us to freely transfer results for projection functors to dual
projection functors and vice versa. For technical reasons in this paper we will
mostly work with dual projection functors.

3.7. Dual projection functors and coapproximation functors. In some cases
dual projective functors can be interpreted as partial coapproximation functors in
the terminology of [KhMa, Subsection 2.4]. For i = 1, 2, . . . , n, set

Qi := P1 ⊕ P2 ⊕ · · · ⊕ Pi−2 ⊕ Pi−1 ⊕ Pi+1 ⊕ Pi+2 ⊕ · · · ⊕ Pn−1 ⊕ Pn.
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The functor Ci of partial coapproximation with respect to Qi is defined as follows:
Given M ∈ A-mod, consider a short exact sequence K ↪→ P � M with projective
P . Then

Ci(M) := TrQi(P/TrQi(K))

and the action on morphisms is defined by first lifting them using projectivity
and then restriction. From [KhMa, Lemma 9] it follows that Ci is right exact.
The functor Ci comes together with a natural transformation κ : Ci → IdA-mod

which is injective on projective modules (note that, if M is projective in the above
construction, then we may choose K = 0 and Ci(M) = TrQi(M)). In particular, if

Ext1A(Li, Li) = 0, then we have

TrQi(Pj) ∼=

{
Pj , if i 6= j;

Rad(Pi), otherwise.

Lemma 9. If Ext1A(Li, Li) = 0, then Ci
∼= Fi.

Proof. As both functors are right exact, it is enough to check the bimodule iso-
morphism Ci(A) ∼= Fi(A). Since AA is projective, we have Ci(A) = TrQi(A). At

the same time, if Ext1A(Li, Li) = 0, then TrQi(A) = Ji. As the action of Ci on
morphisms is defined via restriction, it follows that Ci(A) ∼= Ji as a bimodule. This
completes the proof. �

4. Some preliminaries on 2-categories

4.1. Finite and finitary 2-categories. We refer the reader to [Le, McL, Ma]
for generalities on 2-categories. Denote by Cat the category of all small cate-
gories. A 2-category is a category enriched over Cat. A 2-category C is called
finite if it has finitely many objects, finitely many 1-morphisms and finitely many
2-morphisms.

Recall from [MM1] that a 2-category C is called finitary over k provided that

• C has finitely many objects;

• each C(i, j) is an idempotent split additive k-linear category with finitely
many isomorphism classes of indecomposable objects and finite dimensional
spaces of morphisms;

• all compositions are biadditive and also k-bilinear whenever the latter
makes sense;

• all identity 1-morphisms are indecomposable.

For an object i of a 2-category we denote by 1i the corresponding identity 1-
morphism.

4.2. The multisemigroup of a finitary 2-category. For a finitary 2-category
C denote by SC the set of isomorphism classes of indecomposable 1-morphisms in
C with an added external zero element 0. By [MM2, Subsection 3.3], the finite
set SC has the natural structure of a multisemigroup given for [F], [G] ∈ SC by
defining

[F] ? [G] :=

{
{[H] : H is isomorphic to a direct summand of F ◦G} , F ◦G 6= 0;

0, otherwise.

We refer the reader to [KuMa] for more details on multisemigroups.
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4.3. k-linearization of finite categories. For a set X denote by k[X] the k-
vector space of all formal linear combinations of elements in X with coefficients in
k. Then X is naturally identified with a basis in k[X]. Note that k[X] = {0} if
X = ∅.

Let C be a finite category, that is a category with finitely many objects and mor-
phisms. The k-linearization of C is the category Ck defined as follows:

• Ck and C have the same objects;

• Ck(i, j) := k[C(i, j)];

• composition in Ck is induced from composition in C by k-bilinearity.

The additive k-linearization C⊕
k of C is then the “additive closure” of Ck in the

following sense:

• objects in C⊕
k are all expressions of the form i1 ⊕ i2 ⊕ · · · ⊕ ik, where

k ∈ {0, 1, 2, . . . } and all ii are objects in Ck;

• the set C⊕
k (i1 ⊕ i2 ⊕ · · · ⊕ ik, j1 ⊕ j2 ⊕ · · · ⊕ jm) consists of all matrices of

the form 
f11 f12 . . . f1k
f21 f22 . . . f2k
...

...
. . .

...
fm1 fm2 . . . fmk


where fst ∈ Ck(it, js);

• composition in C⊕
k is given by matrix multiplication.

4.4. Finitarization of finite 2-categories. Let C be a finite 2-category. Then
the finitarization of C over k is the 2-category Ck defined as follows:

• Ck has the same objects as C ;

• Ck(i, j) := C(i, j)⊕k ;

• composition in Ck is induced from composition in C using biadditivity and
k-bilinearity.

Directly from the definition it follows that Ck is finitary if and only if for each i ∈ C
the endomorphism algebra EndC k(1i)

∼= k[EndC (1i)] is local.

4.5. Two 2-categories associated to an ordered monoid. Let (S, e, ·) be a
finite monoid with a fixed admissible reflexive partial pre-order �. Admissibility
means that s � t implies both sr � tr and rs � rt for all s, t, r ∈ S. In this
situation we may define a finite 2-category CS as follows:

• CS has one object ♣;

• 1-morphisms in CS(♣,♣) are elements in S and the horizontal composition
of 1-morphisms is given by multiplication in S;

• for two 1-morphisms s and t, the set of 2-morphisms from s to t is empty if
s 6� t and contains one element, denoted (s, t), otherwise (note that in this
case all compositions of 2-morphisms are automatically uniquely defined).

The finitarization CS
k of CS is then a finitary 2-category as the endomorphism

algebra of each identity 1-morphism is just k.
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5. 2-categories of idealization functors and dual projection
functors

5.1. Monoid of two-sided ideals. The set I of all two-sided ideals in A has the
natural structure of a monoid given by multiplication of ideals (I, J) 7→ IJ . The
identity element of I is A and the zero element is the zero ideal. We note the
following:

Lemma 10. If dimk HomA(Pi, Pj) ≤ 1 for all i, j ∈ {1, 2, . . . , n}, then |I| <∞.

Proof. If a, b ∈ A are idempotents, then, by adjunction, we have

HomA-A(Aa⊗k bA,A) ∼= HomA-(Aa,Ab) ∼= Homk(k, aAb) = aAb.

For i, j ∈ {1, 2, . . . , n}, the projective cover of the simple bimodule Lij in A-mod-A
is isomorphic to Pi⊗k I

∗
j and hence from our assumptions it follows that the compo-

sition multiplicity of Lij in AAA is at most 1. This means that each subbimodule
of AAA is uniquely determined by its composition subquotients (and equals the
sum of images of unique up to scalar nonzero homomorphisms from the projectives
covers of these simple subquotients). Therefore |I| ≤ 2dim(A). �

Corollary 11. If A is the path algebra of a tree quiver or the incidence algebra of
a finite poset, then |I| <∞.

Proof. Both for the path algebra of a tree quiver and for the incidence algebra of
a finite poset, the condition dimk HomA(Pi, Pj) ≤ 1 for all i, j ∈ {1, 2, . . . , n} is
straightforward and thus the statement follows from Lemma 10. �

The monoid I is naturally ordered by inclusions, moreover, this order is obviously
admissible.

5.2. A 2-action of CI on A-mod by idealization functors. We define a 2-
action of the 2-category CI associated to the ordered monoid (I, A, ·,⊂) on A-mod
as follows:

• the element I ∈ I acts as the functor SuI ;

• for I ⊂ J , the 2-morphism (I, J) acts as the canonical inclusion SuI ↪→ SuJ .

This is a strict 2-action because of (1).

This 2-action extends to a 2-action of CI
k on A-mod in the obvious way. Note that

this 2-action is clearly faithful both on the level of 1-morphisms and on the level
of 2-morphisms. However, this 2-action is not full on the level of 2-morphisms in
general. Indeed, in case the algebra A has a non-trivial center, the 1-dimensional
endomorphism algebra of the identity 1-morphism in CI

k cannot surject onto the
non-trivial endomorphism algebra of the identity functor of A-mod.

5.3. A 2-action of CI on A-mod by dual projection functors. The main
disadvantage of the 2-action defined in Subsection 5.2 is the fact that the functors
SuJ are not exact from any side in general. In particular, they do not induce any
reasonable maps on the Grothendieck group of A-mod. To overcome this problem
one needs to define another action and dual projection functors are reasonable
candidates. However, there is a price to pay. Firstly, to keep the action strong we
will have to change A-mod to an equivalent category. Secondly, we will have to
restrict to hereditary algebras.
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Denote by A-proj the category whose objects are diagrams P
f−→ Q over A-proj

and whose morphisms are equivalence classes of solid commutative diagrams

P
f //

g2

��

Q

g1

��

h

xxq q q q q q q

P ′ f ′
// Q′

modulo the equivalence relation defined as follows: the solid diagram is equivalent
to zero provided that there exists a dashed map h as indicated on the diagram such
that g1 = f ′h. The category A-proj is abelian and equivalent to A-mod, see [Fr].
This construction is called abelianization in [MM1, MM2].

If A is hereditary, then each SuI preserves A-proj and hence the 2-actions of both
CI and CI

k defined in Subsection 5.2 extends component-wise to 2-actions of both

these categories on A-proj. By construction, this is not an action on A-mod but on a
category which is only equivalent toA-mod. Moreover, the action is designed so that
the ideal I acts by a right exact functor which is isomorphic to SuI when restricted
to A-proj. This means that this is a 2-action by dual projection functors.

5.4. The 2-category of idealization functors. The 2-action defined in Sub-
section 5.2 suggest the following definition. Fix a small category C equivalent to
A-mod. Define the 2-category Q = Q(A, C) in the following way:

• Q has one object ♣ (which we identify with C);

• 1-morphisms in Q are endofunctors of C which belong to the additive clo-
sure generated by the identity functor and all idealization functors;

• 2-morphisms in Q are all natural transformations of functors;

• composition in Q is induced from Cat.

Our main observation here is the following:

Proposition 12. If A is connected and |I| <∞, then Q is a finitary 2-category.

Proof. Connectedness of A ensures that the identity 1-morphism 1♣ is indecom-
posable. Clearly, Q has finitely many objects. As |I| < ∞, the 2-category Q has
finitely many isomorphism classes of indecomposable 1-morphisms. It remains to
check that all spaces of 2-morphisms are finite dimensional.

Let I and J be two ideals in A. Let η : SuI → SuJ be a natural transformation.
We claim that values of η on indecomposable injective A-modules determine η
uniquely. Indeed, by additivity these values determine all values of η on all injective
A-modules. For M ∈ A-mod choose some injective envelope f :M ↪→ Q. Then, by
Lemma 3(i), we have the commutative diagram:

SuI(M)
� � SuI(f) //

ηM

��

SuI(Q)

ηQ

��
SuJ(M)

� � SuJ (f) // SuJ(Q)

From this diagram we see that ηM is uniquely determined by ηQ. Consequently, all
spaces of 2-morphisms in Q are finite dimensional. �
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The fact that SuI is not left exact implies that, potentially, there might exist a
natural transformation η|A-inj : SuI |A-inj → SuJ |A-inj which cannot be extended to
a natural transformation η : SuI → SuJ . Note also that in the case when A has
finite representation type the space of natural transformations between any two
additive endofunctors on A-mod is finite dimensional.

5.5. The 2-category of dual projection functors. The 2-action defined in Sub-
section 5.3 suggest the following definition. Assume that A is hereditary. Fix a
small category C equivalent to A-mod. Define the 2-category P = P(A, C) in the
following way:

• P has one object ♣ (which we identify with C);

• 1-morphisms in P are endofunctors of C which belong to the additive clo-
sure generated by the identity functor and all dual projection functors;

• 2-morphisms in P are all natural transformations of functors;

• composition in P is induced from Cat.

Our main observation here is the following:

Proposition 13. If A is hereditary, connected and |I| < ∞, then P is a finitary
2-category.

Proof. Similarly to the proof of Proposition 12, the 2-category P has one object,
finitely many isomorphism classes of indecomposable 1-morphisms thanks to the
assumption |I| < ∞, and indecomposable identity 1-morphism 1♣ thanks to the
assumption that A is connected. Spaces of 2-morphisms are finite dimensional as
projection functors are right exact and hence are given by tensoring with finite
dimensional bimodules which yields that spaces of 2-morphisms are just bimodule
homomorphisms between these finite dimensional bimodules. �

5.6. Decategorification and categorification. Let C be a finitary 2-category.
Then the decategorification of C is the (1-)category [C ] defined as follows.

• [C ] has same objects as C ;

• for all i, j ∈ C the morphism set [C ](i, j) is defined to be the split
Grothendieck group [C(i, j)]⊕ of the additive category C(i, j);

• composition in [C ] is induced from composition in C .

Given a 2-functor Φ from C to the 2-category of additive categories, taking the split
Grothendieck group for each Φ(i) induces a functor [Φ] from [C ] to Cat which is
called the decategorification of Φ.

Given a 2-functor Φ from C to the 2-category of abelian categories and exact
functors, taking the usual Grothendieck group for each Φ(i) induces a functor [Φ]
from [C ] to Cat which is also called the decategorification of Φ.

Conversely, the 2-category C is called a categorification of the category [C ] and the
2-functor Φ is called a categorification of the functor Φ. We refer to [Ma, Section 1]
for more details and examples.
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6. Indecomposable summands of dual projection functors for path
algebras of admissible trees

In this section we study both the monoid I and the multisemigroup SP in case A is
the path algebra of the quiver Q given by an admissible orientation of a tree.

6.1. Categorification of the Catalan monoid. To start with, we briefly re-
call the main results from [GrMa]. Let A be the path algebra of the following
quiver

(2) 1 // 2 // 3 // . . . // n.

The main result of [GrMa] asserts that the ring [P ](♣,♣) in the corresponding
decategorification is isomorphic to the integral monoid algebra of the monoid Cn+1

of all order preserving and decreasing transformations of {1, 2, . . . , n, n+1}, which
is also known as the Catalan monoid. Moreover, the monoid Cn+1 is an ordered

monoid and the 2-category P is biequivalent to the corresponding 2-category C
Cn+1

k .
We can also observe that in this case the multisemigroup SP is a genuine monoid
and is, in fact, isomorphic to Cn+1.

A very special feature of this example is the fact that the bimodule AAA has simple
socle. Consequently, all ideals of A are indecomposable as A-A–bimodules. One
observation in addition to the results from [GrMa] is the following.

Proposition 14. If A is the path algebra of the quiver (2), then the 2-categories
Q and P are biequivalent.

Proof. Note that in this situation A is hereditary and connected. From Lemma 10
it follows that |I| <∞. In particular, both Q and P are well-defined and finitary.
For both of these 2-categories consider the restriction 2-functor to the category
Cproj of projective objects in C. This is well defined as the action of SuI preserves
Cproj for each I as A is hereditary. The restriction 2-functor is clearly faithful both
on the level of 1-morphisms and on the level of 2-morphisms.

Now, for any non-zero I and J , the space HomA-A(I, J) is zero if I 6⊂ J and is
one-dimensional otherwise since both I and J have simple socle which appears
with multiplicity one in both of them. This means that HomQ (DpI ,DpJ) is zero if
I 6⊂ J and is one-dimensional otherwise. Similarly, from the proof of Proposition 12
it follows that HomP (DpI ,DpJ) is zero if I 6⊂ J and is at most one-dimensional
otherwise. However, the inclusion I ⊂ J does give rise to a non-zero natural trans-
formation in HomP (DpI ,DpJ). Therefore HomP (DpI ,DpJ) is one-dimensional
if I ⊂ J . This implies that both restriction 2-functors are full and faithful. To
complete the proof it is thus left to remark that, by construction of dual projection
functors, the values of both these restrictions hit exactly the same isomorphism
classes of endofunctors of Cproj. This completes the proof. �

6.2. Setup and some combinatorics. For a vertex i of an oriented graph Γ we
denote by degΓ(i) the degree of i, by deginΓ (i) the in-degree of i and by degoutΓ (i)

the out-degree of i. Clearly, degΓ(i) = deginΓ (i) + degoutΓ (i).

For the rest of the paper we fix the following setup: LetQ be an oriented (connected)
tree with vertex set Q0 = {1, 2, . . . , n}, where n > 1. Set

K(Q) = {i ∈ Q0 ; deg
in
Q(i) degoutQ (i) = 0}, K′(Q) = {i ∈ K(Q) ; degQ(i) ≥ 2}.

In other words, K(Q) is the set of all sinks and sources in Q and K′(Q) is the set
of all elements i ∈ K(Q) which are not leaves.
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Following [Gr], we say that Q is admissible provided that all vertices of Q of degree
at least 3 belong to K(Q). For example, the orientation of a D4 diagram on the
left hand side of the following picture is admissible while the one on the right hand
side is not.

(3) 4

��
1 // 2 3oo

4

��
1 // 2 // 3

For i ∈ Q0, we denote by i the set of all elements in Q0 to which there is an oriented
path (possibly empty) from i in the quiver Q.

A function α : Q0 → Q0 ∪{0} is called a path function provided that α(i) ∈ i∪{0}
for all i. A path function is called monotone provided that, for all i, j such that i ∈ j
and α(i) 6= 0, we have α(j) 6= 0 and α(i) ∈ α(j). For a function α : Q0 → Q0∪{0},
the support supp(α) of α is the set of all i ∈ Q0 such that either α(i) 6= 0 or there is
an oriented path to i from some α(j) such that α(j) 6= 0. We will identify supp(α)
with the full subtree in Q with vertex set supp(α). A monotone path function
α : Q0 → Q0 ∪ {0} will be called a Catalan function provided that the following
conditions are satisfied:

(I) supp(α) is connected;

(II) for any i ∈ K′(Q) ∩ supp(α) we have degsupp(α)(i) ∈ {degQ(i), 1};

(III) α(i) 6= i for any i ∈ K′(Q) with degsupp(α)(i) = 1;

(IV) α(i) = i for any i ∈ K′(Q) with degsupp(α)(i) = degQ(i).

For example, if Q is the quiver given by the left hand side of (3), then possible
supports for Catalan functions for Q are: Q0, {1, 2}, {2, 3}, {2, 4} and ∅. The
following is a complete list of Catalan function for Q with support Q0 (a function
α is written in the form (α(1), α(2), α(3), α(4))):

(1, 2, 3, 4), (2, 2, 3, 4), (1, 2, 2, 4), (1, 2, 3, 2), (2, 2, 2, 4),

(1, 2, 2, 2), (2, 2, 3, 2), (2, 2, 2, 2).

For the same Q, here is a full list of Catalan function for Q with support
{1, 2}:

(1, 0, 0, 0), (2, 0, 0, 0).

Finally, (0, 0, 0, 0) is the only Catalan function for Q with support ∅.

We denote by C the set of all Catalan functions for Q. A subtree Γ of Q is called a
Catalan subtree if Γ = supp(α) for some Catalan function α. We denote by W the
set of all Catalan subtrees of Q. We write

C =
⋃

Γ∈W

C(Γ)

where C(Γ) stands for the set of all Catalan functions with support Γ.

6.3. Type A enumeration. Here we enumerate Catalan functions for type A
quivers which is supposed to motivate the name. In this subsection we let Q be
the oriented quiver obtained by choosing some orientation of the following Dynkin
diagram of type An:

(4) 1 2 . . . n
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As mentioned above, we assume n > 1. We write K(Q) = {l1, l2, . . . , lk}, where
1 = l1 < l2 < · · · < lk = n.

Lemma 15. Let α be a non-zero Catalan function for Q. Then the set supp(α)
has the form {li, li + 1, . . . , lj} for some i, j ∈ {1, 2, . . . , k} with i < j.

Proof. By (I), supp(α) is connected, so we need only to check that supp(α) has
more than one vertex and that both leaves of supp(α) belong to K(Q). If supp(α)
would have only one vertex, it must be a sink, say i. As n > 1, there must be
an arrow to i from some j. By monotonicity of α, j must be in supp(α) too, a
contradiction. The definition of supp(α) and monotonicity of α readily implies
that each leaf of supp(α) is in K(Q). �

After Lemma 15, for i, j ∈ {1, 2, . . . , k} with i < j we denote by C(i, j) the set of
all Catalan functions with support {li, li+1, . . . , lj}. For m = 0, 1, 2, . . . , we denote

by cat(m) the m-th Catalan number 1
m+1

(
2m
m

)
. For m = 1, 2, 3, . . . , we set

cat1(m) := cat(m)− cat(m− 1).

For m = 2, 3, 4, . . . , we set

cat2(m) := cat(m)− 2cat(m− 1) + cat(m− 2).

Lemma 16.

(i) If k = 2, then |C(1, 2)| = cat(n+ 1).

(ii) If k > 3 and i ∈ {2, 3 . . . , k − 2}, then |C(i, i+ 1)| = cat2(li+1 − li + 2) + 1.

(iii) If k > 4 and i, j ∈ {2, 3 . . . , k − 2} with j > i+ 1, then

|C(i, j)| = cat1(li+1 − li + 1)cat1(lj − lj−1 + 1)

j−2∏
s=i+1

cat(ls+1 − ls).

(iv) If k > 2, then

|C(1, k)| = cat(l2)cat(lk − lk−1 + 1)
k−2∏
s=2

cat(ls+1 − ls).

(v) If k > 3 and j ∈ {3, 4 . . . , k − 1}, then

|C(1, j)| = cat(l2)cat1(lj − lj−1 + 1)

j−2∏
s=2

cat(ls+1 − ls).

(vi) If k > 3 and i ∈ {2, 3 . . . , k − 2}, then

|C(i, k)| = cat(lk − lk−1 + 1)cat1(li+1 − li + 1)
k−2∏

s=i+1

cat(ls+1 − ls).

(vii) If k > 2, then

|C(1, 2)| = cat1(l2 + 1)− 1 and |C(k − 1, k)| = cat1(lk − lk−1 + 2)− 1.

Proof. If k = 2, then it is easy to check that elements of C(1, 2) correspond to order
preserving and order increasing (or order decreasing, depending on orientation)
transformations of {0, 1, . . . , n} and hence their number is exactly cat(n+ 1).

If k > 2, then the definition of a Catalan function implies that each segment
(xls , xls+1, . . . , xls+1) is given by an order preserving and order decreasing or an
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order preserving and order increasing transformation (depending on the orientation
of this segment) with the condition that the values xt for t ∈ {ls, ls+1} are subject
to the following rules:

• if t ∈ {i, j} ∩ {l2, l3, . . . , lk−1}, then xt 6= t;

• if i < t < j, then xt = t.

Using the inclusion-exclusion formula, it is easy to check that the number of possible
values for this segment is given in terms of cat, cat1 and cat2 exactly as prescribed
by the corresponding factors in the formulation of the lemma. The final formulae
are then obtained using the multiplication principle. �

6.4. Some notation for the path algebra. Let us go back to an admissible tree
quiver Q as defined in Subsection 6.2. Let A be the path algebra of Q. For i ∈ Q0

denote by ei the trivial path in vertex i. Then Pi = Aei and Li = Pi/Rad(Pi). For
each i, j ∈ {1, 2, . . . , n} such that j ∈ i, denote by aji the unique path from i to j.
Then {aji} is a basis in the one-dimensional vector space ejAei.

From now on we assume that K′(Q) 6= ∅. This is equivalent to the requirement
that Q is not isomorphic to the quiver given by (2).

6.5. Graph of the identity bimodule. To study subbimodules of the identity
bimodule, it is convenient to use a graphical presentation of the latter. For this we
consider AAA as a representation of a quiver Q×Qop where we impose all possible
commutativity relations, see e.g. [Sk] for details. These can be arranged into a
graph with the left action of arrows in Q being depicted by solid arrow and the
right action of arrows in Q being depicted by dashed arrows. For example, if Q is
the quiver

(5) 1 // 2 3oo 4oo // 5 // 6,

we obtain the following graphical presentation of AAA:

(6) a11 // a21

a22

OO�
�
�

���
�
�

a23

���
�
� a33oo

���
�
�

a24 a34oo a44oo // a54 // a64

a55

OO�
�
�

// a65

OO�
�
�

a66

OO�
�
�
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If Q is the quiver given by the left hand side of (3), then we have the following
graphical presentation of AAA:

(7) a44

��
a11

��

a24 a33

��
a21 a22

OO�
�
�

oo_ _ _ //___ a23

A subchain H in Q is a full subgraph of Q isomorphic to

(8) 1 // 2 // 3 // . . . // k

for some k. The set of all subchains in Q is partially ordered by inclusions. A
maximal subchain is a maximal element of this poset. From the diagrammatic
representation of AAA described above it is clear that there is a bijection between
maximal subchains in Q and simple subbimodules in the socle of AAA. Namely,
each maximal subchain with source s and sink t contributes the simple subbimodule
in the socle of AAA with basis ats.

6.6. Diagram of a subbimodule in AAA. Viewing AAA as a representation of
Q × Qop with all commutativity relations, as described in Subsection 6.5, subbi-
modules in AAA are exactly subrepresentations. Let B be a subbimodule of AAA.
From the proof of Lemma 10 it follows that the set of all aij contained in B is a
basis of B. This yields a graphic presentation of B as a subgraph of the graphic
presentation of AAA discussed in Subsection 6.5.

For example, for the quiver (5) and the graph (6) of the corresponding identity
bimodule, the graph of the subbimodule J4 is given by:

a11 // a21

a22

OO�
�
�

���
�
�

a23

���
�
� a33oo

���
�
�

a24 a34oo 0oo // a54 // a64

a55

OO�
�
�

// a65

OO�
�
�

a66

OO�
�
�

Here 0 stands on the place of a44 which is missing in J4 from the identity bimodule
and the dotted arrows depict the corresponding zero multiplication. This clearly
shows that J4 is a decomposable bimodule. In particular, we obtain that in this
case the monoid I should be rather different from the multisemigroup SP .

Note that, for example, the linear span of a44 and a54 is not a subrepresentation as
it is not closed with respect to the action of the arrow a54 → a64. Therefore this
linear span is not a subbimodule.
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6.7. Catalan function of an indecomposable subbimodule. Let B be a sub-
bimodule of AAA. Then

B =
n⊕

i,j=1

ejBei

with each ejBei being of dimension at most one. Moreover, ejBei 6= 0 implies that
j ∈ i. For i = 1, 2, . . . , n, set

Bi :=

n⊕
j=1

ejBei.

Note that Bi is a submodule of AB. We would like to point out the following
properties:

• If s ∈ K′(Q) is a sink, then the full subtree Q(s) of Q with vertices Q0 \{s}
decomposes into a disjoint union of components Γ(1) ∪Γ(2) ∪ · · · ∪Γ(m) and
m ≥ 2. If Bs = 0, then for each j ∈ {1, 2, . . . ,m} the space⊕

t∈Γ(j)

Bt

is a subbimodule of B. In particular, if B is indecomposable, then only one
of these subbimodules is nonzero.

• If s ∈ K′(Q) is a source, then the full subtree Q(s) of Q with vertices
Q0 \ {s} is a disjoint union of connected components Γ(1) ∪Γ(2) ∪ · · · ∪Γ(m)

and m ≥ 2. Now, if Bs 6∼= Ps, then

Bs =
m⊕
j=1

B(j)
s where B(j)

s :=
⊕

t∈Γ(j)

etBes.

Moreover, for each j ∈ {1, 2, . . . ,m} the space

B(j)
s ⊕

⊕
t∈Γ(j)

Bt

is a subbimodule of B. In particular, if B is indecomposable, then only one
of these subbimodules is nonzero.

• If Bs 6= 0 for some s and t ∈ s is such that etBes 6= 0, then erBes 6= 0 for
any r ∈ t.

• If Bs 6= 0 for some s and s ∈ t, then Bt 6= 0.

From these observations we, in particular, obtain that, for an indecomposable sub-
bimodule B of AAA, each Bi is an indecomposable projective A-module. This
justifies the following definition.

For an indecomposable B define the function xB : Q0 → Q0 ∪ {0}, written

(x1, x2, . . . , xn) = (xB(1),xB(2), . . . ,xB(n)),

in the following way:

• if Bi = 0 for i ∈ Q0, then set xi = 0;

• if Bi 6= 0 for i ∈ Q0, then xi is defined as the unique element in Q0 such
that Bi

∼= Pxi .

We also define the support of B as

supp(B) := {s ∈ Q0 : esBet 6= 0 or etBes 6= 0 for some t}.
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Proposition 17. Let B be an indecomposable subbimodule of AAA. Then xB is a
Catalan function and supp(xB) = supp(B).

Proof. If Pj is a submodule of Pi, then there is an oriented path from i to j. This
implies that xB is a path function. Monotonicity of xB is a consequence of the
fact that B is closed with respect to both the left and the right multiplications by
arrows from Q. Conditions (I)–(IV) follow from indecomposibility of B and the
first two remarks above which led to the definition of xB .

We have xB(s) 6= 0 if and only if etBes 6= 0 for some t. Therefore, exBey 6= 0 if and

only if xB(y) 6= 0 and x ∈ xB(y). Together this implies supp(xB) = supp(B). �

Proposition 18. Let B be an indecomposable subbimodule of AAA and assume
that

soc(B) ∼=
m⊕
i=1

Ltisi .

Then supp(B) is the full subgraph of Q obtained as the union of maximal chains
with sources si and sinks ti for i = 1, 2, . . . ,m.

Proof. This follows easily from the definitions. �

6.8. Subbimodules of AAA associated to Catalan functions. For a Catalan
function x : Q0 → Q0 ∪ {0} denote by Bx the subspace in AAA obtained as the
linear span of all ats for which xs 6= 0 and t ∈ xs. The fact that x is a path function
ensures that this definition does make sense.

Example 19. For the quiver

1 // 2 // 3 4oo 5 //oo 6 // 7 // 8 9oo

and the Catalan function given by (0, 0, 0, 3, 5, 7, 8, 8, 8) we have the subbimodule
of AAA given by the bold and solid part of the diagram in Figure 1, where the
regular dotted part shows the rest of AAA.

Proposition 20. For every Catalan function x, the subspace Bx of AAA is an
indecomposable subbimodule and supp(x) = supp(Bx).

Proof. Directly from the definition we see that Bx is closed with respect to the left
multiplication with arrows from Q. Monotonicity of x implies that Bx is closed
with respect to right multiplication with arrows from supp(x). Conditions (II) and
(IV) say that the only non-trivial possible right multiplication of an element in
Bx with an arrow outside supp(x) could be if this arrow goes in or comes out of
i ∈ supp(x) ∩K′(Q) with degQ(i) > degsupp(x)(i). However, in the latter situation

condition (III) and monotonicity of x guarantee that the corresponding product is
zero. Therefore Bx is a subbimodule in AAA.

Indecomposability of Bx is equivalent to the statement that the full subgraph of
the graph of AAA generated by all ats spanning Bx is connected. This follows from
construction and conditions (I), (II) and (IV).

The statement supp(x) = supp(Bx) follows by construction. �
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a11 // a21 // a31

a22 //

OO

a32

OO

a33

OO

��
a34

���
�
� a44

��

oo

a35 a45oo a55oo // a65 // a75 // a85

a66 //

OO

a76 //

OO�
�
�

a86

OO�
�
�

a77 //

OO

a87

OO�
�
�

a88

OO�
�
�

���
�
�

a89 a99oo

Figure 1. Diagram used in Example 19.

6.9. Classification of indecomposable subbimodules of AAA. We can now
collect the above facts into the following statement.

Theorem 21. The maps B 7→ xB and x 7→ Bx are mutually inverse bijections
between the set of all indecomposable subbimodules of AAA and the set of all Catalan
functions.

Proof. From the definitions it is straightforward to check that these two maps are
inverses to each other. �

For Γ ∈ W we denote byB(Γ) the set of all indecomposable subbimodulesB ⊂ AAA

for which supp(B) = Γ.

6.10. Partial order. We identify SP with the subset I ind of I consisting of all
indecomposable subbimodules (our convention is that 0 is an indecomposable sub-
bimodule). To this end, we do not know whether I ind is a submonoid of I, that
is, whether IJ ∈ I ind for any I, J ∈ I ind. The original multivalued operation in
I ind sends (I, J) to the set of all indecomposable direct summands of IJ up to
isomorphism.

The set I ind inherits from I the partial order given by inclusions. Clearly, AAA is
the maximum element with respect to this order both in I ind and in I (note that

AAA ∈ I ind as we assume Q to be connected).
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Consider the set Q := {Js : s = 1, 2, . . . , n} and note that this is the set of maximal
elements in I \ {AAA}. The bimodule Js is indecomposable if and only if we have
s 6∈ K′(Q). For s ∈ K′(Q), let t1, t2, . . . , tms be the list of all t ∈ Q0 for which there
is an arrow t → s or an arrow s → t. Let Γ be the full subgraph of Q with vertex
set Q0 \ {s}. Then

Γ = Γ(1) ∪ Γ(2) ∪ · · · ∪ Γ(ms)

where Γ(q) is the connected component containing tq for q = 1, 2, . . . ,ms. We have
the decomposition

(9) Js ∼=
ms⊕
q=1

J (q)
s

where J
(q)
s is the subbimodule of Js defined as the direct sum of all ej(Js)ei with

i ∈ Γ(q) ∪ {s} and j ∈ Γ(q). Clearly, each J
(q)
s is indecomposable since Γ(q) is

connected.

Lemma 22.

(i) The set {Js : s 6∈ K′(Q)} is the set of maximal elements in B(Q) \ {AAA}.

(ii) For Ω ∈ W \ {Q}, there is a unique maximal element, denoted BΩ, in the set
B(Ω). Moreover, B∅ = 0 and, for Ω 6= ∅, we have

(10) BΩ =
∏
t

J
(pt)
t

∏
s

J (qs)
s

where s runs through the set of sinks i ∈ K′(Q)∩Ω for which degΩ(i) = 1 and
qs is such that the corresponding Γ(qs) has a common vertex with Ω, while t
runs through the set of sources i ∈ K′(Q)∩Ω for which degΩ(i) = 1 and pt is
such that the corresponding Γ(pt) has a common vertex with Ω.

Proof. Clearly each Js with s 6∈ K′(Q) is maximal in B(Q) \ {AAA}. Assume that
B ∈ B(Q) is maximal in B(Q) \ {AAA}. Then B ⊂ Js for some s. If s 6∈ K′(Q),
then B = Js by maximality of B. If s ∈ K′(Q), then

B =

ms⊕
q=1

(B ∩ J (q)
s )

since all composition multiplicities in Js are at most one. By indecomposability,

we get B = B ∩ J (q)
s for some q, which contradicts B ∈ B(Q). Therefore this case

does not occur, which proves claim (i).

To prove claim (ii) we denote by B′
Ω the right hand side of (10). Note that B∅ = 0

is clear and that for Ω 6= ∅ the fact that B′
Ω ∈ B(Ω) follows by construction. The

maximal element BΩ in the set B(Ω) is the sum of all subbimodules of AAA with
support Ω. Therefore to complete the proof of claim (ii) it remains to check that
B′

Ω = BΩ for Ω 6= ∅.

If there are s and t in (10) which are connected by an edge, then Ω must be the
full subgraph of Q with vertices {s, t} by connectedness. For such small Ω the
equality B′

Ω = BΩ is checked by a direct computation. In the remaining case (no
s and t in (10) are connected by an edge), all factors of (10) commute. Note that
BΩ ⊂ Js and BΩ ⊂ Jt for any s and t occurring in (10). From indecomposability,

it follows that BΩ ⊂ J
(qs)
s and BΩ ⊂ J

(pt)
t for all s and t occurring in (10). From

J2
s = Js and J2

t = Jt it follows that (J
(qs)
s )2 = J

(qs)
s and (J

(pt)
t )2 = J

(pt)
t . This

implies BΩJ
(qs)
s = BΩ and BΩJ

(pt)
t = BΩ which yields BΩB

′
Ω = BΩ ⊂ B′

Ω. From
the maximality of BΩ we finally obtain that BΩ = B′

Ω. �
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6.11. Composition of indecomposable subbimodules. The following is a cru-
cial observation.

Proposition 23. Let B and D be two indecomposable subbimodules in AAA. Then
B ⊗A D ∼= BD and the latter is either zero or an indecomposable subbimodule of

AAA.

Proof. As A is hereditary, B ⊗A − is exact, in particular, it preserves inclusions.
Hence, applying it to D ↪→ A gives B ⊗A D ↪→ B ⊗A A ∼= B where the last
inclusion is given by the multiplication map. Therefore the multiplication map
B ⊗A D → BD is an isomorphism.

It remains to prove indecomposability of BD in case the latter subbimodule is
nonzero. Assume first that both B and D have support Q. If Q is as in (2), then
BD is indecomposable or zero by [GrMa, Proposition 4]. If Q is not as in (2),
then K′(Q) 6= ∅ and hence for every i ∈ K′(Q) we have ei ∈ B and ei ∈ D by
our assumption that both these bimodules have support Q. This implies ei ∈ BD.
From the last paragraph in Subsection 6.5 it thus follows that the bimodules B, D,
BD and AAA all have the same socle. Any non-trivial decomposition BD = X1⊕X2

of A-A-bimodules gives a non-trivial decomposition soc(BD) = soc(X1)⊕ soc(X2).
From Proposition 18 it follows that supports of X1 and X2 intersect only in some
vertices from K′(Q). Let s be a vertex of such intersection, then it is a leaf in both
the support of X1 and the support of X2, which implies that es 6∈ X1 and es 6∈ X2,
a contradiction. Therefore BD is indecomposable.

The general case reduces to the previous paragraph by considering the intersection
of supports of B and D. It is easy to check that there exists an indecompos-
able subbimodule B′ in B and an indecomposable subbimodule D′ in D such that
B′D′ = BD and the bimodules B′ and D′ have the same supports. We leave the
technical details to the reader. This completes the proof. �

An immediate consequence of Proposition 23 is the following:

Corollary 24. The multisemigroup SP is a monoid.

We denote by I ind the submonoid of I consisting of indecomposable subbimodules
in AAA. By the above, the monoids SP and I ind are isomorphic.

Problem 25. It would be interesting to know for which finite dimensional algebras
the product of two indecomposable subbimodules of the identity bimodule is always
indecomposable or zero.

7. Presentation for I and I ind

The main aim of this section is to obtain presentations for both the monoid I and
the monoid I ind.

7.1. Minimal generating systems. We set

B := {Js : s 6∈ K′(Q)} ∪
⋃

s∈K′(Q)

{J (q)
s : q = 1, 2, . . . ,ms}.

Proposition 26.

(i) The set Q is the unique minimal generating system for the monoid I.

(ii) The set B is the unique minimal generating system for the monoid I ind.
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Proof. As Q is the set of all maximal elements in I \ {AAA}, it must belong to
any generating system. Therefore, to prove claim (i) it is enough to show that Q
generates I. Let S be the submonoid of I generated by Q. Assume that I \S 6= ∅
and let B be a maximal element in I \ S with respect to inclusions. Certainly,
B 6= 0 and B 6= AAA.

For the record we mention the following fact which follows directly from the defi-
nitions:

(11) JiPj =

{
Pj , i 6= j;

Rad(Pi), i = j.

Assume first that Bi ∈ {0, Pi} for all i. As B 6= AAA, there is at least one i such
that Bi = 0. As B 6= 0, there is at least one j such that Bj = Pj . Choose i such
Bi = 0 and there is an arrow j → i for some j such that Bj = Pj . Then i is not
a source, in particular, Pi has simple socle, say Ls. Then s is a sink. As B is a
bimodule, it follows that Bt = 0 for all t ∈ i, in particular, Bs = 0. The space
B′ = B ⊕ k{asi} is easily checked to be a subbimodule of AAA. Moreover, using
(11) and Bs = 0, we get B = JsB

′. As B ( B′, we have B′ ∈ S by maximality of
B. Therefore B ∈ S, a contradiction.

Now we may assume that there is an i such that Bi 6∈ {0, Pi}. In this case we
may choose i ∈ {1, 2, . . . , n} such that Bi 6∈ {0, Pi} and, additionally, for any j for
which there is an arrow j → i we have Bj = Pj (note that such Bj is automatically
non-zero as Bi 6= 0). If i is not a source, then there is a unique submodule M of Pi

such that Bi ⊂ M and M/Bi is simple, say isomorphic to Ls. By construction, s
is not a sink and belongs to i with i being not a source. This implies that none of
the Bt, where t = 1, 2, . . . , n, has Ps as a direct summand. Therefore, similarly to
the above, B′ = B ⊕ k〈asi〉 is a strictly larger subbimodule and B = JsB

′ leading
again to a contradiction.

Finally, consider the case when i is a source. If degQ(i) = 1, then Pi is uniserial

and there is a unique s ∈ i such that the radical of Ps is isomorphic to Bi. Then,
similarly to the above, B⊕k{asi} is easily checked to be a subbimodule of AAA and
B = JsB

′ by (11), a contradiction. If degQ(i) > 1, then Ji decomposes according
to (9). By intersecting with each direct summand of this decomposition we get a
similar decomposition of B. For each of these direct summands the claim follows
by induction on n provided that the corresponding generators for each Γ(l) can be
obtained as products of elements in Q. The latter follows easily by multiplying
(several times) Ji on the left with all Js with s 6∈ Γ(l). Claim (i) follows.

The fact that B generates I ind follows from claim (i) and Proposition 23 since B
is exactly the set of indecomposable summands of elements in Q. Uniqueness and

irreducibility also follow from claim (i) and the easy observation that any of J
(q)
i

appearing in (9) cannot be obtained as a product of other elements in B looking at
the supports of all involved bimodules. This completes the proof. �

7.2. Relations.

Proposition 27. The ideals Ji, i = 1, 2, . . . , n, satisfy the following relations:

(a) J2
i = Ji for all i.

(b) JiJj = JjJi if there is no arrow between i and j.

(c) JjJiJj = JiJjJi = JjJi if there is an arrow i→ j.



24 ANNA-LOUISE GRENSING AND VOLODYMYR MAZORCHUK

Proof. All this is a straightforward computation using (11). Alternatively, this
also follows from Proposition 8 and properties of projection functors mentioned in
Subsection 2.3. �

Proposition 28. For i, j 6∈ K′(Q), s, t ∈ K′(Q), q ∈ {1, 2, . . . ,ms} and p ∈
{1, 2, . . . ,mt}, the elements of B satisfy the following:

(a) Relations from Proposition 27(a)-(c).

(b) (J
(q)
s )2 = J

(q)
s .

(c) J
(q)
s J

(q′)
s = 0 for any q′ ∈ {1, 2, . . . ,ms}, q′ 6= q.

(d) J
(q)
s J

(p)
t = J

(p)
t J

(q)
s if there is no arrow between s and t.

(e) J
(q)
s Ji = JiJ

(q)
s if there is no arrow between s and i.

(f) J
(p)
t J

(q)
s J

(p)
t = J

(q)
s J

(p)
t J

(q)
s = J

(p)
t J

(q)
s if there is an arrow s→ t.

(g) J
(p)
t JiJ

(p)
t = JiJ

(p)
t Ji = J

(p)
t Ji if there is an arrow i→ t.

(h) J
(p)
t JiJ

(p)
t = JiJ

(p)
t Ji = JiJ

(p)
t if there is an arrow t→ i.

(i) J
(p)
t J

(q)
s J

(p′)
t = 0 for any p′ ∈ {1, 2, . . . ,mt}, p′ 6= p, if there is an arrow between

s and t.

(j) J
(p)
t JiJ

(p′)
t = 0 for any p′ ∈ {1, 2, . . . ,mt}, p′ 6= p, if there is an arrow between

t and i.

(k) J
(q)
s J

(p)
t = J

(p)
t in case supp(J

(p)
t ) ⊂ supp(J

(q)
s ).

(l) J
(q)
s J

(p)
t = 0 in case supp(J

(p)
t ) ∩ supp(J

(q)
s ) = ∅.

(m) J
(q)
s Ji = JiJ

(q)
s = J

(q)
s if i 6∈ supp(J

(q)
s ).

Proof. Relations (a) are clear. From Proposition 27(a) for s ∈ K′(Q) we have( ms⊕
q=1

J (q)
s

)2 ∼=
ms⊕
q=1

(J (q)
s )2 ⊕

⊕
q 6=q′

(J (q)
s J (q′)

s )⊕2 ∼=
ms⊕
q=1

J (q)
s .

As (J
(q)
s )2 is the only direct summand in the middle with support in Γ(q), we get

relations (b) and (c).

By Proposition 27(b), for s, t ∈ K′(Q) in case there is no arrow between s and t,
we have ( ms⊕

q=1

J (q)
s

)( mt⊕
p=1

J
(p)
t

)
=

( mt⊕
p=1

J
(p)
t

)( ms⊕
q=1

J (q)
s

)
.

Opening brackets and matching summands with the same support on the left hand
side and on the right hand side, we get relations (d). Relations (e) are obtained
similarly from ( ms⊕

q=1

J (q)
s

)
Ji = Ji

( ms⊕
q=1

J (q)
s

)
which is again given by Proposition 27(b).

Relations (f)–(j) are obtained similarly from Proposition 27(c).

To prove relation (k) we compare J
(q)
s J

(p)
t Pr with J

(p)
t Pr for r ∈ {1, 2, . . . , n} using

(11). Note that the only Pi which appear as direct summands of J
(p)
t Pr are those
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for which i ∈ supp(J
(p)
t ) \ {t}. If supp(J

(p)
t ) ⊂ supp(J

(q)
s ), then J

(q)
s Pi = Pi for

such i by (11). This implies relation (k). Similarly one checks relations (l) and (m).
This completes the proof. �

7.3. The main results.

Theorem 29. Any relation between elements in the generating set Q of the monoid
I is a consequence of the relations given in Proposition 27.

Proof. Let S be the abstract monoid given by generators Q and relations from
Proposition 27. Note that S is a Hecke-Kiselman monoid in the sense of [GM].
Then we have the canonical surjection ψ : S � I.

For any I ∈ I the additive functor SuI acting on A-proj defines an endomorphism
of the split Grothendieck group [A-proj]⊕. This gives a homomorphism ϕ from I
to the monoid of all endomorphisms of [A-proj]⊕. Let T denote the image of ϕ.
Combined together we have surjective composition ϕ ◦ ψ as follows: S � I � T .

Consider the standard basis {[Pi] : i = 1, 2, . . . , n} in [A-proj]⊕. From isomor-
phisms in (11), for i, j = 1, 2, . . . ,m we obtain

ϕ(Ji)[Pj ] =

[Pj ], i 6= j;∑
i→s

[Ps], i = j.

This is exactly the linear representation of S considered in [Fo, Theorem 4.5] where
it was proved that the corresponding representation map is injective, that is S ∼= T .
Consequently, because of the sandwich position of I between S and T , we obtain
S ∼= I and the proof is complete. �
Theorem 30. Any relation between elements in the generating set B of the monoid
I ind is a consequence of the relations given in Proposition 28.

Proof. Let S be the abstract monoid given by generators B and relations from
Proposition 28. As usual we denote by B+ the set of all non-empty words in the

alphabet B. For simplicity, we call all elements in B of the form J
(q)
s for s ∈ K′(Q)

and q ∈ {1, 2, . . . ,ms} the split symbols. For any w ∈ B+, let J
(q1)
s1 , J

(q2)
s2 , . . . , J

(qk)
sk

be the list of all split symbols which appear in w. If w has no split symbols, we set
Ω = Q. Otherwise, set

Ω :=

k⋂
i=1

supp(J (qi)
si ).

If Ω = ∅, then the fact that Q is a tree implies existence of i, j ∈ {1, 2, . . . , k}
such that supp(J

(qi)
si ) ∩ supp(J

(qj)
sj ) = ∅. We claim that in this case w = 0 in S.

Without loss of generality we may assume that the indices i and j and the word

w (in its equivalence class) are chosen such that w = xJ
(qi)
si yJ

(qj)
sj z with y shortest

possible. Then y contains no Jr with r ∈ supp(J
(qj)
sj ) because otherwise we would

take the leftmost occurrence of such element and use relations in Proposition 28(b)

to move it past Jq with q 6∈ supp(J
(qj)
sj ). Note that, by the minimality of y and

relations in Proposition 28(d), (e) and (k), there is no J
(qa)
sa between J

(qi)
si and Jr,

such that r and sa are connected by an arrow. So Jr commutes with any split

symbols between J
(qi)
si and Jr and so we can move it past J

(qi)
si making y shorter.

Similarly, y does not contain any Jr with r ∈ supp(J
(qi)
si ). Analogously (using

also Proposition 28(c)) one shows that y does not contain any split symbol J
(f)
r
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for r ∈ supp(J
(qi)
si ) ∪ supp(J

(qj)
sj ). Using similar arguments, it follows that y may

contain only elements Jr where r belong to the unique (unoriented) path between si
and sj . Moreover, to avoid application of a similar argument, all vertices from this
path must occur. But then one can use, if necessary, relations in Proposition 28(m)
to make y shorter. Hence y is empty and we may use relations in Proposition 28(l)
to conclude that w = 0.

The case when Ω has only one vertex is dealt with similarly using relations in
Proposition 28(c), (i) and (j) and also results in w = 0.

If Ω has at least two vertices, then a similar commutation procedure as above
combined with the relations in Proposition 28(k) shows that w can be changed to
an equivalent word u with the property that the only split symbols in u are those

J
(qi)
si for which si ∈ K′(Q) and degΩ(si) = 1, moreover, each of them occurs exactly

one time. Furthermore, on can use relations in Proposition 28(m) to ensure that u
contains only Jt for t ∈ Ω.

Let Ω′ be the full subgraph of Ω with vertex set Ω \ K′(Q). If Ω′ is empty, then

the above implies that u is a product of split symbols J
(qi)
si for which si ∈ K′(Q)

and degΩ(si) = 1. If Ω has two vertices, they are necessarily connected and we
can use relation Proposition 28(f) to see that there are exactly two possibilities for

u, namely J
(q1)
s1 J

(q2)
s2 and J

(q2)
s2 J

(q1)
s1 . These two elements are different in I ind since

from (11) it follows that their action on Ps1 ⊕Ps2 are different. If Ω has more than
two vertices, then all factors in u commute and thus define u uniquely.

It remains to consider the case when Ω′ is non-empty. Since Q is admissible, Ω′

is a disjoint union of graphs of the form (8). Let Γ1,Γ2, . . . ,Γm be the connected
components of Ω′. Using relations given by Proposition 28(d) and (e), we can write

u = u1u2 . . . um, where each ur, r = 1, 2, . . . ,m, is a product of Ji or J
(q)
s with

i, s ∈ Γr and
(
supp(J

(q)
s ) \ {s}

)
∩ Γr 6= ∅.

Now, for each ui, the remaining relations from Proposition 28 guarantee that the

Ji’s and J
(q)
s ’s appearing in ui satisfy all relations for the corresponding Hecke-

Kiselman monoid of type A (see [GM, Fo]). Therefore we can apply the same
arguments as in the proof of Theorem 29. The statement of the theorem follows. �
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