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Various quantum groups

g — simple finite dimensional Lie algebra over C

U — the universal enveloping algebra of g (generators: ei , fi , hi )

Uv — the corresp. quantum group over Q(v) (generators Ei , Fi , K
±1
i )

UA — the A = Z[v , v−1]-form of Uv (generators E
(r)
i , F

(r)
i , K±1i )

Uq — the specialization UA ⊗A C, v 7→ q, q ∈ C

uq — the “small” quantum group (subalg. of Uq generated by Ei , Fi , Ki )
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Tools

Triangular decompositions:

U = U−U0U+ Uq = U−q U0
qU

+
q uq = u−q u0qu

+
q

q — root of unity of odd degree k (k 6= 3 if g has type G2)

Quantum Frobenius: Frq : Uq → U (roughly E
(mk)
i 7→ e

(m)
i )

The pullback of Frq: −[k] : U-mod→ Uq-mod

(Integral) weight modules: M ∈ Uq-mod such that M = ⊕λ∈ZnMλ,

Mλ = {v ∈ M : K±1i v = q±diλi v}

Volodymyr Mazorchuk Category O for quantum groups



Tools

Triangular decompositions:

U = U−U0U+ Uq = U−q U0
qU

+
q uq = u−q u0qu

+
q

q — root of unity of odd degree k (k 6= 3 if g has type G2)

Quantum Frobenius: Frq : Uq → U (roughly E
(mk)
i 7→ e

(m)
i )

The pullback of Frq: −[k] : U-mod→ Uq-mod

(Integral) weight modules: M ∈ Uq-mod such that M = ⊕λ∈ZnMλ,

Mλ = {v ∈ M : K±1i v = q±diλi v}

Volodymyr Mazorchuk Category O for quantum groups



Tools

Triangular decompositions:

U = U−U0U+ Uq = U−q U0
qU

+
q uq = u−q u0qu

+
q

q — root of unity of odd degree k (k 6= 3 if g has type G2)

Quantum Frobenius: Frq : Uq → U (roughly E
(mk)
i 7→ e

(m)
i )

The pullback of Frq: −[k] : U-mod→ Uq-mod

(Integral) weight modules: M ∈ Uq-mod such that M = ⊕λ∈ZnMλ,

Mλ = {v ∈ M : K±1i v = q±diλi v}

Volodymyr Mazorchuk Category O for quantum groups



Tools

Triangular decompositions:

U = U−U0U+ Uq = U−q U0
qU

+
q uq = u−q u0qu

+
q

q — root of unity of odd degree k (k 6= 3 if g has type G2)

Quantum Frobenius: Frq : Uq → U (roughly E
(mk)
i 7→ e

(m)
i )

The pullback of Frq: −[k] : U-mod→ Uq-mod

(Integral) weight modules: M ∈ Uq-mod such that M = ⊕λ∈ZnMλ,

Mλ = {v ∈ M : K±1i v = q±diλi v}

Volodymyr Mazorchuk Category O for quantum groups



Tools

Triangular decompositions:

U = U−U0U+ Uq = U−q U0
qU

+
q uq = u−q u0qu

+
q

q — root of unity of odd degree k (k 6= 3 if g has type G2)

Quantum Frobenius: Frq : Uq → U (roughly E
(mk)
i 7→ e

(m)
i )

The pullback of Frq: −[k] : U-mod→ Uq-mod

(Integral) weight modules: M ∈ Uq-mod such that M = ⊕λ∈ZnMλ,

Mλ = {v ∈ M : K±1i v = q±diλi v}

Volodymyr Mazorchuk Category O for quantum groups



Tools

Triangular decompositions:

U = U−U0U+ Uq = U−q U0
qU

+
q uq = u−q u0qu

+
q

q — root of unity of odd degree k (k 6= 3 if g has type G2)

Quantum Frobenius: Frq : Uq → U (roughly E
(mk)
i 7→ e

(m)
i )

The pullback of Frq: −[k] : U-mod→ Uq-mod

(Integral) weight modules: M ∈ Uq-mod such that M = ⊕λ∈ZnMλ,

Mλ = {v ∈ M : K±1i v = q±diλi v}

Volodymyr Mazorchuk Category O for quantum groups



Tools

Triangular decompositions:

U = U−U0U+ Uq = U−q U0
qU

+
q uq = u−q u0qu

+
q

q — root of unity of odd degree k (k 6= 3 if g has type G2)

Quantum Frobenius: Frq : Uq → U (roughly E
(mk)
i 7→ e

(m)
i )

The pullback of Frq: −[k] : U-mod→ Uq-mod

(Integral) weight modules: M ∈ Uq-mod such that M = ⊕λ∈ZnMλ,

Mλ = {v ∈ M : K±1i v = q±diλi v}

Volodymyr Mazorchuk Category O for quantum groups



Category O

Category Oq:

I full subcategory of the category of finitely generated Uq-modules;

I integral weight;

I U+-locally finite.

Oint — integral block of category O for U

Properties of Oint :

I decomposes into blocks of the form A-mod, A – fin. dim. assoc. alg.

I every object has finite length;

I A is self-dual in many senses (opposite, Ringel, Koszul)

I Cartan matrix of A is given by Kazhdan-Lusztig combinatorics

Main question: What about Oq?
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Comparing Oint and Oq

The full subcat. of Oint of all fin. dim. modules is semi-simple.

The full subcat. of Oq of all fin. dim. module is not semi-simple.

Each indecomposable block of Oint has finitely many simples.

Oq has blocks with infinitely many simples.

Each indecomposable block of Oint has one indec. proj.-inj. module.
The endomorphism algebra of this module is commutative.

Oq has blocks with infinitely many indec. proj.-inj. modules.
The end. alg. of the direct sum of these modules is not commutative.
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The special block of Oq

λ — integral weight

Lq(λ) — simple highest weight module with highest weight λ

Every simple in Oq has the form Lq(λ)

ρ — half of the sum of all positive roots

Define the special block Ospec
q as the Serre subcategory of Oq generated

by Lq(λ), λ ∈ kZn + (k − 1)ρ.

Theorem. The categories Oint and Ospec
q are equivalent.

The equivalence is given by first applying −
[k] and then tensoring with

the Steinberg module (simple h. w. module with h. w. (k − 1)ρ)
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First consequences

Uq is a Hopf algebra

Oq has “projective endofunctors” given by tensoring with fin. dim.
modules

Corollaries:

I Oq has enough projectives;

I Oq has enough injectives;

I Every object in Oq has finite length;

I Oq has the double centralizer property with respect to projective
injective modules, i.e. for any projective P there is an exact sequence

0→ P → X → Y

with both X and Y projective injective.

Volodymyr Mazorchuk Category O for quantum groups



First consequences

Uq is a Hopf algebra

Oq has “projective endofunctors” given by tensoring with fin. dim.
modules

Corollaries:

I Oq has enough projectives;

I Oq has enough injectives;

I Every object in Oq has finite length;

I Oq has the double centralizer property with respect to projective
injective modules, i.e. for any projective P there is an exact sequence

0→ P → X → Y

with both X and Y projective injective.

Volodymyr Mazorchuk Category O for quantum groups



First consequences

Uq is a Hopf algebra

Oq has “projective endofunctors” given by tensoring with fin. dim.
modules

Corollaries:

I Oq has enough projectives;

I Oq has enough injectives;

I Every object in Oq has finite length;

I Oq has the double centralizer property with respect to projective
injective modules, i.e. for any projective P there is an exact sequence

0→ P → X → Y

with both X and Y projective injective.

Volodymyr Mazorchuk Category O for quantum groups



First consequences

Uq is a Hopf algebra

Oq has “projective endofunctors” given by tensoring with fin. dim.
modules

Corollaries:

I Oq has enough projectives;

I Oq has enough injectives;

I Every object in Oq has finite length;

I Oq has the double centralizer property with respect to projective
injective modules, i.e. for any projective P there is an exact sequence

0→ P → X → Y

with both X and Y projective injective.

Volodymyr Mazorchuk Category O for quantum groups



First consequences

Uq is a Hopf algebra

Oq has “projective endofunctors” given by tensoring with fin. dim.
modules

Corollaries:

I Oq has enough projectives;

I Oq has enough injectives;

I Every object in Oq has finite length;

I Oq has the double centralizer property with respect to projective
injective modules, i.e. for any projective P there is an exact sequence

0→ P → X → Y

with both X and Y projective injective.

Volodymyr Mazorchuk Category O for quantum groups



First consequences

Uq is a Hopf algebra

Oq has “projective endofunctors” given by tensoring with fin. dim.
modules

Corollaries:

I Oq has enough projectives;

I Oq has enough injectives;

I Every object in Oq has finite length;

I Oq has the double centralizer property with respect to projective
injective modules, i.e. for any projective P there is an exact sequence

0→ P → X → Y

with both X and Y projective injective.

Volodymyr Mazorchuk Category O for quantum groups



First consequences

Uq is a Hopf algebra

Oq has “projective endofunctors” given by tensoring with fin. dim.
modules

Corollaries:

I Oq has enough projectives;

I Oq has enough injectives;

I Every object in Oq has finite length;

I Oq has the double centralizer property with respect to projective
injective modules, i.e. for any projective P there is an exact sequence

0→ P → X → Y

with both X and Y projective injective.

Volodymyr Mazorchuk Category O for quantum groups



First consequences

Uq is a Hopf algebra

Oq has “projective endofunctors” given by tensoring with fin. dim.
modules

Corollaries:

I Oq has enough projectives;

I Oq has enough injectives;

I Every object in Oq has finite length;

I Oq has the double centralizer property with respect to projective
injective modules, i.e.

for any projective P there is an exact sequence

0→ P → X → Y

with both X and Y projective injective.

Volodymyr Mazorchuk Category O for quantum groups



First consequences

Uq is a Hopf algebra

Oq has “projective endofunctors” given by tensoring with fin. dim.
modules

Corollaries:

I Oq has enough projectives;

I Oq has enough injectives;

I Every object in Oq has finite length;

I Oq has the double centralizer property with respect to projective
injective modules, i.e. for any projective P there is an exact sequence

0→ P → X → Y

with both X and Y projective injective.

Volodymyr Mazorchuk Category O for quantum groups



Ringel self-duality

∆q(λ) — quantum Verma module with highest weight λ

Titling module: a self dual module with Verma flag

Lemma: Oq is a highest weight category.

Corollary: There is a bijection between indecomposable tilting modules
and simple modules in Oq.

Theorem: Oq is Ringel self-dual, i.e. the endomorphism algebra of a
basic projective module in Oq is isomorphic to the endomorphism algebra
of a basic tilting module in Oq.

Recall: Blocks of Oq might have infinitely many simples.
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Decomposition theorem for structural modules

write λ = λ0 + kλ1, 0 ≤ λ0i < k.

Proposition (Lusztig). Lq(λ) ∼= L(λ1)[k] ⊗ Lq(λ0).

if L(λ) is finite dimensional, denote by Qq(λ) the projective cover of L(λ)
in the category of finite dimensional Uq-modules.

Theorem. Pq(λ) ∼= P(λ1)[k] ⊗ Qq(λ0).

Theorem. Iq(λ) ∼= I (λ1)[k] ⊗ Qq(λ0).

Theorem. Tq(λ) ∼= T (λ1 − ρ)[k] ⊗ Qq(kρ+ wo · λ0).
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Characters and multiplicities

Proposition (BGG-reciprocity). (Pq(λ) : ∆q(µ)) = [∆q(µ) : Lq(λ)]

Px,y — Kazhdan-Lusztig polynomials; Qx,y — their “inverses”

Theorem. The formal character of Lq(λ) equals∑
y∈W , z∈Wl

(−1)l(yw)+l(zx)Py ,w (1)Pz,x(1)ch∆q

(
l(yw−1 · λ1) + zx−1 · λ0)

)

Theorem. For regular λ the multiplicity (Tq(λ) : ∆q(µ)) equals∑
y ,z

Py ,w (1)Qz,x(1)

where the sum runs over those y ∈W , z ∈Wl for which
µ = lyw−1 · (λ1 − ρ) + zx−1 · λ0.
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