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Classical BGG category O — definition

g — semi-simple f.dim. Lie algebra over C

g = n− ⊕ h⊕ n+ — triangular decomposition

Definition. [Bernstein-S.Gelfand-I.Gelfand] Category O is the full
subcategory of g-mod containing all

I finitely generated,
I h-diagonalizable;
I locally U(n+)-finite modules.
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Classical BGG category O — properties

for λ ∈ h∗ the Verma module M(λ) = U(g)/(n+, h − λ(h)) is in O

simple tops M(λ) � L(λ), λ ∈ h∗, classify simples in O

O ∼=
⊕

χ:Z(g)→C

Oχ

Oχ ∼= Aχ-mod where Aχ is a f.dim. associative algebra

each Oχ is equivalent to an integral block (maybe for other g)

Aχ is quasi-hereditary and Koszul

Aχ has the double centralizer property with respect to proj.-inj. modules

Cartan matrix of Aχ — Kazhdan-Lusztig combinatorics
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Classical Lie superalgebras

g = g0 ⊕ g1

g0 — finite dimensional reductive

g1 — finite dimensional and semi-simple over g0

Some examples:

I General linear Lie superalgebra gl(m|n)

I Queer Lie superalgebra q(n)

I Generalized Takiff Lie superalgebra ga,V where g0 = a,
g1 = V ∈ a-mod and [V ,V ] = 0.
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Naive definition of category O

g — classical Lie superalgebra

Note: U(g) is free of finite rank over U(g0)

Resgg0
— restriction

Indgg0
— induction

Π — parity change

Theorem. (Indgg0
,Resgg0

) and (Resgg0
,Πdim g1 ◦ Indgg0

) are adjoint pairs.

Definition. O := Og is the full subcategory of g-smod consisting of all
supermodules M such that Resgg0

(M) ∈ Og0
.
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First difficulties

Triangular decomposition from g0 does not extend uniquely to g.

Any extension is given in geometric terms by choosing a hyperplane in
h∗0.

If (g1)0 6= 0, then the “Cartan subalgebra” h of g might turn out to be
non-commutative (this happens, for example, in the case of qn).

The h0 –highest weight of a simple highest weight module depends on
the choice of an extension of the triangular decomposition (the set of
modules is independent of any such choice).
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Similarities between Og and Og0

Fact. Indgg0
and Resgg0

restrict to a pair of biadjoint (up to parity
change) functors between Og and Og0

Corollaries.

I Each object in Og has finite length (already over g0)
I Og has enough projectives and injectives
I Og has finite finitistic dimension which is bounded by the global

dimension of Og0

I Og is locally finite
I all extensions in Og are finite dimensional
I Og0

has a contravariant duality which preserves simples (up to parity
change)
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Block decomposition

Fact. Og0
decomposes into a direct sum of indecomposable blocks, each

having at most countably many isoclasses of simple modules

Corollary. Each block is equivalent to a module category over some
strongly locally finite C-linear category with at most contably many
objects

Strongly locally finite means that both projectives and injectives are finite
dimensional

This decomposition is, in general, finer, than the one given by the central
character
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Stratification

g = n− ⊕ h⊕ n+ — triangular decomposition

V — simple h0-weight h-module

V̂ — projective cover of V in h0-weight h-modules

∆(V ) := U(g)⊗U(h⊕n+) V̂ — standard module

∆(V ) := U(g)⊗U(h⊕n+) V — proper standard module

Fact. Standard modules have a proper standard filtration.

Fact. Projectives in Og have a standard filtration.

Corollary. Each block of Og is strongly standardly stratified.
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Tilting modules

stratification implies existence of tilting module

Tilting module — self dual (up to Π) module with standard filtration

tilting in general super-setup — Brundan

for classical superalgebras all tilting modules are direct summands of
induced tilting modules

Corollary. All tilting modules have uniformly bounded projective
dimension.

Corollary. fin.dim.O = 2p.dim.T (also blockwise).
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Double centralizer

Fact. Each projective P in O has a coresolution 0→ P → X0 → X1
where both X0 and X1 are projective-injective.

Proof. Use induction from Og0
.

Drawback. A block of O may contain infinitely many pairwise
non-isomorphic projective-injective modules.

In particular: The endomorphism category of projective-injective
modules in a block of O is as complicated as the whole block.

To compare: For Lie algebras the endomorphism category of
projective-injective modules is the coinvariant algebra, [Soergel], which is
the basis of the combinatorial description of O.
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Irving type theorems

Theorem. Let V be a simple module in O. TFAE

I The projective cover of V is injective.
I V appears in the socle of a projective-injective module.
I V appears in the socle of a tilting module.
I V appears in the socle of a standard modules.
I V appears in the socle of a proper standard modules.
I V has maximal Gelfand-Kirillov dimension.

Proof. Use, with some care, induction from Og0
.
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Equivalence to integral blocks

Theorem. [Cheng-M.-Wang] Each block of Ogl(m|n) is equivalent to an
integral block.

Soergel’s approach does not work

Our alternative approach: Use twisting functors.

Another alternative approach (Mathieu-Kashiwara-Tanisaki): Use
non-integral Enright’s functors.

Note. None of the above works for qn.

Volodymyr Mazorchuk Category O for classical Lie superalgebras 13/16



Equivalence to integral blocks

Theorem. [Cheng-M.-Wang] Each block of Ogl(m|n) is equivalent to an
integral block.

Soergel’s approach does not work

Our alternative approach: Use twisting functors.

Another alternative approach (Mathieu-Kashiwara-Tanisaki): Use
non-integral Enright’s functors.

Note. None of the above works for qn.

Volodymyr Mazorchuk Category O for classical Lie superalgebras 13/16



Equivalence to integral blocks

Theorem. [Cheng-M.-Wang] Each block of Ogl(m|n) is equivalent to an
integral block.

Soergel’s approach does not work

Our alternative approach: Use twisting functors.

Another alternative approach (Mathieu-Kashiwara-Tanisaki): Use
non-integral Enright’s functors.

Note. None of the above works for qn.

Volodymyr Mazorchuk Category O for classical Lie superalgebras 13/16



Equivalence to integral blocks

Theorem. [Cheng-M.-Wang] Each block of Ogl(m|n) is equivalent to an
integral block.

Soergel’s approach does not work

Our alternative approach: Use twisting functors.

Another alternative approach (Mathieu-Kashiwara-Tanisaki): Use
non-integral Enright’s functors.

Note. None of the above works for qn.

Volodymyr Mazorchuk Category O for classical Lie superalgebras 13/16



Equivalence to integral blocks

Theorem. [Cheng-M.-Wang] Each block of Ogl(m|n) is equivalent to an
integral block.

Soergel’s approach does not work

Our alternative approach: Use twisting functors.

Another alternative approach (Mathieu-Kashiwara-Tanisaki): Use
non-integral Enright’s functors.

Note. None of the above works for qn.

Volodymyr Mazorchuk Category O for classical Lie superalgebras 13/16



Equivalence to integral blocks

Theorem. [Cheng-M.-Wang] Each block of Ogl(m|n) is equivalent to an
integral block.

Soergel’s approach does not work

Our alternative approach: Use twisting functors.

Another alternative approach (Mathieu-Kashiwara-Tanisaki): Use
non-integral Enright’s functors.

Note. None of the above works for qn.

Volodymyr Mazorchuk Category O for classical Lie superalgebras 13/16



Equivalence to integral blocks

Theorem. [Cheng-M.-Wang] Each block of Ogl(m|n) is equivalent to an
integral block.

Soergel’s approach does not work

Our alternative approach: Use twisting functors.

Another alternative approach (Mathieu-Kashiwara-Tanisaki): Use
non-integral Enright’s functors.

Note. None of the above works for qn.

Volodymyr Mazorchuk Category O for classical Lie superalgebras 13/16



Generic blocks

Theorem. “Generic” blocks of O are equivalent to certain blocks of Og0
.

I Typical blocks far from the walls for basic: Penkov 1994
I Strongly typical blocks for basic: Gorelik 2002
I Regular strongly typical blocks for qn; Frisk-M. 2009
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Integral blocks

Brundan’s version of Kazhdan-Lusztig conjecture for gl(m|n) has recently
been proved by Cheng-Lam-Wang.

Together withthe above result on equivalence to integral blocks, it
follows that we know Cartan matrices for all blocks of Ogl(m|n).

The quiver of block of the category of integral finite dimensional
gl(m|n)-modules is combinatorially described by Brundan-Stroppel.

Nothing of the above is known even for qn.
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THANK YOU!!!
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