ON FINITISTIC DIMENSION OF STRATIFIED ALGEBRAS

Volodymyr Mazorchuk

(Uppsala University)

1. Notation

k — algebraically closed field.

A — finite-dimensional associative k-algebra.

A-mod — category of all finite-dimensional A-modules.

 $\{e_1,\ldots,e_n\}$ — a complete set of primitive idempotents.

 $L(i), P(i), I(i), i = 1, \ldots, n$, — the corresponding simple, projective and injective modules.

$$L = \bigoplus_{i=1}^{n} L(i), \quad P = \bigoplus_{i=1}^{n} P(i), \quad I = \bigoplus_{i=1}^{n} I(i).$$

2. (Generalized) tilting module

Definition. $T \in A$ -mod is called a (generalized) tilting module provided that

- 1. $\operatorname{Ext}_{A}^{i}(T,T) = 0, i > 0;$
- 2. p.d. $(T) < \infty;$
- 3. there exists a coresolution $0 \to P \to T_0 \to \cdots \to T_k \to 0$, where $T_i \in Add(T)$ for all i.

Remark. Minimal k above equals p.d.(T).

3. Duality

Definition. The algebra A is said to have a (simple preserving) duality, if there exists a contravariant exact equivalence on A-mod, which preserves the iso-classes of simple modules.

Example. Any isomorphism $\varphi: A \cong A^{opp}$, such that $\varphi(e_i) = e_i$ for all i, gives rise to a duality.

3. Finitistic dimension

Global dimension of A:

$$gl.d.(A) = \max_{M \in A - \text{mod}} p.d.(M).$$

 $\mathcal{P}^{<\infty}(A)$ — the full subcategory of A-mod, consisting of all modules of finite projective dimension.

Projectively defined finitistic dimension of A:

$$\operatorname{fin.d.}(A) = \max_{M \in \mathcal{P}^{<\infty}(A)} \operatorname{p.d.}(M).$$

Finitistic dimension conjecture. fin.d. $(A) < \infty$ for every A.

4. Finitistic dimension algebras with duality and selfdual tilting modules

Lemma. Assume that p.d.(I), fin.d.(A) < ∞ . Then fin.d.(A) = p.d.(I).

Proof. Let $M \in \mathcal{P}^{<\infty}(A)$ be such that p.d.(M) = fin.d.(A) = m. Choose $M \hookrightarrow \hat{I} \twoheadrightarrow K$ and apply $\text{Hom}_A(_, S)$. One gets the exact sequence

$$\cdots \to \operatorname{Ext}_A^m(\hat{I}, S) \to \operatorname{Ext}_A^m(M, S) \neq 0 \to \operatorname{Ext}_A^{m+1}(K, S) = 0.$$

Hence $\operatorname{Ext}_A^m(\hat{I},S) \neq 0$ and therefore $\operatorname{p.d.}(I) = \operatorname{p.d.}(\hat{I}) = m = \operatorname{fin.d.}(A)$. **Q.E.D.**

Theorem A. [M.-Ovsienko] Assume that

- (i) A has a duality, \circ .
- (ii) There is a (generalized) tilting module, T, such that all indecomposable summands of T are self-dual with respect to \circ .
- (iii) fin.d. $(A) < \infty$.

Then fin.d. $(A) = 2 \cdot \text{p.d.}(T)$

Proof. Let

$$0 \to P \to T_0 \to \cdots \to T_k \to 0 \tag{1}$$

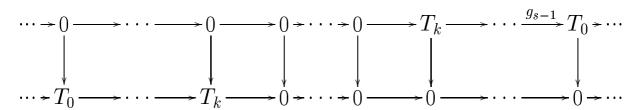
be a minimal tilting coresolution of P. Remark that k = p.d.(T). Apply \circ form (i) and use (ii) to obtain a tilting resolution for I:

$$0 \to T_k \to \cdots \to T_0 \to I \to 0. \tag{2}$$

In particular, p.d. $(I) < \infty$. Hence Lemma implies that fin.d.(A) equals the maximal m such that $\operatorname{Ext}_A^m(I,P) \neq 0$. We calculate such m using (1) and (2).

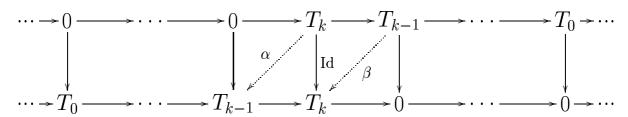
In $D^b(A)$ we can substitute P and I by tilting complexes \mathcal{T}_1^{\bullet} and \mathcal{T}_2^{\bullet} obtained from (1) and (2) respectively. Then the extensions can be calculated as the usual homomorphisms between the shifted complexes up to homotopy.

If t > 2k, we have the following picture for the homomorphisms from $\mathcal{T}_2^{\bullet}[-t]$ to \mathcal{T}_1^{\bullet} :



Hence $\operatorname{Ext}_A^t(I, P) = 0$ for all t > 2k.

If t > 2k, we have the following non-trivial homomorphism:



Minimality of the resolution implies that it is not homotopic to zero, giving a non-trivial extension of degree 2k between I and P. **Q.E.D.**

5. Various stratified algebras

For $i = 1, \ldots, n$ define:

standard modules $\Delta(i)$ as the maximal quotient of P(i) such that $[\Delta(i):L(j)]=0, j>i;$

proper standard modules $\overline{\Delta}(i)$ as the maximal quotient of $\Delta(i)$ such that $[\overline{\Delta}(i):L(i)]=1;$

costandard modules $\nabla(i)$ as the maximal submodule of I(i) such that $[\nabla(i):L(j)]=0, j>i;$

proper costandard modules $\overline{\nabla}(i)$ as the maximal submodule of $\nabla(i)$ such that $[\overline{\nabla}(i):L(i)]=1$.

Definition. A is called *strongly standardly stratified* provided that for every i the kernel of $P(i) \rightarrow \Delta(i)$ has a filtration with subquotients $\Delta(j)$, j > i.

Definition. A is called *properly stratified* provided that it is strongly standardly stratified and each $\Delta(i)$ has a filtration with subquotients $\overline{\Delta}(i)$.

Definition. A is called *quasi-hereditary* provided that it is properly stratified and $\Delta(i) = \overline{\Delta}(i)$ for all i.

6. Application of Theorem A to quasi-hereditary algebras

A — quasi-hereditary with duality.

 $\mathcal{F}(\Delta)$ — category of modules having a standard filtration.

 $\mathcal{F}(\nabla)$ — category of modules having a costandard filtration.

Fact. $\mathcal{F}(\Delta) \cap \mathcal{F}(\nabla) = \operatorname{Add}(T)$, where T is a (generalized) tilting module with self-dual indecomposable summands.

Corollary. gl.dim. $(A) = 2 \cdot \text{p.d.}(T)$.

Corollary. gl.dim. $(A) = 2 \cdot \dim_{\Delta}(A) = 2 \cdot \text{gl.dim.}(B)$, where $\dim_{\Delta}(A)$ is the Δ -filtration dimension of A, and B is an exact Borel subalgebra of some $A' \simeq_{Morita} A$.

7. Application of Theorem A to properly stratified algebras

A — properly stratified with duality.

 $\mathcal{F}(\Delta)$, $\mathcal{F}(\nabla)$ as above.

 $\mathcal{F}(\overline{\Delta})$ — category of modules having a proper standard filtration.

 $\mathcal{F}(\overline{\nabla})$ — category of modules having a proper costandard filtration.

Fact. $\mathcal{F}(\Delta) \cap \mathcal{F}(\overline{\nabla}) = \mathrm{Add}(T)$, where T is a (generalized) tilting module.

Fact. $\mathcal{F}(\overline{\Delta}) \cap \mathcal{F}(\nabla) = \text{Add}(C)$, where C is a (generalized) cotilting module.

Fact. If T = C then all indecomposable summands of T are self-dual.

Corollary. Assume T = C. Then fin.d. $(A) = 2 \cdot \text{p.d.}(T)$.

Conjecture. [M.-Parker] fin.d. $(A) = 2 \cdot \text{p.d.}(T)$ for any properly stratified algebra A with duality.

7. New generalized tilting module for strongly stratified algebras

A — strongly stratified.

T — characteristic tilting module for A.

 $R = \operatorname{End}_A(T)$ — the Ringel dual of A.

 $F = \operatorname{Hom}_A(T, _) : A - \operatorname{mod} \to R - \operatorname{mod} \longrightarrow \operatorname{Ringel}$ duality functor.

Fact. $F: \mathcal{F}(\overline{\nabla}^{(A)}) \to \mathcal{F}(\overline{\Delta}^{(R)})$ is an exact equivalence.

Theorem. [Frisk-M.] Assume that R is properly stratified, then $H = F^{-1}(T^{(R)})$ is a (generalized) tilting module for A.

Corollary. Assume that R is properly stratified. Then

$$fin.d.(A) = p.d.(H).$$

Corollary. Assume that R is properly stratified. Then $\mathcal{P}^{<\infty}(A)$ is contravariantly finite.

7. Two-step duality for strongly stratified algebras

A — strongly stratified.

Assume that R is properly stratified.

H — new (two-step) tilting module for A.

Theorem. [Frisk-M.]

- 1. $B = \text{End}_A(H)^{opp}$ is strongly stratified.
- 2. The Ringel dual of B is properly stratified.
- 3. The two-step dual for B is Morita equivalent to A^{opp} .

 $G = \operatorname{Hom}_{\mathbb{k}}(\operatorname{Hom}_{A}(-, H), \mathbb{k}) : A - \operatorname{mod} \to B - \operatorname{mod} - \operatorname{the two-step}$ duality functor.

Corollary. $G: \mathcal{P}^{<\infty}(A) \to \mathcal{I}^{<\infty}(B)$ is an exact equivalence.

8. Finitistic dimension for strongly stratified algebras

Theorem. [Frisk-M.] Assume that both A and R are properly stratified with duality. Then

$$fin.d.(A) = 2 \cdot p.d.(T).$$

Theorem. [Frisk-M.] Assume that A is properly stratified with duality and R is properly stratified. Then

fin.d.
$$(A) = 2 \cdot \text{p.d.}(T^{(R)}).$$