Sinitary 2-representations of finitary 2-categories

Volodymyr Mazorchuł

(Uppfala University)

Workshop "Ugebraic Lie theory and representation theory" September 2, 2014, Edinburgh, UK

This is a report on a joint project with

Vanessa Miemietz

from University of East Anglia

Э

 \mathfrak{g} — semi-simple finite dimensional complex Lie algebra

- $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ fixed triangular decomposition
- $\mathcal{O} \mathsf{BGG}$ category \mathcal{O}
- \mathcal{O}_0 the principal block of \mathcal{O}
- $\mathcal{P}:\mathcal{O}_0\to\mathcal{O}_0$ the 2-category of projective endofunctors of \mathcal{O}_0
- Fact: \mathcal{P} has finitely many indecomposables up to isomorphism
- Fact: $\ensuremath{\mathcal{P}}$ has finite dimensional spaces of 2-morphisms

\mathfrak{g} — semi-simple finite dimensional complex Lie algebra

- $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ fixed triangular decomposition
- $\mathcal{O} \mathsf{BGG}$ category \mathcal{O}
- \mathcal{O}_0 the principal block of \mathcal{O}
- $\mathcal{P}:\mathcal{O}_0\to\mathcal{O}_0$ the 2-category of projective endofunctors of \mathcal{O}_0
- Fact: \mathcal{P} has finitely many indecomposables up to isomorphism
- Fact: $\ensuremath{\mathcal{P}}$ has finite dimensional spaces of 2-morphisms

 \mathfrak{g} — semi-simple finite dimensional complex Lie algebra

- $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$ fixed triangular decomposition
- $\mathcal{O} \mathsf{BGG}$ category \mathcal{O}
- \mathcal{O}_0 the principal block of \mathcal{O}
- $\mathcal{P}:\mathcal{O}_0\to\mathcal{O}_0$ the 2-category of projective endofunctors of \mathcal{O}_0
- Fact: \mathcal{P} has finitely many indecomposables up to isomorphism
- Fact: \mathcal{P} has finite dimensional spaces of 2-morphisms

 \mathfrak{g} — semi-simple finite dimensional complex Lie algebra

- $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$ fixed triangular decomposition
- $\mathcal{O}-\mathsf{BGG} \text{ category } \mathcal{O}$
- \mathcal{O}_0 the principal block of \mathcal{O}
- $\mathcal{P}:\mathcal{O}_0\to\mathcal{O}_0$ the 2-category of projective endofunctors of \mathcal{O}_0
- Fact: \mathcal{P} has finitely many indecomposables up to isomorphism
- Fact: $\ensuremath{\mathcal{P}}$ has finite dimensional spaces of 2-morphisms

 \mathfrak{g} — semi-simple finite dimensional complex Lie algebra

- $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$ fixed triangular decomposition
- $\mathcal{O}-\mathsf{BGG} \text{ category } \mathcal{O}$
- \mathcal{O}_0 the principal block of $\mathcal O$
- $\mathcal{P}:\mathcal{O}_0\to\mathcal{O}_0$ the 2-category of projective endofunctors of \mathcal{O}_0

Fact: \mathcal{P} has finitely many indecomposables up to isomorphism

Fact: \mathcal{P} has finite dimensional spaces of 2-morphisms

 \mathfrak{g} — semi-simple finite dimensional complex Lie algebra

- $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$ fixed triangular decomposition
- $\mathcal{O}-\mathsf{BGG} \text{ category } \mathcal{O}$
- \mathcal{O}_0 the principal block of $\mathcal O$

 $\mathcal{P}:\mathcal{O}_0\to\mathcal{O}_0$ — the 2-category of projective endofunctors of \mathcal{O}_0

Fact: \mathcal{P} has finitely many indecomposables up to isomorphism

Fact: \mathcal{P} has finite dimensional spaces of 2-morphisms

 \mathfrak{g} — semi-simple finite dimensional complex Lie algebra

- $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$ fixed triangular decomposition
- $\mathcal{O}-\mathsf{BGG} \text{ category } \mathcal{O}$
- \mathcal{O}_0 the principal block of \mathcal{O}

 $\mathcal{P}:\mathcal{O}_0\to\mathcal{O}_0$ — the 2-category of projective endofunctors of \mathcal{O}_0

Fact: \mathcal{P} has finitely many indecomposables up to isomorphism

Fact: \mathcal{P} has finite dimensional spaces of 2-morphisms

 \mathfrak{g} — semi-simple finite dimensional complex Lie algebra

- $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$ fixed triangular decomposition
- $\mathcal{O}-\mathsf{BGG} \text{ category } \mathcal{O}$
- \mathcal{O}_0 the principal block of \mathcal{O}

 $\mathcal{P}:\mathcal{O}_0\to\mathcal{O}_0$ — the 2-category of projective endofunctors of \mathcal{O}_0

Fact: \mathcal{P} has finitely many indecomposables up to isomorphism

Fact: \mathcal{P} has finite dimensional spaces of 2-morphisms

 \mathfrak{g} — semi-simple finite dimensional complex Lie algebra

- $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$ fixed triangular decomposition
- $\mathcal{O}-\mathsf{BGG} \text{ category } \mathcal{O}$
- \mathcal{O}_0 the principal block of \mathcal{O}

 $\mathcal{P}:\mathcal{O}_0\to\mathcal{O}_0$ — the 2-category of projective endofunctors of \mathcal{O}_0

Fact: \mathcal{P} has finitely many indecomposables up to isomorphism

Fact: \mathcal{P} has finite dimensional spaces of 2-morphisms

- \mathfrak{G} 2-Kac-Moody algebra of finite type
- $\mathcal{L}(\lambda)$ simple highest weight 2-representation of \mathfrak{G}
- $\mathfrak{G}_{\lambda} := \mathfrak{G}/\operatorname{Ann}_{\mathfrak{G}}(\mathcal{L}(\lambda))$
- Fact: \mathfrak{G}_{λ} has finitely many indecomposables up to isomorphism
- Fact: \mathfrak{G}_{λ} has finite dimensional spaces of 2-morphisms

\mathfrak{G} — 2-Kac-Moody algebra of finite type

 $\mathcal{L}(\lambda)$ — simple highest weight 2-representation of \mathfrak{G}

 $\mathfrak{G}_{\lambda} := \mathfrak{G}/\operatorname{Ann}_{\mathfrak{G}}(\mathcal{L}(\lambda))$

Fact: \mathfrak{G}_{λ} has finitely many indecomposables up to isomorphism

Fact: \mathfrak{G}_{λ} has finite dimensional spaces of 2-morphisms

- \mathfrak{G} 2-Kac-Moody algebra of finite type
- $\mathcal{L}(\lambda)$ simple highest weight 2-representation of \mathfrak{G}
- $\mathfrak{G}_{\lambda} := \mathfrak{G}/\operatorname{Ann}_{\mathfrak{G}}(\mathcal{L}(\lambda))$
- Fact: \mathfrak{G}_{λ} has finitely many indecomposables up to isomorphism
- Fact: \mathfrak{G}_{λ} has finite dimensional spaces of 2-morphisms

- \mathfrak{G} 2-Kac-Moody algebra of finite type
- $\mathcal{L}(\lambda)$ simple highest weight 2-representation of \mathfrak{G}
- $\mathfrak{G}_{\lambda} := \mathfrak{G}/\operatorname{Ann}_{\mathfrak{G}}(\mathcal{L}(\lambda))$

Fact: \mathfrak{G}_{λ} has finite dimensional spaces of 2-morphisms

- \mathfrak{G} 2-Kac-Moody algebra of finite type
- $\mathcal{L}(\lambda)$ simple highest weight 2-representation of \mathfrak{G}
- $\mathfrak{G}_{\lambda} := \mathfrak{G}/\operatorname{Ann}_{\mathfrak{G}}(\mathcal{L}(\lambda))$

Fact: \mathfrak{G}_{λ} has finite dimensional spaces of 2-morphisms

- \mathfrak{G} 2-Kac-Moody algebra of finite type
- $\mathcal{L}(\lambda)$ simple highest weight 2-representation of \mathfrak{G}
- $\mathfrak{G}_{\lambda} := \mathfrak{G}/\operatorname{Ann}_{\mathfrak{G}}(\mathcal{L}(\lambda))$

Fact: \mathfrak{G}_{λ} has finite dimensional spaces of 2-morphisms

nac

- \mathfrak{G} 2-Kac-Moody algebra of finite type
- $\mathcal{L}(\lambda)$ simple highest weight 2-representation of \mathfrak{G}
- $\mathfrak{G}_{\lambda} := \mathfrak{G}/\operatorname{Ann}_{\mathfrak{G}}(\mathcal{L}(\lambda))$

Fact: \mathfrak{G}_{λ} has finite dimensional spaces of 2-morphisms

nac

 \Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition: A **projective** endofunctor of *A*-mod is tensoring with a projective *A*–*A*-bimodule, up to isomorphism

 C_A — the 2-category of projective endofunctors of A-mod

Fact: C_A has finitely many indecomposables up to isomorphism

Fact: C_A has finite dimensional spaces of 2-morphisms

\Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition: A **projective** endofunctor of *A*-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 \mathcal{C}_A — the 2-category of projective endofunctors of A-mod

Fact: C_A has finitely many indecomposables up to isomorphism

Fact: C_A has finite dimensional spaces of 2-morphisms

- \Bbbk algebraically closed field
- A finite dimensional k-algebra

Definition: A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 \mathcal{C}_A — the 2-category of projective endofunctors of A-mod

Fact: C_A has finitely many indecomposables up to isomorphism

 $\Bbbk - algebraically closed field$

A — finite dimensional k-algebra

Definition: A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 C_A — the 2-category of projective endofunctors of A-mod

Fact: C_A has finitely many indecomposables up to isomorphism

 $\Bbbk - algebraically closed field$

A — finite dimensional k-algebra

Definition: A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 C_A — the 2-category of projective endofunctors of A-mod

Fact: C_A has finitely many indecomposables up to isomorphism

 $\Bbbk - algebraically closed field$

A — finite dimensional k-algebra

Definition: A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 C_A — the 2-category of projective endofunctors of A-mod

Fact: C_A has finitely many indecomposables up to isomorphism

 \Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition: A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 C_A — the 2-category of projective endofunctors of A-mod

Fact: C_A has finitely many indecomposables up to isomorphism

 \Bbbk — algebraically closed field

A — finite dimensional k-algebra

Definition: A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 C_A — the 2-category of projective endofunctors of A-mod

Fact: C_A has finitely many indecomposables up to isomorphism

Definition: An additive $\Bbbk\mbox{-linear}$ category ${\mathcal A}$ is finitary if

- ► *A* is idempotent split;
- A has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over k).

Example: A-proj for a finite dimensional k-algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong \mathcal{A}$ -proj for some \mathcal{A} .

Definition: An additive $\Bbbk\text{-linear category}\;\mathcal{A}\;\text{is finitary}\;\text{if}$

- ► *A* is idempotent split;
- A has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over k).

Example: A-proj for a finite dimensional k-algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong \mathcal{A}$ -proj for some \mathcal{A} .

Definition: An additive $\Bbbk\text{-linear category}\;\mathcal{A}\;\text{is finitary if}\;$

• \mathcal{A} is idempotent split;

- A has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over \Bbbk).

Example: A-proj for a finite dimensional k-algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong \mathcal{A}$ -proj for some \mathcal{A} .

Definition: An additive $\Bbbk\text{-linear category}\;\mathcal{A}\;\text{is finitary if}\;$

- \mathcal{A} is idempotent split;
- ► *A* has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over \Bbbk).

Example: A-proj for a finite dimensional k-algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong \mathcal{A}$ -proj for some \mathcal{A} .

Definition: An additive $\Bbbk\text{-linear category}\;\mathcal{A}\;\text{is finitary}\;\text{if}$

- \mathcal{A} is idempotent split;
- ► *A* has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over \Bbbk).

Example: A-proj for a finite dimensional k-algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong \mathcal{A}$ -proj for some \mathcal{A} .

Definition: An additive $\Bbbk\text{-linear category }\mathcal{A} \text{ is finitary if }$

- \mathcal{A} is idempotent split;
- ► *A* has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over \Bbbk).

Example: A-proj for a finite dimensional \Bbbk -algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong \mathcal{A}$ -proj for some \mathcal{A} .

Definition: An additive $\Bbbk\text{-linear category}\;\mathcal{A}\;\text{is finitary}\;\text{if}$

- \mathcal{A} is idempotent split;
- ► *A* has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over \Bbbk).

Example: A-proj for a finite dimensional \Bbbk -algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong A$ -proj for some A.

Definition: An additive $\Bbbk\text{-linear category}\;\mathcal{A}\;\text{is finitary}\;\text{if}$

- \mathcal{A} is idempotent split;
- ► *A* has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over \Bbbk).

Example: A-proj for a finite dimensional \Bbbk -algebra A.

Fact: If \mathcal{A} is finitary, then $\mathcal{A} \cong A$ -proj for some A.

Finitary 2-categories.

Definition: A 2-category ${\mathcal C}$ is finitary over \Bbbk if

C has finitely many objects;

- ▶ each C(i, j) is finitary k-linear;
- composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra;
- ► 𝔅_λ;
- ► C_A ;

Finitary 2-categories are 2-analogues of finite dimensional algebras

Finitary 2-categories.

Definition: A 2-category $\mathcal C$ is finitary over \Bbbk if

- ▶ C has finitely many objects;
- each C(i, j) is finitary k-linear;
- composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra;
- ► 𝔅_λ;
- ► C_A ;

Finitary 2-categories are 2-analogues of finite dimensional algebras
Definition: A 2-category $\mathcal C$ is finitary over \Bbbk if

► C has finitely many objects;

- ▶ each C(i, j) is finitary k-linear;
- composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra;
- ► 𝔅_λ;
- ► C_A ;

Finitary 2-categories are 2-analogues of finite dimensional algebras

Definition: A 2-category $\mathcal C$ is finitary over \Bbbk if

- ▶ C has finitely many objects;
- each C(i, j) is finitary k-linear;
- composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra;
- ► 𝔅_λ;
- ► C_A ;

Finitary 2-categories are 2-analogues of finite dimensional algebras

Definition: A 2-category $\mathcal C$ is finitary over \Bbbk if

- ▶ C has finitely many objects;
- each C(i, j) is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra;
- ► 𝔅_λ;
- ► C_A ;

Finitary 2-categories are 2-analogues of finite dimensional algebras

Definition: A 2-category $\mathcal C$ is finitary over \Bbbk if

- ▶ C has finitely many objects;
- each C(i, j) is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra;
- ► 𝔅_λ;
- ► C_A ;

Finitary 2-categories are 2-analogues of finite dimensional algebras

Definition: A 2-category $\mathcal C$ is finitary over \Bbbk if

- ▶ C has finitely many objects;
- ▶ each C(i, j) is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra;
- ► 𝔅_λ;
- ► C_A;

Finitary 2-categories are 2-analogues of finite dimensional algebras

Definition: A 2-category $\mathcal C$ is finitary over \Bbbk if

- ▶ C has finitely many objects;
- each C(i, j) is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra;
- ► 𝔅_λ;
- ► C_A ;

Finitary 2-categories are 2-analogues of finite dimensional algebras

Definition: A 2-category $\mathcal C$ is finitary over \Bbbk if

- ▶ C has finitely many objects;
- ▶ each C(i, j) is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra;
- ► 𝔅_λ;
- ► C_A ;

Finitary 2-categories are 2-analogues of finite dimensional algebras

Definition: A 2-category $\mathcal C$ is finitary over \Bbbk if

- ▶ C has finitely many objects;
- ▶ each C(i, j) is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra;
- ► 𝔅_λ;
- ► C_A ;

Finitary 2-categories are 2-analogues of finite dimensional algebras

Definition: A 2-category $\mathcal C$ is finitary over \Bbbk if

- ▶ C has finitely many objects;
- ▶ each C(i, j) is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra;
- ► 𝔅_λ;
- ► *C*_A;

Finitary 2-categories are 2-analogues of finite dimensional algebras

Definition: A 2-category $\mathcal C$ is finitary over \Bbbk if

- ▶ C has finitely many objects;
- each C(i, j) is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra;
- ► 𝔅_λ;
- ► *C*_A;

Finitary 2-categories are 2-analogues of finite dimensional algebras

Definition: A 2-category $\mathcal C$ is finitary over \Bbbk if

- ▶ C has finitely many objects;
- each C(i, j) is finitary k-linear;
- ► composition is **biadditive** and **k-bilinear**;
- identity 1-morphisms are indecomposable.

Examples:

- Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra;
- ► 𝔅_λ;
- ► *C*_A;

Finitary 2-categories are 2-analogues of finite dimensional algebras

\mathcal{C} — finitary 2-category

 $\Sigma(\mathcal{C})$ — isoclasses of indecomposable 1-morphisms in \mathcal{C}

Fact: $\Sigma(\mathcal{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathcal{C})G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells $\langle \Box \rangle, \langle \Box \rangle, \langle \Box \rangle, \langle \Xi \rangle, \langle \Xi \rangle$

\mathcal{C} — finitary 2-category

 $\Sigma(\mathcal{C})$ — isoclasses of indecomposable 1-morphisms in \mathcal{C}

Fact: $\Sigma(\mathcal{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathcal{C})G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells $\langle \Box \rangle, \langle \Box \rangle, \langle \Box \rangle, \langle \Xi \rangle, \langle \Xi \rangle$

 \mathcal{C} — finitary 2-category

$\Sigma(\mathcal{C})$ — isoclasses of indecomposable 1-morphisms in \mathcal{C}

Fact: $\Sigma(\mathcal{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathcal{C})G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells $\langle \Box \rangle, \langle \Box \rangle, \langle \Box \rangle, \langle \Xi \rangle, \langle \Xi \rangle$

 \mathcal{C} — finitary 2-category

 $\Sigma(\mathcal{C})$ — isoclasses of indecomposable 1-morphisms in \mathcal{C}

Fact: $\Sigma(\mathcal{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathcal{C})G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these areKazhdan-Lusztig orders and cells $\langle \Box \rangle, \langle \overline{\sigma} \rangle, \langle \overline{z} \rangle, \langle \overline{z} \rangle$

 \mathcal{C} — finitary 2-category

 $\Sigma(\mathcal{C})$ — isoclasses of indecomposable 1-morphisms in \mathcal{C}

Fact: $\Sigma(\mathcal{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathcal{C})G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells $\langle \Box \rangle, \langle \Box \rangle, \langle \Box \rangle, \langle \Xi \rangle, \langle \Xi \rangle$

 \mathcal{C} — finitary 2-category

 $\Sigma(\mathcal{C})$ — isoclasses of indecomposable 1-morphisms in \mathcal{C}

Fact: $\Sigma(\mathcal{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathcal{C})G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells $\langle \Box \rangle, \langle \Box \rangle, \langle \Box \rangle, \langle \Xi \rangle, \langle \Xi \rangle$

 \mathcal{C} — finitary 2-category

 $\Sigma(\mathcal{C})$ — isoclasses of indecomposable 1-morphisms in \mathcal{C}

Fact: $\Sigma(\mathcal{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathcal{C})G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells

 \mathcal{C} — finitary 2-category

 $\Sigma(\mathcal{C})$ — isoclasses of indecomposable 1-morphisms in \mathcal{C}

Fact: $\Sigma(\mathcal{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathcal{C})G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells $\langle \Box \rangle, \langle \Box \rangle, \langle \Box \rangle, \langle \Box \rangle, \langle \Box \rangle$

 \mathcal{C} — finitary 2-category

 $\Sigma(\mathcal{C})$ — isoclasses of indecomposable 1-morphisms in \mathcal{C}

Fact: $\Sigma(\mathcal{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathcal{C})G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells

 \mathcal{C} — finitary 2-category

 $\Sigma(\mathcal{C})$ — isoclasses of indecomposable 1-morphisms in \mathcal{C}

Fact: $\Sigma(\mathcal{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathcal{C})G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

 $B_{ij} := Ae_i \otimes_{\Bbbk} e_j A \text{ for } i, j = 1, 2, \dots, n$ Fact: $\Sigma(\mathcal{C}_A) = \{A, B_{ij} : i, j = 1, 2, \dots, n\}$

For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

 $\mathcal{L}_j := \{ { ext{B}}_{ij} : i = 1, 2, \dots, n \}$ and $\mathcal{R}_i := \{ { ext{B}}_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_i and $\mathcal{L}_{i'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

$$\begin{split} \mathsf{B}_{ij} &:= A e_i \otimes_{\Bbbk} e_j A \text{ for } i, j = 1, 2, \dots, n \\ \mathsf{Fact:} \ \Sigma(\mathcal{C}_A) &= \{A, \mathsf{B}_{ij} : i, j = 1, 2, \dots, n\} \end{split}$$

For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

 $\mathcal{L}_j := \{ B_{ij} : i = 1, 2, \dots, n \}$ and $\mathcal{R}_i := \{ B_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_j and $\mathcal{L}_{j'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_j 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \dots + e_n$ — primitive decomposition of $1 \in A$

$$\begin{split} \mathsf{B}_{ij} &:= A e_i \otimes_{\Bbbk} e_j A \text{ for } i, j = 1, 2, \dots, n \\ \mathsf{Fact:} \ \Sigma(\mathcal{C}_A) &= \{A, \mathsf{B}_{ij} : i, j = 1, 2, \dots, n\} \end{split}$$

For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

 $\mathcal{L}_j := \{ { ext{B}}_{ij} : i = 1, 2, \dots, n \}$ and $\mathcal{R}_i := \{ { ext{B}}_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_i and $\mathcal{L}_{i'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \dots + e_n$ — primitive decomposition of $1 \in A$

 $B_{ij} := Ae_i \otimes_{\Bbbk} e_j A \text{ for } i, j = 1, 2, \dots, n$ Fact: $\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, \dots, n\}$

For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

 $\mathcal{L}_j:=\{\mathtt{B}_{ij}:i=1,2,\ldots,n\}$ and $\mathcal{R}_i:=\{\mathtt{B}_{ij}:j=1,2,\ldots,n\}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_i and $\mathcal{L}_{i'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

$$\begin{split} \mathsf{B}_{ij} &:= A e_i \otimes_{\Bbbk} e_j A \text{ for } i, j = 1, 2, \dots, n \\ \mathsf{Fact:} \ \Sigma(\mathcal{C}_A) &= \{A, \mathsf{B}_{ij} : i, j = 1, 2, \dots, n\} \end{split}$$

For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

 $\mathcal{L}_j := \{ B_{ij} : i = 1, 2, \dots, n \}$ and $\mathcal{R}_i := \{ B_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_i and $\mathcal{L}_{i'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \cdots + e_n$ — primitive decomposition of $1 \in A$

$$\begin{split} & \mathsf{B}_{ij} := Ae_i \otimes_{\Bbbk} e_j A \text{ for } i, j = 1, 2, \dots, n \\ & \mathsf{Fact:} \ \Sigma(\mathcal{C}_A) = \{A, \mathsf{B}_{ij} : i, j = 1, 2, \dots, n\} \end{split}$$

For $\mathcal{J}_1 = \{A\}$ and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \geq_J \mathcal{J}_1$

 $\mathcal{L}_j := \{ B_{ij} : i = 1, 2, \dots, n \}$ and $\mathcal{R}_i := \{ B_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_i and $\mathcal{L}_{i'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \dots + e_n$ — primitive decomposition of $1 \in A$

$$\begin{split} \mathsf{B}_{ij} &:= A e_i \otimes_{\Bbbk} e_j A \text{ for } i, j = 1, 2, \dots, n \\ \mathsf{Fact:} \ \Sigma(\mathcal{C}_A) &= \{A, \mathsf{B}_{ij} : i, j = 1, 2, \dots, n\} \end{split}$$

For
$$\mathcal{J}_1 = \{A\}$$
 and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

$$\mathcal{L}_j := \{ B_{ij} : i = 1, 2, \dots, n \}$$
 and $\mathcal{R}_i := \{ B_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_j and $\mathcal{L}_{j'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \dots + e_n$ — primitive decomposition of $1 \in A$

$$\begin{split} \mathsf{B}_{ij} &:= A e_i \otimes_{\Bbbk} e_j A \text{ for } i, j = 1, 2, \dots, n \\ \mathsf{Fact:} \ \Sigma(\mathcal{C}_A) &= \{A, \mathsf{B}_{ij} : i, j = 1, 2, \dots, n\} \end{split}$$

For
$$\mathcal{J}_1 = \{A\}$$
 and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \geq_J \mathcal{J}_1$

$$\mathcal{L}_j := \{ B_{ij} : i = 1, 2, \dots, n \}$$
 and $\mathcal{R}_i := \{ B_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_i and $\mathcal{L}_{i'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \dots + e_n$ — primitive decomposition of $1 \in A$

$$B_{ij} := Ae_i \otimes_{\Bbbk} e_j A \text{ for } i, j = 1, 2, \dots, n$$

Fact: $\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, \dots, n\}$

For
$$\mathcal{J}_1 = \{A\}$$
 and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

$$\mathcal{L}_j := \{ B_{ij} : i = 1, 2, \dots, n \}$$
 and $\mathcal{R}_i := \{ B_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_j and $\mathcal{L}_{j'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

A — basic, connected finite dimensional k-algebra

 $1 = e_1 + e_2 + \dots + e_n$ — primitive decomposition of $1 \in A$

$$B_{ij} := Ae_i \otimes_{\Bbbk} e_j A \text{ for } i, j = 1, 2, \dots, n$$

Fact: $\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, \dots, n\}$

For
$$\mathcal{J}_1 = \{A\}$$
 and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \ge_J \mathcal{J}_1$

$$\mathcal{L}_j := \{ B_{ij} : i = 1, 2, \dots, n \}$$
 and $\mathcal{R}_i := \{ B_{ij} : j = 1, 2, \dots, n \}$

 $\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$

Note: \mathcal{L}_j and $\mathcal{L}_{j'}$ are not \geq_L -comparable if $j \neq j'$, similarly for the \mathcal{R}_i 's

The egg-box diagram

The egg-box diagram

The egg-box diagram

Strongly regular two-sided cells

Notable properties of \mathcal{J}_2 in the above example:

- different left cells inside \mathcal{J}_2 are not \geq_L -comparable;
- different right cells inside \mathcal{J}_2 are not \geq_R -comparable;
- $\blacktriangleright |\mathcal{L}_j \cap \mathcal{R}_i| = 1$

Definition: A two-sided cell ${\mathcal J}$ having the above properties is called strongly regular

Examples:

- both 2-sided cells in C_A
- all 2-sided cells in \mathfrak{G}_{λ}
- all two-sided cells for Soergel bimodules (proj. functors) in type A

Note: Fails for Soergel bimodules outside type A in general

Strongly regular two-sided cells

Notable properties of \mathcal{J}_2 in the above example:

- different left cells inside \mathcal{J}_2 are not \geq_L -comparable;
- different right cells inside \mathcal{J}_2 are not \geq_R -comparable;
- $\blacktriangleright |\mathcal{L}_j \cap \mathcal{R}_i| = 1$

Definition: A two-sided cell ${\mathcal J}$ having the above properties is called strongly regular

Examples:

- both 2-sided cells in C_A
- all 2-sided cells in \mathfrak{G}_{λ}
- all two-sided cells for Soergel bimodules (proj. functors) in type A

Note: Fails for Soergel bimodules outside type A in general

nac
Strongly regular two-sided cells

Notable properties of \mathcal{J}_2 in the above example:

• different left cells inside \mathcal{J}_2 are not \geq_L -comparable;

• different right cells inside \mathcal{J}_2 are not \geq_R -comparable;

 $\blacktriangleright |\mathcal{L}_j \cap \mathcal{R}_i| = 1$

Definition: A two-sided cell ${\mathcal J}$ having the above properties is called strongly regular

Examples:

- both 2-sided cells in C_A
- all 2-sided cells in \mathfrak{G}_{λ}
- all two-sided cells for Soergel bimodules (proj. functors) in type A

Note: Fails for Soergel bimodules outside type A in general

Sac

Strongly regular two-sided cells

Notable properties of \mathcal{J}_2 in the above example:

- different left cells inside \mathcal{J}_2 are not \geq_L -comparable;
- different right cells inside \mathcal{J}_2 are not \geq_R -comparable;

 $\blacktriangleright |\mathcal{L}_j \cap \mathcal{R}_i| = 1$

Definition: A two-sided cell ${\mathcal J}$ having the above properties is called strongly regular

Examples:

- both 2-sided cells in C_A
- ► all 2-sided cells in 𝔅_λ
- all two-sided cells for Soergel bimodules (proj. functors) in type A

Note: Fails for Soergel bimodules outside type A in general

Sac

Strongly regular two-sided cells

Notable properties of \mathcal{J}_2 in the above example:

- different left cells inside \mathcal{J}_2 are not \geq_L -comparable;
- different right cells inside \mathcal{J}_2 are not \geq_R -comparable;
- $\blacktriangleright |\mathcal{L}_j \cap \mathcal{R}_i| = 1$

Definition: A two-sided cell ${\mathcal J}$ having the above properties is called strongly regular

Examples:

- both 2-sided cells in C_A
- all 2-sided cells in \mathfrak{G}_{λ}
- all two-sided cells for Soergel bimodules (proj. functors) in type A

Note: Fails for Soergel bimodules outside type A in general

- different left cells inside \mathcal{J}_2 are not \geq_L -comparable;
- different right cells inside \mathcal{J}_2 are not \geq_R -comparable;
- ▶ $|\mathcal{L}_j \cap \mathcal{R}_i| = 1$

Definition: A two-sided cell ${\mathcal J}$ having the above properties is called strongly regular

Examples:

- both 2-sided cells in C_A
- all 2-sided cells in \mathfrak{G}_{λ}
- all two-sided cells for Soergel bimodules (proj. functors) in type A

Note: Fails for Soergel bimodules outside type A in general

Sac

- different left cells inside \mathcal{J}_2 are not \geq_L -comparable;
- different right cells inside \mathcal{J}_2 are not \geq_R -comparable;
- ▶ $|\mathcal{L}_j \cap \mathcal{R}_i| = 1$

Definition: A two-sided cell ${\mathcal J}$ having the above properties is called strongly regular

Examples:

- ▶ both 2-sided cells in C_A
- all 2-sided cells in \mathfrak{G}_{λ}
- all two-sided cells for Soergel bimodules (proj. functors) in type A

Note: Fails for Soergel bimodules outside type A in general

- different left cells inside \mathcal{J}_2 are not \geq_L -comparable;
- different right cells inside \mathcal{J}_2 are not \geq_R -comparable;
- ▶ $|\mathcal{L}_j \cap \mathcal{R}_i| = 1$

Definition: A two-sided cell ${\mathcal J}$ having the above properties is called strongly regular

Examples:

- ▶ both 2-sided cells in C_A
- all 2-sided cells in \mathfrak{G}_{λ}
- ▶ all two-sided cells for Soergel bimodules (proj. functors) in type A

Note: Fails for Soergel bimodules outside type A in general

- different left cells inside \mathcal{J}_2 are not \geq_L -comparable;
- different right cells inside \mathcal{J}_2 are not \geq_R -comparable;
- ▶ $|\mathcal{L}_j \cap \mathcal{R}_i| = 1$

Definition: A two-sided cell ${\mathcal J}$ having the above properties is called strongly regular

Examples:

- ▶ both 2-sided cells in C_A
- \blacktriangleright all 2-sided cells in \mathfrak{G}_λ
- ▶ all two-sided cells for Soergel bimodules (proj. functors) in type A

Note: Fails for Soergel bimodules outside type A in general

- different left cells inside \mathcal{J}_2 are not \geq_L -comparable;
- different right cells inside \mathcal{J}_2 are not \geq_R -comparable;
- ▶ $|\mathcal{L}_j \cap \mathcal{R}_i| = 1$

Definition: A two-sided cell ${\mathcal J}$ having the above properties is called strongly regular

Examples:

- ▶ both 2-sided cells in C_A
- \blacktriangleright all 2-sided cells in \mathfrak{G}_λ
- ▶ all two-sided cells for Soergel bimodules (proj. functors) in type A

Note: Fails for Soergel bimodules outside type A in general

- different left cells inside \mathcal{J}_2 are not \geq_L -comparable;
- different right cells inside \mathcal{J}_2 are not \geq_R -comparable;
- ▶ $|\mathcal{L}_j \cap \mathcal{R}_i| = 1$

Definition: A two-sided cell ${\mathcal J}$ having the above properties is called strongly regular

Examples:

- ▶ both 2-sided cells in C_A
- ▶ all 2-sided cells in \mathfrak{G}_{λ}
- ▶ all two-sided cells for Soergel bimodules (proj. functors) in type A

Note: Fails for Soergel bimodules outside type *A* in general

- different left cells inside \mathcal{J}_2 are not \geq_L -comparable;
- different right cells inside \mathcal{J}_2 are not \geq_R -comparable;
- ▶ $|\mathcal{L}_j \cap \mathcal{R}_i| = 1$

Definition: A two-sided cell ${\mathcal J}$ having the above properties is called strongly regular

Examples:

- ▶ both 2-sided cells in C_A
- ▶ all 2-sided cells in \mathfrak{G}_{λ}
- ▶ all two-sided cells for Soergel bimodules (proj. functors) in type A

Note: Fails for Soergel bimodules outside type *A* in general

2-representations

 \mathcal{C} — finitary 2-category

"Definition": A 2-representation of C is a functorial action of C on a suitable category(ies).

Example: Principal 2-representation $P_i := C(i, _)$ for $i \in C$

Note: 2-representations of C form a 2-category where

1-morphisms are 2-natural transformations

2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

"Definition": A 2-representation of C is a functorial action of C on a suitable category(ies).

Example: Principal 2-representation $\textbf{P}_{\mathtt{i}}:=\mathcal{C}(\mathtt{i},_)$ for $\mathtt{i}\in\mathcal{C}$

Note: 2-representations of C form a 2-category where

1-morphisms are 2-natural transformations

2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

200

"Definition": A 2-representation of C is a functorial action of C on a suitable category(ies).

Example: Principal 2-representation $P_i := C(i, _)$ for $i \in C$

Note: 2-representations of C form a 2-category where

1-morphisms are 2-natural transformations

2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

200

"Definition": A 2-representation of C is a functorial action of C on a suitable category(ies).

Example: Principal 2-representation $\textbf{P}_{\mathtt{i}}:=\mathcal{C}(\mathtt{i},_)$ for $\mathtt{i}\in\mathcal{C}$

Note: 2-representations of C form a 2-category where

1-morphisms are 2-natural transformations

2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

200

 $\mathcal{C}-\mathsf{finitary}\ \mathsf{2}\mathsf{-}\mathsf{category}$

"Definition": A 2-representation of C is a functorial action of C on a suitable category(ies).

Example: Principal 2-representation $P_i := C(i, _)$ for $i \in C$

Note: 2-representations of ${\mathcal C}$ form a 2-category where

1-morphisms are 2-natural transformations

2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

 $\mathcal{C}-\text{finitary 2-category}$

"Definition": A 2-representation of C is a functorial action of C on a suitable category(ies).

Example: Principal 2-representation $P_i := C(i, _)$ for $i \in C$

Note: 2-representations of C form a 2-category where

▶ 1-morphisms are 2-natural transformations

2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

"Definition": A 2-representation of C is a functorial action of C on a suitable category(ies).

Example: Principal 2-representation $P_i := C(i, _)$ for $i \in C$

Note: 2-representations of C form a 2-category where

- ▶ 1-morphisms are 2-natural transformations
- ► 2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

 $\mathcal{C}-\text{finitary 2-category}$

"Definition": A 2-representation of C is a functorial action of C on a suitable category(ies).

Example: Principal 2-representation $P_i := C(i, _)$ for $i \in C$

Note: 2-representations of C form a 2-category where

- ▶ 1-morphisms are 2-natural transformations
- ► 2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

 $\mathcal{C}-\text{finitary 2-category}$

"Definition": A 2-representation of C is a functorial action of C on a suitable category(ies).

Example: Principal 2-representation $P_i := C(i, _)$ for $i \in C$

Note: 2-representations of C form a 2-category where

- ▶ 1-morphisms are 2-natural transformations
- ► 2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations

C — finitary 2-category

 \mathcal{L} — left cell in \mathcal{C}

i — the source for 1-morphisms in ${\cal L}$

P_i — the i-th principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of \mathbf{P}_{i} generated by $\mathrm{F} \geq_{L} \mathcal{L}$

I — the unique maximal ${\mathcal C}$ -invariant ideal in ${f Q}_{\mathcal L}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of C for \mathcal{L}

Example: The defining (tautological) 2-representation of C_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

\mathcal{C} — finitary 2-category

\mathcal{L} — left cell in \mathcal{C}

 \mathtt{i} — the source for 1-morphisms in $\mathcal L$

 P_i — the i-th principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of \mathbf{P}_{i} generated by $\mathrm{F} \geq_{L} \mathcal{L}$

I — the unique maximal ${\mathcal C}$ -invariant ideal in ${f Q}_{\mathcal L}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of C for \mathcal{L}

Example: The defining (tautological) 2-representation of C_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

 \mathcal{C} — finitary 2-category

 $\mathcal{L} - \mathsf{left} \ \mathsf{cell} \ \mathsf{in} \ \mathcal{C}$

i — the source for 1-morphisms in ${\cal L}$

 P_i — the i-th principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of \mathbf{P}_{i} generated by $\mathrm{F} \geq_{L} \mathcal{L}$

I — the unique maximal ${\mathcal C}$ -invariant ideal in ${f Q}_{\mathcal L}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of C for \mathcal{L}

Example: The defining (tautological) 2-representation of C_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

- \mathcal{C} finitary 2-category
- $\mathcal{L} \mathsf{left} \ \mathsf{cell} \ \mathsf{in} \ \mathcal{C}$
- \mathtt{i} the source for 1-morphisms in $\mathcal L$

 P_i — the i-th principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of \mathbf{P}_{i} generated by $\mathrm{F} \geq_{L} \mathcal{L}$

I — the unique maximal ${\mathcal C}$ -invariant ideal in ${f Q}_{\mathcal L}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of C for \mathcal{L}

Example: The defining (tautological) 2-representation of C_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

- \mathcal{C} finitary 2-category
- $\mathcal{L} \mathsf{left} \ \mathsf{cell} \ \mathsf{in} \ \mathcal{C}$
- \mathtt{i} the source for 1-morphisms in $\mathcal L$
- $\mathbf{P}_{\texttt{i}}$ the <code>i-th</code> principal 2-representation
- $\mathbf{Q}_{\mathcal{L}}$ 2-subrepresentation of \mathbf{P}_{i} generated by $\mathbf{F} \geq_{L} \mathcal{L}$
- I the unique maximal ${\mathcal C}$ -invariant ideal in ${\sf Q}_{\mathcal L}$
- Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ the cell 2-representation of C for \mathcal{L}

Example: The defining (tautological) 2-representation of C_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

 \mathcal{C} — finitary 2-category

 $\mathcal{L} - \mathsf{left} \ \mathsf{cell} \ \mathsf{in} \ \mathcal{C}$

 \mathtt{i} — the source for 1-morphisms in $\mathcal L$

 $\mathbf{P}_{\texttt{i}}$ — the <code>i-th</code> principal 2-representation

 $\textbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of \textbf{P}_{i} generated by $F \geq_{\textit{L}} \mathcal{L}$

 ${\sf I}$ — the unique maximal ${\mathcal C}$ -invariant ideal in ${\sf Q}_{\mathcal L}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of C for \mathcal{L}

Example: The defining (tautological) 2-representation of C_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

 \mathcal{C} — finitary 2-category

 $\mathcal{L} - \mathsf{left} \ \mathsf{cell} \ \mathsf{in} \ \mathcal{C}$

 \mathtt{i} — the source for 1-morphisms in $\mathcal L$

 $\mathbf{P}_{\texttt{i}}$ — the <code>i-th</code> principal 2-representation

 $\boldsymbol{Q}_{\mathcal{L}}$ — 2-subrepresentation of $\boldsymbol{\mathsf{P}}_{\mathtt{i}}$ generated by $\mathrm{F} \geq_{\textit{L}} \mathcal{L}$

I — the unique maximal $\mathcal C\text{-invariant}$ ideal in $Q_\mathcal L$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of C for \mathcal{L}

Example: The defining (tautological) 2-representation of C_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

 \mathcal{C} — finitary 2-category

 $\mathcal{L} - \mathsf{left} \ \mathsf{cell} \ \mathsf{in} \ \mathcal{C}$

 \mathtt{i} — the source for 1-morphisms in $\mathcal L$

 $\mathbf{P}_{\texttt{i}}$ — the <code>i-th</code> principal 2-representation

 $\textbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of \textbf{P}_{i} generated by $F \geq_{\textit{L}} \mathcal{L}$

I — the unique maximal $\mathcal C\text{-invariant}$ ideal in $Q_\mathcal L$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of C for \mathcal{L}

Example: The defining (tautological) 2-representation of C_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

 \mathcal{C} — finitary 2-category

 $\mathcal{L} - \mathsf{left} \ \mathsf{cell} \ \mathsf{in} \ \mathcal{C}$

 \mathtt{i} — the source for 1-morphisms in $\mathcal L$

 $\mathbf{P}_{\texttt{i}}$ — the <code>i-th</code> principal 2-representation

 $\textbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of \textbf{P}_{i} generated by $F \geq_{\textit{L}} \mathcal{L}$

I — the unique maximal $\mathcal C\text{-invariant}$ ideal in $Q_\mathcal L$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of C for \mathcal{L}

Example: The defining (tautological) 2-representation of C_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

 \mathcal{C} — finitary 2-category

 $\mathcal{L} - \mathsf{left} \ \mathsf{cell} \ \mathsf{in} \ \mathcal{C}$

 \mathtt{i} — the source for 1-morphisms in $\mathcal L$

 $\mathbf{P}_{\texttt{i}}$ — the <code>i-th</code> principal 2-representation

 $\textbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of \textbf{P}_{i} generated by $F \geq_{\textit{L}} \mathcal{L}$

I — the unique maximal $\mathcal C\text{-invariant}$ ideal in $Q_\mathcal L$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of C for \mathcal{L}

Example: The defining (tautological) 2-representation of C_A is equivalent to $C_{\mathcal{L}_j}$ for any j = 1, 2, ..., n.

M — 2-representation of C

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial C-invariant ideals.

Example: Cell 2-representations are simple transitive.

M — 2-representation of C

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial C-invariant ideals.

Example: Cell 2-representations are simple transitive.

\mathbf{M} — 2-representation of $\mathcal C$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial C-invariant ideals.

Example: Cell 2-representations are simple transitive.

- \mathcal{C} finitary 2-category
- \mathbf{M} 2-representation of $\mathcal C$

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial C-invariant ideals.

Example: Cell 2-representations are simple transitive.

- \mathcal{C} finitary 2-category
- \mathbf{M} 2-representation of $\mathcal C$

Definition: M is transitive if **M** is finitary and for any indecomposable X, Y in **M** there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial C-invariant ideals.

Example: Cell 2-representations are simple transitive.

- \mathcal{C} finitary 2-category
- \mathbf{M} 2-representation of $\mathcal C$

Definition: M is transitive if **M** is finitary and for any indecomposable X, Y in **M** there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: **M** is simple transitive if **M** is transitive and has no non-trivial C-invariant ideals.

Example: Cell 2-representations are simple transitive.

- \mathcal{C} finitary 2-category
- \mathbf{M} 2-representation of $\mathcal C$

Definition: M is transitive if **M** is finitary and for any indecomposable X, Y in **M** there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial C-invariant ideals.

Example: Cell 2-representations are simple transitive.
- \mathcal{C} finitary 2-category
- \mathbf{M} 2-representation of $\mathcal C$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if **M** is finitary and for any indecomposable X, Y in **M** there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial C-invariant ideals.

Example: Cell 2-representations are simple transitive.

- \mathcal{C} finitary 2-category
- \mathbf{M} 2-representation of $\mathcal C$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if **M** is finitary and for any indecomposable X, Y in **M** there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial C-invariant ideals.

Example: Cell 2-representations are simple transitive.

 \mathcal{C} — finitary 2-category

Definition: C is fiat if

- there is a weak involution $* : \mathcal{C} \to \mathcal{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This means that F and F* are biadjoint in any 2-representation

Examples:

- Soergel bimodules (projective functors on \mathcal{O}_0)
- ▶ \mathfrak{G}_{λ}
- C_A for A self-injective and weakly symmetric

 \mathcal{C} — finitary 2-category

Definition: C is fiat if

- there is a weak involution $* : \mathcal{C} \to \mathcal{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This means that F and F* are biadjoint in any 2-representation

Examples:

- ▶ Soergel bimodules (projective functors on *O*₀)
- ▶ \mathfrak{G}_{λ}
- C_A for A self-injective and weakly symmetric

 \mathcal{C} — finitary 2-category

Definition: \mathcal{C} is fiat if

- there is a weak involution $* : \mathcal{C} \to \mathcal{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

 $F(\beta) \circ_1 \alpha_F = id_F$ and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This means that F and F^* are biadjoint in any 2-representation

Examples:

- ▶ Soergel bimodules (projective functors on *O*₀)
- ▶ \mathfrak{G}_{λ}
- C_A for A self-injective and weakly symmetric

 $\mathcal{C}-\mathsf{finitary}\ 2\mathsf{-}\mathsf{category}$

Definition: ${\mathcal C}$ is fiat if

- there is a weak involution $* : \mathcal{C} \to \mathcal{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This means that F and F^* are biadjoint in any 2-representation

Examples:

- ▶ Soergel bimodules (projective functors on *O*₀)
- ▶ \mathfrak{G}_{λ}
- C_A for A self-injective and weakly symmetric

 $\mathcal{C}-\mathsf{finitary}\ 2\mathsf{-}\mathsf{category}$

Definition: ${\mathcal C}$ is fiat if

- there is a weak involution $* : \mathcal{C} \to \mathcal{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This means that F and F^* are biadjoint in any 2-representation

Examples:

- ▶ Soergel bimodules (projective functors on *O*₀)
- \mathfrak{G}_{λ}
- C_A for A self-injective and weakly symmetric

 $\mathcal{C}-\mathsf{finitary}\ 2\mathsf{-}\mathsf{category}$

Definition: ${\mathcal C}$ is fiat if

- there is a weak involution $* : \mathcal{C} \to \mathcal{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This means that ${\rm F}$ and ${\rm F}^*$ are biadjoint in any 2-representation

Examples:

- Soergel bimodules (projective functors on \mathcal{O}_0)
- \mathfrak{G}_{λ}
- C_A for A self-injective and weakly symmetric

 $\mathcal{C}-\mathsf{finitary}\ 2\mathsf{-}\mathsf{category}$

Definition: ${\mathcal C}$ is fiat if

- there is a weak involution $* : \mathcal{C} \to \mathcal{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This means that ${\rm F}$ and ${\rm F}^*$ are biadjoint in any 2-representation

Examples:

- ▶ Soergel bimodules (projective functors on \mathcal{O}_0)
- \mathfrak{G}_{λ}
- C_A for A self-injective and weakly symmetric

 $\mathcal{C}-\mathsf{finitary}\ 2\mathsf{-}\mathsf{category}$

Definition: ${\mathcal C}$ is fiat if

- there is a weak involution $* : \mathcal{C} \to \mathcal{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This means that F and F^\ast are biadjoint in any 2-representation

Examples:

- Soergel bimodules (projective functors on \mathcal{O}_0)
- \triangleright \mathcal{O}_{λ}
- C_A for A self-injective and weakly symmetric

 $\mathcal{C}-\mathsf{finitary}\ 2\mathsf{-}\mathsf{category}$

Definition: ${\mathcal C}$ is fiat if

- there is a weak involution $* : \mathcal{C} \to \mathcal{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This means that F and F^\ast are biadjoint in any 2-representation

Examples:

- Soergel bimodules (projective functors on \mathcal{O}_0)
- \mathfrak{G}_{λ}
- C_A for A self-injective and weakly symmetric

 $\mathcal{C}-\mathsf{finitary}$ 2-category

Definition: ${\mathcal C}$ is fiat if

- there is a weak involution $* : \mathcal{C} \to \mathcal{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This means that F and F^\ast are biadjoint in any 2-representation

Examples:

- Soergel bimodules (projective functors on \mathcal{O}_0)
- \mathfrak{G}_{λ}
- C_A for A self-injective and weakly symmetric

 $\mathcal{C}-\mathsf{finitary}$ 2-category

Definition: ${\mathcal C}$ is fiat if

- there is a weak involution $* : \mathcal{C} \to \mathcal{C}$;
- ▶ there are adjunction 2-morphisms $\alpha : 1_i \to FF^*$ and $\beta : F^*F \to 1_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This means that F and F^\ast are biadjoint in any 2-representation

Examples:

- Soergel bimodules (projective functors on \mathcal{O}_0)
- \mathfrak{G}_{λ}
- C_A for A self-injective and weakly symmetric

Every "simple" fiat 2-category with a strongly regular maximal two-sided cell is "essentially" C_A for A self-injective and weakly symmetric.

Every "simple" fiat 2-category with a strongly regular maximal two-sided cell is "essentially" C_A for A self-injective and weakly symmetric.

Every "simple" fiat 2-category with a strongly regular maximal two-sided cell is "essentially" C_A for A self-injective and weakly symmetric.

Every "simple" fiat 2-category with a strongly regular maximal two-sided cell is "essentially" C_A for A self-injective and weakly symmetric.

Every simple transitive 2-representation of a fiat 2-category with strongly regular two-sided cells is equivalent to a cell 2-representation.

Every simple transitive 2-representation of a fiat 2-category with strongly regular two-sided cells is equivalent to a cell 2-representation.

Every simple transitive 2-representation of a fiat 2-category with strongly regular two-sided cells is equivalent to a cell 2-representation.

Every simple transitive 2-representation of a fiat 2-category with strongly regular two-sided cells is equivalent to a cell 2-representation.

- \mathcal{C} finitary 2-category
- \mathbf{M} finitary 2-representation of $\mathcal C$
- \mathcal{A} finitary k-linear category
- $M\boxtimes \mathcal{A}$ has the structure of a 2-representation of $\mathcal C$ where everything in $\mathcal C$ acts as the identity on $\mathcal A$
- Definition: This is called the inflation of M by ${\mathcal A}$

$\mathcal{C}-\mathsf{finitary}$ 2-category

 \mathbf{M} — finitary 2-representation of $\mathcal C$

 \mathcal{A} — finitary \Bbbk -linear category

 $M\boxtimes \mathcal{A}$ has the structure of a 2-representation of $\mathcal C$ where everything in $\mathcal C$ acts as the identity on $\mathcal A$

Definition: This is called the inflation of M by \mathcal{A}

- $\mathcal{C}-\mathsf{finitary}\ 2\mathsf{-}\mathsf{category}$
- M finitary 2-representation of $\mathcal C$
- \mathcal{A} finitary \Bbbk -linear category

Definition: This is called the inflation of M by ${\mathcal A}$

- $\mathcal{C}-\mathsf{finitary}\ \mathsf{2}\mathsf{-}\mathsf{category}$
- M finitary 2-representation of $\mathcal C$
- $\mathcal{A} \mathsf{finitary} \ \Bbbk\mathsf{-linear} \ \mathsf{category}$

 $M \boxtimes A$ has the structure of a 2-representation of C where everything in C acts as the identity on A

Definition: This is called the inflation of M by ${\mathcal A}$

- $\mathcal{C}-\mathsf{finitary}\ \mathsf{2}\mathsf{-}\mathsf{category}$
- M finitary 2-representation of $\mathcal C$
- $\mathcal{A} \mathsf{finitary} \ \Bbbk\mathsf{-linear} \ \mathsf{category}$

Definition: This is called the inflation of ${\bf M}$ by ${\cal A}$

- $\mathcal{C}-\mathsf{finitary}$ 2-category
- M finitary 2-representation of $\mathcal C$
- \mathcal{A} finitary \Bbbk -linear category

Definition: This is called the inflation of $\boldsymbol{\mathsf{M}}$ by \mathcal{A}

- $\mathcal{C}-\mathsf{finitary}$ 2-category
- M finitary 2-representation of $\mathcal C$
- \mathcal{A} finitary \Bbbk -linear category

Definition: This is called the inflation of $\boldsymbol{\mathsf{M}}$ by \mathcal{A}

 \mathbf{M} — finitary 2-representation of $\mathcal C$

M has weak Jordan-Hölder series and the corresponding weak Jordan-Hölder subquotients (simple transitive 2-representations)

Definition: **M** is isotypic if all its simple transitive subquotients are equivalent

 \mathbf{M} — finitary 2-representation of $\mathcal C$

M has weak Jordan-Hölder series and the corresponding weak Jordan-Hölder subquotients (simple transitive 2-representations)

Definition: **M** is isotypic if all its simple transitive subquotients are equivalent

San

M — finitary 2-representation of $\mathcal C$

M has weak Jordan-Hölder series and the corresponding weak Jordan-Hölder subquotients (simple transitive 2-representations)

Definition: **M** is isotypic if all its simple transitive subquotients are equivalent

M — finitary 2-representation of $\mathcal C$

M has weak Jordan-Hölder series and the corresponding weak Jordan-Hölder subquotients (simple transitive 2-representations)

Definition: **M** is isotypic if all its simple transitive subquotients are equivalent

M — finitary 2-representation of $\mathcal C$

M has weak Jordan-Hölder series and the corresponding weak Jordan-Hölder subquotients (simple transitive 2-representations)

Definition: ${\bf M}$ is isotypic if all its simple transitive subquotients are equivalent

M — finitary 2-representation of $\mathcal C$

M has weak Jordan-Hölder series and the corresponding weak Jordan-Hölder subquotients (simple transitive 2-representations)

Definition: ${\bf M}$ is isotypic if all its simple transitive subquotients are equivalent

Main theorem. [M-Miemietz]

 \mathcal{C} — fiat 2-category with unique maximal two sided cell $\mathcal J$

Assume every non-trivial 2-sided ideal in ${\mathcal C}$ contains ${\mathcal J}$

Assume \mathcal{J} is strongly regular.

Then every faithful isotypic 2-representation of C is equivalent to an inflation of $C_{\mathcal{L}}$ for a left cell \mathcal{L} in \mathcal{J} .

San

Main theorem. [M-Miemietz]

 ${\mathcal C}$ — fiat 2-category with unique maximal two sided cell ${\mathcal J}$

Assume every non-trivial 2-sided ideal in ${\mathcal C}$ contains ${\mathcal J}$

Assume \mathcal{J} is strongly regular.

Then every faithful isotypic 2-representation of C is equivalent to an inflation of $C_{\mathcal{L}}$ for a left cell \mathcal{L} in \mathcal{J} .

San
\mathcal{C} — fiat 2-category with unique maximal two sided cell $\mathcal J$

Assume every non-trivial 2-sided ideal in ${\mathcal C}$ contains ${\mathcal J}$

Assume \mathcal{J} is strongly regular.

Then every faithful isotypic 2-representation of C is equivalent to an inflation of $C_{\mathcal{L}}$ for a left cell \mathcal{L} in \mathcal{J} .

San

 \mathcal{C} — fiat 2-category with unique maximal two sided cell $\mathcal J$

Assume every non-trivial 2-sided ideal in ${\mathcal C}$ contains ${\mathcal J}$

Assume \mathcal{J} is strongly regular.

Then every faithful isotypic 2-representation of C is equivalent to an inflation of $C_{\mathcal{L}}$ for a left cell \mathcal{L} in \mathcal{J} .

200

 \mathcal{C} — fiat 2-category with unique maximal two sided cell $\mathcal J$

Assume every non-trivial 2-sided ideal in ${\mathcal C}$ contains ${\mathcal J}$

Assume $\mathcal J$ is strongly regular.

Then every faithful isotypic 2-representation of C is equivalent to an inflation of $C_{\mathcal{L}}$ for a left cell \mathcal{L} in \mathcal{J} .

DQC

 \mathcal{C} — fiat 2-category with unique maximal two sided cell $\mathcal J$

Assume every non-trivial 2-sided ideal in ${\mathcal C}$ contains ${\mathcal J}$

Assume \mathcal{J} is strongly regular.

Then every faithful isotypic 2-representation of C is equivalent to an inflation of $C_{\mathcal{L}}$ for a left cell \mathcal{L} in \mathcal{J} .

 \mathcal{C} — fiat 2-category with unique maximal two sided cell $\mathcal J$

Assume every non-trivial 2-sided ideal in ${\mathcal C}$ contains ${\mathcal J}$

Assume \mathcal{J} is strongly regular.

Then every faithful isotypic 2-representation of C is equivalent to an inflation of $C_{\mathcal{L}}$ for a left cell \mathcal{L} in \mathcal{J} .

THANK YOU!!!

프 > 프

200