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» Ut-locally finite.

Oine — integral block of category O for U

Properties of O;,;:

» decomposes into blocks of the form A-mod, A — fin. dim. assoc. alg.
> every object has finite length;
> A is self-dual in many senses (opposite, Ringel, Koszul)

» Cartan matrix of A is given by Kazhdan-Lusztig combinatorics

Main question: What about 0,7
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First consequences

Uq is a Hopf algebra

Og4 has “projective endofunctors” given by tensoring with fin. dim.
modules

Corollaries:

Oy has enough projectives;
Oy has enough injectives;
Every object in Oy has finite length;

vV v . vvY

Oy has the double centralizer property with respect to projective
injective modules, i.e. for any projective P there is an exact sequence

0O=>P—=X—=Y

with both X and Y projective injective.
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