SCHUR–WEYL DUALITIES FOR SYMMETRIC INVERSE SEMIGROUPS

Volodymyr Mazorchuk

(Uppsala University)

joint work with Ganna Kudryavtseva (Kyiv University)

1. CLASSICAL SCHUR-WEYL DUALITY

 $V = \mathbb{C}^n$ — *n*-dimensional complex vector space

 $V^{\otimes k} = \underbrace{V \otimes_{\mathbb{C}} V \otimes_{\mathbb{C}} \cdots \otimes_{\mathbb{C}} V}_{k \text{ factors}}$

 $\mathbf{GL}(n)$ — group of all non-degenerated complex $n\times n$ matrices

 $\mathbb{C}\mathbf{GL}(n)$ — the group algebra

 $\mathbf{GL}(n)$ acts on $V^{\otimes k}$ diagonally

 S_k — the symmetric group on $\{1, 2, \ldots, k\}$

 $\mathbb{C}S_k$ — the group algebra

 S_k acts on $V^{\otimes k}$ by permuting the factors

Schur-Weyl Duality. The actions of $\mathbb{C}\mathbf{GL}(n)$ and $\mathbb{C}S_k$ on $V^{\otimes k}$ are centralizers of each other.

2. SOME OTHER CLASSICAL SCHUR-WEYL TYPE DUALITIES

One can restrict the action of $\mathbf{GL}(n)$ on V to a subgroup $G \subset \mathbf{GL}(n)$.

If one is lucky, one could obtain a Schur-Weyl type of duality on $V^{\otimes k}$ for some algebra X = X(G), which is "bigger" than $\mathbb{C}S_k$:

$$_{G}\left(V^{\otimes k}
ight)_{X}$$

X — is the centralizer of the *G*-action; $\mathbb{C}G$ — is the centralizer of the *X*-action.

Some known cases:

- G = O(n), the orthogonal group, then X is the socalled *Brauer algebra* (R. Brauer).
- $G = S_n$, then X is the so-called *partition algebra* (V. Jones, P. Martin)

3. SYMMETRIC INVERSE SEMIGROUP \mathcal{IS}_n

 S_n is the group of all bijections on $\{1, 2, \ldots, n\}$

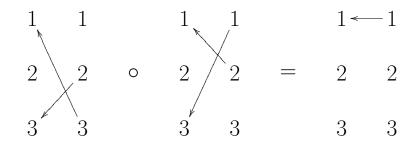
 \mathcal{IS}_n is the monoid of all bijections between *subsets of* $\{1, 2, \ldots, n\}$

 $A, B, X, Y \subset \{1, 2, \dots, n\}$

 $f: A \rightarrow B$ and $g: X \rightarrow Y$ are bijection

 $g \circ f$ is a bijection from $f^{-1}(B \cap X)$ to $g(B \cap X)$ given by the composition of f and g whenever it makes sense to compose these maps

Example:



 \mathcal{IS}_n has the *natural* faithful representation by $n \times n$ matrices over $\{0, 1\}$:

If $f \in \mathcal{IS}_n$ is a bijection from A to B then the corresponding matrix $M_f = (m_{i,j})_{i,j=1,\dots,n}$ is defined as follows:

$$m_{i,j} = \begin{cases} 1, & f(j) = i; \\ 0, & \text{otherwise.} \end{cases}$$

Hence \mathcal{IS}_n is also called the *rook monoid*

Example:

$$\mathcal{IS}_{2} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} \right\}$$

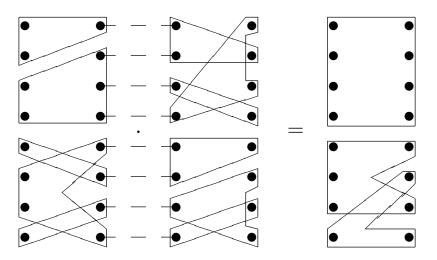
This defines on V the *natural* structure of a module over the semigroup algebra \mathbb{CIS}_n .

4. DUAL SYMMETRIC INVERSE SEMIGROUP \mathcal{I}_n^*

 S_n is the group of all bijections on $\{1, 2, \ldots, n\}$

 \mathcal{I}_n^* is the monoid of all bijections between *quotient sets* of $\{1, 2, ..., n\}$ (D. FitzGerald, J. Leech 1998)

Example of elements from \mathcal{I}_8^* and their multiplication:



The action of \mathcal{I}_k^* on $V^{\otimes k}$ is defined as follows:

 $f \in \mathcal{I}_k^*$, that is f is a bijection between some decompositions (disjoint unions of non-empty subsets) $\{1, \ldots, n\} = A_1 \cup A_2 \cup \cdots \cup A_k$ and $\{1, \ldots, n\} = B_1 \cup B_2 \cup \cdots \cup B_k$

 $\{e_1, e_2, \ldots, e_n\}$ — the standard basis of V

 $e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_k}$ — a basis vector of $V^{\otimes k}$

 $f(e_{i_1} \otimes e_{i_2} \otimes \cdots \otimes e_{i_k})$ is defined as follows:

- 0 if there exists $x \neq y$ in some A_s such that $e_{i_x} \neq e_{i_y}$
- $e_{j_1} \otimes e_{j_2} \otimes \cdots \otimes e_{j_k}$, where $j_x = i_y$ for all $x \in B_s$ and $y \in A_t$ such that $f(A_t) = B_s$.

 $\mathbb{C}\mathcal{I}_k^*$ is a subalgebra of the Jones-Martin partition algebra and the above action is just the restriction of the action of partition algebra on $V^{\otimes k}$

5. SCHUR-WEYL DUALITY INVOLVING \mathcal{IS}_n and \mathcal{I}_k^*

MAIN THEOREM.

- The action of \mathbb{CI}_k^* on $V^{\otimes k}$ gives the centralizer of the action of \mathbb{CIS}_n .
- The action of \mathbb{CIS}_n on $V^{\otimes k}$ gives the centralizer of the action of \mathbb{CI}_k^* .
- The representation of \mathcal{IS}_n on $V^{\otimes k}$ is faithful.
- The representation of \mathcal{I}_k^* on $V^{\otimes k}$ is faithful if and only if $n \ge 2$ or k = 1.
- The representation of $\overline{\mathbb{CIS}_n}$ (the quotient modulo the zero element) on $V^{\otimes k}$ is faithful if and only if $k \ge n$.
- The representation of $\mathbb{C}\mathcal{I}_k^*$ on $V^{\otimes k}$ is faithful if and only if $k \leq n$.

6. GENERALIZATIONS

 \mathbb{C} — trivial \mathcal{IS}_n -module (all elements including zero act as the identity)

 $U = V \oplus \mathbb{C} \longrightarrow \mathcal{IS}_n$ -module (follows Solomon's Schur-Weyl type dualities for \mathcal{IS}_n)

There is a Schur-Weyl type duality for $U^{\otimes k}$

The object, which centralizes the action of \mathcal{IS}_n on $U^{\otimes k}$ is the partial dual symmetric inverse semigroup \mathcal{PI}_k^* (G. Kudryavtseva, V. Maltcev 2006)

Partial dual symmetric inverse semigroup consists of bijections between quotients sets of SUBSETS of $\{1, 2, \dots, k\}$

Multiplication in \mathcal{PI}_k^* can be deformed to accommodated Vernitskii's semigroup defined in 2005.