TWISTING, COMPLETING AND APPROXIMATING CATEGORY \mathcal{O}

Volodymyr Mazorchuk

(Uppsala University)

1. Category \mathcal{O}

 \mathfrak{g} — simple finite-dimensional Lie algebra over \mathbb{C}

 $U(\mathfrak{g})$ — the universal enveloping algebra of \mathfrak{g}

 $Z(\mathfrak{g})$ — the center of $U(\mathfrak{g})$

 $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ — fixed triangular decomposition of \mathfrak{g}

Definition: (BGG) Category \mathcal{O} is the full subcategory in \mathfrak{g} -mod that consists of all modules, which are

- finitely generated;
- **h**-diagonalizable;
- locally $U(\mathfrak{n}_+)$ -finite.

With respect to the action of $Z(\mathfrak{g})$ the category \mathcal{O} decomposes:

$$\mathcal{O} = \bigoplus_{\chi \in Z(\mathfrak{g})^*} \mathcal{O}_{\chi}.$$

Every \mathcal{O}_{χ} is equivalent to the module category of a finite-dimensional, associative, quasi-hereditary algebra.

Simple modules in \mathcal{O}_{χ} are indexed (sometimes non-bijectively) by the elements of the Weyl group W.

Example: Indecomposable modules in the regular block of \mathcal{O} for $\mathfrak{sl}(2,\mathbb{C})$:

$$L(\lambda)$$
:

 $M(\lambda)$:

 $M(s_{\alpha} \cdot \lambda)$:

 $M(\lambda)^{*}$:

 $P(s_{\alpha} \cdot \lambda)$:

2. Twisting functors on \mathcal{O}

Let α be a simple root and $X_{-\alpha}$ be a non-zero root vector.

Let U_{α} denote the (Ore) localization of (\mathfrak{g}) with respect to $\{X_{-\alpha}^l: l \geq 0\}.$

 $B_{\alpha} = U_{\alpha}/U(\mathfrak{g})$ is the twisting $U(\mathfrak{g})$ -bimodule (Arkhipov).

Let Φ_{α} be the inner automorphism of \mathfrak{g} , corresponding to α .

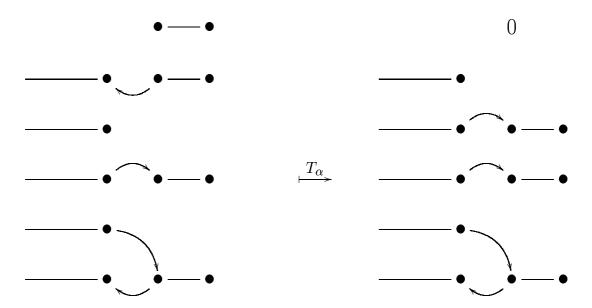
Definition: (Arkhipov) The twisting functor $T_{\alpha}: \mathfrak{g}\text{-mod} \to \mathfrak{g}\text{-mod}$ is defined as the functor $\Phi_{\alpha}(B_{\alpha} \otimes_{U(\mathfrak{g})} -)$.

 T_{α} preserves all integral blocks of \mathcal{O} .

 T_{α} is right exact.

Theorem. (Arkhipov?, Andersen?, Andersen-Lauritzen?, Khomenko-M.) Functors T_{α} , α simple, (weakly) satisfy braid relations on the integral blocks of \mathcal{O} .

Example: Action of T_{α} on the regular block of \mathcal{O} for $\mathfrak{sl}(2,\mathbb{C})$:



3. Enright-Deodhar's completion functor on \mathcal{O}

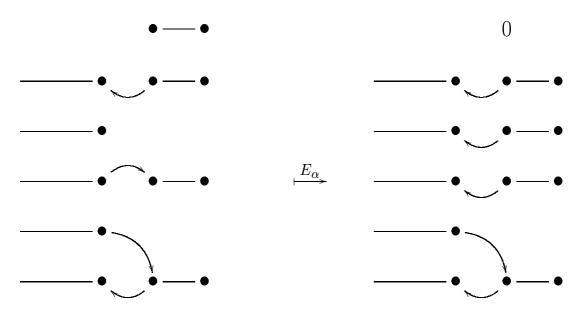
Let α and U_{α} be as above.

Definition: The Enright-Deodhar's completion functor $E_{\alpha}: \mathfrak{g}\text{-mod} \to \mathfrak{g}\text{-mod}$ is defined as the composition of the following functors:

- 1. $U_{\alpha} \otimes_{U(\mathfrak{g})}$ -;
- 2. restriction to $U(\mathfrak{g})$;
- 3. taking \mathfrak{g}_{α} -locally finite part.

 E_{α} is left exact and idempotent.

Example: Action of E_{α} on the regular block of \mathcal{O} for $\mathfrak{sl}(2,\mathbb{C})$:



4. Enright-Joseph's completion functor on \mathcal{O}

For $M, N \in U(\mathfrak{g})$ -mod denote by $\mathcal{L}(M, N)$ the space of all locally ad- \mathfrak{g} -finite linear maps from M to N.

 $M(\lambda)$ is the Verma module with highest weight $\lambda \in \mathfrak{h}^*$.

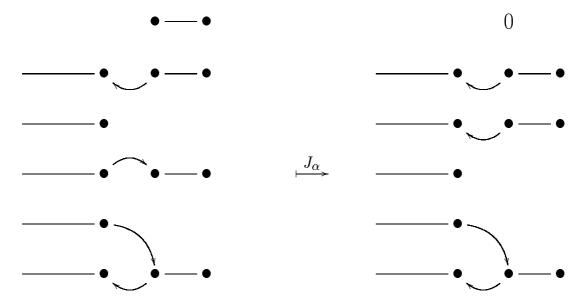
Definition: The Enright-Joseph's completion functor $J_{\alpha}: \mathfrak{g}\text{-mod} \to \mathfrak{g}\text{-mod}$ is defined as the functor

$$J_{\alpha} = \mathcal{L}(M(s_{\alpha} \cdot \lambda), _{-}) \otimes_{U(\mathfrak{g})} M(\lambda),$$

where $M(\lambda)$ is the dominant Verma module in \mathcal{O}_{χ} .

 J_{α} is left exact and $J_{\alpha}^{3} \cong J_{\alpha}^{2}$.

Example: Action of J_{α} on the regular block of \mathcal{O} for $\mathfrak{sl}(2,\mathbb{C})$:



5. Approximation functor

A — finite-dimensional associative algebra.

Υ — a set of primitive pairwise orthogonal idempotents.

 $P(\Upsilon)$, $I(\Upsilon)$ — the corresponding projective and injective modules respectively.

Definition: (Auslander?) The approximation functor $\mathfrak{c}_{\Upsilon}: A\text{-mod} \to A\text{-mod}$ is defined as $\mathfrak{c}_{\Upsilon} = \mathrm{Hom}_{\mathrm{End}_A(P(\Upsilon))} \big(\mathrm{Hom}_A(P(\Upsilon), A), \mathrm{Hom}_A(P(\Upsilon), -) \big).$

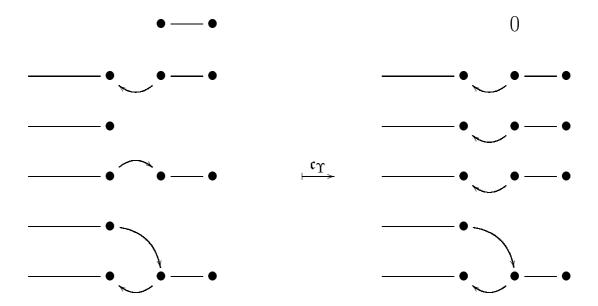
 \mathfrak{c}_{Υ} is left exact and idempotent.

 \mathfrak{c}_{Υ} can be viewed as the composition of the following two procedures. Start with $M \in A$ -mod.

- 1. Take the maximal possible image M_1 of M in some $I(\Upsilon)^n$.
- 2. Make the maximal possible coextension of M_1 inside $I(\Upsilon)^n$ with non- Υ simples.

For a simple root α and a block \mathcal{O}_{χ} we let Υ denote the set of α -antidominant simples.

Example: Action of \mathfrak{c}_{Υ} on the regular block of \mathcal{O} for $\mathfrak{sl}(2,\mathbb{C})$:



The coapproximation functor $\tilde{\mathfrak{c}}_\Upsilon$ is defined dually.

Theorem. (Auslander?) The functor $\tilde{\mathfrak{c}}_{\Upsilon}$ is left adjoint to \mathfrak{c}_{Υ} .

6. Functor of partial approximation

$$A, \Upsilon, P(\Upsilon), I(\Upsilon)$$
 — as above.

I — injective generator of A-mod.

Definition: (Khomenko-M.) The functor of partial approximation $\mathfrak{d}_{\Upsilon}: A\text{-mod} \to A\text{-mod}$ is defined as the composition of the following three procedures. Start with $M \in A\text{-mod}$.

- 1. Take a minimal injective envelope $M \subset I_M$ of M.
- 2. Make the maximal possible coextension of M inside I_M with non- Υ simples obtaining M_1 .
- 3. Take the maximal possible image of M_1 in some $I(\Upsilon)^n$.

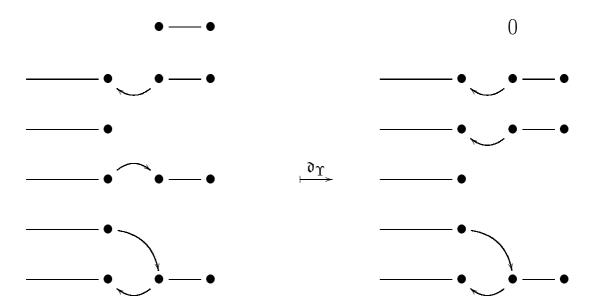
 \mathfrak{d}_{Υ} is left exact and $\mathfrak{d}_{\Upsilon}^3 = \mathfrak{d}_{\Upsilon}^2$.

The coapproximation functor $\tilde{\mathfrak{d}}_{\Upsilon}$ is defined dually.

Theorem. (Khomenko-M.) The functor $\tilde{\mathfrak{d}}_{\Upsilon}$ is left adjoint to \mathfrak{d}_{Υ} .

For a simple root α and a block \mathcal{O}_{χ} we let Υ denote the set of α -antidominant simples.

Example: Action of \mathfrak{c}_{Υ} on the regular block of \mathcal{O} for $\mathfrak{sl}(2,\mathbb{C})$:



7. Relations between these functors (Khomenko-M.)

Let \mathcal{O}_{χ} be integral and regular.

Theorem: The functors E_{α} and \mathfrak{c}_{v} are isomorphic.

Theorem: The functors J_{α} and \mathfrak{d}_{v} are isomorphic.

Theorem: There is a non-trivial natural transformation from T_{α} to the identity functor.

Theorem: The functors T_{α} and $\tilde{\mathfrak{d}}_{v}$ are isomorphic.

Corollary: The functor T_{α} is left adjoint to the functor J_{α} .

Corollary: The functor T_{α} is left adjoint to the functor $\star \circ T_{\alpha} \circ \star$.

Corollary: The functor J_{α} is left adjoint to the functor $\star \circ J_{\alpha} \circ \star$.

Corollary: (Joseph) The functors J_{α} , α simple, satisfy braid relations.

Corollary: (Deodhar, Bouaziz) The functors E_{α} , α simple, satisfy braid relations on the full subcategory of \mathcal{O}_{χ} , which consists of all modules, torsion free with respect to all $\mathfrak{g}_{-\beta}$, β positive.

8. T_{α} and the Kazhdan-Lusztig conjecture

Let \mathcal{O}_{χ} be integral and regular.

Let $L(\lambda) \in \mathcal{O}_{\chi}$ be a simple module such that $T_{\alpha}(L(\lambda)) \neq 0$ (that is λ is α -antidominant).

Theorem: (Andersen-Stroppel) The Kazhdan-Lusztig conjecture is equivalent to the following statement: The kernel of the natural morphism $T_{\alpha}(L(\lambda)) \to L(\lambda)$ is semi-simple for all α and λ as above.