FINITISTIC DIMENSION OF PROPERLY STRATIFIED ALGEBRAS

Volodymyr Mazorchuk

(Uppsala University)

1. Properly stratified algebras

k — algebraically closed field.

A — finite-dimensional associative k-algebra.

A-mod — category of all finite-dimensional A-modules.

 $\{e_1,\ldots,e_n\}$ — a complete set of primitive idempotents.

 $L(i),\,P(i),\,I(i),\,i=1,\ldots,n,$ — corresponding simple, projective and injective module.

For $i = 1, \ldots, n$ define:

standard modules $\Delta(i)$ as the maximal quotient of P(i) such that $[\Delta(i):L(j)]=0,\ j>i;$

proper standard modules $\overline{\Delta}(i)$ as the maximal quotient of $\Delta(i)$ such that $[\overline{\Delta}(i):L(i)]=1;$

costandard modules $\nabla(i)$ as the maximal submodule of I(i) such that $[\nabla(i):L(j)]=0,\,j>i;$

proper costandard modules $\overline{\nabla}(i)$ as the maximal submodule of $\nabla(i)$ such that $[\overline{\nabla}(i):L(i)]=1$.

Definition. [Dlab] A is called *properly stratified* provided that

- 1. The kernel of $P(i) \rightarrow \Delta$ has a filtration with subquotients $\Delta(j), j > i$;
- 2. Each $\Delta(i)$ has a filtration with subquotients $\overline{\Delta}(i)$.

Theorem. [Dlab] A is properly stratified if and only if A^{opp} is. In particular, A is properly stratified if and only if

- 1. The cokernel of $\nabla(i) \hookrightarrow I(i)$ has a filtration with subquotients $\nabla(j), j > i;$
- 2. Each $\nabla(i)$ has a filtration with subquotients $\overline{\nabla}(i)$.

2. Finitistic dimension

Global dimension of A:

$$gl.d.(A) = \max_{M \in A - mod} p.d.(M).$$

 $\mathcal{P}^{<\infty}(A)$ — the full subcategory of A-mod, consisting of all modules of finite projective dimension.

Projectively defined finitistic dimension of A:

$$\operatorname{fin.d.}(A) = \max_{M \in \mathcal{P}^{<\infty}(A)} \operatorname{p.d.}(M).$$

Finitistic dimension conjecture. fin.d. $(A) < \infty$ for every A.

Theorem. [Ágoston-Happel-Lukács-Unger] Let A be properly stratified. Then fin.d. $(A) \leq 2n - 2$.

The bound is exact in the sense that there are properly stratified algebras having finitistic dimension exactly 2n-2.

3. Tilting and cotilting modules

 $\mathcal{F}(\Delta)$ — the full subcategory in A-mod, consisting of all modules, which have a filtration, whose subquotients are standard modules.

$$\mathcal{F}(\overline{\Delta})$$
 — $--//--$ proper standard modules.

$$\mathcal{F}(\nabla)$$
 — $--//--$ standard modules.

$$\mathcal{F}(\overline{\nabla})$$
 — $--//--$ proper standard modules.

Tilting modules are modules in $\mathcal{F}(\Delta) \cap \mathcal{F}(\overline{\nabla})$.

Cotilting modules are modules in $\mathcal{F}(\overline{\Delta}) \cap \mathcal{F}(\nabla)$.

Theorem. [Ágoston-Happel-Lukács-Unger]

- 1. Both $\mathcal{F}(\Delta) \cap \mathcal{F}(\overline{\nabla})$ and $\mathcal{F}(\overline{\Delta}) \cap \mathcal{F}(\nabla)$ are closed under taking direct summands.
- 2. Isoclasses of indecomposable modules in both $\mathcal{F}(\Delta) \cap \mathcal{F}(\overline{\nabla})$ and $\mathcal{F}(\overline{\Delta}) \cap \mathcal{F}(\nabla)$ are in a natural bijection with isoclasses of simple modules.

For $i = 1, \ldots, n$ set:

T(i) — indecomposable tilting module whose any standard filtration starts with $\Delta(i)$;

C(i) — indecomposable cotilting module whose any costandard filtration ends with $\nabla(i)$.

$$T = \bigoplus_{i=1}^{n} T(i), \quad C = \bigoplus_{i=1}^{n} C(i).$$

Theorem. [Mazorchuk-Parker] Let A be properly stratified. Then fin.d. $(A) \leq \text{p.d.}(T) + \text{i.d.}(C)$.

Definition. A is called *quasi-hereditary* if A is properly stratified and $\Delta(i) = \overline{\Delta}(i)$ for all i.

A quasi-hereditary implies T = C.

A quasi-hereditary implies gl.d.(A) $< \infty$.

Corollary. Let A be quasi-hereditary. Then gl.d. $(A) \leq 2 \cdot \text{p.d.}(T)$.

4. Exact results for the finitistic dimension

A has a simple preserving duality if there is a contravariant involutive exact self-equivalence on A-mod.

Conjecture. [Mazorchuk-Parker] Let A be properly stratified with duality. Then fin.d. $(A) = 2 \cdot \text{p.d.}(T)$.

Theorem. [Mazorchuk-Ovsienko] Assume that

- 1. A is properly stratified;
- 2. A has a duality;
- 3. T = C.

Then fin.d. $(A) = 2 \cdot \text{p.d.}(T)$.

Corollary. Let A be quasi-hereditary with duality. Then $gl.d.(A) = 2 \cdot p.d.(T)$.

Examples of such algebras:

- 1. Schur algebras;
- 2. algebras of blocks of the category \mathcal{O} ,
- 3. algebras of blocks of the S-subcategories in O.

Theorem. [Mazorchuk-Frisk] Assume that

- 1. A is properly stratified;
- 2. A has a duality;
- 3. $\operatorname{End}_A(T)$ is properly stratified;
- 4. $\operatorname{End}_A(T)$ has a duality.

Then fin.d. $(A) = 2 \cdot \text{p.d.}(T)$.

Examples of such algebras:

- 1. certain tensor products of quasi-hereditary and local algebras;
- 2. algebras of blocks of the thick category \mathcal{O} .

Theorem. [Mazorchuk-Frisk] Assume that

- 1. A is properly stratified;
- 2. A has a duality;
- 3. $R = \text{End}_A(T)$ is properly stratified.

Then fin.d. $(A) = 2 \cdot \text{p.d.}(T^{(R)})$.

5. Finitistic dimension via integral algebras

Theorem. [Khomenko-König-Mazorchuk]

- R local, complete, commutative algebra with the maximal ideal \mathfrak{m} ;
- A a quasi-hereditary algebra over R;
- I an ideal of R of finite codimension.

Then:

- 1. A/AI is properly stratified.
- 2. A/AI is quasi-hereditary if and only if $I = \mathfrak{m}$.
- 3. gl.d. $(A/A\mathfrak{m}) = 2 \cdot \text{p.d.}(T^{(A/A\mathfrak{m})})$ implies the equality fin.d. $(A/AI) = 2 \cdot \text{p.d.}(T^{(A/AI)})$.

Examples of such algebras:

- 1. all tensor products of quasi-hereditary and local algebras;
- 2. algebras of blocks of Harish-Chandra bimodules.

6. Connection with various filtration dimensions

 \mathcal{M} — a family of A-modules.

For $N \in A$ -mod the \mathcal{M} -filtration dimension $\dim_{\mathcal{M}}(N)$ of N is the length of a shortest resolution of N by modules from \mathcal{M} if such a resolution exists.

Assume that \mathcal{M} is such that every $N \in A$ -mod has a resolution by modules from \mathcal{M} . Define:

$$\dim_{\mathcal{M}}(A) = \max_{N \in A - \text{mod}} \dim_{\mathcal{M}}(N);$$

Fact. A — properly stratified, $\Delta = \{\Delta(1), \ldots, \Delta(n)\}$. Then $\dim_{\Delta}(N)$ is well-defined (possibly infinite) for all $N \in A$ -mod.

Corollary. Let A be as in any theorem above. Then $\operatorname{fin.d.}(A) = 2 \cdot \dim_{\Delta}(A)$.

7. Conjecture of Erdmann and Parker

Conjecture. [Erdmann-Parker] A-quasi-hereditary with duality \circ and $N \in A$ -mod is such that $\dim_{\Delta}(N) = t$. Then $\operatorname{Ext}_{A}^{2t}(N, N^{\circ}) \neq 0$.

Theorem. [Mazorchuk-Ovsienko] A-properly stratified with duality \circ and T = C. $N \in A$ -mod is such that $\dim_{\Delta}(N) = t$. Then $\operatorname{Ext}_{A}^{2t}(N, N^{\circ}) \neq 0$.

8. Connection with exact Borel subalgebras

Corollary. Let A be quasi-hereditary with duality and B be an exact Borel subalgebra of A. Then fin.d. $(A) = 2 \cdot \text{fin.d.}(B)$.