CATEGORY \mathcal{O} AS A SOURCE FOR CATEGORIFICATION

Volodymyr Mazorchuk

(Uppsala University)

- \mathfrak{g} semi-simple finite-dimensional Lie algebra over $\mathbb C$
- $\mathcal{O}-$ Bernstein-Gelfand-Gelfand category \mathcal{O} for \mathfrak{g}
- \mathcal{O}_0 the regular block of \mathcal{O}
- $\mathcal{O}_0 \cong A$ -mod, where
- A- finite-dimensional associative algebra over $\mathbb C$
- W Weyl group of \mathfrak{g}
- A-simples \leftrightarrow elements in W

 $K_0(\mathcal{O}_0)$ — Grothendieck group of \mathcal{O}_0

projective functors are exact and thus induce endomorphisms of $K_0(\mathcal{O}_0)$

This is a categorification of the regular right $\mathbb{Z}W$ -module

twisting functors satisfy braid relations

they are **NOT** equivalences of \mathcal{O}_0

derived twisting functors **ARE** equivalences of $\mathcal{D}^b(\mathcal{O}_0)$

This gives a categorification of the regular left $\mathbb{Z}W$ -module

twisting and projective functors commute

This gives a categorification of $\mathbb{Z}_W \mathbb{Z} W_{\mathbb{Z} W}$

A admits a $\mathbbm{Z}\text{-}\textsc{grading}$

A-gmod — category of graded A-modules

all our functors admit graded lifts

 \mathcal{H} — Hecke algebra of W

effect on categorification: change $\mathbb{Z}W$ by \mathcal{H}

A is Koszul

Taking certain subcategories one produces categorifications of other modules

 \mathfrak{p} — some parabolic subalgebra of \mathfrak{g}

 $W^{\mathfrak{p}}$ — the corresponding parabolic subgroup of W

 $\mathcal{O}_0^{\mathfrak{p}}$ — the corresponding parabolic subcategory of \mathcal{O}_0

projective functors preserve $\mathcal{O}_0^{\mathfrak{p}}$

This gives a categorification of the $\mathbb{Z}W$ -module, induced from the sign $W^{\mathfrak{p}}$ -module

 $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$

 λ — partition corresponding to ${\mathfrak p}$

 λ' — the conjugate partition

Q — basic projective-injective module in $\mathcal{O}_0^{\mathfrak{p}}$

 $\operatorname{End}(Q)$ -mod can be viewed as a subcategory of $\mathcal{O}_0^{\mathfrak{p}}$

projective functors preserve $\operatorname{End}(Q)$ -mod

This gives a categorification of the Specht module corresponding to λ'

 $W(\mathfrak{p})$ — longest coset representatives in $W^{\mathfrak{p}} \backslash W$

 e_w — primitive idempotent of A corresponding to $w \in W$

$$e_{\mathfrak{p}} = \sum_{w \in W(\mathfrak{p})} e_w$$

 $B=e_{\mathfrak{p}}Ae_{\mathfrak{p}}$

B-mod can be realized as a subcategory of A-mod

projective functors preserve B-mod

This gives a categorification of the permutation module corresponding to W and $W^{\mathfrak{p}}$

 \mathbf{R} — right cell in W

for $w \in \mathbb{R}$ set $P^{\mathbb{R}}(w) = P(w)/X$, where

 $X \subset P(w)$ is generated by all $L(v), v \not\leq_{right} w$

$$P^{\mathsf{R}}=\oplus_{w\in \mathsf{R}}P^{\mathsf{R}}(w)$$

 $C=\!\operatorname{End}(P^{\mathtt{R}})$

C-mod can be realized as a subcategory of A-mod

projective functors preserve C-mod

This gives a categorification of the cell module corresponding to R