Simple transitive 2-representations of finitary 2-categories

Volodymyr Mazorchuł

(Uppfala University)

"Categorification and geometric reprefentation theory" June 9-13, 2014, Montreal, CUTUDU

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Sac

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

500

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Main problems of the 2-representation theory of $\ensuremath{\mathcal{C}}$

- Understand the 2-category of all 2-representation of C
- ▶ Understand all "simple" 2-representation of C
- ► Understand how an arbitrary 2-representation of *C* is built from "simple" 2-representation of *C*

Main problems of the 2-representation theory of $\ensuremath{\mathcal{C}}$

- \blacktriangleright Understand the 2-category of all 2-representation of ${\cal C}$
- ▶ Understand all "simple" 2-representation of C
- ► Understand how an arbitrary 2-representation of *C* is built from "simple" 2-representation of *C*

Main problems of the 2-representation theory of $\ensuremath{\mathcal{C}}$

- ▶ Understand the 2-category of all 2-representation of C
- ▶ Understand all "simple" 2-representation of C
- ► Understand how an arbitrary 2-representation of *C* is built from "simple" 2-representation of *C*

Main problems of the 2-representation theory of $\ensuremath{\mathcal{C}}$

- \blacktriangleright Understand the 2-category of all 2-representation of ${\cal C}$
- ▶ Understand all "simple" 2-representation of C
- ► Understand how an arbitrary 2-representation of C is built from "simple" 2-representation of C

Main problems of the 2-representation theory of $\ensuremath{\mathcal{C}}$

- \blacktriangleright Understand the 2-category of all 2-representation of ${\cal C}$
- ▶ Understand all "simple" 2-representation of C
- ► Understand how an arbitrary 2-representation of C is built from "simple" 2-representation of C

Main problems of the 2-representation theory of $\ensuremath{\mathcal{C}}$

- \blacktriangleright Understand the 2-category of all 2-representation of ${\cal C}$
- ▶ Understand all "simple" 2-representation of C
- ► Understand how an arbitrary 2-representation of C is built from "simple" 2-representation of C

Main problems of the 2-representation theory of $\ensuremath{\mathcal{C}}$

- \blacktriangleright Understand the 2-category of all 2-representation of ${\cal C}$
- ▶ Understand all "simple" 2-representation of C
- ► Understand how an arbitrary 2-representation of C is built from "simple" 2-representation of C

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Definition. A 2-category C is called finitary provided that

- C has finitely many objects
- Each C(i, j) is additive, idempotent split, Krull-Schmidt and has finitely many indecomposables
- ▶ 2-morphisms form finite dimensional k-vector spaces
- ▶ compositions are additive and k-linear
- ▶ the identity 1-morphisms are indecomposable

Definition. A 2-category C is called finitary provided that

▶ C has finitely many objects

- Each C(i, j) is additive, idempotent split, Krull-Schmidt and has finitely many indecomposables
- ▶ 2-morphisms form finite dimensional k-vector spaces
- compositions are additive and k-linear
- ▶ the identity 1-morphisms are indecomposable

Definition. A 2-category C is called finitary provided that

► C has finitely many objects

- Each C(i, j) is additive, idempotent split, Krull-Schmidt and has finitely many indecomposables
- ▶ 2-morphisms form finite dimensional k-vector spaces
- compositions are additive and k-linear
- ▶ the identity 1-morphisms are indecomposable

- ► C has finitely many objects
- ► Each C(i, j) is additive, idempotent split, Krull-Schmidt and has finitely many indecomposables
- ▶ 2-morphisms form finite dimensional k-vector spaces
- ▶ compositions are additive and k-linear
- ▶ the identity 1-morphisms are indecomposable

- ► C has finitely many objects
- ► Each C(i, j) is additive, idempotent split, Krull-Schmidt and has finitely many indecomposables
- ► 2-morphisms form finite dimensional k-vector spaces
- compositions are additive and k-linear
- ▶ the identity 1-morphisms are indecomposable

- ► C has finitely many objects
- ► Each C(i, j) is additive, idempotent split, Krull-Schmidt and has finitely many indecomposables
- ► 2-morphisms form finite dimensional k-vector spaces
- ► compositions are additive and k-linear
- ▶ the identity 1-morphisms are indecomposable

- ► C has finitely many objects
- ► Each C(i, j) is additive, idempotent split, Krull-Schmidt and has finitely many indecomposables
- ► 2-morphisms form finite dimensional k-vector spaces
- ► compositions are additive and k-linear
- ► the identity 1-morphisms are indecomposable

- ► C has finitely many objects
- ► Each C(i, j) is additive, idempotent split, Krull-Schmidt and has finitely many indecomposables
- ► 2-morphisms form finite dimensional k-vector spaces
- ► compositions are additive and k-linear
- ► the identity 1-morphisms are indecomposable

- ► C has finitely many objects
- ► Each C(i, j) is additive, idempotent split, Krull-Schmidt and has finitely many indecomposables
- ► 2-morphisms form finite dimensional k-vector spaces
- ► compositions are additive and k-linear
- ► the identity 1-morphisms are indecomposable

Definition. The 2-category C_A is defined as follows

- C_A has one object (identified with A-mod)
- ▶ 2-morphisms in C_A are endofunctors of A-mod isomorphic to a direct sum of copies of the identity functor and functors of tensoring with projective A-bimodules
- 2-morphisms in C_A are natural transformations of functors

Definition. The 2-category C_A is defined as follows

• C_A has one object (identified with A-mod)

▶ 2-morphisms in C_A are endofunctors of A-mod isomorphic to a direct sum of copies of the identity functor and functors of tensoring with projective A-bimodules

▶ 2-morphisms in C_A are natural transformations of functors

Definition. The 2-category C_A is defined as follows

- C_A has one object (identified with A-mod)
- ► 2-morphisms in C_A are endofunctors of A-mod isomorphic to a direct sum of copies of the identity functor and functors of tensoring with projective A-bimodules
- ▶ 2-morphisms in C_A are natural transformations of functors

Definition. The 2-category C_A is defined as follows

- C_A has one object (identified with A-mod)
- ► 2-morphisms in C_A are endofunctors of A-mod isomorphic to a direct sum of copies of the identity functor and functors of tensoring with projective A-bimodules
- ▶ 2-morphisms in C_A are natural transformations of functors

Claim. C_A is finitary

nac

Definition. The 2-category C_A is defined as follows

- C_A has one object (identified with A-mod)
- ► 2-morphisms in C_A are endofunctors of A-mod isomorphic to a direct sum of copies of the identity functor and functors of tensoring with projective A-bimodules
- ▶ 2-morphisms in C_A are natural transformations of functors

Claim. C_A is finitary

nac

Definition. The 2-category C_A is defined as follows

- C_A has one object (identified with A-mod)
- ► 2-morphisms in C_A are endofunctors of A-mod isomorphic to a direct sum of copies of the identity functor and functors of tensoring with projective A-bimodules
- ▶ 2-morphisms in C_A are natural transformations of functors

Definition. The 2-category C_A is defined as follows

- C_A has one object (identified with A-mod)
- ► 2-morphisms in C_A are endofunctors of A-mod isomorphic to a direct sum of copies of the identity functor and functors of tensoring with projective A-bimodules
- ▶ 2-morphisms in C_A are natural transformations of functors

Definition. A finitary 2-category \mathcal{C} is called absolutely simple provided that

$\blacktriangleright \ \mathcal{C}$ has one object

▶ given any indecomposable 1-morphisms F and G which are not isomorphic to the identity 1-morphism, there exist 1-morphisms H and K such that F is isomorphic to a direct summand of HGK

Informally. The two-sided ideal generated by ${\rm G}$ contains ${\rm F}$

Claim. C_A is absolutely simple

Definition. A finitary 2-category \mathcal{C} is called absolutely simple provided that

- $\blacktriangleright \ \mathcal{C}$ has one object
- ▶ given any indecomposable 1-morphisms F and G which are not isomorphic to the identity 1-morphism, there exist 1-morphisms H and K such that F is isomorphic to a direct summand of HGK

Informally. The two-sided ideal generated by ${
m G}$ contains ${
m F}$

Claim. C_A is absolutely simple
Definition. A finitary 2-category \mathcal{C} is called absolutely simple provided that

 $\blacktriangleright \ \mathcal{C}$ has one object

▶ given any indecomposable 1-morphisms F and G which are not isomorphic to the identity 1-morphism, there exist 1-morphisms H and K such that F is isomorphic to a direct summand of HGK

Informally. The two-sided ideal generated by ${\rm G}$ contains ${\rm F}$

Claim. C_A is absolutely simple

Definition. A finitary 2-category \mathcal{C} is called absolutely simple provided that

► C has one object

▶ given any indecomposable 1-morphisms F and G which are not isomorphic to the identity 1-morphism, there exist 1-morphisms H and K such that F is isomorphic to a direct summand of HGK

Informally. The two-sided ideal generated by ${\rm G}$ contains ${\rm F}$

Claim. C_A is absolutely simple

Definition. A finitary 2-category \mathcal{C} is called absolutely simple provided that

► C has one object

▶ given any indecomposable 1-morphisms F and G which are not isomorphic to the identity 1-morphism, there exist 1-morphisms H and K such that F is isomorphic to a direct summand of HGK

Informally. The two-sided ideal generated by ${\rm G}$ contains ${\rm F}$

Claim. C_A is absolutely simple

Theorem. [M.-Miemietz] Roughly speaking (i.e. under some mild technical assumptions) every absolutely simple finitary 2-category is biequivalent to C_A for an appropriate self-injective A

Consequence. The finitary 2-category C_A for a self-injective A is a "proper" categorification of the simple algebra $Mat_{n \times n}(\mathbb{C})$

Theorem. [M.-Miemietz] Roughly speaking (i.e. under some mild technical assumptions) every absolutely simple finitary 2-category is biequivalent to C_A for an appropriate self-injective A

Consequence. The finitary 2-category C_A for a self-injective A is a "proper" categorification of the simple algebra $Mat_{n \times n}(\mathbb{C})$

Theorem. [M.-Miemietz] Roughly speaking (i.e. under some mild technical assumptions) every absolutely simple finitary 2-category is biequivalent to C_A for an appropriate self-injective A

Consequence. The finitary 2-category C_A for a self-injective A is a "proper" categorification of the simple algebra $Mat_{n \times n}(\mathbb{C})$

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n\times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n\times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n\times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n\times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Definition. A finitary 2-representation of \mathcal{C} is a 2-functors **M** which assigns

- ▶ to every object of C an additive, idempotent split, Krull-Schmidt category with finitely many indecomposables
- to every 1-morphism of C an additive functor
- to every 2-morphism of C a natural transformation

Example. $C(i, _)$, the so-called principal 2-representation

Definition. A finitary 2-representation of $\ensuremath{\mathcal{C}}$ is a 2-functors M which assigns

- ► to every object of C an additive, idempotent split, Krull-Schmidt category with finitely many indecomposables
- ▶ to every 1-morphism of C an additive functor
- to every 2-morphism of C a natural transformation

Example. $C(i, _)$, the so-called principal 2-representation

Definition. A finitary 2-representation of $\mathcal C$ is a 2-functors M which assigns

- ► to every object of C an additive, idempotent split, Krull-Schmidt category with finitely many indecomposables
- ▶ to every 1-morphism of C an additive functor
- to every 2-morphism of C a natural transformation

Example. $C(i, _)$, the so-called principal 2-representation

Definition. A finitary 2-representation of $\mathcal C$ is a 2-functors M which assigns

- ► to every object of C an additive, idempotent split, Krull-Schmidt category with finitely many indecomposables
- ▶ to every 1-morphism of C an additive functor
- to every 2-morphism of C a natural transformation

Example. $C(i, _)$, the so-called principal 2-representation

Definition. A finitary 2-representation of $\mathcal C$ is a 2-functors M which assigns

- ► to every object of C an additive, idempotent split, Krull-Schmidt category with finitely many indecomposables
- to every 1-morphism of C an additive functor
- ▶ to every 2-morphism of C a natural transformation

Example. $C(i, _)$, the so-called principal 2-representation

Definition. A finitary 2-representation of \mathcal{C} is a 2-functors M which assigns

- ► to every object of C an additive, idempotent split, Krull-Schmidt category with finitely many indecomposables
- ▶ to every 1-morphism of C an additive functor
- ▶ to every 2-morphism of C a natural transformation

Example. C(i, -), the so-called principal 2-representation

Definition. A finitary 2-representation of $\mathcal C$ is a 2-functors M which assigns

- ► to every object of C an additive, idempotent split, Krull-Schmidt category with finitely many indecomposables
- ▶ to every 1-morphism of C an additive functor
- ▶ to every 2-morphism of C a natural transformation

Example. $C(i, _)$, the so-called principal 2-representation

Definition. A finitary 2-representation of $\mathcal C$ is a 2-functors M which assigns

- ► to every object of C an additive, idempotent split, Krull-Schmidt category with finitely many indecomposables
- ▶ to every 1-morphism of C an additive functor
- ▶ to every 2-morphism of C a natural transformation

Example. $C(i, _)$, the so-called principal 2-representation

 \mathbf{M} — finitary 2-representation of $\mathcal C$

Definition. M is transitive provided that for any indecomposable objects $X \in M(i)$ and $Y \in M(j)$ there is a 1-morphism $F \in C(i, j)$ such that Y is isomorphic to a direct summand of M(F)X.

Intuitive example. Transitive action of a group

 \mathbf{M} — finitary 2-representation of $\mathcal C$

Definition. M is transitive provided that for any indecomposable objects $X \in M(i)$ and $Y \in M(j)$ there is a 1-morphism $F \in C(i, j)$ such that Y is isomorphic to a direct summand of M(F)X.

Intuitive example. Transitive action of a group

M — finitary 2-representation of $\mathcal C$

Definition. M is transitive provided that for any indecomposable objects $X \in M(i)$ and $Y \in M(j)$ there is a 1-morphism $F \in C(i, j)$ such that Y is isomorphic to a direct summand of M(F)X.

Intuitive example. Transitive action of a group

 $\mathcal{C}-\text{finitary 2-category}$

M — finitary 2-representation of $\mathcal C$

Definition. M is transitive provided that for any indecomposable objects $X \in M(i)$ and $Y \in M(j)$ there is a 1-morphism $F \in C(i, j)$ such that Y is isomorphic to a direct summand of M(F)X.

Intuitive example. Transitive action of a group

M — finitary 2-representation of $\mathcal C$

Definition. M is transitive provided that for any indecomposable objects $X \in M(i)$ and $Y \in M(j)$ there is a 1-morphism $F \in C(i, j)$ such that Y is isomorphic to a direct summand of M(F) X.

Intuitive example. Transitive action of a group

M — finitary 2-representation of $\mathcal C$

Definition. M is transitive provided that for any indecomposable objects $X \in M(i)$ and $Y \in M(j)$ there is a 1-morphism $F \in C(i, j)$ such that Y is isomorphic to a direct summand of M(F) X.

Intuitive example. Transitive action of a group

 \mathcal{C} — finitary 2-category

 ${\sf M}$ — transitive finitary 2-representation of ${\mathcal C}$

Fact. $\prod_{i \in C} M(i)$ has a unique maximal *C*-stable ideal $\prod_{i \in C} I(i)$ which does not contain any identity morphisms of non-zero objects

Definition. M is simple transitive if I = 0

Example. If **M** is transitive, then **M**/**I** is simple transitive

nan

M — transitive finitary 2-representation of ${\cal C}$

Fact. $\prod_{i \in C} M(i)$ has a unique maximal *C*-stable ideal $\prod_{i \in C} I(i)$ which does not contain any identity morphisms of non-zero objects

Definition. M is simple transitive if I = 0

Example. If **M** is transitive, then **M**/**I** is simple transitive

200

 $\mathcal{C}-\mathsf{finitary}$ 2-category

M — transitive finitary 2-representation of $\mathcal C$

Fact. $\prod_{i \in C} M(i)$ has a unique maximal *C*-stable ideal $\prod_{i \in C} I(i)$ which does not contain any identity morphisms of non-zero objects

Definition. M is simple transitive if I = 0

Example. If **M** is transitive, then **M**/**I** is simple transitive

 $\mathcal{C}-\mathsf{finitary}\ 2\mathsf{-}\mathsf{category}$

M — transitive finitary 2-representation of $\mathcal C$

Fact. $\prod_{i \in \mathcal{C}} M(i)$ has a unique maximal \mathcal{C} -stable ideal $\prod_{i \in \mathcal{C}} I(i)$ which does not contain any identity morphisms of non-zero objects

Definition. M is simple transitive if I = 0

 $\mathcal{C}-\mathsf{finitary}\ 2\mathsf{-}\mathsf{category}$

M — transitive finitary 2-representation of C

Fact. $\prod_{i \in \mathcal{C}} M(i)$ has a unique maximal \mathcal{C} -stable ideal $\prod_{i \in \mathcal{C}} I(i)$ which does not contain any identity morphisms of non-zero objects

Definition. M is simple transitive if I = 0

 $\mathcal{C}-\mathsf{finitary}\ 2\mathsf{-}\mathsf{category}$

 ${\sf M}$ — transitive finitary 2-representation of ${\cal C}$

Fact. $\prod_{i \in \mathcal{C}} M(i)$ has a unique maximal \mathcal{C} -stable ideal $\prod_{i \in \mathcal{C}} I(i)$ which does not contain any identity morphisms of non-zero objects

Definition. M is simple transitive if I = 0

 $\mathcal{C}-\mathsf{finitary}\ 2\mathsf{-}\mathsf{category}$

 ${\sf M}$ — transitive finitary 2-representation of ${\cal C}$

Fact. $\prod_{i \in \mathcal{C}} M(i)$ has a unique maximal \mathcal{C} -stable ideal $\prod_{i \in \mathcal{C}} I(i)$ which does not contain any identity morphisms of non-zero objects

Definition. M is simple transitive if I = 0

Theorem. [M.-Miemietz] The multiset of equivalence classes of simple transitive quotients associated to transitive subquotients for any finitary 2-representation \mathbf{M} of \mathcal{C} does not depend on the choice of a filtration of \mathbf{M} with transitive quotients

Note. 2-representations of absolutely simple 2-categories do not have to be "semi-simple"

Consequence. Simple transitive 2-representations can be considered as a "proper" categorification of simple finite dimensional modules

Theorem. [M.-Miemietz] The multiset of equivalence classes of simple transitive quotients associated to transitive subquotients for any finitary 2-representation \mathbf{M} of \mathcal{C} does not depend on the choice of a filtration of \mathbf{M} with transitive quotients

Note. 2-representations of absolutely simple 2-categories do not have to be "semi-simple"

Consequence. Simple transitive 2-representations can be considered as a "proper" categorification of simple finite dimensional modules

Theorem. [M.-Miemietz] The multiset of equivalence classes of simple transitive quotients associated to transitive subquotients for any finitary 2-representation \mathbf{M} of \mathcal{C} does not depend on the choice of a filtration of \mathbf{M} with transitive quotients

Note. 2-representations of absolutely simple 2-categories do not have to be "semi-simple"

Consequence. Simple transitive 2-representations can be considered as a "proper" categorification of simple finite dimensional modules
Theorem. [M.-Miemietz] The multiset of equivalence classes of simple transitive quotients associated to transitive subquotients for any finitary 2-representation \mathbf{M} of \mathcal{C} does not depend on the choice of a filtration of \mathbf{M} with transitive quotients

Note. 2-representations of absolutely simple 2-categories do not have to be "semi-simple"

Consequence. Simple transitive 2-representations can be considered as a "proper" categorification of simple finite dimensional modules

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n\times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

In this part we categorify:

Fact. Every simple finite dimensional module over $Mat_{n\times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

C — finitary 2-category

 $\mathcal{S}[\mathcal{C}]$ — set of isoclasses of indecomposable 1-morphisms (with 0)

 $\mathcal{S}[\mathcal{C}]$ — multisemigroup (induced by composition)

Definition of left preorder. For $F, G \in S[C]$ set $F \ge_L G$ if there is $H \in S[C]$ such that F is isomorphic to a direct summand of HG.

Similarly: Right preorder \geq_R and two-sided preorder \geq_J .

 $\mathcal{S}[\mathcal{C}]$ — set of isoclasses of indecomposable 1-morphisms (with 0)

 $\mathcal{S}[\mathcal{C}]$ — multisemigroup (induced by composition)

Definition of left preorder. For $F, G \in S[C]$ set $F \ge_L G$ if there is $H \in S[C]$ such that F is isomorphic to a direct summand of HG.

Similarly: Right preorder \geq_R and two-sided preorder \geq_J .

Definition. Classes of equivalent elements for these preorders are called cells (left, right or two-sided)

200

$\mathcal{S}[\mathcal{C}]$ — set of isoclasses of indecomposable 1-morphisms (with 0)

 $\mathcal{S}[\mathcal{C}]$ — multisemigroup (induced by composition)

Definition of left preorder. For $F, G \in S[C]$ set $F \ge_L G$ if there is $H \in S[C]$ such that F is isomorphic to a direct summand of HG.

Similarly: Right preorder \geq_R and two-sided preorder \geq_J .

Definition. Classes of equivalent elements for these preorders are called cells (left, right or two-sided)

 $\mathcal{S}[\mathcal{C}]$ — set of isoclasses of indecomposable 1-morphisms (with 0)

$\mathcal{S}[\mathcal{C}]$ — multisemigroup (induced by composition)

Definition of left preorder. For $F, G \in S[C]$ set $F \ge_L G$ if there is $H \in S[C]$ such that F is isomorphic to a direct summand of HG.

Similarly: Right preorder \geq_R and two-sided preorder \geq_J .

Definition. Classes of equivalent elements for these preorders are called cells (left, right or two-sided)

 $\mathcal{S}[\mathcal{C}]$ — set of isoclasses of indecomposable 1-morphisms (with 0)

 $\mathcal{S}[\mathcal{C}]$ — multisemigroup (induced by composition)

Definition of left preorder. For $F, G \in S[C]$ set $F \ge_L G$ if there is $H \in S[C]$ such that F is isomorphic to a direct summand of HG.

Similarly: Right preorder \geq_R and two-sided preorder \geq_J .

 $\mathcal{C}-\mathsf{finitary}\ \mathsf{2}\text{-}\mathsf{category}$

 $\mathcal{S}[\mathcal{C}]$ — set of isoclasses of indecomposable 1-morphisms (with 0)

 $\mathcal{S}[\mathcal{C}]$ — multisemigroup (induced by composition)

Definition of left preorder. For $F, G \in S[\mathcal{C}]$ set $F \geq_L G$ if there is $H \in S[\mathcal{C}]$ such that F is isomorphic to a direct summand of HG.

Similarly: Right preorder \geq_R and two-sided preorder \geq_J .

 $\mathcal{C}-\mathsf{finitary}\ \mathsf{2}\text{-}\mathsf{category}$

 $\mathcal{S}[\mathcal{C}]$ — set of isoclasses of indecomposable 1-morphisms (with 0)

 $\mathcal{S}[\mathcal{C}]$ — multisemigroup (induced by composition)

Definition of left preorder. For $F, G \in S[\mathcal{C}]$ set $F \geq_L G$ if there is $H \in S[\mathcal{C}]$ such that F is isomorphic to a direct summand of HG.

Similarly: Right preorder \geq_R and two-sided preorder \geq_J .

 $\mathcal{C}-\mathsf{finitary}\ \mathsf{2}\text{-}\mathsf{category}$

 $\mathcal{S}[\mathcal{C}]$ — set of isoclasses of indecomposable 1-morphisms (with 0)

 $\mathcal{S}[\mathcal{C}]$ — multisemigroup (induced by composition)

Definition of left preorder. For $F, G \in S[\mathcal{C}]$ set $F \geq_L G$ if there is $H \in S[\mathcal{C}]$ such that F is isomorphic to a direct summand of HG.

Similarly: Right preorder \geq_R and two-sided preorder \geq_J .

 \mathcal{L} — left cell in $\mathcal{S}[\mathcal{C}]$

 $\overline{\mathcal{L}}$ — the coideal w.r.t. \geq_L generated by \mathcal{L}

Note: All elements from $\overline{\mathcal{L}}$ start at some $\mathtt{i} \in \mathcal{C}$

 M_1 — the additive closure of $\overline{\mathcal{L}}$ in $\mathcal{C}(i, _)$

 M_2 — the additive closure of $\overline{\mathcal{L}} \setminus \mathcal{L}$ in $\mathcal{C}(i, _)$

 $N := M_1/M_2$

 $\overline{\mathcal{L}}$ — the coideal w.r.t. \geq_L generated by \mathcal{L}

Note: All elements from $\overline{\mathcal{L}}$ start at some $i \in \mathcal{C}$

 M_1 — the additive closure of $\overline{\mathcal{L}}$ in $\mathcal{C}(i, _)$

 M_2 — the additive closure of $\overline{\mathcal{L}} \setminus \mathcal{L}$ in $\mathcal{C}(i, _)$

 $N := M_1/M_2$

$\overline{\mathcal{L}}$ — the coideal w.r.t. \geq_L generated by \mathcal{L}

Note: All elements from $\overline{\mathcal{L}}$ start at some $i \in \mathcal{C}$

 M_1 — the additive closure of $\overline{\mathcal{L}}$ in $\mathcal{C}(i, _)$

 M_2 — the additive closure of $\overline{\mathcal{L}} \setminus \mathcal{L}$ in $\mathcal{C}(i, _)$

 $N := M_1/M_2$

 $\overline{\mathcal{L}}$ — the coideal w.r.t. \geq_L generated by \mathcal{L}

Note: All elements from $\overline{\mathcal{L}}$ start at some $i \in \mathcal{C}$

 M_1 — the additive closure of $\overline{\mathcal{L}}$ in $\mathcal{C}(i, _)$

 M_2 — the additive closure of $\overline{\mathcal{L}} \setminus \mathcal{L}$ in $\mathcal{C}(i, _)$

 $N := M_1/M_2$

 $\overline{\mathcal{L}}$ — the coideal w.r.t. \geq_L generated by \mathcal{L}

Note: All elements from $\overline{\mathcal{L}}$ start at some $i \in \mathcal{C}$

 M_1 — the additive closure of $\overline{\mathcal{L}}$ in $\mathcal{C}(i, _-)$

 M_2 — the additive closure of $\overline{\mathcal{L}} \setminus \mathcal{L}$ in $\mathcal{C}(i, _)$

 $N := M_1/M_2$

 $\overline{\mathcal{L}}$ — the coideal w.r.t. \geq_L generated by \mathcal{L}

Note: All elements from $\overline{\mathcal{L}}$ start at some $i \in \mathcal{C}$

 M_1 — the additive closure of $\overline{\mathcal{L}}$ in $\mathcal{C}(i, _-)$

 M_2 — the additive closure of $\overline{\mathcal{L}} \setminus \mathcal{L}$ in $\mathcal{C}(i, _-)$

 $\mathsf{N} := \mathsf{M}_1/\mathsf{M}_2$

 $\overline{\mathcal{L}}$ — the coideal w.r.t. \geq_L generated by \mathcal{L}

Note: All elements from $\overline{\mathcal{L}}$ start at some $i \in \mathcal{C}$

 M_1 — the additive closure of $\overline{\mathcal{L}}$ in $\mathcal{C}(i, _-)$

 M_2 — the additive closure of $\overline{\mathcal{L}} \setminus \mathcal{L}$ in $\mathcal{C}(i, _-)$

 $N := M_1/M_2$

 $\overline{\mathcal{L}}$ — the coideal w.r.t. \geq_L generated by \mathcal{L}

Note: All elements from $\overline{\mathcal{L}}$ start at some $i \in \mathcal{C}$

 M_1 — the additive closure of $\overline{\mathcal{L}}$ in $\mathcal{C}(i, _-)$

 M_2 — the additive closure of $\overline{\mathcal{L}} \setminus \mathcal{L}$ in $\mathcal{C}(i, _-)$

 $N := M_1/M_2$

Note: Indecomposables in N are in bijection with $\ensuremath{\mathcal{L}}$

Note: N is transitive!

Definition: The cell 2-representation $C_{\mathcal{L}}$ is defined as the simple transitive quotient of N

Example:

- ▶ A self injective, connected, basic finite dimensional k-algebra
- ▶ $1 = e_1 + e_2 + \cdots + e_n$, e_i primitive idempotents, $e_i e_j = \delta_{i,j}$
- C_A the corresponding 2-category
- $\blacktriangleright \mathcal{L} = \{Ae_j \otimes e_1A : j = 1, 2, \dots, n\}$

Claim: The cell 2-representation $C_{\mathcal{L}}$ is equivalent to the defining 2-representation (i.e. action of C_A on A-mod)

Note: Indecomposables in ${\boldsymbol{\mathsf{N}}}$ are in bijection with ${\mathcal{L}}$

Note: N is transitive!

Definition: The cell 2-representation $C_{\mathcal{L}}$ is defined as the simple transitive quotient of N

Example:

- A self injective, connected, basic finite dimensional k-algebra
- ▶ $1 = e_1 + e_2 + \cdots + e_n$, e_i primitive idempotents, $e_i e_j = \delta_{i,j}$
- C_A the corresponding 2-category
- $\blacktriangleright \mathcal{L} = \{Ae_j \otimes e_1A : j = 1, 2, \dots, n\}$

Claim: The cell 2-representation $C_{\mathcal{L}}$ is equivalent to the defining 2-representation (i.e. action of $C_{\mathcal{A}}$ on \mathcal{A} -mod)

Note: Indecomposables in ${\boldsymbol{\mathsf{N}}}$ are in bijection with ${\mathcal{L}}$

Note: N is transitive!

Definition: The cell 2-representation $C_{\mathcal{L}}$ is defined as the simple transitive quotient of N

Example:

- A self injective, connected, basic finite dimensional k-algebra
- ▶ $1 = e_1 + e_2 + \cdots + e_n$, e_i primitive idempotents, $e_i e_j = \delta_{i,j}$
- C_A the corresponding 2-category
- $\blacktriangleright \mathcal{L} = \{Ae_j \otimes e_1A : j = 1, 2, \dots, n\}$

Claim: The cell 2-representation $C_{\mathcal{L}}$ is equivalent to the defining 2-representation (i.e. action of $C_{\mathcal{A}}$ on \mathcal{A} -mod)

Note: Indecomposables in ${\boldsymbol{\mathsf{N}}}$ are in bijection with ${\mathcal{L}}$

Note: N is transitive!

Definition: The cell 2-representation $C_{\mathcal{L}}$ is defined as the simple transitive quotient of N

Example:

- ▶ A self injective, connected, basic finite dimensional k-algebra
- $1 = e_1 + e_2 + \cdots + e_n$, e_i primitive idempotents, $e_i e_j = \delta_{i,j}$
- C_A the corresponding 2-category
- $\blacktriangleright \mathcal{L} = \{Ae_j \otimes e_1A : j = 1, 2, \dots, n\}$

Claim: The cell 2-representation $C_{\mathcal{L}}$ is equivalent to the defining 2-representation (i.e. action of C_A on A-mod)

Note: Indecomposables in ${\boldsymbol{\mathsf{N}}}$ are in bijection with ${\mathcal{L}}$

Note: N is transitive!

Definition: The cell 2-representation $C_{\mathcal{L}}$ is defined as the simple transitive quotient of N

Example:

▶ A — self injective, connected, basic finite dimensional k-algebra

▶ $1 = e_1 + e_2 + \cdots + e_n$, e_i — primitive idempotents, $e_i e_j = \delta_{i,j}$

C_A — the corresponding 2-category

 $\blacktriangleright \mathcal{L} = \{Ae_j \otimes e_1A : j = 1, 2, \dots, n\}$

Claim: The cell 2-representation $C_{\mathcal{L}}$ is equivalent to the defining 2-representation (i.e. action of $C_{\mathcal{A}}$ on \mathcal{A} -mod)

Note: Indecomposables in ${\boldsymbol{\mathsf{N}}}$ are in bijection with ${\mathcal{L}}$

Note: N is transitive!

Definition: The cell 2-representation $C_{\mathcal{L}}$ is defined as the simple transitive quotient of N

Example:

► A — self injective, connected, basic finite dimensional k-algebra

▶ $1 = e_1 + e_2 + \cdots + e_n$, e_i — primitive idempotents, $e_i e_j = \delta_{i,j}$

- C_A the corresponding 2-category
- $\blacktriangleright \mathcal{L} = \{Ae_j \otimes e_1A : j = 1, 2, \dots, n\}$

Claim: The cell 2-representation $C_{\mathcal{L}}$ is equivalent to the defining 2-representation (i.e. action of $C_{\mathcal{A}}$ on A-mod)

Note: Indecomposables in ${\boldsymbol{\mathsf{N}}}$ are in bijection with ${\mathcal{L}}$

Note: N is transitive!

Definition: The cell 2-representation $C_{\mathcal{L}}$ is defined as the simple transitive quotient of N

Example:

- ▶ A self injective, connected, basic finite dimensional \Bbbk -algebra
- ▶ $1 = e_1 + e_2 + \cdots + e_n$, e_i primitive idempotents, $e_i e_j = \delta_{i,j}$
- C_A the corresponding 2-category
- $\blacktriangleright \mathcal{L} = \{Ae_j \otimes e_1A : j = 1, 2, \dots, n\}$

Claim: The cell 2-representation $C_{\mathcal{L}}$ is equivalent to the defining 2-representation (i.e. action of $C_{\mathcal{A}}$ on \mathcal{A} -mod)

Note: Indecomposables in ${\boldsymbol{\mathsf{N}}}$ are in bijection with ${\mathcal{L}}$

Note: N is transitive!

Definition: The cell 2-representation $C_{\mathcal{L}}$ is defined as the simple transitive quotient of N

Example:

- ▶ A self injective, connected, basic finite dimensional \Bbbk -algebra
- ▶ $1 = e_1 + e_2 + \cdots + e_n$, e_i primitive idempotents, $e_i e_j = \delta_{i,j}$
- C_A the corresponding 2-category
- $\blacktriangleright \mathcal{L} = \{Ae_j \otimes e_1A : j = 1, 2, \dots, n\}$

Claim: The cell 2-representation $C_{\mathcal{L}}$ is equivalent to the defining 2-representation (i.e. action of C_A on A-mod)

Note: Indecomposables in ${\boldsymbol{\mathsf{N}}}$ are in bijection with ${\mathcal{L}}$

Note: N is transitive!

Definition: The cell 2-representation $C_{\mathcal{L}}$ is defined as the simple transitive quotient of N

Example:

- ▶ A self injective, connected, basic finite dimensional \Bbbk -algebra
- ▶ $1 = e_1 + e_2 + \cdots + e_n$, e_i primitive idempotents, $e_i e_j = \delta_{i,j}$
- C_A the corresponding 2-category

$$\blacktriangleright \mathcal{L} = \{Ae_j \otimes e_1A : j = 1, 2, \dots, n\}$$

Claim: The cell 2-representation $C_{\mathcal{L}}$ is equivalent to the defining 2-representation (i.e. action of C_A on A-mod)

Note: Indecomposables in ${\boldsymbol{\mathsf{N}}}$ are in bijection with ${\mathcal{L}}$

Note: N is transitive!

Definition: The cell 2-representation $C_{\mathcal{L}}$ is defined as the simple transitive quotient of N

Example:

- ▶ A self injective, connected, basic finite dimensional \Bbbk -algebra
- ▶ $1 = e_1 + e_2 + \cdots + e_n$, e_i primitive idempotents, $e_i e_j = \delta_{i,j}$
- C_A the corresponding 2-category

•
$$\mathcal{L} = \{Ae_j \otimes e_1A : j = 1, 2, \dots, n\}$$

Claim: The cell 2-representation $C_{\mathcal{L}}$ is equivalent to the defining 2-representation (i.e. action of C_A on A-mod)

Note: Indecomposables in ${\boldsymbol{\mathsf{N}}}$ are in bijection with ${\mathcal{L}}$

Note: N is transitive!

Definition: The cell 2-representation $C_{\mathcal{L}}$ is defined as the simple transitive quotient of N

Example:

- ▶ A self injective, connected, basic finite dimensional \Bbbk -algebra
- ▶ $1 = e_1 + e_2 + \cdots + e_n$, e_i primitive idempotents, $e_i e_j = \delta_{i,j}$
- C_A the corresponding 2-category

•
$$\mathcal{L} = \{Ae_j \otimes e_1A : j = 1, 2, \dots, n\}$$

Claim: The cell 2-representation $C_{\mathcal{L}}$ is equivalent to the defining 2-representation (i.e. action of C_A on A-mod)

Other examples.

- For the 2-category of Soergel bimodules in type A cell
 2-representations are minimal categorifications of Specht modules
- For the 2-category of Soergel bimodules in other types cell 2-representations are minimal categorifications of Kazhdan-Lusztig cell modules
- For finitary quotients of 2-Kac-Moody algebras (of finite type) cell 2-representations are minimal categorifications of simple finite dimensional modules

Hope. Cell 2-representations could be considered as a "proper" categorification of the natural module

Other examples.

- For the 2-category of Soergel bimodules in type A cell
 2-representations are minimal categorifications of Specht modules
- For the 2-category of Soergel bimodules in other types cell 2-representations are minimal categorifications of Kazhdan-Lusztig cell modules
- For finitary quotients of 2-Kac-Moody algebras (of finite type) cell 2-representations are minimal categorifications of simple finite dimensional modules

Hope. Cell 2-representations could be considered as a "proper" categorification of the natural module
Cell modules, III

Other examples.

- For the 2-category of Soergel bimodules in type A cell
 2-representations are minimal categorifications of Specht modules
- For the 2-category of Soergel bimodules in other types cell 2-representations are minimal categorifications of Kazhdan-Lusztig cell modules
- For finitary quotients of 2-Kac-Moody algebras (of finite type) cell 2-representations are minimal categorifications of simple finite dimensional modules

Hope. Cell 2-representations could be considered as a "proper" categorification of the natural module

- For the 2-category of Soergel bimodules in type A cell
 2-representations are minimal categorifications of Specht modules
- ► For the 2-category of Soergel bimodules in other types cell 2-representations are minimal categorifications of Kazhdan-Lusztig cell modules
- For finitary quotients of 2-Kac-Moody algebras (of finite type) cell 2-representations are minimal categorifications of simple finite dimensional modules

Hope. Cell 2-representations could be considered as a "proper" categorification of the natural module

- For the 2-category of Soergel bimodules in type A cell
 2-representations are minimal categorifications of Specht modules
- ► For the 2-category of Soergel bimodules in other types cell 2-representations are minimal categorifications of Kazhdan-Lusztig cell modules
- For finitary quotients of 2-Kac-Moody algebras (of finite type) cell 2-representations are minimal categorifications of simple finite dimensional modules

Hope. Cell 2-representations could be considered as a "proper" categorification of the natural module

- For the 2-category of Soergel bimodules in type A cell
 2-representations are minimal categorifications of Specht modules
- ► For the 2-category of Soergel bimodules in other types cell 2-representations are minimal categorifications of Kazhdan-Lusztig cell modules
- For finitary quotients of 2-Kac-Moody algebras (of finite type) cell 2-representations are minimal categorifications of simple finite dimensional modules

Hope. Cell 2-representations could be considered as a "proper" categorification of the natural module

- For the 2-category of Soergel bimodules in type A cell
 2-representations are minimal categorifications of Specht modules
- ► For the 2-category of Soergel bimodules in other types cell 2-representations are minimal categorifications of Kazhdan-Lusztig cell modules
- For finitary quotients of 2-Kac-Moody algebras (of finite type) cell 2-representations are minimal categorifications of simple finite dimensional modules

Hope. Cell 2-representations could be considered as a "proper" categorification of the natural module

- For the 2-category of Soergel bimodules in type A cell
 2-representations are minimal categorifications of Specht modules
- ► For the 2-category of Soergel bimodules in other types cell 2-representations are minimal categorifications of Kazhdan-Lusztig cell modules
- For finitary quotients of 2-Kac-Moody algebras (of finite type) cell 2-representations are minimal categorifications of simple finite dimensional modules

Hope. Cell 2-representations could be considered as a "proper" categorification of the natural module

Main result

We want to categorify:

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Theorem.[M.-Miemietz] Let A be a finite dimensional, basic, connected, non-semi-simple and self-injective k-algebra. Then every simple transitive 2-representation of C_A is equivalent to a cell 2-representation

Corollary. [M.-Miemietz] Let C be a finitary category in which each two-sided cell "looks like" C_A for some A as above. Then every simple transitive 2-representation of C is equivalent to a cell 2-representation

Note. The latter corollary covers Soergel bimodules in type A and finitary quotients of 2-Kac-Moody algebras

200

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Theorem.[M.-Miemietz] Let A be a finite dimensional, basic, connected, non-semi-simple and self-injective k-algebra. Then every simple transitive 2-representation of C_A is equivalent to a cell 2-representation

Corollary. [M.-Miemietz] Let C be a finitary category in which each two-sided cell "looks like" C_A for some A as above. Then every simple transitive 2-representation of C is equivalent to a cell 2-representation

Fact. Every simple finite dimensional module over $Mat_{n\times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Theorem.[M.-Miemietz] Let A be a finite dimensional, basic, connected, non-semi-simple and self-injective k-algebra. Then every simple transitive 2-representation of C_A is equivalent to a cell 2-representation

Corollary. [M.-Miemietz] Let C be a finitary category in which each two-sided cell "looks like" C_A for some A as above. Then every simple transitive 2-representation of C is equivalent to a cell 2-representation

Note. The latter corollary covers Soergel bimodules in type A and finitary quotients of 2-Kac-Moody algebras

200

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Theorem.[M.-Miemietz] Let A be a finite dimensional, basic, connected, non-semi-simple and self-injective k-algebra. Then every simple transitive 2-representation of C_A is equivalent to a cell 2-representation

Corollary. [M.-Miemietz] Let C be a finitary category in which each two-sided cell "looks like" C_A for some A as above. Then every simple transitive 2-representation of C is equivalent to a cell 2-representation

Note. The latter corollary covers Soergel bimodules in type *A* and finitary quotients of 2-Kac-Moody algebras

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Theorem.[M.-Miemietz] Let A be a finite dimensional, basic, connected, non-semi-simple and self-injective k-algebra. Then every simple transitive 2-representation of C_A is equivalent to a cell 2-representation

Corollary. [M.-Miemietz] Let C be a finitary category in which each two-sided cell "looks like" C_A for some A as above. Then every simple transitive 2-representation of C is equivalent to a cell 2-representation

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Theorem.[M.-Miemietz] Let A be a finite dimensional, basic, connected, non-semi-simple and self-injective k-algebra. Then every simple transitive 2-representation of C_A is equivalent to a cell 2-representation

Corollary. [M.-Miemietz] Let C be a finitary category in which each two-sided cell "looks like" C_A for some A as above. Then every simple transitive 2-representation of C is equivalent to a cell 2-representation

Fact. Every simple finite dimensional module over $Mat_{n \times n}(\mathbb{C})$ is isomorphic to the natural module \mathbb{C}^n

Theorem.[M.-Miemietz] Let A be a finite dimensional, basic, connected, non-semi-simple and self-injective k-algebra. Then every simple transitive 2-representation of C_A is equivalent to a cell 2-representation

Corollary. [M.-Miemietz] Let C be a finitary category in which each two-sided cell "looks like" C_A for some A as above. Then every simple transitive 2-representation of C is equivalent to a cell 2-representation

$$(A \otimes_{\Bbbk} A) \otimes_{A} (A \otimes_{\Bbbk} A) \cong (A \otimes_{\Bbbk} A)^{\dim A}$$

 $\mathbf{F} := A \otimes_{\Bbbk} A$

M — simple transitive 2-representation of C_A

[F] — the matrix of M(F)

Observation. [F] is a positive matrix, $[F]^2 = (\dim A) \cdot [F]$

Use Perron-Frobenius Theorem to estimate the Cartan matrix of the algebra underlying **M**(*A*-mod)

Compare this estimate to the Cartan matrix of A and use inclusion of algebra to establish an isomorphism

$$(A \otimes_{\Bbbk} A) \otimes_{A} (A \otimes_{\Bbbk} A) \cong (A \otimes_{\Bbbk} A)^{\dim A}$$

 $\mathbf{F} := A \otimes_{\Bbbk} A$

M — simple transitive 2-representation of C_A

[F] — the matrix of M(F)

Observation. [F] is a positive matrix, $[F]^2 = (\dim A) \cdot [F]$

Use Perron-Frobenius Theorem to estimate the Cartan matrix of the algebra underlying **M**(*A*-mod)

Compare this estimate to the Cartan matrix of A and use inclusion of algebra to establish an isomorphism

$$(A \otimes_{\Bbbk} A) \otimes_{A} (A \otimes_{\Bbbk} A) \cong (A \otimes_{\Bbbk} A)^{\dim A}$$

 $\mathrm{F}:=A\otimes_{\Bbbk}A$

M — simple transitive 2-representation of C_A

[F] — the matrix of M(F)

Observation. [F] is a positive matrix, $[F]^2 = (\dim A) \cdot [F]$

Use Perron-Frobenius Theorem to estimate the Cartan matrix of the algebra underlying **M**(*A*-mod)

Compare this estimate to the Cartan matrix of A and use inclusion of algebra to establish an isomorphism

$$(A \otimes_{\Bbbk} A) \otimes_{A} (A \otimes_{\Bbbk} A) \cong (A \otimes_{\Bbbk} A)^{\dim A}$$

 $\mathrm{F}:=A\otimes_{\Bbbk}A$

M — simple transitive 2-representation of C_A

[F] — the matrix of M(F)

Observation. [F] is a positive matrix, $[F]^2 = (\dim A) \cdot [F]$

Use Perron-Frobenius Theorem to estimate the Cartan matrix of the algebra underlying **M**(*A*-mod)

Compare this estimate to the Cartan matrix of A and use inclusion of algebra to establish an isomorphism

$$(A \otimes_{\Bbbk} A) \otimes_{A} (A \otimes_{\Bbbk} A) \cong (A \otimes_{\Bbbk} A)^{\dim A}$$

 $\mathrm{F}:=A\otimes_{\Bbbk}A$

M — simple transitive 2-representation of C_A

[F] — the matrix of M(F)

Observation. [F] is a positive matrix, $[F]^2 = (\dim A) \cdot [F]$

Use Perron-Frobenius Theorem to estimate the Cartan matrix of the algebra underlying M(A - mod)

Compare this estimate to the Cartan matrix of A and use inclusion of algebra to establish an isomorphism

$$(A \otimes_{\Bbbk} A) \otimes_{A} (A \otimes_{\Bbbk} A) \cong (A \otimes_{\Bbbk} A)^{\dim A}$$

 $\mathrm{F}:=A\otimes_{\Bbbk}A$

M — simple transitive 2-representation of C_A

[F] — the matrix of M(F)

Observation. [F] is a positive matrix, $[F]^2 = (\dim A) \cdot [F]$

Use Perron-Frobenius Theorem to estimate the Cartan matrix of the algebra underlying **M**(*A*-mod)

Compare this estimate to the Cartan matrix of A and use inclusion of algebra to establish an isomorphism

$$(A \otimes_{\Bbbk} A) \otimes_{A} (A \otimes_{\Bbbk} A) \cong (A \otimes_{\Bbbk} A)^{\dim A}$$

 $\mathrm{F}:=A\otimes_{\Bbbk}A$

M — simple transitive 2-representation of C_A

[F] — the matrix of M(F)

Observation. [F] is a positive matrix, $[F]^2 = (\dim A) \cdot [F]$

Use Perron-Frobenius Theorem to estimate the Cartan matrix of the algebra underlying M(A-mod)

Compare this estimate to the Cartan matrix of A and use inclusion of algebra to establish an isomorphism

$$(A \otimes_{\Bbbk} A) \otimes_{A} (A \otimes_{\Bbbk} A) \cong (A \otimes_{\Bbbk} A)^{\dim A}$$

 $\mathrm{F}:=A\otimes_{\Bbbk}A$

M — simple transitive 2-representation of C_A

[F] — the matrix of M(F)

Observation. [F] is a positive matrix, $[F]^2 = (\dim A) \cdot [F]$

Use Perron-Frobenius Theorem to estimate the Cartan matrix of the algebra underlying M(A-mod)

Compare this estimate to the Cartan matrix of A and use inclusion of algebra to establish an isomorphism

$$(A \otimes_{\Bbbk} A) \otimes_{A} (A \otimes_{\Bbbk} A) \cong (A \otimes_{\Bbbk} A)^{\dim A}$$

 $\mathrm{F}:=A\otimes_{\Bbbk}A$

M — simple transitive 2-representation of C_A

[F] — the matrix of M(F)

Observation. [F] is a positive matrix, $[F]^2 = (\dim A) \cdot [F]$

Use Perron-Frobenius Theorem to estimate the Cartan matrix of the algebra underlying M(A-mod)

Compare this estimate to the Cartan matrix of A and use inclusion of algebra to establish an isomorphism

THANK YOU!!!

1

=

DQC