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′ ◦1 x

′) = (y ◦0 y
′) ◦1 (x ◦0 x

′).
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A and C — two 2-categories

Definition. A 2-functor F : A → C is a functor which sends
1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way
that is coordinated with all the categorical structures (domains,
codomains, identities and compositions).
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Definition. A 2-functor F : A → C is a functor which sends
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2-representations: 2-representations

Definition: A 2-representation of a 2-catgory C is a 2-functor from C to
some “classical” 2-category.
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Example: C(i,−) is the principal 2-representation of C in Cat.
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some “classical” 2-category.

Example: C(i,−) is the principal 2-representation of C in Cat.

“Classical” 2-representations:
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◮ in the 2-category Add of additive categories and additive functors;
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sl2-categorification: sl2 and sl2-modules

Definition: sl2 := {M ∈ Mat2×2 : tr(M) = 0}.
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Definition: sl2 := {M ∈ Mat2×2 : tr(M) = 0}.

Basis: e :=

(

0 1
0 0

)
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sl2-categorification: sl2 and sl2-modules

Definition: sl2 := {M ∈ Mat2×2 : tr(M) = 0}.

Basis: e :=

(

0 1
0 0

)

f :=

(

0 0
1 0

)

h :=

(

1 0
0 −1

)

Theorem: For n ∈ {0, 1, 2, . . . } there is a unique/iso simple sl2-module
V (n) of dimension n + 1.
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Sn — the symmetric group acting on C[x1, x2, . . . , xn]
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si := (i , i + 1), i = 1, 2, . . . , n − 1 — Coxeter generators of Sn
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I — ideal in C[x1, x2, . . . , xn] generated by Sn-invariant homogeneous
polynomials of positive degree
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si := (i , i + 1), i = 1, 2, . . . , n − 1 — Coxeter generators of Sn

I — ideal in C[x1, x2, . . . , xn] generated by Sn-invariant homogeneous
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C = Cn := C[x1, x2, . . . , xn]/I — the coinvariant algebra of Sn
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Sn — the symmetric group acting on C[x1, x2, . . . , xn]

si := (i , i + 1), i = 1, 2, . . . , n − 1 — Coxeter generators of Sn

I — ideal in C[x1, x2, . . . , xn] generated by Sn-invariant homogeneous
polynomials of positive degree

C = Cn := C[x1, x2, . . . , xn]/I — the coinvariant algebra of Sn

C{i} — the subalgebra of si -invariants in C
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sl2-categorification: categoriofication of V (n) (globally)
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sl2-categorification: categoriofication of V (n) (globally)

Xi := C{i}-mod , X0 = Xn := C-mod
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Xi := C{i}-mod , X0 = Xn := C-mod
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(n−2) for all n.
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sl2-categorification: results and applications

Chuang-Rouquier uniquness theorem. The above categorification of
V

(n) is the unique up to equivalence minimal 2-representation of SL2

with the corresponding highest weight.
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sl2-module, the opposite weight spaces of this 2-representation are
derived equivalent.
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Examples of known higher analogues
for Lie-related algebras

Hecke algebras Bernstein-S.Gelfand/Soergel
Temperley-Lieb algebras Bernstein-Frenkel-Khovanov/Stroppel
Weyl algebra Khovanov
Braid group Rouquier
Uq(sl2) Chuang-Rouquier/Lauda
2-Kac-Moody algebras Khovanov-Lauda/Rouquier
Schur algebras Mackaay-Stosic-Vaz
Heisenberg algebras Savage-Licata
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Cn consists of all maps f : {1, 2, . . . , n} → {1, 2, . . . , n} which are

◮ order preserving, i.e. x ≤ y implies f (x) ≤ f (y);
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