TWISTING, COMPLETING AND APPROXIMATING CATEGORY \mathcal{O} Volodymyr Mazorchuk (Uppsala University) # 1. Category \mathcal{O} \mathfrak{g} — simple finite-dimensional Lie algebra over \mathbb{C} $U(\mathfrak{g})$ — the universal enveloping algebra of \mathfrak{g} $Z(\mathfrak{g})$ — the center of $U(\mathfrak{g})$ $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ — fixed triangular decomposition of \mathfrak{g} **Definition:** (BGG) Category \mathcal{O} is the full subcategory in \mathfrak{g} -mod that consists of all modules, which are - finitely generated; - **h**-diagonalizable; - locally $U(\mathfrak{n}_+)$ -finite. With respect to the action of $Z(\mathfrak{g})$ the category \mathcal{O} decomposes: $$\mathcal{O} = \bigoplus_{\chi \in Z(\mathfrak{g})^*} \mathcal{O}_{\chi}.$$ Every \mathcal{O}_{χ} is equivalent to the module category of a finite-dimensional, associative, quasi-hereditary algebra. Simple modules in \mathcal{O}_{χ} are indexed (sometimes non-bijectively) by the elements of the Weyl group W. **Example:** Indecomposable modules in the regular block of \mathcal{O} for $\mathfrak{sl}(2,\mathbb{C})$: $$L(\lambda)$$: $M(\lambda)$: $M(s_{\alpha} \cdot \lambda)$: $M(\lambda)^{*}$: $P(s_{\alpha} \cdot \lambda)$: ## 2. Twisting functors on \mathcal{O} Let α be a simple root and $X_{-\alpha}$ be a non-zero root vector. Let U_{α} denote the (Ore) localization of (\mathfrak{g}) with respect to $\{X_{-\alpha}^l: l \geq 0\}.$ $B_{\alpha} = U_{\alpha}/U(\mathfrak{g})$ is the twisting $U(\mathfrak{g})$ -bimodule (Arkhipov). Let Φ_{α} be the inner automorphism of \mathfrak{g} , corresponding to α . **Definition:** (Arkhipov) The twisting functor $T_{\alpha}: \mathfrak{g}\text{-mod} \to \mathfrak{g}\text{-mod}$ is defined as the functor $\Phi_{\alpha}(B_{\alpha} \otimes_{U(\mathfrak{g})} -)$. T_{α} preserves all integral blocks of \mathcal{O} . T_{α} is right exact. **Theorem.** (Arkhipov?, Andersen?, Andersen-Lauritzen?, Khomenko-M.) Functors T_{α} , α simple, (weakly) satisfy braid relations on the integral blocks of \mathcal{O} . **Example:** Action of T_{α} on the regular block of \mathcal{O} for $\mathfrak{sl}(2,\mathbb{C})$: ## 3. Enright-Deodhar's completion functor on \mathcal{O} Let α and U_{α} be as above. **Definition:** The Enright-Deodhar's completion functor $E_{\alpha}: \mathfrak{g}\text{-mod} \to \mathfrak{g}\text{-mod}$ is defined as the composition of the following functors: - 1. $U_{\alpha} \otimes_{U(\mathfrak{g})}$ -; - 2. restriction to $U(\mathfrak{g})$; - 3. taking \mathfrak{g}_{α} -locally finite part. E_{α} is left exact and idempotent. **Example:** Action of E_{α} on the regular block of \mathcal{O} for $\mathfrak{sl}(2,\mathbb{C})$: # 4. Enright-Joseph's completion functor on \mathcal{O} For $M, N \in U(\mathfrak{g})$ -mod denote by $\mathcal{L}(M, N)$ the space of all locally ad- \mathfrak{g} -finite linear maps from M to N. $M(\lambda)$ is the Verma module with highest weight $\lambda \in \mathfrak{h}^*$. **Definition:** The Enright-Joseph's completion functor $J_{\alpha}: \mathfrak{g}\text{-mod} \to \mathfrak{g}\text{-mod}$ is defined as the functor $$J_{\alpha} = \mathcal{L}(M(s_{\alpha} \cdot \lambda), _{-}) \otimes_{U(\mathfrak{g})} M(\lambda),$$ where $M(\lambda)$ is the dominant Verma module in \mathcal{O}_{χ} . J_{α} is left exact and $J_{\alpha}^{3} \cong J_{\alpha}^{2}$. **Example:** Action of J_{α} on the regular block of \mathcal{O} for $\mathfrak{sl}(2,\mathbb{C})$: ## 5. Approximation functor A — finite-dimensional associative algebra. Υ — a set of primitive pairwise orthogonal idempotents. $P(\Upsilon)$, $I(\Upsilon)$ — the corresponding projective and injective modules respectively. **Definition:** (Auslander?) The approximation functor $\mathfrak{c}_{\Upsilon}: A\text{-mod} \to A\text{-mod}$ is defined as $\mathfrak{c}_{\Upsilon} = \mathrm{Hom}_{\mathrm{End}_A(P(\Upsilon))} \big(\mathrm{Hom}_A(P(\Upsilon), A), \mathrm{Hom}_A(P(\Upsilon), -) \big).$ \mathfrak{c}_{Υ} is left exact and idempotent. \mathfrak{c}_{Υ} can be viewed as the composition of the following two procedures. Start with $M \in A$ -mod. - 1. Take the maximal possible image M_1 of M in some $I(\Upsilon)^n$. - 2. Make the maximal possible coextension of M_1 inside $I(\Upsilon)^n$ with non- Υ simples. For a simple root α and a block \mathcal{O}_{χ} we let Υ denote the set of α -antidominant simples. **Example:** Action of \mathfrak{c}_{Υ} on the regular block of \mathcal{O} for $\mathfrak{sl}(2,\mathbb{C})$: The coapproximation functor $\tilde{\mathfrak{c}}_\Upsilon$ is defined dually. **Theorem.** (Auslander?) The functor $\tilde{\mathfrak{c}}_{\Upsilon}$ is left adjoint to \mathfrak{c}_{Υ} . #### 6. Functor of partial approximation $$A, \Upsilon, P(\Upsilon), I(\Upsilon)$$ — as above. I — injective generator of A-mod. **Definition:** (Khomenko-M.) The functor of partial approximation $\mathfrak{d}_{\Upsilon}: A\text{-mod} \to A\text{-mod}$ is defined as the composition of the following three procedures. Start with $M \in A\text{-mod}$. - 1. Take a minimal injective envelope $M \subset I_M$ of M. - 2. Make the maximal possible coextension of M inside I_M with non- Υ simples obtaining M_1 . - 3. Take the maximal possible image of M_1 in some $I(\Upsilon)^n$. \mathfrak{d}_{Υ} is left exact and $\mathfrak{d}_{\Upsilon}^3 = \mathfrak{d}_{\Upsilon}^2$. The coapproximation functor $\tilde{\mathfrak{d}}_{\Upsilon}$ is defined dually. **Theorem.** (Khomenko-M.) The functor $\tilde{\mathfrak{d}}_{\Upsilon}$ is left adjoint to \mathfrak{d}_{Υ} . For a simple root α and a block \mathcal{O}_{χ} we let Υ denote the set of α -antidominant simples. **Example:** Action of \mathfrak{c}_{Υ} on the regular block of \mathcal{O} for $\mathfrak{sl}(2,\mathbb{C})$: #### 7. Relations between these functors (Khomenko-M.) Let \mathcal{O}_{χ} be integral and regular. **Theorem:** The functors E_{α} and \mathfrak{c}_{v} are isomorphic. **Theorem:** The functors J_{α} and \mathfrak{d}_{v} are isomorphic. **Theorem:** There is a non-trivial natural transformation from T_{α} to the identity functor. **Theorem:** The functors T_{α} and $\tilde{\mathfrak{d}}_{v}$ are isomorphic. **Corollary:** The functor T_{α} is left adjoint to the functor J_{α} . **Corollary:** The functor T_{α} is left adjoint to the functor $\star \circ T_{\alpha} \circ \star$. **Corollary:** The functor J_{α} is left adjoint to the functor $\star \circ J_{\alpha} \circ \star$. **Corollary:** (Joseph) The functors J_{α} , α simple, satisfy braid relations. **Corollary:** (Deodhar, Bouaziz) The functors E_{α} , α simple, satisfy braid relations on the full subcategory of \mathcal{O}_{χ} , which consists of all modules, torsion free with respect to all $\mathfrak{g}_{-\beta}$, β positive. # 8. T_{α} and the Kazhdan-Lusztig conjecture Let \mathcal{O}_{χ} be integral and regular. Let $L(\lambda) \in \mathcal{O}_{\chi}$ be a simple module such that $T_{\alpha}(L(\lambda)) \neq 0$ (that is λ is α -antidominant). **Theorem:** (Andersen-Stroppel) The Kazhdan-Lusztig conjecture is equivalent to the following statement: The kernel of the natural morphism $T_{\alpha}(L(\lambda)) \to L(\lambda)$ is semi-simple for all α and λ as above.