Category \mathcal{O} for quantum groups

(joint work with Henning Haahr Andersen)

Volodymyr Mazorchuk (Uppsala University)

Mathematical Physics and Developments in Algebra July 6, 2012, Krakow, POLAND

Various quantum groups

< 문 ► < 문 ►

æ

- ∢ ≣ →

U — the universal enveloping algebra of \mathfrak{g} (generators: e_i , f_i , h_i)

프 에 제 프 에

U — the universal enveloping algebra of \mathfrak{g} (generators: e_i , f_i , h_i)

 U_v — the corresp. quantum group over $\mathbb{Q}(v)$ (generators E_i , F_i , $K_i^{\pm 1}$)

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 = • • ○ < (~

U — the universal enveloping algebra of \mathfrak{g} (generators: e_i , f_i , h_i)

 U_v — the corresp. quantum group over $\mathbb{Q}(v)$ (generators E_i , F_i , $K_i^{\pm 1}$)

 U_A — the $A = \mathbb{Z}[v, v^{-1}]$ -form of U_v (generators $E_i^{(r)}$, $F_i^{(r)}$, $K_i^{\pm 1}$)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ □ □ ● ○ ○ ○

U — the universal enveloping algebra of \mathfrak{g} (generators: e_i , f_i , h_i)

 U_v — the corresp. quantum group over $\mathbb{Q}(v)$ (generators E_i , F_i , $K_i^{\pm 1}$)

 U_A — the $A = \mathbb{Z}[v, v^{-1}]$ -form of U_v (generators $E_i^{(r)}$, $F_i^{(r)}$, $K_i^{\pm 1}$)

 U_q — the specialization $U_A \otimes_A \mathbb{C}$, $v \mapsto q$, $q \in \mathbb{C}$

▲ 伊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q (2)

U — the universal enveloping algebra of \mathfrak{g} (generators: e_i , f_i , h_i)

 U_v — the corresp. quantum group over $\mathbb{Q}(v)$ (generators E_i , F_i , $K_i^{\pm 1}$)

$$U_A$$
 — the $A = \mathbb{Z}[v, v^{-1}]$ -form of U_v (generators $E_i^{(r)}$, $F_i^{(r)}$, $K_i^{\pm 1}$)

$$U_q$$
 — the specialization $U_A \otimes_A \mathbb{C}$, $v \mapsto q$, $q \in \mathbb{C}$

 u_q — the "small" quantum group (subalg. of U_q generated by E_i , F_i , K_i)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ●

U — the universal enveloping algebra of \mathfrak{g} (generators: e_i , f_i , h_i)

 U_v — the corresp. quantum group over $\mathbb{Q}(v)$ (generators E_i , F_i , $K_i^{\pm 1}$)

$$U_A$$
 — the $A = \mathbb{Z}[v, v^{-1}]$ -form of U_v (generators $E_i^{(r)}$, $F_i^{(r)}$, $K_i^{\pm 1}$)

$$U_q$$
 — the specialization $U_A \otimes_A \mathbb{C}$, $v \mapsto q$, $q \in \mathbb{C}$

 u_q — the "small" quantum group (subalg. of U_q generated by E_i , F_i , K_i)

▲□ ▶ ▲ □ ▶ ▲ □ ▶ ▲ □ ● ● ● ●

Tools

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$U = U^{-}U^{0}U^{+}$$
 $U_{q} = U_{q}^{-}U_{q}^{0}U_{q}^{+}$ $u_{q} = u_{q}^{-}u_{q}^{0}u_{q}^{+}$

(本間) (本語) (本語)

Ξ.

$$U = U^{-}U^{0}U^{+}$$
 $U_{q} = U_{q}^{-}U_{q}^{0}U_{q}^{+}$ $u_{q} = u_{q}^{-}u_{q}^{0}u_{q}^{+}$

q — root of unity of odd degree k ($k \neq 3$ if \mathfrak{g} has type G_2)

< 臣 > < 臣 > □

$$U = U^{-}U^{0}U^{+}$$
 $U_{q} = U_{q}^{-}U_{q}^{0}U_{q}^{+}$ $u_{q} = u_{q}^{-}u_{q}^{0}u_{q}^{+}$

q — root of unity of odd degree k ($k \neq 3$ if \mathfrak{g} has type G_2)

Quantum Frobenius: $Fr_q: U_q \rightarrow U$ (roughly $E_i^{(mk)} \mapsto e_i^{(m)}$)

▲母 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ のへで

$$U = U^{-}U^{0}U^{+}$$
 $U_{q} = U_{q}^{-}U_{q}^{0}U_{q}^{+}$ $u_{q} = u_{q}^{-}u_{q}^{0}u_{q}^{+}$

q — root of unity of odd degree k ($k \neq 3$ if \mathfrak{g} has type G_2)

Quantum Frobenius: $Fr_q: U_q \rightarrow U$ (roughly $E_i^{(mk)} \mapsto e_i^{(m)}$)

The pullback of $Fr_q: _^{[k]}: U\text{-mod} \to U_q\text{-mod}$

▲掃▶ ▲臣▶ ★臣▶ 臣 めぬ⊙

$$U = U^{-}U^{0}U^{+}$$
 $U_{q} = U_{q}^{-}U_{q}^{0}U_{q}^{+}$ $u_{q} = u_{q}^{-}u_{q}^{0}u_{q}^{+}$

q — root of unity of odd degree k ($k \neq 3$ if \mathfrak{g} has type G_2)

Quantum Frobenius: $Fr_q: U_q \rightarrow U$ (roughly $E_i^{(mk)} \mapsto e_i^{(m)}$)

The pullback of Fr_q : $_^{[k]} : U$ -mod $\rightarrow U_q$ -mod

(Integral) weight modules: $M \in U_q$ -mod such that $M = \bigoplus_{\lambda \in \mathbb{Z}^n} M_\lambda$,

$$M_{\lambda} = \{ v \in M : K_i^{\pm 1} v = q^{\pm d_i \lambda_i} v \}$$

▲■▶ ▲臣▶ ▲臣▶ ―臣 … のへで

$$U = U^{-}U^{0}U^{+}$$
 $U_{q} = U_{q}^{-}U_{q}^{0}U_{q}^{+}$ $u_{q} = u_{q}^{-}u_{q}^{0}u_{q}^{+}$

q — root of unity of odd degree k ($k \neq 3$ if \mathfrak{g} has type G_2)

Quantum Frobenius: $Fr_q: U_q \rightarrow U$ (roughly $E_i^{(mk)} \mapsto e_i^{(m)}$)

The pullback of Fr_q : $_^{[k]} : U$ -mod $\rightarrow U_q$ -mod

(Integral) weight modules: $M \in U_q$ -mod such that $M = \bigoplus_{\lambda \in \mathbb{Z}^n} M_\lambda$,

$$M_{\lambda} = \{ v \in M : K_i^{\pm 1} v = q^{\pm d_i \lambda_i} v \}$$

▲■▶ ▲臣▶ ▲臣▶ ―臣 … のへで

・ロト・日本・日本・日本・日本・日本・日本

Category \mathcal{O}_q :

Volodymyr Mazorchuk Category O for quantum groups

|▲■▶ ▲臣▶ ★臣▶ | 臣 | 釣�♡

Category \mathcal{O}_q :

• full subcategory of the category of finitely generated U_q -modules;

< 注 > < 注 >

Category \mathcal{O}_q :

- full subcategory of the category of finitely generated U_q -modules;
- integral weight;

< E → < E → ...</p>

Category \mathcal{O}_q :

- full subcategory of the category of finitely generated U_q -modules;
- integral weight;
- ► U⁺-locally finite.

< E → < E → ...</p>

Category \mathcal{O}

Category \mathcal{O}_q :

- ► full subcategory of the category of finitely generated U_q-modules;
- integral weight;
- ► U⁺-locally finite.

 $\mathcal{O}_{\mathit{int}}$ — integral block of category \mathcal{O} for U

Category \mathcal{O}

Category \mathcal{O}_q :

- ▶ full subcategory of the category of finitely generated U_q-modules;
- integral weight;
- ► U⁺-locally finite.

 $\mathcal{O}_{\mathit{int}}$ — integral block of category \mathcal{O} for U

Properties of \mathcal{O}_{int} :

Category \mathcal{O}

Category \mathcal{O}_q :

- ► full subcategory of the category of finitely generated U_q-modules;
- integral weight;
- ► U⁺-locally finite.

 $\mathcal{O}_{\mathit{int}}$ — integral block of category \mathcal{O} for U

Properties of \mathcal{O}_{int} :

▶ decomposes into blocks of the form *A*-mod, *A* – fin. dim. assoc. alg.

ヨト・モート

Category \mathcal{O}_q :

- ▶ full subcategory of the category of finitely generated U_q-modules;
- integral weight;
- ► U⁺-locally finite.

 $\mathcal{O}_{\mathit{int}}$ — integral block of category \mathcal{O} for U

Properties of \mathcal{O}_{int} :

- decomposes into blocks of the form A-mod, A fin. dim. assoc. alg.
- every object has finite length;

ヨト・モート

Category \mathcal{O}_q :

- ▶ full subcategory of the category of finitely generated U_q-modules;
- integral weight;
- ► U⁺-locally finite.

 $\mathcal{O}_{\mathit{int}}$ — integral block of category \mathcal{O} for U

Properties of \mathcal{O}_{int} :

- decomposes into blocks of the form A-mod, A fin. dim. assoc. alg.
- every object has finite length;
- ► A is self-dual in many senses (opposite, Ringel, Koszul)

医下 不良下

Category \mathcal{O}_q :

- ▶ full subcategory of the category of finitely generated U_q-modules;
- integral weight;
- ► U⁺-locally finite.

 $\mathcal{O}_{\mathit{int}}$ — integral block of category \mathcal{O} for U

Properties of \mathcal{O}_{int} :

- ▶ decomposes into blocks of the form *A*-mod, *A* fin. dim. assoc. alg.
- every object has finite length;
- ► A is self-dual in many senses (opposite, Ringel, Koszul)
- Cartan matrix of A is given by Kazhdan-Lusztig combinatorics

(E) < E) </p>

Category \mathcal{O}_q :

- full subcategory of the category of finitely generated U_q -modules;
- integral weight;
- ► U⁺-locally finite.

 $\mathcal{O}_{\mathit{int}}$ — integral block of category \mathcal{O} for U

Properties of \mathcal{O}_{int} :

- decomposes into blocks of the form A-mod, A fin. dim. assoc. alg.
- every object has finite length;
- ► A is self-dual in many senses (opposite, Ringel, Koszul)
- Cartan matrix of A is given by Kazhdan-Lusztig combinatorics

Main question: What about \mathcal{O}_q ?

▲ 国 ▶ | ▲ 国 ▶ | |

Comparing \mathcal{O}_{int} and $\overline{\mathcal{O}_q}$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □

æ

The full subcat. of \mathcal{O}_{int} of all fin. dim. modules is semi-simple.

< ∃⇒

-

The full subcat. of \mathcal{O}_{int} of all fin. dim. modules is semi-simple.

The full subcat. of \mathcal{O}_q of all fin. dim. module is **not** semi-simple.

< ∃→

The full subcat. of \mathcal{O}_{int} of all fin. dim. modules is semi-simple.

The full subcat. of \mathcal{O}_q of all fin. dim. module is **not** semi-simple.

Each indecomposable block of \mathcal{O}_{int} has **finitely** many simples.

< ∃ >

The full subcat. of \mathcal{O}_{int} of all fin. dim. modules is semi-simple.

The full subcat. of \mathcal{O}_q of all fin. dim. module is **not** semi-simple.

Each indecomposable block of \mathcal{O}_{int} has **finitely** many simples.

 \mathcal{O}_q has blocks with **infinitely** many simples.

프 🖌 🛪 프 🛌

The full subcat. of \mathcal{O}_{int} of all fin. dim. modules is semi-simple.

The full subcat. of \mathcal{O}_q of all fin. dim. module is **not** semi-simple.

Each indecomposable block of \mathcal{O}_{int} has **finitely** many simples.

 \mathcal{O}_q has blocks with **infinitely** many simples.

Each indecomposable block of \mathcal{O}_{int} has **one** indec. proj.-inj. module. The endomorphism algebra of this module is **commutative**.

물 에 에 물 에 드릴

The full subcat. of \mathcal{O}_{int} of all fin. dim. modules is semi-simple.

The full subcat. of \mathcal{O}_q of all fin. dim. module is **not** semi-simple.

Each indecomposable block of \mathcal{O}_{int} has **finitely** many simples.

 \mathcal{O}_q has blocks with **infinitely** many simples.

Each indecomposable block of \mathcal{O}_{int} has **one** indec. proj.-inj. module. The endomorphism algebra of this module is **commutative**.

 \mathcal{O}_q has blocks with **infinitely** many indec. proj.-inj. modules. The end. alg. of the direct sum of these modules is **not** commutative.

(* E) * E)

The full subcat. of \mathcal{O}_{int} of all fin. dim. modules is semi-simple.

The full subcat. of \mathcal{O}_q of all fin. dim. module is **not** semi-simple.

Each indecomposable block of \mathcal{O}_{int} has **finitely** many simples.

 \mathcal{O}_q has blocks with **infinitely** many simples.

Each indecomposable block of \mathcal{O}_{int} has **one** indec. proj.-inj. module. The endomorphism algebra of this module is **commutative**.

 \mathcal{O}_q has blocks with **infinitely** many indec. proj.-inj. modules. The end. alg. of the direct sum of these modules is **not** commutative.

(* E) * E)

The special block of \mathcal{O}_q

Volodymyr Mazorchuk Category O for quantum groups

< E > < E >

æ

The special block of \mathcal{O}_q

 λ — integral weight

< 注 > < 注 >

æ

 $\lambda - \mathsf{integral} \ \mathsf{weight}$

 $L_q(\lambda)$ — simple highest weight module with highest weight λ

< 注入 < 注入 →

 $L_q(\lambda)$ — simple highest weight module with highest weight λ

Every simple in \mathcal{O}_q has the form $L_q(\lambda)$

 $L_q(\lambda)$ — simple highest weight module with highest weight λ

Every simple in \mathcal{O}_q has the form $L_q(\lambda)$

 ρ — half of the sum of all positive roots

 $L_q(\lambda)$ — simple highest weight module with highest weight λ

Every simple in \mathcal{O}_q has the form $L_q(\lambda)$

 ρ — half of the sum of all positive roots

Define the **special block** \mathcal{O}_q^{spec} as the Serre subcategory of \mathcal{O}_q generated by $L_q(\lambda)$, $\lambda \in k\mathbb{Z}^n + (k-1)\rho$.

 $L_q(\lambda)$ — simple highest weight module with highest weight λ

Every simple in \mathcal{O}_q has the form $L_q(\lambda)$

 ρ — half of the sum of all positive roots

Define the **special block** \mathcal{O}_q^{spec} as the Serre subcategory of \mathcal{O}_q generated by $L_q(\lambda)$, $\lambda \in k\mathbb{Z}^n + (k-1)\rho$.

Theorem. The categories \mathcal{O}_{int} and \mathcal{O}_{a}^{spec} are equivalent.

(* E) * E) E

 $L_q(\lambda)$ — simple highest weight module with highest weight λ

Every simple in \mathcal{O}_q has the form $L_q(\lambda)$

 ρ — half of the sum of all positive roots

Define the **special block** \mathcal{O}_q^{spec} as the Serre subcategory of \mathcal{O}_q generated by $L_q(\lambda)$, $\lambda \in k\mathbb{Z}^n + (k-1)\rho$.

Theorem. The categories \mathcal{O}_{int} and \mathcal{O}_{q}^{spec} are equivalent.

The equivalence is given by first applying $_^{[k]}$ and then tensoring with the Steinberg module (simple h. w. module with h. w. $(k-1)\rho$)

個人 くさん くさん しき

 $L_q(\lambda)$ — simple highest weight module with highest weight λ

Every simple in \mathcal{O}_q has the form $L_q(\lambda)$

 ρ — half of the sum of all positive roots

Define the **special block** \mathcal{O}_q^{spec} as the Serre subcategory of \mathcal{O}_q generated by $L_q(\lambda)$, $\lambda \in k\mathbb{Z}^n + (k-1)\rho$.

Theorem. The categories \mathcal{O}_{int} and \mathcal{O}_{q}^{spec} are equivalent.

The equivalence is given by first applying $_^{[k]}$ and then tensoring with the Steinberg module (simple h. w. module with h. w. $(k-1)\rho$)

個人 くさん くさん しき

First consequences

Volodymyr Mazorchuk Category O for quantum groups

→ 御 → → 注 → → 注 →

æ

First consequences

 U_q is a Hopf algebra

₹ Ξ > < Ξ >

æ

 \mathcal{O}_q has "projective endofunctors" given by tensoring with fin. dim. modules

医下 不正下

 \mathcal{O}_q has "projective endofunctors" given by tensoring with fin. dim. modules

Corollaries:

< 臣 > (臣 >)

 \mathcal{O}_q has "projective endofunctors" given by tensoring with fin. dim. modules

Corollaries:

▶ O_q has enough projectives;

医下颌 医下口

 \mathcal{O}_q has "projective endofunctors" given by tensoring with fin. dim. modules

Corollaries:

- *O_q* has enough projectives;
- *O_q* has enough injectives;

프 + + 프 +

 \mathcal{O}_q has "projective endofunctors" given by tensoring with fin. dim. modules

Corollaries:

- *O_q* has enough projectives;
- *O_q* has enough injectives;
- Every object in \mathcal{O}_q has finite length;

- ∢ ≣ ▶

 \mathcal{O}_q has "projective endofunctors" given by tensoring with fin. dim. modules

Corollaries:

- ▶ *O*_q has enough projectives;
- *O_q* has enough injectives;
- Every object in \mathcal{O}_q has finite length;
- ▶ O_q has the double centralizer property with respect to projective injective modules, i.e.

医下 不正下

 \mathcal{O}_{q} has "projective endofunctors" given by tensoring with fin. dim. modules

Corollaries:

- *O_q* has enough projectives;
- *O_q* has enough injectives;
- Every object in \mathcal{O}_q has finite length;
- ▶ O_q has the double centralizer property with respect to projective injective modules, i.e. for any projective P there is an exact sequence

$$0 \rightarrow P \rightarrow X \rightarrow Y$$

with both X and Y projective injective.

ヨト イヨト

Volodymyr Mazorchuk Category O for quantum groups

< E > < E >

æ

 $\Delta_q(\lambda)$ — quantum Verma module with highest weight λ

□ > < 注 > < 注 > _ 注

 $\Delta_q(\lambda)$ — quantum Verma module with highest weight λ

Titling module: a self dual module with Verma flag

< 注入 < 注入 →

 $\Delta_q(\lambda)$ — quantum Verma module with highest weight λ

Titling module: a self dual module with Verma flag

Lemma: \mathcal{O}_q is a highest weight category.

< 注 → < 注 → □ 注

 $\Delta_q(\lambda)$ — quantum Verma module with highest weight λ

Titling module: a self dual module with Verma flag

Lemma: \mathcal{O}_q is a highest weight category.

Corollary: There is a bijection between indecomposable tilting modules and simple modules in \mathcal{O}_q .

★ ∃ ► ★ ∃ ►

 $\Delta_q(\lambda)$ — quantum Verma module with highest weight λ

Titling module: a self dual module with Verma flag

Lemma: \mathcal{O}_q is a highest weight category.

Corollary: There is a bijection between indecomposable tilting modules and simple modules in \mathcal{O}_q .

Theorem: \mathcal{O}_q is Ringel self-dual, i.e. the endomorphism algebra of a basic projective module in \mathcal{O}_q is isomorphic to the endomorphism algebra of a basic tilting module in \mathcal{O}_q .

 $\Delta_q(\lambda)$ — quantum Verma module with highest weight λ

Titling module: a self dual module with Verma flag

Lemma: \mathcal{O}_q is a highest weight category.

Corollary: There is a bijection between indecomposable tilting modules and simple modules in \mathcal{O}_q .

Theorem: \mathcal{O}_q is Ringel self-dual, i.e. the endomorphism algebra of a basic projective module in \mathcal{O}_q is isomorphic to the endomorphism algebra of a basic tilting module in \mathcal{O}_q .

Recall: Blocks of \mathcal{O}_q might have infinitely many simples.

<個> < 注→ < 注→ < 注→ = 注

 $\Delta_q(\lambda)$ — quantum Verma module with highest weight λ

Titling module: a self dual module with Verma flag

Lemma: \mathcal{O}_q is a highest weight category.

Corollary: There is a bijection between indecomposable tilting modules and simple modules in \mathcal{O}_q .

Theorem: \mathcal{O}_q is Ringel self-dual, i.e. the endomorphism algebra of a basic projective module in \mathcal{O}_q is isomorphic to the endomorphism algebra of a basic tilting module in \mathcal{O}_q .

Recall: Blocks of \mathcal{O}_q might have infinitely many simples.

<個> < 注→ < 注→ < 注→ = 注

Decomposition theorem for structural modules

Volodymyr Mazorchuk Category O for quantum groups

프 > 프

Decomposition theorem for structural modules

write
$$\lambda = \lambda^0 + k\lambda^1$$
, $0 \le \lambda_i^0 < k$.

프 > 프

Proposition (Lusztig). $L_q(\lambda) \cong L(\lambda^1)^{[k]} \otimes L_q(\lambda^0)$.

< ∃ >

Proposition (Lusztig). $L_q(\lambda) \cong L(\lambda^1)^{[k]} \otimes L_q(\lambda^0)$.

if $L(\lambda)$ is finite dimensional, denote by $Q_q(\lambda)$ the projective cover of $L(\lambda)$ in the category of finite dimensional U_q -modules.

물 에 에 물 에 드릴

Proposition (Lusztig). $L_q(\lambda) \cong L(\lambda^1)^{[k]} \otimes L_q(\lambda^0)$.

if $L(\lambda)$ is finite dimensional, denote by $Q_q(\lambda)$ the projective cover of $L(\lambda)$ in the category of finite dimensional U_q -modules.

Theorem. $P_q(\lambda) \cong P(\lambda^1)^{[k]} \otimes Q_q(\lambda^0)$.

<注▶ < 注▶ 注 のへ⊙

Proposition (Lusztig). $L_q(\lambda) \cong L(\lambda^1)^{[k]} \otimes L_q(\lambda^0)$.

if $L(\lambda)$ is finite dimensional, denote by $Q_q(\lambda)$ the projective cover of $L(\lambda)$ in the category of finite dimensional U_q -modules.

Theorem. $P_q(\lambda) \cong P(\lambda^1)^{[k]} \otimes Q_q(\lambda^0)$.

Theorem. $I_q(\lambda) \cong I(\lambda^1)^{[k]} \otimes Q_q(\lambda^0)$.

★ ∃ ► ★ ∃ ►

Proposition (Lusztig). $L_q(\lambda) \cong L(\lambda^1)^{[k]} \otimes L_q(\lambda^0)$.

if $L(\lambda)$ is finite dimensional, denote by $Q_q(\lambda)$ the projective cover of $L(\lambda)$ in the category of finite dimensional U_q -modules.

Theorem. $P_q(\lambda) \cong P(\lambda^1)^{[k]} \otimes Q_q(\lambda^0).$

Theorem. $I_q(\lambda) \cong I(\lambda^1)^{[k]} \otimes Q_q(\lambda^0)$.

Theorem. $T_q(\lambda) \cong T(\lambda^1 - \rho)^{[k]} \otimes Q_q(k\rho + w_o \cdot \lambda^0).$

御 ト イヨ ト イヨ ト ・ ヨ ・ の Q (や

Proposition (Lusztig). $L_q(\lambda) \cong L(\lambda^1)^{[k]} \otimes L_q(\lambda^0)$.

if $L(\lambda)$ is finite dimensional, denote by $Q_q(\lambda)$ the projective cover of $L(\lambda)$ in the category of finite dimensional U_q -modules.

Theorem. $P_q(\lambda) \cong P(\lambda^1)^{[k]} \otimes Q_q(\lambda^0).$

Theorem. $I_q(\lambda) \cong I(\lambda^1)^{[k]} \otimes Q_q(\lambda^0)$.

Theorem. $T_q(\lambda) \cong T(\lambda^1 - \rho)^{[k]} \otimes Q_q(k\rho + w_o \cdot \lambda^0).$

御 ト イヨ ト イヨ ト ・ ヨ ・ の Q (や

Volodymyr Mazorchuk Category O for quantum groups

< ∃⇒

-

æ

Proposition (BGG-reciprocity). $(P_q(\lambda) : \Delta_q(\mu)) = [\Delta_q(\mu) : L_q(\lambda)]$

-∢ ≣ ▶

Proposition (BGG-reciprocity). $(P_q(\lambda) : \Delta_q(\mu)) = [\Delta_q(\mu) : L_q(\lambda)]$

 $P_{x,y}$ — Kazhdan-Lusztig polynomials; $Q_{x,y}$ — their "inverses"

Proposition (BGG-reciprocity). $(P_q(\lambda) : \Delta_q(\mu)) = [\Delta_q(\mu) : L_q(\lambda)]$

 $P_{x,y}$ — Kazhdan-Lusztig polynomials; $Q_{x,y}$ — their "inverses"

Theorem. The formal character of $L_q(\lambda)$ equals

$$\sum_{y \in W, \ z \in W_{l}} (-1)^{l(yw) + l(zx)} P_{y,w}(1) P_{z,x}(1) \mathrm{ch} \Delta_{q} (l(yw^{-1} \cdot \lambda^{1}) + zx^{-1} \cdot \lambda^{0}))$$

Proposition (BGG-reciprocity). $(P_q(\lambda) : \Delta_q(\mu)) = [\Delta_q(\mu) : L_q(\lambda)]$

 $P_{x,y}$ — Kazhdan-Lusztig polynomials; $Q_{x,y}$ — their "inverses"

Theorem. The formal character of $L_q(\lambda)$ equals

$$\sum_{y \in W, \ z \in W_{l}} (-1)^{l(yw) + l(zx)} P_{y,w}(1) P_{z,x}(1) \mathrm{ch} \Delta_{q} (l(yw^{-1} \cdot \lambda^{1}) + zx^{-1} \cdot \lambda^{0}))$$

Theorem. For regular λ the multiplicity $(T_q(\lambda) : \Delta_q(\mu))$ equals

$$\sum_{y,z} P_{y,w}(1) Q_{z,x}(1)$$

where the sum runs over those $y \in W$, $z \in W_l$ for which $\mu = lyw^{-1} \cdot (\lambda^1 - \rho) + zx^{-1} \cdot \lambda^0$.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ○ Q (~

Proposition (BGG-reciprocity). $(P_q(\lambda) : \Delta_q(\mu)) = [\Delta_q(\mu) : L_q(\lambda)]$

 $P_{x,y}$ — Kazhdan-Lusztig polynomials; $Q_{x,y}$ — their "inverses"

Theorem. The formal character of $L_q(\lambda)$ equals

$$\sum_{y \in W, \ z \in W_{l}} (-1)^{l(yw) + l(zx)} P_{y,w}(1) P_{z,x}(1) \mathrm{ch} \Delta_{q} (l(yw^{-1} \cdot \lambda^{1}) + zx^{-1} \cdot \lambda^{0}))$$

Theorem. For regular λ the multiplicity $(T_q(\lambda) : \Delta_q(\mu))$ equals

$$\sum_{y,z} P_{y,w}(1) Q_{z,x}(1)$$

where the sum runs over those $y \in W$, $z \in W_l$ for which $\mu = lyw^{-1} \cdot (\lambda^1 - \rho) + zx^{-1} \cdot \lambda^0$.

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ■ ● ○ Q (~