2-categories, 2-representations and their applications

> Volodymyr Mazorchuk (Uppsala University)

LMS Northern regional Meeting and Workshop on TRIANGULATIONS AND MUTATIONS

March 18, 2013, Newcastle, UK

э

2-categories: definition

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 = • • • • • • • •

프 > 프

This means that a 2-category $\mathscr C$ is given by the following data:

This means that a 2-category \mathscr{C} is given by the following data:

▶ objects of C;

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of C;
- small categories C(i, j) of morphisms;

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of C;
- small categories C(i, j) of morphisms;
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of C;
- small categories C(i, j) of morphisms;
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- identity objects 1_j;

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of C;
- small categories C(i, j) of morphisms;
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- identity objects 1_j;

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of C;
- small categories C(i, j) of morphisms;
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k);$
- identity objects 1_j;

which are subject to the obvious set of (strict) axioms.

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of C;
- small categories C(i, j) of morphisms;
- ▶ functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k);$
- identity objects 1_j;

which are subject to the obvious set of (strict) axioms.

표 제 표

Terminology.

★ 글 ▶ 글

Terminology.

▶ An object in 𝒴(i, j) is called a 1-morphism of 𝒴.

프 > 프

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- ▶ A morphism in 𝒴(i, j) is called a 2-morphism of 𝒴.

э

Terminology.

- ▶ An object in 𝒴(i, j) is called a 1-morphism of 𝒴.
- ▶ A morphism in 𝒴(i, j) is called a 2-morphism of 𝒴.
- ▶ Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .

Terminology.

- ▶ An object in 𝒴(i, j) is called a 1-morphism of 𝒴.
- ▶ A morphism in 𝒴(i, j) is called a 2-morphism of 𝒴.
- ▶ Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- ▶ Composition in *C* is called *horizontal* and denoted \circ_0 .

Terminology.

- ▶ An object in 𝒴(i, j) is called a 1-morphism of 𝒴.
- ▶ A morphism in 𝒴(i, j) is called a 2-morphism of 𝒴.
- ▶ Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- ▶ Composition in *C* is called *horizontal* and denoted \circ_0 .

Terminology.

- ▶ An object in 𝒴(i, j) is called a 1-morphism of 𝒴.
- ▶ A morphism in 𝒴(i, j) is called a 2-*morphism* of 𝒴.
- ▶ Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- ▶ Composition in *C* is called *horizontal* and denoted \circ_0 .

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- ▶ A morphism in 𝒴(i, j) is called a 2-*morphism* of 𝒴.
- ▶ Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- ▶ Composition in *C* is called *horizontal* and denoted \circ_0 .

Principal example. The category Cat is a 2-category.

• Objects of **Cat** are small categories.

Terminology.

- ▶ An object in 𝒴(i, j) is called a 1-morphism of 𝒴.
- ▶ A morphism in 𝒴(i, j) is called a 2-*morphism* of 𝒴.
- Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- ▶ Composition in *C* is called *horizontal* and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.

Terminology.

- ▶ An object in 𝒴(i, j) is called a 1-morphism of 𝒴.
- ▶ A morphism in 𝒴(i, j) is called a 2-*morphism* of 𝒴.
- ▶ Composition in C(i, j) is called *vertical* and denoted \circ_1 .
- ▶ Composition in *C* is called *horizontal* and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- > 2-morphisms in **Cat** are natural transformations.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- ▶ A morphism in 𝒴(i, j) is called a 2-morphism of 𝒴.
- ▶ Composition in C(i, j) is called *vertical* and denoted \circ_1 .
- ▶ Composition in *C* is called *horizontal* and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- > 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.

Terminology.

- ▶ An object in 𝒴(i, j) is called a 1-morphism of 𝒴.
- ▶ A morphism in 𝒴(i, j) is called a 2-morphism of 𝒴.
- ▶ Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- ▶ Composition in *C* is called *horizontal* and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- > 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- Identity 1-morphisms are the identity functors.

Terminology.

- ▶ An object in 𝒴(i, j) is called a 1-morphism of 𝒴.
- ▶ A morphism in 𝒴(i, j) is called a 2-morphism of 𝒴.
- ▶ Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- ▶ Composition in *C* is called *horizontal* and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- > 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- Identity 1-morphisms are the identity functors.

Terminology.

- ▶ An object in 𝒴(i, j) is called a 1-morphism of 𝒴.
- ▶ A morphism in 𝒴(i, j) is called a 2-morphism of 𝒴.
- ▶ Composition in $\mathscr{C}(i, j)$ is called *vertical* and denoted \circ_1 .
- ▶ Composition in *C* is called *horizontal* and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- > 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- Identity 1-morphisms are the identity functors.

2-categories: over monoids, part 1

문에 수준에 가운

2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.

프 문 프

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

글 > 글

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $\mathcal{C} = \mathcal{C}_{(S, \circ, e)}$ as follows:

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $\mathcal{C} = \mathcal{C}_{(S, \circ, e)}$ as follows:

• The only object of C is \clubsuit .

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $\mathcal{C} = \mathcal{C}_{(S, \circ, e)}$ as follows:

• The only object of C is \clubsuit .

$$\triangleright \ \mathcal{C}(\clubsuit,\clubsuit) := S.$$

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $\mathcal{C} = \mathcal{C}_{(S, \circ, e)}$ as follows:

• The only object of C is \clubsuit .

$$\blacktriangleright \ \mathcal{C}(\clubsuit, \clubsuit) := S.$$

• Composition in C is given by multiplication in S.

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $\mathcal{C} = \mathcal{C}_{(S, \circ, e)}$ as follows:

• The only object of C is \clubsuit .

$$\blacktriangleright \ \mathcal{C}(\clubsuit, \clubsuit) := S.$$

- Composition in C is given by multiplication in S.
- The identity element of $\mathcal{C}(\clubsuit, \clubsuit)$ is *e*.

30 K30 3

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $\mathcal{C} = \mathcal{C}_{(S, \circ, e)}$ as follows:

• The only object of C is \clubsuit .

$$\blacktriangleright \ \mathcal{C}(\clubsuit, \clubsuit) := S.$$

- Composition in C is given by multiplication in S.
- The identity element of $\mathcal{C}(\clubsuit, \clubsuit)$ is *e*.

30 K30 3

Indeed: If C is a category with one object \clubsuit , then $C(\clubsuit, \clubsuit)$ is a monoid under composition.

If (S, \circ, e) is a monoid, we can form a category $\mathcal{C} = \mathcal{C}_{(S, \circ, e)}$ as follows:

• The only object of C is \clubsuit .

$$\blacktriangleright \ \mathcal{C}(\clubsuit, \clubsuit) := S.$$

- Composition in C is given by multiplication in S.
- The identity element of $\mathcal{C}(\clubsuit, \clubsuit)$ is *e*.

30 K30 3
문에 수준에 가운

Can we extend C to a 2-category?

< E → E

Can we extend C to a 2-category?

Naive approach to try: Let $X \subset S$ be some submonoid.

 Can we extend C to a 2-category?

Naive approach to try: Let $X \subset S$ be some submonoid.

For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\clubsuit, \clubsuit)}(s, t) := \{x \in X : xs = t\}.$

3

Can we extend C to a 2-category?

Naive approach to try: Let $X \subset S$ be some submonoid.

For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\clubsuit, \clubsuit)}(s, t) := \{x \in X : xs = t\}.$

Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\clubsuit,\bigstar)}(s,t)$ may be empty or it may contain many elements.

-

Can we extend C to a 2-category?

Naive approach to try: Let $X \subset S$ be some submonoid.

For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\clubsuit, \clubsuit)}(s, t) := \{x \in X : xs = t\}.$

Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\clubsuit,\bigstar)}(s,t)$ may be empty or it may contain many elements.

Composition is given by multiplication in S.

-

Can we extend ${\mathcal C}$ to a 2-category?

Naive approach to try: Let $X \subset S$ be some submonoid.

For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\clubsuit, \clubsuit)}(s, t) := \{x \in X : xs = t\}.$

Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\clubsuit,\bigstar)}(s,t)$ may be empty or it may contain many elements.

Composition is given by multiplication in S.

Is composition well-defined?

Can we extend ${\mathcal C}$ to a 2-category?

Naive approach to try: Let $X \subset S$ be some submonoid.

For $s, t \in S$ set $\operatorname{Hom}_{\mathcal{C}(\clubsuit, \clubsuit)}(s, t) := \{x \in X : xs = t\}.$

Note! S is just a monoid, not a group, so $\operatorname{Hom}_{\mathcal{C}(\clubsuit,\bigstar)}(s,t)$ may be empty or it may contain many elements.

Composition is given by multiplication in S.

Is composition well-defined?

문에 수준에 가운

Vertical:

Ξ 9 Q (P

프 에 에 프 에 다

Vertical: xr = s and ys = t implies yxr = t

< 三→ 三三

Vertical: xr = s and ys = t implies yxr = t **OK**

프 > 프

Vertical: xr = s and ys = t implies yxr = t **OK**

Horizontal:

< 三→ 三三

Vertical: xr = s and ys = t implies yxr = t **OK**

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

э.

Vertical: xr = s and ys = t implies yxr = t **OK**

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

э.

Vertical: xr = s and ys = t implies yxr = t **OK**

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need:

Vertical: xr = s and ys = t implies yxr = t **OK**

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt'

글 > 글

Vertical: xr = s and ys = t implies yxr = t **OK**

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

< 3 b

3

Vertical: xr = s and ys = t implies yxr = t **OK**

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

-<∃> ∃

Vertical: xr = s and ys = t implies yxr = t **OK**

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

물 위 위 물 위 이 물 !

Vertical: xr = s and ys = t implies yxr = t **OK**

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

医下子 医下

э.

Vertical: xr = s and ys = t implies yxr = t **OK**

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

To check: Functoriality of composition.

-

Vertical: xr = s and ys = t implies yxr = t **OK**

Horizontal: xs = t and x's' = t' implies xsx's' = tt'

Need: xx'ss' = tt' **OK** if $X \subset Z(S)$

From now on: X is a submonoid in the center Z(S) of S

All compositions are well-defined!!!

Is this a 2-category?

To check: Functoriality of composition.

-

One way:

<20 € ► 28

One way:

э

One way:

Conclusion 1: $(y \circ_0 y') \circ_1 (x \circ_0 x') = yy'xx'$.

One way:

Conclusion 1: $(y \circ_0 y') \circ_1 (x \circ_0 x') = yy'xx'$.

Another way:

< 注→ 注

Another way:

э

Another way:

Conclusion 2: $(y \circ_1 x) \circ_0 (y' \circ_1 x') = yxy'x'$.

Another way:

Conclusion 2: $(y \circ_1 x) \circ_0 (y' \circ_1 x') = yxy'x'$.

Need: the interchange law $(y \circ_1 x) \circ_0 (y' \circ_1 x') = (y \circ_0 y') \circ_1 (x \circ_0 x')$.

э

Need: the interchange law $(y \circ_1 x) \circ_0 (y' \circ_1 x') = (y \circ_0 y') \circ_1 (x \circ_0 x')$.

Need: the interchange law $(y \circ_1 x) \circ_0 (y' \circ_1 x') = (y \circ_0 y') \circ_1 (x \circ_0 x')$.

In our case: $yxy'x' = yy'xx' \quad \forall x, y, x', y' \in X$

Need: the interchange law $(y \circ_1 x) \circ_0 (y' \circ_1 x') = (y \circ_0 y') \circ_1 (x \circ_0 x')$.

In our case: $yxy'x' = yy'xx' \quad \forall x, y, x', y' \in X \text{ OK}$ since $X \subset Z(S)$.

Need: the interchange law $(y \circ_1 x) \circ_0 (y' \circ_1 x') = (y \circ_0 y') \circ_1 (x \circ_0 x')$.

In our case: $yxy'x' = yy'xx' \quad \forall x, y, x', y' \in X \text{ OK}$ since $X \subset Z(S)$.

Claim. The above defines on C the structure of a 2-category if and only if $X \subset Z(S)$.
2-categories: over monoids, part 6: the interchange law

Need: the interchange law $(y \circ_1 x) \circ_0 (y' \circ_1 x') = (y \circ_0 y') \circ_1 (x \circ_0 x')$.

In our case: $yxy'x' = yy'xx' \quad \forall x, y, x', y' \in X \text{ OK}$ since $X \subset Z(S)$.

Claim. The above defines on C the structure of a 2-category if and only if $X \subset Z(S)$.

★ 문 ▶ 문

3 ×

 ${\mathscr A} \text{ and } {\mathscr C} \longrightarrow$ two 2-categories

★ 문 ► 문

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example. For $i \in \mathscr{C}$ the functor $\mathscr{C}(i, _) : \mathscr{C} \to Cat$ sends

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example. For $\mathtt{i}\in \mathscr{C}$ the functor $\mathscr{C}(\mathtt{i},_):\mathscr{C}\to \textbf{Cat}$ sends

▶ an object $j \in C$ to the category C(i, j),

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example. For $\mathtt{i}\in \mathscr{C}$ the functor $\mathscr{C}(\mathtt{i},_):\mathscr{C}\to \textbf{Cat}$ sends

- ▶ an object $j \in C$ to the category C(i, j),
- ▶ a 1-morphism $F \in \mathscr{C}(j,k)$ to the functor $F \circ_{-} : \mathscr{C}(i,j) \to \mathscr{C}(i,k)$,

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example. For $\mathtt{i}\in \mathscr{C}$ the functor $\mathscr{C}(\mathtt{i},_):\mathscr{C}\to \textbf{Cat}$ sends

- ▶ an object $j \in C$ to the category C(i, j),
- ▶ a 1-morphism $F \in \mathscr{C}(j,k)$ to the functor $F \circ_{-} : \mathscr{C}(i,j) \to \mathscr{C}(i,k)$,
- ▶ a 2-morphism $\alpha : F \to G$ to the natural transformation $\alpha \circ_0 : F \circ_- \to G \circ_-$.

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example. For $\mathtt{i}\in \mathscr{C}$ the functor $\mathscr{C}(\mathtt{i},_):\mathscr{C}\to \textbf{Cat}$ sends

- ▶ an object $j \in C$ to the category C(i, j),
- ▶ a 1-morphism $F \in \mathscr{C}(j,k)$ to the functor $F \circ_{-} : \mathscr{C}(i,j) \to \mathscr{C}(i,k)$,
- ▶ a 2-morphism $\alpha : F \to G$ to the natural transformation $\alpha \circ_0 : F \circ_- \to G \circ_-$.

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Example. For $\mathtt{i}\in \mathscr{C}$ the functor $\mathscr{C}(\mathtt{i},_):\mathscr{C}\to \textbf{Cat}$ sends

- ▶ an object $j \in C$ to the category C(i, j),
- ▶ a 1-morphism $F \in \mathscr{C}(j,k)$ to the functor $F \circ_{-} : \mathscr{C}(i,j) \to \mathscr{C}(i,k)$,
- ▶ a 2-morphism $\alpha : F \to G$ to the natural transformation $\alpha \circ_0 : F \circ_- \to G \circ_-$.

<2 €> €

- ★ 臣 → - 臣 - 臣

æ

æ

Volodymyr Mazorchuk 2-categories, 2-representations and their applications

문 🛌 문

ㅋ ㅋ

Example: $\mathscr{C}(i, _)$ is the **principal** 2-representation of \mathscr{C} in **Cat**.

э

Example: $\mathscr{C}(i, _)$ is the **principal** 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

э

Example: $\mathscr{C}(i, _)$ is the **principal** 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

▶ in Cat;

Example: $\mathscr{C}(i, _)$ is the **principal** 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

▶ in Cat;

in the 2-category Add of additive categories and additive functors;

Example: $\mathscr{C}(i, _)$ is the **principal** 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

▶ in Cat;

- in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;

Example: $\mathscr{C}(i, _)$ is the **principal** 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

▶ in Cat;

- in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ► a the 2-category **ab** of abelian categories and exact functors.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example: $\mathscr{C}(i, _)$ is the **principal** 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

▶ in Cat;

- in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ► a the 2-category **ab** of abelian categories and exact functors.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Example: $\mathscr{C}(i, _)$ is the **principal** 2-representation of \mathscr{C} in **Cat**.

"Classical" 2-representations:

▶ in Cat;

- in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ► a the 2-category **ab** of abelian categories and exact functors.

A =
 A =
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

▲ 臣 ▶ 臣 • • • • •

3 ×

Definition: $\mathfrak{sl}_2 := \{ M \in \operatorname{Mat}_{2 \times 2} : \operatorname{tr}(M) = 0 \}.$

물 제 문 제 문 문

Definition: $\mathfrak{sl}_2 := \{ M \in \operatorname{Mat}_{2 \times 2} : \operatorname{tr}(M) = 0 \}.$

Basis: $\mathbf{e} := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$

문에 비용에 다

э.

Definition: $\mathfrak{sl}_2 := \{ M \in \operatorname{Mat}_{2 \times 2} : \operatorname{tr}(M) = 0 \}.$

Basis:
$$\mathbf{e} := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mathbf{f} := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$$

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

Definition: $\mathfrak{sl}_2 := \{ M \in \operatorname{Mat}_{2 \times 2} : \operatorname{tr}(M) = 0 \}.$

Basis:
$$\mathbf{e} := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}$$
 $\mathbf{f} := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}$ $\mathbf{h} := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

물 제 문 제 문 문

Definition: $\mathfrak{sl}_2 := \{ M \in \operatorname{Mat}_{2 \times 2} : \operatorname{tr}(M) = 0 \}.$

Basis:
$$\mathbf{e} := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mathbf{f} := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \mathbf{h} := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Theorem: For $n \in \{0, 1, 2, ...\}$ there is a unique/iso simple \mathfrak{sl}_2 -module $V^{(n)}$ of dimension n + 1.

医下颌 医下颌

э.

Definition: $\mathfrak{sl}_2 := \{ M \in \operatorname{Mat}_{2 \times 2} : \operatorname{tr}(M) = 0 \}.$

Basis:
$$\mathbf{e} := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mathbf{f} := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \mathbf{h} := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Theorem: For $n \in \{0, 1, 2, ...\}$ there is a unique/iso simple \mathfrak{sl}_2 -module $V^{(n)}$ of dimension n + 1.

Example: The basis and \mathfrak{sl}_2 -action on $V^{(4)}$:

医下子 医下口

Definition: $\mathfrak{sl}_2 := \{ M \in \operatorname{Mat}_{2 \times 2} : \operatorname{tr}(M) = 0 \}.$

Basis:
$$\mathbf{e} := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mathbf{f} := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \mathbf{h} := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Theorem: For $n \in \{0, 1, 2, ...\}$ there is a unique/iso simple \mathfrak{sl}_2 -module $V^{(n)}$ of dimension n + 1.

Example: The basis and \mathfrak{sl}_2 -action on $V^{(4)}$:

Definition: $\mathfrak{sl}_2 := \{ M \in \operatorname{Mat}_{2 \times 2} : \operatorname{tr}(M) = 0 \}.$

Basis:
$$\mathbf{e} := \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} \mathbf{f} := \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix} \mathbf{h} := \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

Theorem: For $n \in \{0, 1, 2, ...\}$ there is a unique/iso simple \mathfrak{sl}_2 -module $V^{(n)}$ of dimension n + 1.

Example: The basis and \mathfrak{sl}_2 -action on $V^{(4)}$:

\mathfrak{sl}_2 -categorification: coinvarinats

き▶ ▲ 差▶ 差 の � (♡

\mathfrak{sl}_2 -categorification: coinvarinats

 S_n — the symmetric group acting on $\mathbb{C}[x_1, x_2, \ldots, x_n]$

▲臣▶ ▲臣▶ 臣 のへ⊙

\mathfrak{sl}_2 -categorification: coinvarinats

 S_n — the symmetric group acting on $\mathbb{C}[x_1, x_2, \ldots, x_n]$

 $s_i := (i, i+1), i = 1, 2, \dots, n-1$ — Coxeter generators of S_n

A = A = A = OQQ
 OQQ
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
 O
\mathfrak{sl}_2 -categorification: coinvarinats

 S_n — the symmetric group acting on $\mathbb{C}[x_1, x_2, \ldots, x_n]$

 $s_i := (i, i+1), i = 1, 2, \dots, n-1$ — Coxeter generators of S_n

I — ideal in $\mathbb{C}[x_1, x_2, ..., x_n]$ generated by S_n -invariant homogeneous polynomials of positive degree

sl₂-categorification: coinvarinats

 S_n — the symmetric group acting on $\mathbb{C}[x_1, x_2, \ldots, x_n]$

 $s_i := (i, i+1), i = 1, 2, \dots, n-1$ — Coxeter generators of S_n

I — ideal in $\mathbb{C}[x_1, x_2, \dots, x_n]$ generated by S_n -invariant homogeneous polynomials of positive degree

 $\mathbf{C} = \mathbf{C}_n := \mathbb{C}[x_1, x_2, \dots, x_n]/I$ — the coinvariant algebra of S_n

A 2 1 A 2 1 B 1 2

sl₂-categorification: coinvarinats

 S_n — the symmetric group acting on $\mathbb{C}[x_1, x_2, \ldots, x_n]$

 $s_i := (i, i+1), i = 1, 2, \dots, n-1$ — Coxeter generators of S_n

I — ideal in $\mathbb{C}[x_1, x_2, \dots, x_n]$ generated by S_n -invariant homogeneous polynomials of positive degree

 $\mathbf{C} = \mathbf{C}_n := \mathbb{C}[x_1, x_2, \dots, x_n]/I$ — the coinvariant algebra of S_n

 $C^{\{i\}}$ — the subalgebra of s_i -invariants in C

 S_n — the symmetric group acting on $\mathbb{C}[x_1, x_2, \ldots, x_n]$

 $s_i := (i, i+1), i = 1, 2, \dots, n-1$ — Coxeter generators of S_n

I — ideal in $\mathbb{C}[x_1, x_2, \dots, x_n]$ generated by S_n -invariant homogeneous polynomials of positive degree

 $\mathbf{C} = \mathbf{C}_n := \mathbb{C}[x_1, x_2, \dots, x_n]/I$ — the coinvariant algebra of S_n

 $\mathbf{C}^{\{i\}}$ — the subalgebra of s_i -invariants in \mathbf{C}

 $C^{\{i,i+1\}}$ — the subalgebra of both s_i - and s_{i+1} -invariants in C

 S_n — the symmetric group acting on $\mathbb{C}[x_1, x_2, \ldots, x_n]$

 $s_i := (i, i+1), i = 1, 2, \dots, n-1$ — Coxeter generators of S_n

I — ideal in $\mathbb{C}[x_1, x_2, \dots, x_n]$ generated by S_n -invariant homogeneous polynomials of positive degree

 $\mathbf{C} = \mathbf{C}_n := \mathbb{C}[x_1, x_2, \dots, x_n]/I$ — the coinvariant algebra of S_n

 $\mathbf{C}^{\{i\}}$ — the subalgebra of s_i -invariants in \mathbf{C}

 $C^{\{i,i+1\}}$ — the subalgebra of both s_i - and s_{i+1} -invariants in C

Note: $C^{\{i\}} \supset C^{\{i,i+1\}}$ and $C^{\{i+1\}} \supset C^{\{i,i+1\}}$ as unital subalgebras

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ● ● ● ● ● ● ● ●

 S_n — the symmetric group acting on $\mathbb{C}[x_1, x_2, \ldots, x_n]$

 $s_i := (i, i+1), i = 1, 2, \dots, n-1$ — Coxeter generators of S_n

I — ideal in $\mathbb{C}[x_1, x_2, \dots, x_n]$ generated by S_n -invariant homogeneous polynomials of positive degree

 $\mathbf{C} = \mathbf{C}_n := \mathbb{C}[x_1, x_2, \dots, x_n]/I$ — the coinvariant algebra of S_n

 $\mathbf{C}^{\{i\}}$ — the subalgebra of s_i -invariants in \mathbf{C}

 $C^{\{i,i+1\}}$ — the subalgebra of both s_i - and s_{i+1} -invariants in C

Note: $C^{\{i\}} \supset C^{\{i,i+1\}}$ and $C^{\{i+1\}} \supset C^{\{i,i+1\}}$ as unital subalgebras

▲冊 ▶ ▲ 臣 ▶ ▲ 臣 ▶ ● ● ● ● ● ● ● ● ●

▲ 프 ▶ 프

ㅋ ㅋ

 E_{i+1} maps a simple $C^{\{i\}}$ -module to a $C^{\{i+1\}}$ -module of length n-i

 E_{i+1} maps a simple $C^{\{i\}}$ -module to a $C^{\{i+1\}}$ -module of length n-i

 F_{i+1} maps a simple $C^{\{i+1\}}$ -module to a $C^{\{i\}}$ -module of length i+1

 E_{i+1} maps a simple $C^{\{i\}}$ -module to a $C^{\{i+1\}}$ -module of length n-i

 F_{i+1} maps a simple $C^{\{i+1\}}$ -module to a $C^{\{i\}}$ -module of length i+1

(신문) 문

 $X_i := \mathbf{C}^{\{i\}}$ -mod , $X_0 = X_n := \mathbf{C}$ -mod

★ 프 ▶ - 프

 $X_i := \mathbf{C}^{\{i\}}$ -mod , $X_0 = X_n := \mathbf{C}$ -mod

$$X_i := \mathbf{C}^{\{i\}}$$
-mod , $X_0 = X_n := \mathbf{C}$ -mod

 $[X_i]$ — the Grothendieck group of X_i (basis of classes of simple modules)

$$X_i := \mathbf{C}^{\{i\}}\text{-mod}$$
, $X_0 = X_n := \mathbf{C}\text{-mod}$

 $[X_i]$ — the Grothendieck group of X_i (basis of classes of simple modules)

医下颌 医下颌

$$X_i := \mathbf{C}^{\{i\}}\text{-mod}$$
, $X_0 = X_n := \mathbf{C}\text{-mod}$

 $[X_i]$ — the Grothendieck group of X_i (basis of classes of simple modules)

医下颌 医下颌

★ 문 ► _ 문

Definition: The 2-catgory $\mathfrak{V}^{(n)}$ is a full 2-subcategory of **ab**

Definition: The 2-catgory $\mathfrak{V}^{(n)}$ is a full 2-subcategory of **ab**

► Objects: X_i

프 > 프

Definition: The 2-catgory $\mathfrak{V}^{(n)}$ is a full 2-subcategory of **ab**

- ► Objects: X_i
- ▶ 1-Morphisms: *E_i*, *F_i*, their compositions, direct sums and direct summands

Definition: The 2-catgory $\mathfrak{V}^{(n)}$ is a full 2-subcategory of **ab**

- ► Objects: X_i
- ► 1-**Morphisms:** *E_i*, *F_i*, their compositions, direct sums and direct summands
- > 2-Morphisms: natural transformations of functors

Definition: The 2-catgory $\mathfrak{V}^{(n)}$ is a full 2-subcategory of **ab**

- ► Objects: X_i
- ► 1-Morphisms: *E_i*, *F_i*, their compositions, direct sums and direct summands
- > 2-Morphisms: natural transformations of functors

We have $\mathfrak{V}^{(n)} \twoheadrightarrow \mathfrak{V}^{(n-2)}$ for all *n*.

Definition: The 2-catgory $\mathfrak{V}^{(n)}$ is a full 2-subcategory of **ab**

- **Objects:** X_i
- ▶ 1-Morphisms: *E_i*, *F_i*, their compositions, direct sums and direct summands
- > 2-Morphisms: natural transformations of functors

We have $\mathfrak{V}^{(n)} \twoheadrightarrow \mathfrak{V}^{(n-2)}$ for all *n*.

Definition: \mathfrak{SL}_2 := the projective limit of the $\mathfrak{V}^{(n)}$ 'th

JAN JAN JANA

Definition: The 2-catgory $\mathfrak{V}^{(n)}$ is a full 2-subcategory of **ab**

- ► Objects: X_i
- ► 1-Morphisms: *E_i*, *F_i*, their compositions, direct sums and direct summands
- > 2-Morphisms: natural transformations of functors

We have $\mathfrak{V}^{(n)} \twoheadrightarrow \mathfrak{V}^{(n-2)}$ for all *n*.

Definition: $\mathfrak{SL}_2 :=$ the projective limit of the $\mathfrak{V}^{(n)}$ 'th

 \mathfrak{SL}_2 is the Chuang-Rouquier-Lauda categorification of $\dot{\mathrm{U}}(\mathfrak{sl}_2)$

Definition: The 2-catgory $\mathfrak{V}^{(n)}$ is a full 2-subcategory of **ab**

- ► Objects: X_i
- ► 1-Morphisms: *E_i*, *F_i*, their compositions, direct sums and direct summands
- > 2-Morphisms: natural transformations of functors

We have $\mathfrak{V}^{(n)} \twoheadrightarrow \mathfrak{V}^{(n-2)}$ for all *n*.

Definition: $\mathfrak{SL}_2 :=$ the projective limit of the $\mathfrak{V}^{(n)}$ 'th

 \mathfrak{SL}_2 is the Chuang-Rouquier-Lauda categorification of $\dot{\mathrm{U}}(\mathfrak{sl}_2)$

\mathfrak{sl}_2 -categorification: results and applications

< 注→ 注

This theorem can be generalized to fiat 2-categories (M-Miemietz).

This theorem can be generalized to fiat 2-categories (M-Miemietz).

Chuang-Rouquier derived equivalences. Given an f.dim.-abelian 2-representation of \mathfrak{SL}_2 decategorifying to a finite dimensional \mathfrak{sl}_2 -module, the opposite weight spaces of this 2-representation are derived equivalent.

This theorem can be generalized to fiat 2-categories (M-Miemietz).

Chuang-Rouquier derived equivalences. Given an f.dim.-abelian 2-representation of \mathfrak{SL}_2 decategorifying to a finite dimensional \mathfrak{sl}_2 -module, the opposite weight spaces of this 2-representation are derived equivalent.

Corollary. Broué's abelian defect group conjecture is true for symmetric groups.

不良区 不良区

This theorem can be generalized to fiat 2-categories (M-Miemietz).

Chuang-Rouquier derived equivalences. Given an f.dim.-abelian 2-representation of \mathfrak{SL}_2 decategorifying to a finite dimensional \mathfrak{sl}_2 -module, the opposite weight spaces of this 2-representation are derived equivalent.

Corollary. Broué's abelian defect group conjecture is true for symmetric groups.

不良区 不良区

ㅋ ㅋ

Hecke algebras Temperley-Lieb algebras Weyl algebra Braid group $U_q(\mathfrak{sl}_2)$ 2-Kac-Moody algebras Schur algebras Heisenberg algebras Bernstein-S.Gelfand/Soergel Bernstein-Frenkel-Khovanov/Stroppel Khovanov Rouquier Chuang-Rouquier/Lauda Khovanov-Lauda/Rouquier Mackaay-Stosic-Vaz Savage-Licata

Hecke algebras Temperley-Lieb algebras Weyl algebra Braid group $U_q(\mathfrak{sl}_2)$ 2-Kac-Moody algebras Schur algebras Heisenberg algebras Bernstein-S.Gelfand/Soergel Bernstein-Frenkel-Khovanov/Stroppel Khovanov Rouquier Chuang-Rouquier/Lauda Khovanov-Lauda/Rouquier Mackaay-Stosic-Vaz Savage-Licata

And many more...

4 E b

Hecke algebras Temperley-Lieb algebras Weyl algebra Braid group $U_q(\mathfrak{sl}_2)$ 2-Kac-Moody algebras Schur algebras Heisenberg algebras Bernstein-S.Gelfand/Soergel Bernstein-Frenkel-Khovanov/Stroppel Khovanov Rouquier Chuang-Rouquier/Lauda Khovanov-Lauda/Rouquier Mackaay-Stosic-Vaz Savage-Licata

And many more...

4 E b
Applications in topology

æ

医下颌 医下颌

Knot

医下颌 医下颌

Applications in topology

Classical knot invariants.

 $\mathsf{Knot} \longrightarrow \mathsf{Braid}$

< 🗇 🕨

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 → の Q ()

Knot \longrightarrow Braid \longrightarrow Linear representation of B_n

▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ � � �

Knot \longrightarrow Braid \longrightarrow Linear representation of $B_n \longrightarrow$ Knot Invariant

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Knot \longrightarrow Braid \longrightarrow Linear representation of $B_n \longrightarrow$ Knot Invariant

Knot invariants via 2-categories.

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 ● � � �

Knot \longrightarrow Braid \longrightarrow Linear representation of $B_n \longrightarrow$ Knot Invariant

Knot invariants via 2-categories.

Knot

▲ 臣 ▶ ▲ 臣 ▶ ▲ 臣 → ���

Knot \longrightarrow Braid \longrightarrow Linear representation of $B_n \longrightarrow$ Knot Invariant

Knot invariants via 2-categories.

 $\mathsf{Knot} \ \longrightarrow \mathsf{Braid}$

Knot \longrightarrow Braid \longrightarrow Linear representation of $B_n \longrightarrow$ Knot Invariant

Knot invariants via 2-categories.

Knot \longrightarrow Braid \longrightarrow Functorial action of 2- B_n

★ ∃ ► ★ ∃ ► 5 < 0 < 0</p>

Knot \longrightarrow Braid \longrightarrow Linear representation of $B_n \longrightarrow$ Knot Invariant

Knot invariants via 2-categories.

Knot \longrightarrow Braid \longrightarrow Functorial action of 2- $B_n \longrightarrow$ Knot Invariant

Knot \longrightarrow Braid \longrightarrow Linear representation of $B_n \longrightarrow$ Knot Invariant

Knot invariants via 2-categories.

Knot \longrightarrow Braid \longrightarrow Functorial action of 2- $B_n \longrightarrow$ Knot Invariant

In this way: Jones polynomial \longrightarrow Khovanov homology

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

Knot \longrightarrow Braid \longrightarrow Linear representation of $B_n \longrightarrow$ Knot Invariant

Knot invariants via 2-categories.

Knot \longrightarrow Braid \longrightarrow Functorial action of 2- $B_n \longrightarrow$ Knot Invariant

In this way: Jones polynomial \longrightarrow Khovanov homology

Adavntage: More powerful invariants (a proper version of Khovanov homology detects the unknot)

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

Knot \longrightarrow Braid \longrightarrow Linear representation of $B_n \longrightarrow$ Knot Invariant

Knot invariants via 2-categories.

Knot \longrightarrow Braid \longrightarrow Functorial action of 2- $B_n \longrightarrow$ Knot Invariant

In this way: Jones polynomial \longrightarrow Khovanov homology

Adavntage: More powerful invariants (a proper version of Khovanov homology detects the unknot)

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ うらつ

포 > 문

표 제 표

 C_n consists of all maps $f: \{1, 2, \dots, n\} \rightarrow \{1, 2, \dots, n\}$ which are

4 3 b

 \mathtt{C}_n consists of all maps $f: \{1,2,\ldots,n\}
ightarrow \{1,2,\ldots,n\}$ which are

• order preserving, i.e. $x \le y$ implies $f(x) \le f(y)$;

 \mathtt{C}_n consists of all maps $f: \{1,2,\ldots,n\}
ightarrow \{1,2,\ldots,n\}$ which are

- order preserving, i.e. $x \le y$ implies $f(x) \le f(y)$;
- order decreasing, i.e. $f(x) \leq x$.

 \mathtt{C}_n consists of all maps $f: \{1,2,\ldots,n\}
ightarrow \{1,2,\ldots,n\}$ which are

- order preserving, i.e. $x \le y$ implies $f(x) \le f(y)$;
- order decreasing, i.e. $f(x) \leq x$.

Operation: composition of maps

-

 C_n consists of all maps $f: \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$ which are

- order preserving, i.e. $x \le y$ implies $f(x) \le f(y)$;
- order decreasing, i.e. $f(x) \leq x$.

Operation: composition of maps

We have $|C_n| = \frac{1}{n+1} {\binom{2n}{n}}$, the *n*-th Catalan number

 C_n consists of all maps $f: \{1, 2, \ldots, n\} \rightarrow \{1, 2, \ldots, n\}$ which are

- order preserving, i.e. $x \le y$ implies $f(x) \le f(y)$;
- order decreasing, i.e. $f(x) \leq x$.

Operation: composition of maps

We have $|C_n| = \frac{1}{n+1} {\binom{2n}{n}}$, the *n*-th Catalan number

포 > 문

Oriented A_{n-1} -quiver:

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ ○ 臣 ○ の Q ()

Oriented A_{n-1} -quiver:

 A_{n-1} -mod — the category of finite dimensional A_{n-1} -modules

◎ ▶ ▲ 臣 ▶ ▲ 臣 ▶ → 臣 → の Q ()~

Oriented A_{n-1} -quiver:

$$1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n-1$$

 A_{n-1} -mod — the category of finite dimensional A_{n-1} -modules

 $F_i: A_{n-1}$ -mod $\rightarrow A_{n-1}$ -mod, $i = 1, 2, \ldots, n-1$

医下颌 医下颌

Oriented A_{n-1} -quiver:

$$1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n-1$$

 A_{n-1} -mod — the category of finite dimensional A_{n-1} -modules

$$F_i: A_{n-1}$$
-mod $\rightarrow A_{n-1}$ -mod, $i = 1, 2, \ldots, n-1$

 F_i — factor out the maximal submodule in vertex *i* (not exact!)

Oriented A_{n-1} -quiver:

$$1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n-1$$

 A_{n-1} -mod — the category of finite dimensional A_{n-1} -modules

$$F_i: A_{n-1}\operatorname{-mod} \to A_{n-1}\operatorname{-mod}, i = 1, 2, \dots, n-1$$

 F_i — factor out the maximal submodule in vertex *i* (not exact!)

Fact: F_i maps injectives to injectives

물 에 가 물 에 다

Oriented A_{n-1} -quiver:

$$1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n-1$$

 A_{n-1} -mod — the category of finite dimensional A_{n-1} -modules

$$F_i: A_{n-1}\operatorname{-mod} \to A_{n-1}\operatorname{-mod}, i = 1, 2, \dots, n-1$$

 F_i — factor out the maximal submodule in vertex *i* (not exact!)

Fact: F_i maps injectives to injectives

 G_i — unique left exact s.t. $F_i \cong G_i$ on injectives

-

Oriented A_{n-1} -quiver:

$$1 \longrightarrow 2 \longrightarrow \cdots \longrightarrow n-1$$

 A_{n-1} -mod — the category of finite dimensional A_{n-1} -modules

$$F_i: A_{n-1}\operatorname{-mod} \to A_{n-1}\operatorname{-mod}, i = 1, 2, \dots, n-1$$

 F_i — factor out the maximal submodule in vertex *i* (not exact!)

Fact: F_i maps injectives to injectives

 G_i — unique left exact s.t. $F_i \cong G_i$ on injectives

-

포 > 문

Fact: G_i is exact

표 제 표

Fact: G_i is exact

Theorem (Grensing): The monid generated by the F_i 'th is isomorphic to C_n

프 > 프

Fact: G_i is exact

Theorem (Grensing): The monid generated by the F_i 'th is isomorphic to C_n

Corollary: The monid generated by the G_i 'th is isomorphic to C_n

글 > 글

Fact: G_i is exact

Theorem (Grensing): The monid generated by the F_i 'th is isomorphic to C_n

Corollary: The monid generated by the G_i 'th is isomorphic to C_n

Definition: 2-Catalan monoid $2 - C_n$.

医下 不足下

Fact: G_i is exact

Theorem (Grensing): The monid generated by the F_i 'th is isomorphic to C_n

Corollary: The monid generated by the G_i 'th is isomorphic to C_n

Definition: 2-Catalan monoid $2 - C_n$.

• Object: A_{n-1} -mod;

医下颌 医下颌
Fact: G_i is exact

Theorem (Grensing): The monid generated by the F_i 'th is isomorphic to C_n

Corollary: The monid generated by the G_i 'th is isomorphic to C_n

Definition: 2-Catalan monoid $2 - C_n$.

- Object: A_{n-1} -mod;
- ▶ 1-morphisms: Endofunctors on A_{n-1}-mod isomorphic to a direct sum of the G_i'th

Fact: G_i is exact

Theorem (Grensing): The monid generated by the F_i 'th is isomorphic to C_n

Corollary: The monid generated by the G_i 'th is isomorphic to C_n

Definition: 2-Catalan monoid $2 - C_n$.

- Object: A_{n-1} -mod;
- ▶ 1-morphisms: Endofunctors on A_{n-1}-mod isomorphic to a direct sum of the G_i'th
- 2-morphisms: natural transformations

Fact: G_i is exact

Theorem (Grensing): The monid generated by the F_i 'th is isomorphic to C_n

Corollary: The monid generated by the G_i 'th is isomorphic to C_n

Definition: 2-Catalan monoid $2 - C_n$.

- Object: A_{n-1} -mod;
- ▶ 1-morphisms: Endofunctors on A_{n-1}-mod isomorphic to a direct sum of the G_i'th
- 2-morphisms: natural transformations

Application to semigroups: Catalan monoid, part 4

표 제 표

Application to semigroups: Catalan monoid, part 4

Observation: $2 - C_n$ acts on A_{n-1} -mod (defining 2-representation)

< 三→ 三三

Decategorify: A linear (effective) representation of C_n

Decategorify: A linear (effective) representation of C_n

Advantage: Different explicit matrix form of this representation in different bases (simples, projectives, injectives)

Decategorify: A linear (effective) representation of C_n

Advantage: Different explicit matrix form of this representation in different bases (simples, projectives, injectives)

Works also for: Hecke-Kiselman monoids

Decategorify: A linear (effective) representation of C_n

Advantage: Different explicit matrix form of this representation in different bases (simples, projectives, injectives)

Works also for: Hecke-Kiselman monoids

0-Hecke monoid: Generators e_i , relations $e_i^2 = e_i$ and braid relations

Decategorify: A linear (effective) representation of C_n

Advantage: Different explicit matrix form of this representation in different bases (simples, projectives, injectives)

Works also for: Hecke-Kiselman monoids

0-Hecke monoid: Generators e_i , relations $e_i^2 = e_i$ and braid relations

Kiselman quotient: $e_i e_{i+1} e_i = e_{i+1} e_i e_{i+1} = e_{i+1} e_i$

Decategorify: A linear (effective) representation of C_n

Advantage: Different explicit matrix form of this representation in different bases (simples, projectives, injectives)

Works also for: Hecke-Kiselman monoids

0-Hecke monoid: Generators e_i , relations $e_i^2 = e_i$ and braid relations

Kiselman quotient: $e_i e_{i+1} e_i = e_{i+1} e_i e_{i+1} = e_{i+1} e_i$