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Definition. A 2-category is a category enriched over the monoidal
category Cat of small categories (in the latter the monoidal structure is
induced by the cartesian product).
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Definition. A 2-category is a category enriched over the monoidal
category Cat of small categories (in the latter the monoidal structure is
induced by the cartesian product).

This means that a 2-category % is given by the following data:

> objects of %,
> small categories €(1i, j) of morphisms;
» functorial composition %(j,k) x ¢(1,j) = €(i,k);
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Definition. A 2-category is a category enriched over the monoidal
category Cat of small categories (in the latter the monoidal structure is
induced by the cartesian product).
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which are subject to the obvious set of (strict) axioms.
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» An object in ¥(1,j) is called a 1-morphism of €.
> A morphism in €(i, j) is called a 2-morphism of €.
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Terminology.

» An object in ¥(1,j) is called a 1-morphism of €.
> A morphism in €(i, j) is called a 2-morphism of €.
» Composition in €(i, j) is called vertical and denoted o;.
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Terminology.

An object in €(1, j) is called a 1-morphism of €.

>

> A morphism in €(i, j) is called a 2-morphism of €.

» Composition in €(i, j) is called vertical and denoted o;.
>

Composition in % is called horizontal and denoted og.

Principal example. The category Cat is a 2-category.

» Objects of Cat are small categories.
» 1-morphisms in Cat are functors.
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An object in €(1, j) is called a 1-morphism of €.

>

> A morphism in €(i, j) is called a 2-morphism of €.

» Composition in €1, j) is called vertical and denoted o;.
>

Composition in % is called horizontal and denoted og.

Principal example. The category Cat is a 2-category.

» Objects of Cat are small categories.

» 1-morphisms in Cat are functors.

» 2-morphisms in Cat are natural transformations.
>

Composition is the usual composition.
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An object in €(1, j) is called a 1-morphism of €.

>

> A morphism in €(i, j) is called a 2-morphism of €.

» Composition in €1, j) is called vertical and denoted o;.
>

Composition in % is called horizontal and denoted og.

Principal example. The category Cat is a 2-category.
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Identity 1-morphisms are the identity functors.
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Indeed: If C is a category with one object &, then C(&, &) is a monoid
under composition.
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A monoid is the same thing as a category with one object.

Indeed: If C is a category with one object &, then C(&, &) is a monoid
under composition.

If (S,0,e) is a monoid, we can form a category C = C(s o) as follows:
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A monoid is the same thing as a category with one object.

Indeed: If C is a category with one object &, then C(&, &) is a monoid
under composition.

If (S,0,e) is a monoid, we can form a category C = C(s o) as follows:

» The only object of C is é.
> C(d, &) :=S.
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2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.

Indeed: If C is a category with one object &, then C(&, &) is a monoid
under composition.

If (S,0,e) is a monoid, we can form a category C = C(s o) as follows:

» The only object of C is é.
> C(d, &) :=S.

» Composition in C is given by multiplication in S.

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



2-categories: over monoids, part 1

A monoid is the same thing as a category with one object.

Indeed: If C is a category with one object &, then C(&, &) is a monoid
under composition.

If (S,0,e) is a monoid, we can form a category C = C(s o) as follows:

The only object of C is &.
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Can we extend C to a 2-category?

Naive approach to try: Let X C S be some submonoid.
For s,t € S set Home (g, 4)(5,t) := {x € X : xs = t}.

Note! S is just a monoid, not a group, so Homeg 4)(s, t) may be
empty or it may contain many elements.
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One way:

r r rr’
X x' xx' rr’

s %0 s’ — ss’ A yy'xx!
y y' % tt’

t t/ tt/
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One way:

r r rr’
X x' xx' rr’

s %0 s’ — ss’ A yy'xx!
y y' % tt’

t t/ tt/

Conclusion 1: (y og y') o1 (x og X') = yy'xx'.

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



2-categories: over monoids, part 4: functoriality, part 1

One way:
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Another way:
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2-categories: over monoids, part 5: functoriality, part 2

Another way:

r r
X x’ r r '

S (e} S/ — yx o9 y'x’ — yxy'x'
Y Y’ t t tt’

t t
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2-categories: over monoids, part 5: functoriality, part 2

Another way:

r r
X x’ r r '

S (e} S/ — yx o9 y'x’ — yxy'x'
Y Y’ t t tt’

t t

Conclusion 2: (y o1 x) og (¥’ 01 x') = yxy'x’.
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2-categories: over monoids, part 6: the interchange law

Need: the interchange law (y o1 x) og (¥’ 01 x’) = (y 09 ') 01 (x 0 Xx').
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Need: the interchange law (y o1 x) og (¥’ 01 x’) = (y 09 ') 01 (x 0 Xx').
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In our case: yxy'x’ = yy'xx’ V x,y,x',y' € X
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2-categories: over monoids, part 6: the interchange law

Need: the interchange law (y o1 x) og (¥’ 01 x’) = (y 09 ') 01 (x 0 Xx').

AN /\ /\ /\ .@

In our case: yxy'x' = yy'xx’ V x,y,x",y’ € X OK since X C Z(S).
yxy Yy y
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2-categories: over monoids, part 6: the interchange law

Need: the interchange law (y o1 x) og (¥’ 01 x’) = (y 09 ') 01 (x 0 Xx').

AN /\ /\ /\ .@

In our case: yxy'x' = yy'xx’ V¥V x,y,x’,y’ € X OK since X C Z(S).

Claim. The above defines on C the structure of a 2-category if and only
if X C Z(S).
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2-representations: 2-functors, part 1

&/ and ¥ — two 2-categories

Definition. A 2-functor F : .o/ — € is a functor which sends
1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way
that is coordinated with all the categorical structures (domains,
codomains, identities and compositions).
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2-representations: 2-functors, part 1

&/ and ¥ — two 2-categories

Definition. A 2-functor F : .o/ — € is a functor which sends
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sly-categorification: results and applications

Chuang-Rouquier uniquness theorem. The above categorification of
0(" is the unique up to equivalence minimal 2-representation of &£,

with the corresponding highest weight.
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2-representation of &£, decategorifying to a finite dimensional
slp-module, the opposite weight spaces of this 2-representation are
derived equivalent.
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Examples of known higher analogues

for Lie-related algebras

Hecke algebras Bernstein-S.Gelfand /Soergel
Temperley-Lieb algebras  Bernstein-Frenkel-Khovanov/Stroppel
Weyl algebra Khovanov

Braid group Rouquier

Uq(sl) Chuang-Rouquier/Lauda
2-Kac-Moody algebras Khovanov-Lauda/Rouquier

Schur algebras Mackaay-Stosic-Vaz

Heisenberg algebras Savage-Licata

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Examples of known higher analogues

for Lie-related algebras

Hecke algebras Bernstein-S.Gelfand /Soergel
Temperley-Lieb algebras  Bernstein-Frenkel-Khovanov/Stroppel
Weyl algebra Khovanov

Braid group Rouquier

Uq(sl) Chuang-Rouquier/Lauda
2-Kac-Moody algebras Khovanov-Lauda/Rouquier

Schur algebras Mackaay-Stosic-Vaz

Heisenberg algebras Savage-Licata

And many more...

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Examples of known higher analogues

for Lie-related algebras

Hecke algebras Bernstein-S.Gelfand /Soergel
Temperley-Lieb algebras  Bernstein-Frenkel-Khovanov/Stroppel
Weyl algebra Khovanov

Braid group Rouquier

Uq(sl) Chuang-Rouquier/Lauda
2-Kac-Moody algebras Khovanov-Lauda/Rouquier

Schur algebras Mackaay-Stosic-Vaz

Heisenberg algebras Savage-Licata

And many more...

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Applications in topology

Volodymyr Mazorchuk 2-categories, 2-representations and their appli



Applications in topology

Classical knot invariants.

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Applications in topology

Classical knot invariants.

Knot

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Applications in topology

Classical knot invariants.

Knot — Braid

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Applications in topology

Classical knot invariants.

Knot — Braid —— Linear representation of B,

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Applications in topology

Classical knot invariants.

Knot —— Braid —— Linear representation of B, —— Knot Invariant

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Applications in topology

Classical knot invariants.
Knot —— Braid —— Linear representation of B, —— Knot Invariant

Knot invariants via 2-categories.

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Applications in topology

Classical knot invariants.
Knot —— Braid —— Linear representation of B, —— Knot Invariant
Knot invariants via 2-categories.

Knot

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Applications in topology

Classical knot invariants.
Knot —— Braid —— Linear representation of B, —— Knot Invariant
Knot invariants via 2-categories.

Knot — Braid

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Applications in topology

Classical knot invariants.
Knot —— Braid —— Linear representation of B, —— Knot Invariant
Knot invariants via 2-categories.

Knot — Braid > Functorial action of 2-B,

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Applications in topology

Classical knot invariants.
Knot —— Braid —— Linear representation of B, —— Knot Invariant
Knot invariants via 2-categories.

Knot — Braid > Functorial action of 2-B,, — Knot Invariant

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Applications in topology

Classical knot invariants.

Knot —— Braid —— Linear representation of B, —— Knot Invariant
Knot invariants via 2-categories.

Knot — Braid > Functorial action of 2-B,, — Knot Invariant

In this way: Jones polynomial — Khovanov homology

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Applications in topology

Classical knot invariants.

Knot —— Braid —— Linear representation of B, —— Knot Invariant
Knot invariants via 2-categories.

Knot — Braid » Functorial action of 2-B, — Knot Invariant
In this way: Jones polynomial — Khovanov homology

Adavntage: More powerful invariants (a proper version of Khovanov
homology detects the unknot)

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Applications in topology

Classical knot invariants.

Knot —— Braid —— Linear representation of B, —— Knot Invariant
Knot invariants via 2-categories.

Knot — Braid » Functorial action of 2-B, — Knot Invariant
In this way: Jones polynomial — Khovanov homology

Adavntage: More powerful invariants (a proper version of Khovanov
homology detects the unknot)

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 1

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 1

Catalan monoid: C,

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 1

Catalan monoid: C,

Cn consists of all maps : {1,2,...,n} — {1,2,..., n} which are

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 1

Catalan monoid: C,

Cn consists of all maps : {1,2,...,n} — {1,2,..., n} which are

» order preserving, i.e. x <y implies f(x) < f(y);

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 1

Catalan monoid: C,

Cn consists of all maps : {1,2,...,n} — {1,2,..., n} which are

» order preserving, i.e. x <y implies f(x) < f(y);

» order decreasing, i.e. f(x) < x.

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 1

Catalan monoid: C,

Cn consists of all maps : {1,2,...,n} — {1,2,..., n} which are

» order preserving, i.e. x <y implies f(x) < f(y);

» order decreasing, i.e. f(x) < x.

Operation: composition of maps

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 1

Catalan monoid: C,

Cn consists of all maps : {1,2,...,n} — {1,2,..., n} which are

» order preserving, i.e. x <y implies f(x) < f(y);

» order decreasing, i.e. f(x) < x.

Operation: composition of maps

We have |C,| = 735 (), the n-th Catalan number

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 1

Catalan monoid: C,

Cn consists of all maps : {1,2,...,n} — {1,2,..., n} which are

» order preserving, i.e. x <y implies f(x) < f(y);

» order decreasing, i.e. f(x) < x.

Operation: composition of maps

We have |C,| = 735 (), the n-th Catalan number

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 2

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 2

Oriented A,_1-quiver:

1 2 n-1

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 2

Oriented A,_1-quiver:

1 2 n-1

A,_1-mod — the category of finite dimensional A,_;-modules

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 2

Oriented A,_1-quiver:

1 2 n-1

A,_1-mod — the category of finite dimensional A,_;-modules

F;:A,_1-mod - A,_1-mod, i =1,2,...,n—1

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 2

Oriented A,_1-quiver:

1 2 n-1

A,_1-mod — the category of finite dimensional A,_;-modules
F;:A,_1-mod - A,_1-mod, i =1,2,...,n—1

F; — factor out the maximal submodule in vertex i (not exact!)

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 2

Oriented A,_1-quiver:

1 2 n-1

A,_1-mod — the category of finite dimensional A,_;-modules
F;:A,_1-mod - A,_1-mod, i =1,2,...,n—1
F; — factor out the maximal submodule in vertex i (not exact!)

Fact: F; maps injectives to injectives

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 2

Oriented A,_1-quiver:

1 2 n-1

A,_1-mod — the category of finite dimensional A,_;-modules
F;:A,_1-mod - A,_1-mod, i =1,2,...,n—1

F; — factor out the maximal submodule in vertex i (not exact!)
Fact: F; maps injectives to injectives

G; — unique left exact s.t. F; = G; on injectives

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 2

Oriented A,_1-quiver:

1 2 n-1

A,_1-mod — the category of finite dimensional A,_;-modules
F;:A,_1-mod - A,_1-mod, i =1,2,...,n—1

F; — factor out the maximal submodule in vertex i (not exact!)
Fact: F; maps injectives to injectives

G; — unique left exact s.t. F; = G; on injectives

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 3

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 3

Fact: G; is exact

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 3

Fact: G; is exact

Theorem (Grensing): The monid generated by the F;'th is isomorphic
to C,

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 3

Fact: G; is exact

Theorem (Grensing): The monid generated by the F;'th is isomorphic
to C,

Corollary: The monid generated by the G;’th is isomorphic to C,

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 3

Fact: G; is exact

Theorem (Grensing): The monid generated by the F;'th is isomorphic
to C,

Corollary: The monid generated by the G;’th is isomorphic to C,

Definition: 2-Catalan monoid 2 — C,,.

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 3

Fact: G; is exact

Theorem (Grensing): The monid generated by the F;'th is isomorphic
to C,

Corollary: The monid generated by the G;’th is isomorphic to C,

Definition: 2-Catalan monoid 2 — C,,.

» Object: A,_1-mod;

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 3

Fact: G; is exact

Theorem (Grensing): The monid generated by the F;'th is isomorphic
to C,

Corollary: The monid generated by the G;’th is isomorphic to C,

Definition: 2-Catalan monoid 2 — C,,.

» Object: A,_1-mod;
» 1-morphisms: Endofunctors on A,_;-mod isomorphic to a direct
sum of the G;'th

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 3

Fact: G; is exact

Theorem (Grensing): The monid generated by the F;'th is isomorphic
to C,

Corollary: The monid generated by the G;’th is isomorphic to C,

Definition: 2-Catalan monoid 2 — C,,.

» Object: A,_1-mod;

» 1-morphisms: Endofunctors on A,_;-mod isomorphic to a direct
sum of the G;'th

» 2-morphisms: natural transformations

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 3

Fact: G; is exact

Theorem (Grensing): The monid generated by the F;'th is isomorphic
to C,

Corollary: The monid generated by the G;’th is isomorphic to C,

Definition: 2-Catalan monoid 2 — C,,.

» Object: A,_1-mod;

» 1-morphisms: Endofunctors on A,_;-mod isomorphic to a direct
sum of the G;'th

» 2-morphisms: natural transformations

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 4

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 4

Observation: 2 — C, acts on A,_;-mod (defining 2-representation)

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 4

Observation: 2 — C, acts on A,_;-mod (defining 2-representation)

Decategorify: A linear (effective) representation of Cj,

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 4

Observation: 2 — C, acts on A,_;-mod (defining 2-representation)
Decategorify: A linear (effective) representation of Cj,

Advantage: Different explicit matrix form of this representation in
different bases (simples, projectives, injectives)

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 4

Observation: 2 — C, acts on A,_;-mod (defining 2-representation)
Decategorify: A linear (effective) representation of Cj,

Advantage: Different explicit matrix form of this representation in
different bases (simples, projectives, injectives)

Works also for: Hecke-Kiselman monoids

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 4

Observation: 2 — C, acts on A,_;-mod (defining 2-representation)
Decategorify: A linear (effective) representation of Cj,

Advantage: Different explicit matrix form of this representation in
different bases (simples, projectives, injectives)

Works also for: Hecke-Kiselman monoids

0-Hecke monoid: Generators ¢;, relations e,-2 = ¢; and braid relations

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 4

Observation: 2 — C, acts on A,_;-mod (defining 2-representation)
Decategorify: A linear (effective) representation of Cj,

Advantage: Different explicit matrix form of this representation in
different bases (simples, projectives, injectives)

Works also for: Hecke-Kiselman monoids
0-Hecke monoid: Generators ¢;, relations e,-2 = ¢; and braid relations

Kiselman quotient: eiei16; = €j116/€i11 = €116

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



Application to semigroups: Catalan monoid, part 4

Observation: 2 — C, acts on A,_;-mod (defining 2-representation)
Decategorify: A linear (effective) representation of Cj,

Advantage: Different explicit matrix form of this representation in
different bases (simples, projectives, injectives)

Works also for: Hecke-Kiselman monoids
0-Hecke monoid: Generators ¢;, relations e,-2 = ¢; and braid relations

Kiselman quotient: eiei16; = €j116/€i11 = €116

Volodymyr Mazorchuk 2-categories, 2-representations and their applications



	

