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Abstract. In this survey we show what kind of stratified associative
algebras arise in parabolic generalizations of the category O, associated
with a triangular decomposition of a semi-simple finite-dimensional com-
plex Lie algebra.

Dedicated to Vlastimil Dlab on the occasion of his 70th birthday

1 Quasi-hereditary algebras and stratified algebras

Let A be a finite-dimensional associative algebra over a field, k, and < be a
partial order on the set I' of indexes for isomorphism classes {L(i)|¢ € I'} of simple
A-modules. The pair (4, <) is said to be a quasi-hereditary algebra, [8], provided
that there exists a family, {A(4)|¢ € '}, of A-modules, called standard modules,
such that the following two conditions are satisfied:

(QH1) A(%) surjects onto L(4), and any composition subfactor, L(j), of the kernel
of this surjection satisfies j < i;

(QH2) the indecomposable projective cover P(i) of L(i) surjects onto A(%), and the
kernel of this surjection has a filtration, whose subquotients are modules
A(j) with 7 < j.

The principal example, where quasi-hereditary algebras appear, is the celebrated

category O of Bernstein, Gelfand and Gelfand, associated with a triangular decom-

position of a semi-simple finite-dimensional complex Lie algebra, [5], which will be

discussed in the next section. For other example, where quasi-hereditary algebras

naturally appear, we refer the reader to [25].

In 1996 the same authors introduced a more general concept of standardly
stratified algebras, [9], which looks as follows. Recall first that a pre-order (or
quasi-order) is a reflexive and transitive relation. One has to note that for a pre-
order, < say, the inequalities ¢ < j and j < ¢ do not imply ¢ = j in general.
Now, instead of the partial order < we fix a partial pre-order, <, on T', and call
the pair (A4, X) a standardly stratified algebra provided that there exists a family,
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{A(3)|i € T'}, of A-modules, called again standard modules, such that the following
two conditions are satisfied:

(SS1) A(z) surjects onto L(i), and any composition subfactor, L(j), of the kernel
of this surjection satisfies j < ;

(8S2) the indecomposable projective cover P(i) of L(i) surjects onto A(¢), and the
kernel of this surjection has a filtration, whose subquotients are modules
A(j) with 7 < j.

Independently, V.Dlab introduced in [12] the notion of A-filtered algebras, which

differs from the standardly stratified algebras above only by requiring that < is

still a partial order. In Section 6 we will see that the absence of this requirement is

very convenient in some applications. Remark that the notion of stratifying ideal,

used in [9] for the (alternative) definition of standardly stratified algebras, appears

already in [2, Section 1] under the name strong idempotent ideal'.

It is obvious that every quasi-hereditary algebra is standardly stratified and the
reverse is certainly not true. In fact, any finite-dimensional algebra can be given a
standard stratification by choosing < to be the trivial pre-order (full relation). In
this case A(i) = P(i) for all i € T.

Recently, a special subclass of stratified algebra, called properly stratified al-
gebras, was introduced in [13]. The difference with the usual stratified algebras is
that, first of all, < is required to be a partial order (as for quasi-hereditary algebras),
which is more restrictive if compared to the requirement for stratified algebras of
having a pre-order. Secondly, one also additionally requires the existence of two
different families of modules, the so-called standard and costandard modules. One
of the motivations for this definition is an attempt to restore the lost left-right
symmetry: an algebra, A, is quasi-hereditary if and only if the opposite algebra
A°?P ig quasi-hereditary, whereas an analogous statement for standardly stratified
algebras does not hold.

So, following [13], a pair, (A, <), is called a properly stratified algebra provided
that there exists a family, {A(i)|i € T'}, of A-modules, called standard modules,
and a family, {A(i)|i € T}, of A-modules, called proper standard modules, such
that the following three conditions are satisfied:

(PS1) A(i) surjects onto L(i) and any composition subfactor, L(j), of the kernel
of this surjection satisfies j < ;

(PS2) the indecomposable projective cover P(i) of L(7) surjects onto A(4), and the
kernel of this surjection has a filtration, whose subquotients are modules
A(j) with i < j;

(PS3) for every i € I’ the module A() is filtered by A(3).

It is straightforward that every properly stratified algebra is standardly stratified,

and it is easy to see that an algebra, A, is properly stratified if and only if the

opposite algebra AP is.

On the level of stratification with respect to the induced partial order, one
can say that a quasi-hereditary algebra is stratified by semi-simple algebras (the
endomorphism algebras of the standard modules), a properly stratified algebra is
stratified by local algebras (again the endomorphism algebras of the standard mod-
ules), and a standardly stratified algebra is stratified by more or less arbitrary

1T am in debt to V.Dlab for this reference.
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finite-dimensional algebras (the endomorphism algebras of the direct sums of stan-
dard modules, which correspond to “equal” parameters, i.e. those ¢ and j for which
i<jandj<i).

2 Principal example: Category O

Let g be a semi-simple complex finite-dimensional Lie algebra and g = n_®h P
n4 be a fixed triangular decomposition of g, where h is a Cartan subalgebra. The
BGG category O, [5], associated with this triangular decomposition, is defined as
the full subcategory in the category of all g-modules, which consists of all finitely
generated, h-diagonalizable and U (n)-locally finite modules (here and later a mod-
ule, M, over an associative algebra, A, is said to be A-locally finite provided that
the dimension of the vector space Av is finite for every element v € M).

Very important objects in O are Verma modules M(X), defined as follows: for
A € b* we consider Cy = C as an h@n-module under the action (h+n)(c) = A(h)c,
n €n, heb, ceC and set M(A) = U(g) ®u(pan,) Cr (see [11, Chapter 7] for
details). The module M () is indecomposable and has the unique simple quotient
L(X). Moreover, the set {L(A)|A € h*} is a complete set of simple objects in O.
The principal result of [5] is the following.

Theorem 2.1 1. Category O has enough projective modules, i.e. every
module in O is a quotient of a projective module.

2. Every projective object in O is filtered by Verma modules (or has a so-called
Verma flag).

3. The number [P(X) : M (u)] of occurrences of the Verma module M (p) as a
subquotient in any Verma flag of the projective cover P(X) of the module L())
equals the composition multiplicity of L(\) in M(u), i.e. [P(X) : M(u)] =
(M(p) = L(X)).

We remark that here and further the expression module M is filtered by modules
{N;|i € I} means that there exists a filtration of M, such that every subquotient
of this filtration is isomorphic to some N;.

The last statement of Theorem 2.1 is known as the BGG-reciprocity princi-
ple. Theorem 2.1 already suggests that category O should lead to quasi-hereditary
algebras with Verma modules being standard. Indeed, because of the h-weight
decomposition we always have that (M()X) : L(u)) # 0 implies p < A with re-
spect to the natural order on h*. At the same time from this and from the BGG-
reciprocity one immediately gets that [P(\) : M ()] # 0 implies A < u. Moreover,
(M(X) : L(N\)) =1 also implies [P(\) : M(A)] = 1 by the BGG-reciprocity. Hence
to get a finite-dimensional algebra we just need to take a direct summand of O
having finitely many simples. This is quite standard using the following arguments
with the central character. It is easy to see that the action of the center Z(g) of
the universal enveloping algebra U(g) on every module from O is locally finite and
hence O decomposes into a direct sum of full subcategories O?, § € Z(g)*, where

0% = {M € O| there exists k € N such that (z — 6(2))*M =0,z € Z(g)}.

From the Harish-Chandra isomorphism theorem ([11, Proposition 7.4.7]) it follows
that simples in O are indexed by elements in some orbit of the action of the
Weyl group W on h*. Hence OV has only finitely many simple modules (up to
isomorphism) and we get.
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Corollary 2.1 Every O is equivalent to the module category of a quasi-
hereditary algebra, or, equivalently, if X is a dominant weight, then the algebra
Endg(®wew P(w - X)) is quasi hereditary.

3 Parabolic generalizations of O

The interest to study parabolic generalizations of the category O was motivated
by different questions coming from algebra, analysis and combinatorics. Possibly
the first generalization of O was introduced in 1980 by Rocha-Caridi in [31]. This
category, which by definition is a subcategory of O, will be discussed later on in
Subsection 4.1. The first example of a parabolic category, lying outside O, was
proposed in [10]. Later on in [16] and recently in [17] some attempts were made
to present a general approach to constructing parabolic generalizations of @, and
these approaches can be put in the following framework.

Let p D hdn, be a parabolic subalgebra of g. Then we can write p = a@h,Pn,
where n is the nilpotent radical of p, @ = a ® b, is the reductive Levi factor, the
algebra a is semi-simple and the algebra h, is the commutative center of a. For any
full subcategory A of the category of all a-modules we denote by O(p,A) the full
subcategory of the category of all g-modules, which consists of all finitely generated,
h.-diagonalizable and U (n)-locally finite modules, which decompose into a direct
sum of modules from A, when viewed as a-modules.

Certainly, without any restrictions on A one can not even guarantee that the
category O(p, A) is not trivial. However, if A consists of finitely generated modules
and is stable under tensoring with all finite-dimensional a-modules, the category
O(p,A) always contains induced modules M,(V, ) = U(g) ®u(y) V, where X € b,
and the p-module structure on V' € A is defined by nV = 0 and hv = A(h)v for
v € Vand h € b,. If the module V is simple (as an a-module), the module M, (V, X)
is usually called the generalized Verma module, associated with p, V' and A, see [29]
for details. Every generalized Verma modules has a unique simple quotient, and
these simple modules are usually denoted by L, (V, \).

Putting some more restrictions on A one can get categories O(p, A) with further
nice properties, in particular, one can arrive at the categories which are described
by quasi-hereditary algebras (this situation will be discussed in Section 4), or by
properly stratified algebras (respectively Section 5), or, finally, by general stan-
dardly stratified algebras (this will be considered in Section 6). In all the situations
we will try to list the basic properties of the corresponding algebras connected with
the stratifications, describe the example and list several applications, in particular
to the study of generalized Verma modules.

4 Quasi-hereditary algebras and O(p,A)

Certainly, in the case p = b ® ny. the category O(p,A) coincides with O and
hence one gets that the first series of quasi-hereditary algebras associated with
O(p, A) is the series of quasi-hereditary algebras, associated with O. The second
classical example was constructed and investigated by Rocha-Caridi in [31] (and
extended to infinite-dimensional algebras in [32]) and looks as follows.

4.1 The category Og of Rocha-Caridi. In [31] the category Og (where S
indexes the algebra p by denoting the set of simple roots of the algebra a) is defined
as the category O(p,A), where A = F, is the category of all finite-dimensional
a-modules. It follows immediately that O(p,Fy) is a full subcategory of O, in
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particular, the category O(p,F4) inherits the decomposition into a direct sum of
full subcategories O(p, Fa)?, 8 € Z(g)*, where O(p, Fa)? = O(p, Fa) N O ItV
is a simple object in Fy, then the induced generalized Verma module M, (V,\)
belongs to O(p, F,) and the modules {L,(V, )} constitute an exhaustive list of
simple modules (objects) in O(p, Fq).

Theorem 4.1 1. Category O(p, Fa) has enough projective modules.

2. Every projective object in O(p,F,) has a filtration, whose subquotients are
generalized Verma modules M,(V, ), where V is a simple object in A (or
has a so-called generalized Verma flag).

3. The number [Py,(V,\) : My(N, )] of occurrences of the generalized Verma
module My (N, p) as a subgquotient in any generalized Verma flag of the pro-
Jjective cover Py(V, ) of the module L,(V,)) equals the composition multi-
plicity of Ly(V, ) in My(N, ), i.e. [Po(V,A) : My(N,p)] = (Mp(N,p) :
L,(V, N).

Calling generalized Verma modules standard and repeating the arguments from
Section 2 we get.

Corollary 4.1 Every O(p, F,)? is equivalent to the module category of a quasi-
hereditary algebra.

4.2 The general case. The proof of Theorem 4.1 and that of Theorem 2.1
go along the same scheme, analyzing which one can formulate the following rather
general result, see [16].

Theorem 4.2 Assume that every object of A is semi-simple, has a finite length
(but not necessarily finite-dimensional as an a-module!), and that A is stable under
tensoring with finite dimensional a-modules. Then

1. Category O(p, A) has enough projective modules.

2. The modules {Ly(V,\)|V is simple in A} constitute an ezhaustive list of
simple modules in the category O(p, A).

3. Ewvery projective object in O(p,A) is filtered by generalized Verma modules
My(V,X), where V is a simple object in A.

4. Assume additionally that O(p, A) has a duality, i.e. that there ezists an exact
contravariant involutive self-equivalence on O(p, A), which preserves simple
modules. Then the number [Py (V,\) : My(N, )] of occurrences of the gen-
eralized Verma module My(N, 1) as a subquotient of any generalized Verma
flag of the projective cover P,(V, ) of the module L,(V,\) equals the com-
position multiplicity of Ly(V,\) in My(N,p), i.e. [Po(V,A) : My(N,p)] =
(Mp(N, 1) : Ly (V, ).

Using the notion of the S-homomorphism of Harish-Chandra, [14], and standard
properties of the translation functors, [22], one can extend the arguments about the
central character to O(p, A) to get the following:

Corollary 4.2 The category O(p,A) decomposes into a direct sum of full sub-
categories (usually called blocks), each of which is equivalent to the module category
of a quasi-hereditary algebra.
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5 Properly stratified algebras and O(p, A)

Several example of properly stratified algebras, which appear for certain O(p, A)
were constructed in [17, 18, 19, 23, 26, 27] and in this section we describe some of
them. We start from the general result from [17].

5.1 The general case. Let us now assume that the category A consists of
finitely generated and locally Z(a)-finite modules, has enough projectives, and at
most one simple object for every central character, which, in addition, has trivial
endomorphism ring. In particular, every AX, x € Z(a)*, is the module category
over a local algebra. Furthermore, we assume that these local algebras are self-
injective, A is stable under tensoring with finite-dimensional a-modules and such
tensoring is an exact functor with respect to the natural abelian structure in the
module category. We will call such A properly admissible, and throughout this
subsection we will keep the assumption that A is properly admissible. Let V' be
a simple object in A (as we will see it may happen that V is not simple as an
a-module) and V be its indecomposable projective cover in A. It is immediate that
the induced modules M, (V,)) and M,(V,)) belong to O(p,A). Now one has to
proceed in several steps. Combining the construction of projective modules from
[32] with the Harish-Chandra S-homomorphism arguments, one gets

Proposition 5.1 Assume that A is properly admissible. Then

1. The category O(p, A) has enough projective modules.
2. Every module in O(p, A) is locally Z(g)-finite. In particular, O(p,A) decom-
poses into a direct sum of full subcategories O(p,A)?, § € Z(g)*, where

Op,A)’ = {M € O(p, A)|(z — 0(2))* M =0,z € Z(g), for some k € N}.

3. Every O(p,A) is equivalent to the module category of a finite-dimensional
associative algebra.

In particular, this gives O(p, A) an abelian structure. Because of the exactness
of the parabolic induction from a to g (which follows from the Poincaré-Birkhoff-
Witt Theorem), and the condition that V is filtered by V in A, we immediately
obtain that (as objects in O(p, A), i.e. with respect to the abelian structure, given
by Proposition 5.1) the module M,(V, ) is filtered by M,(V,)). Because of our
restrictions on A, we always have that tensoring with finite-dimensional modules
preserves projective modules in A. It is also easy to see that modules M,(V,\),
where V' € A is simple, have a unique simple quotient as objects of O(p, A) (but not
as g-modules in general). Let us denote by L,(V, ) this unique simple quotient.
The modules {L,(V,A)|V is simple in A} constitute an exhaustive list of simple ob-
jects in the category O(p, A). Now, inductive arguments, analogous to the original
arguments of BGG, give us.

Proposition 5.2 Every projective module in O(p,A) has a filtration, whose
quotients are modules of the form My(V,\).

Extending the natural order on b} to the set of all parameters, one easily checks
the remaining ordering conditions for the properly stratified algebra and thus gets.

Theorem 5.1 Ewvery block O(p,A)? is equivalent to the module category of
a properly stratified algebra. With respect to this properly stratified structure, the
modules M,(V,\) or My(V,\) are proper standard and standard modules respec-
tively.
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Now we see the role, played by A in the properly stratified structure. Namely,
simple objects in A are induced up to the proper standard modules, and projec-
tive objects — to the standard modules. If A is semi-simple (Section 4) we get
that simple modules in A are projective and thus proper standard and standard
modules in O(p, A) coincide resulting the fact that O(p, A) is quasi-hereditary. The
algebras of the block of A become in O(p,A) the endomorphism algebras of the
standard modules. This visualizes the parabolic induction, which combines sev-
eral blocks of A (module categories over local algebras) into a properly stratified
algebra, representing a block of O(p, A).

Not surprisingly that one can even get several analogs of the BGG reciprocity
for properly stratified algebra of O(p,A) (we refer the reader to [3, 13] for the
general case of properly stratified algebras).

Theorem 5.2 Assume that O(p,A) has a duality and let P,(V,\) denote the
projective cover of Ly(V,X). Then the following reciprocity formulae hold:

[P(V,A) Mp(N w) = (Mp(N )+ Ly (V, ).

[P (Vo) : Myp(N, )] = (M (N, ) = Ly(V, M)
[Po(V, ) : My(NV, w)][My(N, 1) - My(N, )] (Mp(N, 1) = Ly(V, X)).
[P (V;A) : My(N, p)] = [Mp( p) = My (N, w)](My (N, o) = Lp(V, 1))

5.2 S-subcategories in O. The first example, which perfectly embeds into
the scheme, presented in the previous subsection, is what was considered in [19]
under the name S-subcategories in O (the name was motivated by the fact, proved
n [19], that such categories possess a combinatorial description, analogous to So-
ergel’s combinatorial description of the blocks of the category O, see [34]). In this
example we define A = A® as follows. Let Mj denote the Verma a-module with
the most degenerate central character, i.e. the unique projective simple integral
Verma module. Define AS as the category of all a-modules V', which have copre-
sentation 0 - V — My ® Fy — My ® F>, where F; and F5 are finite dimensional.
By definition, AS is a subcategory in the category O, in particular, it inherits de-
composition with respect to the central character. The modules My ® F', where F'
is finite-dimensional, are projective-injective in . Moreover, every integral block
(which corresponds to some central character) contains exactly one indecomposable
projective-injective module, which we denote by PX, x € Z(a)*. Now standard ab-
stract arguments (see e.g. [1]) imply that every (AS)X, x € Z(a)*, is the module
category over End(PX), the latter being a local algebra, moreover, from the injec-
tivity of My ® F' it also follows that this algebra is self-injective. The simple objects
in AS are projective integral Verma modules (mostly non-simple as a-modules), and
the projective objects in A® are projective-injective integral modules from O.

From the definition we immediately get that the behavior of the functors F'® _
is as desired and hence A® is properly admissible. The corresponding category
O(p, A®) is a subcategory of the category O (now for g) and it is easy to see that
the usual duality on O canonically restricts to O(p, A®). This yields that O(p, AS)
has all properties, described in the previous subsection.

In [27] it was shown that in the case, when a is a direct sum of some sl(n;, C),
the category AS can be realized as a certain category of the so-called Gelfand-
Zetlin modules. This realization has an advantage that in the obtained category
the notions of a simple a-module and a simple object coincide.
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5.3 Relative s[(3,C)-s[(2,C) example. Choosing g = s((3,C) with the stan-
dard triangular decomposition, and a = sl(2,C), embedded with respect to the
upper left corner, we get that the block of the S-subcategory O(p, AS) correspond-
ing to the trivial central character (the central character of the one-dimensional
module) contains three simple modules, say indexed by 1, 2 and 3 with the natural
order. The graded (with respect to the grading inherited from O, see [34]) filtra-

tions of the projective (P(7)), standard (A(7)) and proper standard (A(7)) modules
in this block then look as follows:

3 2
A@)=2, A=, A= 1
1
3 2
2 1 1
AB)=PE)=1 3, AQ= ,, A= ,.
2
1 1
1 , 9
1 1 3 1 9 9 3
P(1) = 2 2, P@=, .
1 1 3
2
2 1
1

We have to note that the module P(1) above is not rigid in the sense that
its socle filtration is different from its radical filtration. Indeed, one can show by
direct calculation that the Loewy length of P(1) is 7 and thus the graded filtration
presented above is in fact a Loewy filtration. However, P(1) has a filtration, whose
quotients are standard modules, and hence are isomorphic to A(i), 1 = 1,2,3. From
this one gets that A(1) is a quotient of P(1). But the Loewy length of A(1) is two.
This implies that the socle of A(1), which is isomorphic to the simple module 1,
must contribute to the top of the radical of P(1). Hence the graded filtration
of P(1) above does not coincide with the radical filtration and thus P(1) is not
rigid. We refer the reader to [24] for more details. The original projective-injective
module in the category O is known to be rigid. This shows that the structure of
the S-subcategories in O is usually more complicated than that of O.

5.4 Harish-Chandra bimodules. A connection between S-subcategories in
O and certain categories of Harish-Chandra bimodules was established in [26]. First,
it was shown that the category O(p, AS) has the following alternative description:

Proposition 5.3 O(p, A®) is the full subcategory of O, which consists of all
modules M, which can be copresented by a-antidominant injective modules.

Let ‘HC denote the category of all finitely generated g-bimodules, the diago-
nal action of g on which is locally finite. This category is called the category of
Harish-Chandra bimodules. In the famous paper [4] Bernstein and Gelfand have
shown that certain direct summands of the subcategory HC' of HC, which consists
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of all bimodules, the right action of the Z(g) on which is diagonalizable, are equiv-
alent to subcategories of O, consisting of modules, which have a presentation by
a-antidominant projective modules. Usual duality between projective and injective
modules now relates Harish-Chandra bimodules to S-subcategories in O, giving the
following.

Theorem 5.3 The category HC' decomposes into a direct sum of full subcat-
egories, each of which is equivalent to the module category of a properly stratified
algebra. Moreover, these properly stratified algebras are precisely the same, which
appear in S-subcategories in O.

In Theorem 5.3 we certainly understand that the algebras in question can
sometimes be quasi-hereditary, however, all quasi-hereditary algebras are properly
stratified.

5.5 Modules with minimal annihilator. In [23] it is shown that categories,
which appear as S-subcategories in (0, also appear in the study of generalized
Verma modules with minimal annihilators. These categories have the following
description. We start with a simple a-module, V', whose annihilator coincides with
the annihilator of some projective and simple Verma module, and consider the
category A = Coker(V'), which is a full subcategory in a-mod and consists of all
a-modules M, which have a presentation of the form VQ F;1 -V @ F, - M — 0,
where Fy and F; are finite-dimensional. The arguments from [4, 30] imply that this
category is isomorphic to the subcategory of HC' (for a), associated with the most
degenerate central character (right action of the center). In particular, one gets
that Coker(V) is properly admissible. The same arguments can also be applied to
the category O(p, Coker(V')) and one gets the following statement.

Theorem 5.4 The category O(p, Coker(V')) decomposes into a direct sum of
full subcategories, each of which is equivalent to the module category of a properly
stratified algebra. Moreover, these properly stratified algebras are precisely the same,
which appear in S-subcategories in O.

Because of the categorical definition of the generalized Verma modules (they are
proper standard modules), the equivalence, given by Theorem 5.4 can be applied to
derive the information about the structure of generalized Verma modules, induced
from simple modules with minimal annihilators (which is the ideal, generated by
some central character). In particular, one obtains the following.

Theorem 5.5 Let V be a simple a-module with a minimal annihilator and
V bea simple Verma module over a with the same annihilator. Then the module
My (V,X) is simple if and only if the module MP(V,)\) (the latter module being a
Verma module over g) is simple.

5.6 Thick category O. Properly stratified algebras can also be obtained from
the categories HC™ of Harish-Chandra bimodules, defined using the condition that
the right action of the center of U(g) on these bimodules is given by Jordan cells
of degree at most n, see [33]. This corresponds to the so-called thick category O,
that is the generalization of O, in which one allows that the action of the Cartan
subalgebra on modules is not necessarily diagonalizable, but is given by Jordan cells
of degree at most n. Although the local algebras, which appear in the category A,
corresponding to this situation, are not self-injective in general, one easily sees that
all arguments can be carried over to this case. Moreover, this further generalizes to
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the category HC!, where I is an ideal of Z(g) of finite codimension, which consists
of all bimodules M € HC such that M I = 0. Finally, one can easily generalize the
proof of Theorem 5.1 to obtain the following statement:

Theorem 5.6 Let I be an ideal of Z(g) of finite codimension. Then the regular
(with respect to the left action of the center) part of the category HCT decomposes
into a direct sum of full subcategories, each of which is equivalent to the module
category of a properly stratified algebra.

6 Stratified algebras and O(p, A)

As we have already seen, many categories O(p, A) lead to properly stratified
algebras. In particular, classical categories of Harish-Chandra bimodules are de-
scribed by properly stratified algebras. However, it is not very difficult to find
an example of O(p,A), which can not correspond to properly stratified algebras.
Moreover, the study of generalized Verma modules M, (V, ) produces such an ex-
ample in a natural way, and this goes as follows. During the study of M, (V, X) one
necessarily comes to the point, where one has to study the category of all subquo-
tients of the modules of the form F'® V', F finite dimensional, or the corresponding
category Coker(V) (see definition in Subsection 5.5). If V has minimal annihilator,
the category Coker(V') can always be described by local algebras and thus the cor-
responding parabolic category O(p, Coker(V')) is described by properly stratified
algebras. However, even starting from a simple highest weight module, in the case
of a bigger annihilator one usually obtains that the category Coker(V) does not
correspond to local algebras. Here is an example.

6.1 sl(3,C)-example. Let a = sl(3,C), a, 8 be simple roots, L(A) be a simple
highest weight module, such that A is integral and (\,a) € N, (A,a + 8) = —1.
Define A = Coker(L(X)) as the category of all modules V', which have presentation
Vo = Vi = V = 0, where both V; are direct summands in some F; ® L()), F;
finite dimensional. Then A decomposes into a direct sum of full subcategories
each of which is equivalent to the module category over an associative algebra. In
some exceptional cases these algebras are semi-simple, but in the general case these
algebras are Morita equivalent to the algebra of the following quiver with relations:

X

e e zyr = yaxy = 0.

Y

This algebra is not local and there is no way for the blocks of the corresponding
category O(p, Coker(A)), which is a subcategory in O, to correspond to properly
stratified algebras. However, as it will be shown in the next section, this can be
restored if one uses the general notion of stratified algebras.

We remark that the phenomenon, described above, is not exceptional: the gen-
eral problem can be formulated as follows: Let a be a semi-simple Lie algebra and
L(X) be a simple highest weight a-module. Studying generalized Verma modules,
one usually has to construct a “reasonable” category, containing L(A) (or some
appropriate lift of this module), which is stable under tensoring with finite dimen-
sional a-modules. The best candidate for this category is the Coker-category of
Mili¢i¢ and Soergel, which we described in Subsection 5.5, see [30] for more de-
tails. The example above is in fact an example of such category. The main point
of this subsection is that the blocks of this Coker-category are not described by
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local algebras in general. In fact, for “good” values of A the blocks of this Coker-
category are described by the endomorphism algebras of the direct sum of self-dual
projective modules in a block of the parabolic category Og of Rocha-Caridi, for
some S (see Subsection 4.1). One additional difficulty is that not all A are “good”
and for those, which are not “good”, I even do not know any candidate for the
corresponding “reasonable” category.

6.2 A set-up for stratified algebras. Assume now that the category A con-
sists of finitely generated and locally Z(a)-finite modules, has enough projectives,
and at most finitely many simple object for every central character, all of them
having trivial endomorphism rings. As an example of such category one can take
the category Coker(L(A)) of sl(3,C)-modules from Subsection 6.1. More general,
for any a and any parabolic subalgebra p in a one can take the full subcategory in
the corresponding category Og, which consists of all modules, having a presentation
by self-dual projective modules.

If A satisfies the above conditions, we immediately have that every AX, x €
Z(a)*, is the module category of a finite-dimensional algebra, and we assume that
these algebras are self-injective. Furthermore, we assume that A is stable under
tensoring with finite-dimensional a-modules and that such tensoring defines an ex-
act functor with respect to the natural abelian structure in the module category.
We will call such A s-admissible.

Let V be a simple object in A and V be its indecomposable projective cover
in A. Tt is immediate that the induced modules M, (V,)) and M,(V, \) belong to
O(p,A). Now using standard arguments one obtains.

Theorem 6.1 Assume that A is s-admissible. Then

1. The category O(p,A) has enough projective modules.
2. Every module in O(p, A) is locally Z(g)-finite. In particular, O(p,A) decom-
poses into a direct sum of full subcategories O(p,A)?, 6 € Z(g)*, where

O(p,N)? ={M € O(p,A) : (z —0(2))*M = 0,z € Z(g), for some k € N}.

3. Every O(p,A) is equivalent to the module category of a finite-dimensional
associative algebra. In particular, this gives O(p,A) an abelian structure.

4. Every projective module in the category O(p, A) is filtered by modules of the
form My (V,)).

By the same arguments as in Subsection 5.1 we get that modules M,(V, ),
where V' € A is simple, have a unique simple quotient as objects of O(p, A), and we
denote this simple quotient by L,(V, ). The modules {L,(V, )|V is simple in A}
constitute an exhaustive list of simple objects in the category O(p,A). However,
in contrast with Subsection 5.1, it is not true in general that the module Mp(f/, A)
is filtered by M,(V,\). In fact, M,(V, ) is filtered by modules M,(N,)), where
N runs through the set of all simple subquotients of V in A. However, if we
now introduce the natural pre-order on the set of parameters of simple modules in
O(p, A), with respect to which the parameters of L,(V,\) and Ly (N, A) are equal
if and only if modules V and N are taken from one indecomposable block of A, we
immediately get

Theorem 6.2 Every block O(p,A)? is equivalent to the module category of a
standardly stratified algebra. With respect to this standard stratification the modules
M, (V, ) are standard modules.
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6.3 General BGG-reciprocity. As in the classical case, assuming that the
category O(p,A) has a duality, one can also obtain the following analogue of the
BGG reciprocity ([20]) in the case, when O(p,A) corresponds to the stratified al-
gebras.

Theorem 6.3 Retain all the notations from Subsections 6.2. Assume that
O(p,A)? is as in Theorem 6.2 and has a duality. Then we have the following
reciprocity:

[PP(Va )‘) : MP(NJ/J/)] = (MP(Na ,U,) : LP(V: )‘));
where P, (V,\) denotes the indecomposable projective cover of Ly,(V, ).

Without additional assumptions on A, one even can not reformulate this reci-
procity as it was done in Theorem 5.2. However, one more restriction on A gives
the following.

Corollary 6.1 If, in addition to the assumptions of Theorem 6.3, the Cartan
matriz of the arbitrary block of A is symmetric, i.e. (V : N) = (N : V) for all
simple V, N € X\, then we have the following reciprocity:

[Py (Vi A) : My(N, )] = (Mp(N, 1) : Ly (V; A)).
Proof Denote by A? the set of isomorphism classes of simple objects in A.
Then, using the exactness of the parabolic induction, the symmetry of the Cartan
matrix of A, and Theorem 6.3, we have

[Po(V, ) : My(N, )] = Y [P (V. ) : My(S, w)](S,N) =
SeAs
= Z (MP(SJN) : LP(V7)‘))(N7S) = (MF(N7/I‘) : LP(V7’\))
SEAs
O

We remark that Theorem 6.3 implies that the Cartan matrix of a block of the
category O(p,A) has form C*DC, where C is triangular and D is block-diagonal.
For properly stratified algebras we get that D is diagonal and for quasi-hereditary
algebras we get that D is the identity matrix. The diagonal blocks of the matrix D
are Cartan matrices of the blocks of the category A, which contribute to the given
block of O(p, A). In particular, if the conditions of Corollary 6.1 are satisfied, then
the matrix D and hence the matrix C*DC are symmetric.

6.4 The category of Mathieu and Britten-Futorny-Lemire. Another
example of the categories A and O(p,A) leading to stratified algebras naturally
appears in the context studied in [28] (for A) and [7] (for O(p,A)), where the
principal objects of study are the so-called torsion-free a-modules of finite degree.
For this set up we have to assume that all simple direct summands of a are of
type A, or C,. A weight a-module, V, is called torsion-free provided that the
action of all elements from a \ § on this module is bijective. If V' is simple and has
finite-dimensional weight spaces, then all non-trivial weight spaces have the same
dimension, called the degree of V. According to [15], such modules exist only if
all simple direct summands of a are of type A, or C,, and [28] gives a complete
classification of such simple modules.

In the paper [7] the authors study the structure of generalized Verma modules
M, (V, X), where V is a torsion-free weight a-module of finite degree. The main tool
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in this description is Mathieu’s twisting functor, defined and used in [28] to classify
all simple torsion-free modules of finite degree. This one is constructed as follows
(we follow [28, Section 4]): for a root, @, one considers the localization U, of U(a)
(or U(g)) with respect to the Ore subset {X", : n € N}, where X_, denotes a
non-zero root vector of a (resp. g), corresponding to the root a. Further, there
exists a unique family of automorphisms ©,, x € C, of the algebra U, such that
O,(r) = X", rX~2 for all r € U, and all n € Z, and such that the map z — ©,(r)
is polynomial in z for all » € U,. The Mathieu’s twisting functor M$, z € C, is the
composition of the tensor induction U,®_ with the ©,-twist. The main result of
[7] states that an appropriate product of different M defines a lattice epimorphism
from the lattice of submodules of some specific quotient of some Verma module (this
one is associated with M,(V, ) in a natural way, prescribed by the results of [28])
to the lattice of submodules of the module M,(V, ). It is also shown that in some
cases (which depend on the choice of V' and on the type of p) this correspondence
is a lattice isomorphisms.

If one now lifts the generalized Verma modules in question up to the categorical
level, it is quite easy to see that Mathieu’s twisting functor does much more. In fact,
it defines an equivalence between some categories O(p, A), under which generalized
Verma modules are sent to generalized Verma modules. The idea to use Mathieu’s
twisting functors to establish such an equivalence goes back to [28, Appendix],
where it was used to prove the equivalence of several blocks of the category O.
This equivalence immediately gives us the results of Britten, Futorny and Lemire
and even embedds these results in a much more general picture.

In more details, one proceeds as follows. We start from some simple torsion-free
a-module N of finite degree and consider the category Coker(N), which, because of
the bijectivity of the action of all elements from a \ b, coincides with the category
of all subquotients of F ® N, where F is finite dimensional. Using [21, Sections 3.1]
in A, case and [6, Section 3] in C, case, we even get that the category F' @ N
contains a simple projective module, V' say. This module is again a simple torsion-
free a-module of finite degree and N € Coker(V'). According to [28], every simple
torsion free module of finite degree comes with some simple highest weight module,
i.e. there exists a simple highest weight module, say V, such that the module V
is obtained from V, using some composition of different M2 (see [28] for details).
Let us denote this composition of Mathieu’s twists by M.

One can check by direct calculation that the functor M% commutes with trans-
lation functors (see for example [18, 27]) and thus obtain that V is a simple pro-
jective module in the category Coker(V). We also remark that from the definition
of M% it follows that the functor M2, is inverse to M$ on the full subcategory
of the category of all g-modules, which consists of all modules, on which X_, acts
bijectively. Therefore the functor M produces an equivalence of Coker(V) and
Coker(V'), moreover, this equivalence commutes with translation functors.

Proposition 6.1 The categories Coker(V) and Coker(V) are s-admissible.

A

Proof It is certainly enough to prove the statement for Coker(V'). As usual
translation functors send projectives to projectives, we get enough projectives in the
category Coker(V) as translations of V. Moreover, since Vis injective, all projective
modules in Coker(V) are injective. Everything else is standard, see [23]. O

From Theorem 6.1 and Theorem 6.2 we immediately obtain.
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Theorem 6.4 The categories O(p, Coker(V)) and O(p, Coker(V)) decompose
into a direct sum of full subcategories, each of which is equivalent to the module
category of a standardly stratified algebra.

Moreover, considering Mathieu’s functors for U(g) instead of U(a) we get the
following statement.

Theorem 6.5 Mathieu’s twisting functor defines an equivalence between the
parabolic categories O(p, Coker(V)) and O(p, Coker(V)). This equivalence com-
mutes with translation functors, and sends generalized Verma modules to general-

ized Verma modules.

Proof Let M, denotes the same composition of Mg, used for the definition
of M, but now considered as Mathieu’s twists for the algebra g. The fact that M
(and hence My) sends generalized Verma modules to generalized Verma modules
follows immediately from the PBW Theorem for the algebra U,. From the definition
of My it now follows that M sends a proper standard generalized Verma module
of O(p, Coker(V')) to a proper standard generalized Verma module in the category
O(p, Coker(V)).

Now recall that every projective module in O(p, Coker(V)) is a direct sum-
mand of a translation of a proper standard generalized Verma module. Since
M commutes with translation functors, we get that Mg sends projectives from
O(p, Coker(V)) to projectives in O(p, Coker(V)). As My is obviously exact, we
get that it maps O(p, Coker(V)) to O(p, Coker(V)). By the same arguments, the
composition M’g of inverse Mathieu’s twists, which were used to define Mg, sends

O(p, Coker(V)) to O(p, Coker(V')). It is now obvious that M g and M, are mutually

A~

inverse equivalences between O(p, Coker(V)) and O(p, Coker(V')), which commute
with translation functors. O

Since the category Coker(V) coincides with the category of all subquotients of
the modules FF ® V, F finite-dimensional, the notion of simple object and simple
modules in Coker(V') and, further, in O(p, Coker(V)) coincide. In contrast to this,
the category Coker(V) is in general different from the category of all subquotients of
the modules F®V, F finite dimensional, and hence simple objects in Coker(V) and
O(p, Coker(V')) are not in general simple a- or g-modules respectively. Standard
properties of the translation functors immediately imply that simple objects in
Coker(V) are simple a-modules if and only if Coker(V) is semi-simple. When this
is the case, can be easily derived from [28]. In particular, this is always the case
for symplectic Lie algebras. Further, this is also the case for sl(n, €) if the highest
weight of V' is nonintegral in the sense of [7] (i.e. its first coordinate with respect to
the basis, consisting of fundamental weights, is not an integer). Thus we obtain the
following corollary, which is a combination of the two main results of [7], namely
[7, Theorem 3] and [7, Theorem 4].

Corollary 6.2 The functor Mg defines a lattice epimorphism from the sub-

A~

module lattice of generalized Verma modules from O(p,Coker(V')) to the submod-
ule lattice of the corresponding generalized Verma modules in O(p, Coker(V)). If

Coker(V') is semi-simple, then this epimorphism is in fact an isomorphism.

Proof The functor M, is exact and sends simple objects from O(p, Coker(V))
to simple objects in O(p, Coker(V)). Moreover, simple objects in O(p, Coker(V))
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are simple g-modules. Moreover, it is obvious that Mg does not annihilate any sim-
ple object from O(p, Coker(V')). The first statement now follws from the exactness
of Mgy. If Coker(V) is semi-simple, simple objects in O(p, Coker(V)) are simple
g-modules as well, which implies that the map, induced by My on the submodule
lattice of generalized Verma modules, is bijective, completing the proof. O

In particular, Corollary 6.2 reduces the problem of composition multiplicities for
M, (V, A), where V is a simple torsion-free modules of finite degree, to the analogous
problem for M,,(V, A), which is a problem for the category O. The last one can be
solved by combination of Kazhdan-Lusztig Theorem, Soergel’s equivalence ([34])
and BGG-resolution (or Kac-Wakimoto resolution, see [7, Theorem 1]).

It is obvious, that the usual duality on O restricts to O(p, Coker(V)), and
hence one can apply Theorem 6.3 to compute the Cartan matrix for all blocks of
O(p, Coker(V)).
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