2-representations of finitary 2-categories

(joint work with Vanessa Miemietz)

Volodymyr Mazorchuk (Uppsala University)

Category Theoretic Methods in Representation Theory October 16, 2011, Ottawa, Canada

∃ >

Volodymyr Mazorchuk (Uppsala University) 2-representations of 2-categories

Fiat categories, principal 2-representations and abelianization Combinatorics and cell 2-representations

2-categories

Volodymyr Mazorchuk (Uppsala University)

・ロト ・個ト ・モト ・モト

æ

2-categories

Note: All categories in this talk are assumed to be locally small (or small if necessary).

Volodymyr Mazorchuk (Uppsala University)

글 🕨 🖌 글 🕨

∃ ≥ >

2-categories

Note: All categories in this talk are assumed to be locally small (or small if necessary).

Definition: A 2-category is a category enriched over the monoidal category **Cat** of small categories.

∃ ≥ >

2-categories

Note: All categories in this talk are assumed to be locally small (or small if necessary).

Definition: A 2-category is a category enriched over the monoidal category **Cat** of small categories.

That is: A 2-category consists of:

∃ ≥ >

2-categories

Note: All categories in this talk are assumed to be locally small (or small if necessary).

Definition: A 2-category is a category enriched over the monoidal category **Cat** of small categories.

That is: A 2-category consists of:

▶ a class (or set) 𝒞 of objects;

글 🖌 🖌 글 🕨

2-categories

Note: All categories in this talk are assumed to be locally small (or small if necessary).

Definition: A 2-category is a category enriched over the monoidal category **Cat** of small categories.

That is: A 2-category consists of:

- ▶ a class (or set) 𝒞 of objects;
- For every i, j ∈ C a small category C(i, j) of morphisms from i to j (objects in C(i, j) are called 1-morphisms of C and morphisms in C(i, j) are called 2-morphisms of C);

2-categories

Note: All categories in this talk are assumed to be locally small (or small if necessary).

Definition: A 2-category is a category enriched over the monoidal category **Cat** of small categories.

That is: A 2-category consists of:

- ▶ a class (or set) 𝒞 of objects;
- For every i, j ∈ C a small category C(i, j) of morphisms from i to j (objects in C(i, j) are called 1-morphisms of C and morphisms in C(i, j) are called 2-morphisms of C);
- functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k);$

< 三ト < 三ト

2-categories

Note: All categories in this talk are assumed to be locally small (or small if necessary).

Definition: A 2-category is a category enriched over the monoidal category **Cat** of small categories.

That is: A 2-category consists of:

- ▶ a class (or set) 𝒞 of objects;
- For every i, j ∈ C a small category C(i, j) of morphisms from i to j (objects in C(i, j) are called 1-morphisms of C and morphisms in C(i, j) are called 2-morphisms of C);
- functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k);$
- identity 1-morphisms 1₁ for every i ∈ 𝒞;

2-categories

Note: All categories in this talk are assumed to be locally small (or small if necessary).

Definition: A 2-category is a category enriched over the monoidal category **Cat** of small categories.

That is: A 2-category consists of:

- ▶ a class (or set) 𝒞 of objects;
- For every i, j ∈ C a small category C(i, j) of morphisms from i to j (objects in C(i, j) are called 1-morphisms of C and morphisms in C(i, j) are called 2-morphisms of C);
- functorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k);$
- identity 1-morphisms 1₁ for every i ∈ 𝒞;
- natural (strict) axioms;
 Volodymyr Mazorchuk (Uppsala University)

Fiat categories, principal 2-representations and abelianization Combinatorics and cell 2-representations

General examples of 2-categories

Volodymyr Mazorchuk (Uppsala University)

< ∃⇒

Fiat categories, principal 2-representations and abelianization Combinatorics and cell 2-representations

- E - N

General examples of 2-categories

 The category Cat of small categories (1-morphisms are functors and 2-morphisms are natural transformations);

Fiat categories, principal 2-representations and abelianization Combinatorics and cell 2-representations

General examples of 2-categories

- The category Cat of small categories (1-morphisms are functors and 2-morphisms are natural transformations);
- ▶ for k a field, the category 𝔄_k of small fully additive k-linear categories (1-morphisms are additive k-linear functors and 2-morphisms are natural transformations);

Fiat categories, principal 2-representations and abelianization Combinatorics and cell 2-representations

General examples of 2-categories

- The category Cat of small categories (1-morphisms are functors and 2-morphisms are natural transformations);
- ▶ for k a field, the category 𝔅k of small fully additive k-linear categories (1-morphisms are additive k-linear functors and 2-morphisms are natural transformations);
- ► the full subcategory 𝔅^f_k of 𝔅_k consisting of small fully additive k-linear categories with finitely many indecomposable objects up to isomorphism;

Fiat categories, principal 2-representations and abelianization Combinatorics and cell 2-representations

- ∢ ⊒ ▶

General examples of 2-categories

- The category Cat of small categories (1-morphisms are functors and 2-morphisms are natural transformations);
- ▶ for k a field, the category 𝔅k of small fully additive k-linear categories (1-morphisms are additive k-linear functors and 2-morphisms are natural transformations);
- ► the full subcategory 𝔅^f_k of 𝔅_k consisting of small fully additive k-linear categories with finitely many indecomposable objects up to isomorphism;
- ► the category ℜ_k of small categories equivalent to module categories of finite-dimensional associative k-algebras;

Fiat categories, principal 2-representations and abelianization Combinatorics and cell 2-representations

2-category \mathscr{S} of Soergel bimodules

Volodymyr Mazorchuk (Uppsala University)

< 🗇 🕨

- ∢ ≣ ▶

- A - E - N

э

→ E ► < E ►</p>

2-category \mathscr{S} of Soergel bimodules

 $\mathbf{C} = \mathbf{C}_n = \mathbb{C}[x_1, \dots, x_n]/(I_n)$ – the coinvariant algebra of S_n

 I_n – the set of homogeneous (S_{n-}) symmetric polynomials of positive degree;

2-category \mathscr{S} of Soergel bimodules

 $\mathbf{C} = \mathbf{C}_n = \mathbb{C}[x_1, \dots, x_n]/(I_n)$ – the coinvariant algebra of S_n

 I_n – the set of homogeneous $(S_n$ -) symmetric polynomials of positive degree;

for s – simple reflection C^s is the subalgebra of s-invariants in C

★ E ► ★ E ►

2-category \mathscr{S} of Soergel bimodules

 $\mathbf{C} = \mathbf{C}_n = \mathbb{C}[x_1, \dots, x_n]/(I_n)$ – the coinvariant algebra of S_n

 I_n – the set of homogeneous (S_{n-}) symmetric polynomials of positive degree;

for s – simple reflection C^s is the subalgebra of s-invariants in C

for every $w \in S_n$ fix a reduced decomposition $w = s_1 s_2 \cdots s_k$

and set $\hat{B}_w := \mathbf{C} \otimes_{\mathbf{C}^{s_1}} \mathbf{C} \otimes_{\mathbf{C}^{s_2}} \cdots \otimes_{\mathbf{C}^{s_k}} \mathbf{C}$

2-category \mathscr{S} of Soergel bimodules

 $\mathbf{C} = \mathbf{C}_n = \mathbb{C}[x_1, \dots, x_n]/(I_n)$ – the coinvariant algebra of S_n

 I_n – the set of homogeneous $(S_n$ -) symmetric polynomials of positive degree;

for s – simple reflection C^s is the subalgebra of s-invariants in C

for every $w \in S_n$ fix a reduced decomposition $w = s_1 s_2 \cdots s_k$

and set $\hat{B}_w := \mathbf{C} \otimes_{\mathbf{C}^{s_1}} \mathbf{C} \otimes_{\mathbf{C}^{s_2}} \cdots \otimes_{\mathbf{C}^{s_k}} \mathbf{C}$

define by induction on k the **Soergel C-bimodule** B_w as follows: $B_e = \mathbf{C}$ and B_w as the unique direct summand of \hat{B}_w not yet defined;

▲ 臣 ▶ | ▲ 臣 ▶ | |

2-category \mathscr{S} of Soergel bimodules

$$\mathbf{C} = \mathbf{C}_n = \mathbb{C}[x_1, \dots, x_n]/(I_n)$$
 – the coinvariant algebra of S_n

 I_n – the set of homogeneous (S_{n-}) symmetric polynomials of positive degree;

for s – simple reflection C^s is the subalgebra of s-invariants in C

for every $w \in S_n$ fix a reduced decomposition $w = s_1 s_2 \cdots s_k$

and set
$$\hat{B}_w := \mathbf{C} \otimes_{\mathbf{C}^{s_1}} \mathbf{C} \otimes_{\mathbf{C}^{s_2}} \cdots \otimes_{\mathbf{C}^{s_k}} \mathbf{C}$$

define by induction on k the **Soergel C-bimodule** B_w as follows: $B_e = \mathbf{C}$ and B_w as the unique direct summand of \hat{B}_w not yet defined; $\mathscr{S} = \mathscr{S}_n$ has one object * identified with **C**-mods;

2-category \mathscr{S} of Soergel bimodules

$$\mathbf{C} = \mathbf{C}_n = \mathbb{C}[x_1, \dots, x_n]/(I_n)$$
 – the coinvariant algebra of S_n

 I_n – the set of homogeneous $(S_n$ -) symmetric polynomials of positive degree;

for s – simple reflection C^s is the subalgebra of s-invariants in C

for every $w \in S_n$ fix a reduced decomposition $w = s_1 s_2 \cdots s_k$

and set
$$\hat{B}_w := \mathbf{C} \otimes_{\mathbf{C}^{s_1}} \mathbf{C} \otimes_{\mathbf{C}^{s_2}} \cdots \otimes_{\mathbf{C}^{s_k}} \mathbf{C}$$

define by induction on k the **Soergel C-bimodule** B_w as follows: $B_e = \mathbf{C}$ and B_w as the unique direct summand of \hat{B}_w not yet defined;

 $\mathscr{S} = \mathscr{S}_n$ has one object * identified with **C**-mods;

1-morphisms are endofunctors of $\textbf{C}\text{-}\mathrm{mods}$ isomorphic to tensor products with Soergel bimodules;

2-category \mathscr{S} of Soergel bimodules

$$\mathbf{C} = \mathbf{C}_n = \mathbb{C}[x_1, \dots, x_n]/(I_n)$$
 – the coinvariant algebra of S_n

 I_n – the set of homogeneous $(S_n$ -) symmetric polynomials of positive degree;

for s – simple reflection C^s is the subalgebra of s-invariants in C

for every $w \in S_n$ fix a reduced decomposition $w = s_1 s_2 \cdots s_k$

and set
$$\hat{B}_w := \mathbf{C} \otimes_{\mathbf{C}^{s_1}} \mathbf{C} \otimes_{\mathbf{C}^{s_2}} \cdots \otimes_{\mathbf{C}^{s_k}} \mathbf{C}$$

define by induction on k the **Soergel C-bimodule** B_w as follows: $B_e = \mathbf{C}$ and B_w as the unique direct summand of \hat{B}_w not yet defined;

 $\mathscr{S} = \mathscr{S}_n$ has one object * identified with **C**-mods;

1-morphisms are endofunctors of $\ensuremath{C}\xspace{-}\mathrm{mods}$ isomorphic to tensor products with Soergel bimodules;

2-morphisms are natural transformations;

(4 回) (4 回) (4 回)

Fiat categories, principal 2-representations and abelianization Combinatorics and cell 2-representations

2-category CA

Volodymyr Mazorchuk (Uppsala University)

・ロト ・個ト ・モト ・モト

æ

★ Ξ ► ★ Ξ ►

э

2-category *CA*

 $A = A_1 \oplus A_2 \oplus \cdots \oplus A_k$

 A_i - connected non-simple basic finite dimensional k-algebra; pairwise non-isomorphic

★ Ξ ► ★ Ξ ►

3

2-category \mathscr{C}_A

 $A = A_1 \oplus A_2 \oplus \cdots \oplus A_k$

 A_i - connected non-simple basic finite dimensional k-algebra; pairwise non-isomorphic

 $\mathscr C$ has objects 1,..., k, where i is identified with A_i -mods

→ Ξ → < Ξ →</p>

2-category \mathscr{C}_A

 $A = A_1 \oplus A_2 \oplus \cdots \oplus A_k$

 A_i - connected non-simple basic finite dimensional k-algebra; pairwise non-isomorphic

 $\mathscr C$ has objects 1,..., k, where i is identified with A_i -mods

1-morphisms are functors isomorphic to identities (when applicable) or **projective functors** $A_i e \otimes_k fA_j$, e, f – idempotents

★ Ξ ► ★ Ξ ►

2-category \mathscr{C}_A

 $A = A_1 \oplus A_2 \oplus \cdots \oplus A_k$

 A_i - connected non-simple basic finite dimensional k-algebra; pairwise non-isomorphic

 $\mathscr C$ has objects 1,..., k, where i is identified with A_i -mods

1-morphisms are functors isomorphic to identities (when applicable) or **projective functors** $A_i e \otimes_k fA_j$, e, f – idempotents

2-morphisms are natural transformations

Fiat categories, principal 2-representations and abelianization Combinatorics and cell 2-representations

2-representations

Volodymyr Mazorchuk (Uppsala University)

æ

Fiat categories, principal 2-representations and abelianization Combinatorics and cell 2-representations

2-representations

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor (i.e. a functor respecting the 2-structure) to some "classical" 2-category.

2-representations

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor (i.e. a functor respecting the 2-structure) to some "classical" 2-category.

2-representations of \mathscr{C} (into a fixed category) together with 2-natural transformations and modifications form a 2-category.

2-representations

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor (i.e. a functor respecting the 2-structure) to some "classical" 2-category.

2-representations of \mathscr{C} (into a fixed category) together with 2-natural transformations and modifications form a 2-category.

For a k-linear 2-category \mathscr{C} we have:

2-representations

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor (i.e. a functor respecting the 2-structure) to some "classical" 2-category.

2-representations of \mathscr{C} (into a fixed category) together with 2-natural transformations and modifications form a 2-category.

For a k-linear 2-category $\mathscr C$ we have:

 \blacktriangleright additive representations ${\mathscr C}\operatorname{-amod}$ into ${\mathfrak A}_{\Bbbk}$

2-representations

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor (i.e. a functor respecting the 2-structure) to some "classical" 2-category.

2-representations of \mathscr{C} (into a fixed category) together with 2-natural transformations and modifications form a 2-category.

For a k-linear 2-category $\mathscr C$ we have:

- additive representations $\mathscr{C}\text{-amod}$ into \mathfrak{A}_{\Bbbk}
- finitary representations $\mathscr{C} ext{-afmod}$ into \mathfrak{A}^f_{\Bbbk}

2-representations

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor (i.e. a functor respecting the 2-structure) to some "classical" 2-category.

2-representations of $\mathscr C$ (into a fixed category) together with 2-natural transformations and modifications form a 2-category.

For a $\Bbbk\text{-linear}$ 2-category ${\mathscr C}$ we have:

- \blacktriangleright additive representations ${\mathscr C}\operatorname{-amod}$ into ${\mathfrak A}_{\Bbbk}$
- finitary representations \mathscr{C} -afmod into \mathfrak{A}^f_{\Bbbk}
- ▶ abelian representations $\mathscr{C}\text{-}\mathrm{mod}$ into \mathfrak{R}_{\Bbbk}

2-representations

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor (i.e. a functor respecting the 2-structure) to some "classical" 2-category.

2-representations of $\mathscr C$ (into a fixed category) together with 2-natural transformations and modifications form a 2-category.

For a \Bbbk -linear 2-category ${\mathscr C}$ we have:

- \blacktriangleright additive representations ${\mathscr C}\operatorname{-amod}$ into ${\mathfrak A}_{\Bbbk}$
- finitary representations \mathscr{C} -afmod into \mathfrak{A}^f_{\Bbbk}
- ▶ abelian representations $\mathscr{C}\text{-}\mathrm{mod}$ into \mathfrak{R}_{\Bbbk}

Example. The 2-category \mathscr{C}_A was defined via its **defining** representation.
Fiat categories

Volodymyr Mazorchuk (Uppsala University)

2-representations of 2-categories

イロト イポト イヨト イヨト

æ

Fiat categories

Definition. A 2-category \mathscr{C} is called **fiat** (finitary - involution - adjunction - two category) provided that the following conditions are satisfied:

글 🕨 🖌 글 🕨

∃ ≥ >

Fiat categories

Definition. A 2-category \mathscr{C} is called **fiat** (finitary - involution - adjunction - two category) provided that the following conditions are satisfied:

▶ 𝒞 has finitely many objects;

Fiat categories

Definition. A 2-category \mathscr{C} is called **fiat** (finitary - involution - adjunction - two category) provided that the following conditions are satisfied:

- ▶ each $\mathscr{C}(i, j) \in \mathfrak{A}^{f}_{\Bbbk}$;

글 🕨 🖌 글 🕨

- ∢ ⊒ ▶

Fiat categories

- ▶ each $\mathscr{C}(i, j) \in \mathfrak{A}^{f}_{\Bbbk}$;
- ▶ composition is biadditive and k-linear;

< ∃ >

Fiat categories

- ▶ each $\mathscr{C}(i, j) \in \mathfrak{A}^{f}_{\Bbbk}$;
- ▶ composition is biadditive and k-linear;
- ▶ all k-spaces of 2-morphisms are finite dimensional;

-∢ ⊒ ▶

Fiat categories

- ▶ each $\mathscr{C}(i, j) \in \mathfrak{A}^{f}_{\Bbbk}$;
- ▶ composition is biadditive and k-linear;
- ▶ all k-spaces of 2-morphisms are finite dimensional;
- ▶ all 1_i are indecomposable;

< ∃ >

Fiat categories

- ▶ each $\mathscr{C}(i, j) \in \mathfrak{A}^{f}_{\Bbbk}$;
- ▶ composition is biadditive and k-linear;
- ▶ all k-spaces of 2-morphisms are finite dimensional;
- ▶ all 1_i are indecomposable;

Fiat categories

Definition. A 2-category \mathscr{C} is called **fiat** (finitary - involution - adjunction - two category) provided that the following conditions are satisfied:

- ▶ each $\mathscr{C}(i, j) \in \mathfrak{A}^{f}_{\Bbbk}$;
- ▶ composition is biadditive and k-linear;
- ▶ all k-spaces of 2-morphisms are finite dimensional;
- ▶ all 1_i are indecomposable;
- \mathscr{C} has adjunction morphisms $F \circ F^* \to \mathbb{1}_i$ and $\mathbb{1}_j \to F^* \circ F$.

< 三ト < 三ト

Fiat categories

Definition. A 2-category \mathscr{C} is called **fiat** (finitary - involution - adjunction - two category) provided that the following conditions are satisfied:

- ▶ each $\mathscr{C}(i, j) \in \mathfrak{A}^{f}_{\Bbbk}$;
- ▶ composition is biadditive and k-linear;
- ▶ all k-spaces of 2-morphisms are finite dimensional;
- all 1_i are indecomposable;
- \mathscr{C} has adjunction morphisms $F \circ F^* \to \mathbb{1}_i$ and $\mathbb{1}_j \to F^* \circ F$.

Examples. \mathscr{S} is fiat; \mathscr{C}_A is fiat if and only if A is self-injective and weakly symmetric (i.e. the top and the socle of each indecomposable projective are isomorphic).

Volodymyr Mazorchuk (Uppsala University)

Principal 2-representations

Volodymyr Mazorchuk (Uppsala University)

2-representations of 2-categories

-

Principal 2-representations

from now on: $\ensuremath{\mathscr{C}}$ is a fiat category

Volodymyr Mazorchuk (Uppsala University)

∃ ⊳

Principal 2-representations

from now on: $\ensuremath{\mathscr{C}}$ is a fiat category

Definition. For $i\in \mathscr{C}$ the corresponding **principal** 2-representation \mathbb{P}_i of \mathscr{C} is defined as the 2-functor

$$\mathscr{C}(i, _) : \mathscr{C} \to \mathfrak{A}^{f}_{\Bbbk}.$$

- ∢ ⊒ ▶

Principal 2-representations

from now on: $\ensuremath{\mathscr{C}}$ is a fiat category

Definition. For $i \in C$ the corresponding **principal** 2-representation \mathbb{P}_i of C is defined as the 2-functor

$$\mathscr{C}(\mathtt{i}, _) : \mathscr{C} \to \mathfrak{A}^{f}_{\Bbbk}.$$

Yoneda lemma. For any $M \in \mathscr{C}\operatorname{\!-amod}$ we have

 $\operatorname{Hom}_{\mathscr{C}\operatorname{-amod}}(\mathbb{P}_{\mathtt{i}}, \mathsf{M}) = \mathsf{M}(\mathtt{i}).$

- ∢ ⊒ ▶

Principal 2-representations

from now on: $\ensuremath{\mathscr{C}}$ is a fiat category

Definition. For $i \in C$ the corresponding **principal** 2-representation \mathbb{P}_i of C is defined as the 2-functor

$$\mathscr{C}(\mathtt{i}, _) : \mathscr{C} \to \mathfrak{A}^{f}_{\Bbbk}.$$

Yoneda lemma. For any $M \in \mathscr{C}\operatorname{\!-amod}$ we have

 $\operatorname{Hom}_{\mathscr{C}\operatorname{-amod}}(\mathbb{P}_{\mathtt{i}}, \mathsf{M}) = \mathsf{M}(\mathtt{i}).$

Abelianization

Definition. The abelianization 2-functor $\bar{\cdot}: \mathscr{C}\operatorname{-afmod} \to \mathscr{C}\operatorname{-amod}$ is defined as follows:

Volodymyr Mazorchuk (Uppsala University)

2-representations of 2-categories

★ Ξ ► ★ Ξ ►

< 🗇 🕨

э

Abelianization

Definition. The abelianization 2-functor $\bar{\cdot}:\mathscr{C}\operatorname{-afmod}\to\mathscr{C}\operatorname{-amod}$ is defined as follows:

given $M \in \mathscr{C}\text{-afmod}$ and $i \in \mathscr{C}$ the category $\overline{M}(i)$ has objects

ヨト イヨト

3

ヨト イヨト

3

Abelianization

Definition. The abelianization 2-functor $\bar{\cdot}: \mathscr{C}\operatorname{-afmod} \to \mathscr{C}\operatorname{-amod}$ is defined as follows:

given $M \in \mathscr{C}\text{-afmod}$ and $i \in \mathscr{C}$ the category $\overline{M}(i)$ has objects

$$X \xrightarrow{\alpha} Y$$
, $X, Y \in \mathbf{M}(\mathtt{i}), \quad \alpha: X \to Y;$

★ Ξ ► ★ Ξ ►

Abelianization

Definition. The abelianization 2-functor $\bar{\cdot}:\mathscr{C}\operatorname{-afmod}\to\mathscr{C}\operatorname{-amod}$ is defined as follows:

given $M \in \mathscr{C}\text{-afmod}$ and $i \in \mathscr{C}$ the category $\overline{M}(i)$ has objects

$$X \xrightarrow{\alpha} Y$$
, $X, Y \in \mathbf{M}(i), \quad \alpha: X \to Y;$

and morphisms

Abelianization

Definition. The abelianization 2-functor $\bar{\cdot}:\mathscr{C}\operatorname{-afmod}\to\mathscr{C}\operatorname{-amod}$ is defined as follows:

given $M \in \mathscr{C}\text{-afmod}$ and $i \in \mathscr{C}$ the category $\overline{M}(i)$ has objects

$$X \xrightarrow{\alpha} Y$$
, $X, Y \in \mathbf{M}(i), \quad \alpha: X \to Y;$

and morphisms

the 2-action of ${\mathscr C}$ is defined componentwise

프 + + 프 +

Abelianization

Definition. The abelianization 2-functor $\bar{\cdot}: \mathscr{C}\operatorname{-afmod} \to \mathscr{C}\operatorname{-amod}$ is defined as follows:

given $M \in \mathscr{C}\text{-afmod}$ and $i \in \mathscr{C}$ the category $\overline{M}(i)$ has objects

$$X \xrightarrow{\alpha} Y$$
, $X, Y \in \mathbf{M}(i), \quad \alpha: X \to Y;$

and morphisms

the 2-action of ${\mathscr C}$ is defined componentwise

extends to a 2-functor componentwise

Volodymyr Mazorchuk (Uppsala University)

医下 不正下

Multisemigroups

Definition. A multisemigroup is a pair (S, \diamond) , where S is a set and $\diamond : S \times S \rightarrow 2^S$ is associative in the sense

$$\bigcup_{s \in a \diamond b} s \diamond c = \bigcup_{t \in b \diamond c} a \diamond t, \qquad \text{ for all } a, b, c \in S$$

Volodymyr Mazorchuk (Uppsala University)

★ Ξ → < Ξ →</p>

- ∢ ⊒ ▶

Multisemigroups

Definition. A multisemigroup is a pair (S, \diamond) , where S is a set and $\diamond : S \times S \rightarrow 2^S$ is associative in the sense

$$\bigcup_{s \in a \diamond b} s \diamond c = \bigcup_{t \in b \diamond c} a \diamond t, \qquad \text{ for all } a, b, c \in S$$

Example 1. Any semigroup is a multisemigroup.

A E > A E >

Multisemigroups

Definition. A multisemigroup is a pair (S, \diamond) , where S is a set and $\diamond : S \times S \rightarrow 2^S$ is associative in the sense

$$\bigcup_{s \in a \diamond b} s \diamond c = \bigcup_{t \in b \diamond c} a \diamond t, \qquad \text{ for all } a, b, c \in S$$

Example 1. Any semigroup is a multisemigroup.

Example 2. (\mathbb{Z}_+,\diamond) , where $\mathbb{Z}_+ = \{0,1,2,\dots\}$ and

$$m \diamond n = \{i : |m-n| \le i \le m+n; i \equiv m+n \mod 2\}.$$

・ロト ・ 同ト ・ ヨト ・ ヨト - ヨ

Multisemigroups

Definition. A multisemigroup is a pair (S, \diamond) , where S is a set and $\diamond : S \times S \rightarrow 2^S$ is associative in the sense

$$\bigcup_{s \in a \diamond b} s \diamond c = \bigcup_{t \in b \diamond c} a \diamond t, \qquad \text{ for all } a, b, c \in S$$

Example 1. Any semigroup is a multisemigroup. **Example 2.** (\mathbb{Z}_+, \diamond) , where $\mathbb{Z}_+ = \{0, 1, 2, ...\}$ and $m \diamond n = \{i : |m - n| \le i \le m + n; i \equiv m + n \mod 2\}.$

Green's relations (Kazhdan-Lusztig cells):

•
$$a \sim_L b$$
 iff $S \diamond a = S \diamond b$;

Multisemigroups

Definition. A multisemigroup is a pair (S, \diamond) , where S is a set and $\diamond : S \times S \rightarrow 2^S$ is associative in the sense

$$\bigcup_{s \in a \diamond b} s \diamond c = \bigcup_{t \in b \diamond c} a \diamond t, \qquad \text{ for all } a, b, c \in S$$

Example 1. Any semigroup is a multisemigroup. **Example 2.** (\mathbb{Z}_+, \diamond) , where $\mathbb{Z}_+ = \{0, 1, 2, ...\}$ and

$$m \diamond n = \{i : |m-n| \le i \le m+n; i \equiv m+n \mod 2\}.$$

Green's relations (Kazhdan-Lusztig cells):

•
$$a \sim_L b$$
 iff $S \diamond a = S \diamond b$;

•
$$a \sim_R b$$
 iff $a \diamond S = b \diamond S$;

Multisemigroups

Definition. A multisemigroup is a pair (S, \diamond) , where S is a set and $\diamond : S \times S \rightarrow 2^S$ is associative in the sense

$$\bigcup_{s \in a \diamond b} s \diamond c = \bigcup_{t \in b \diamond c} a \diamond t, \qquad \text{ for all } a, b, c \in S$$

Example 1. Any semigroup is a multisemigroup.

Example 2. (\mathbb{Z}_+,\diamond) , where $\mathbb{Z}_+ = \{0,1,2,\dots\}$ and

$$m \diamond n = \{i : |m-n| \le i \le m+n; i \equiv m+n \mod 2\}.$$

Green's relations (Kazhdan-Lusztig cells):

Volodymyr Mazorchuk (Uppsala University)

글 🕨 🖌 글 🕨

2-representations of 2-categories

Multisemigroup of a fiat category

F, G are composable indecomposable 1-morphisms in \mathscr{C} , then

$$F \circ G \cong \sum_{H \text{ indec.}} m_{F,G}^H H.$$

▲ 글 ▶ | ▲ 글 ▶

Multisemigroup of a fiat category

 ${\it F}, {\it G}$ are composable indecomposable 1-morphisms in ${\mathscr C},$ then

$$F \circ G \cong \sum_{H \text{ indec.}} m_{F,G}^H H.$$

Definition. The multisemigroup $(S(\mathcal{C}), \diamond)$ of a fiat category \mathcal{C} is defined as follows: $S(\mathcal{C})$ is the set of isomorphism classes of 1-morphisms in \mathcal{C} (including 0),

$$[F] \diamond [G] = \begin{cases} \{[H] : m_{F,G}^H \neq 0\}, & F \circ G \text{ defined and } \neq 0; \\ 0, & \text{else.} \end{cases}$$

▲ 글 ▶ | ▲ 글 ▶

Multisemigroup of a fiat category

 ${\it F}, {\it G}$ are composable indecomposable 1-morphisms in ${\mathscr C},$ then

$$F \circ G \cong \sum_{H \text{ indec.}} m_{F,G}^H H.$$

Definition. The multisemigroup $(S(\mathcal{C}), \diamond)$ of a fiat category \mathcal{C} is defined as follows: $S(\mathcal{C})$ is the set of isomorphism classes of 1-morphisms in \mathcal{C} (including 0),

$$[F] \diamond [G] = \begin{cases} \{[H] : m_{F,G}^H \neq 0\}, & F \circ G \text{ defined and } \neq 0; \\ 0, & \text{else.} \end{cases}$$

Sometimes $S(\mathscr{C})' := S(\mathscr{C}) \setminus \{0\}$ is closed with respect to \diamond .

A E > A E >

Multisemigroup of a fiat category

 ${\it F}, {\it G}$ are composable indecomposable 1-morphisms in ${\mathscr C},$ then

$$F \circ G \cong \sum_{H \text{ indec.}} m_{F,G}^H H.$$

Definition. The multisemigroup $(S(\mathcal{C}), \diamond)$ of a fiat category \mathcal{C} is defined as follows: $S(\mathcal{C})$ is the set of isomorphism classes of 1-morphisms in \mathcal{C} (including 0),

$$[F] \diamond [G] = \begin{cases} \{[H] : m_{F,G}^H \neq 0\}, & F \circ G \text{ defined and } \neq 0; \\ 0, & \text{else.} \end{cases}$$

Sometimes $S(\mathscr{C})' := S(\mathscr{C}) \setminus \{0\}$ is closed with respect to \diamond .

Example. $\mathscr{C}_{\mathfrak{sl}_2}$ – the 2-category of the tensor category of finite dimensional \mathfrak{sl}_2 -modules.

Multisemigroup of a fiat category

 ${\it F}, {\it G}$ are composable indecomposable 1-morphisms in ${\mathscr C},$ then

$$F \circ G \cong \sum_{H \text{ indec.}} m_{F,G}^H H.$$

Definition. The multisemigroup $(S(\mathcal{C}), \diamond)$ of a fiat category \mathcal{C} is defined as follows: $S(\mathcal{C})$ is the set of isomorphism classes of 1-morphisms in \mathcal{C} (including 0),

$$[F] \diamond [G] = \begin{cases} \{[H] : m_{F,G}^H \neq 0\}, & F \circ G \text{ defined and } \neq 0; \\ 0, & \text{else.} \end{cases}$$

Sometimes $S(\mathscr{C})' := S(\mathscr{C}) \setminus \{0\}$ is closed with respect to \diamond .

Example. $\mathscr{C}_{\mathfrak{sl}_2}$ – the 2-category of the tensor category of finite dimensional \mathfrak{sl}_2 -modules.

 $S(\mathscr{C}_{\mathfrak{sl}_2})' \stackrel{1:1}{\leftrightarrow} \mathbb{Z}_+ \text{ (via highest weight) and } (S(\mathscr{C}_{\mathfrak{sl}_2})', \mathfrak{s}) \cong \mathbb{Z}_+ \mathbb{Z}_+ \mathfrak{s}) \cong \mathfrak{S}_{\mathfrak{sl}_2}$ Volodymyr Mazorchuk (Uppsala University) 2-representations of 2-categories

Further examples

Soergel bimodules.

Volodymyr Mazorchuk (Uppsala University)

2-representations of 2-categories

< (¶ →

< ∃⇒

3 N

э

Further examples

Soergel bimodules.

 $S(\mathcal{S})'\leftrightarrow S_n$

Volodymyr Mazorchuk (Uppsala University)

2-representations of 2-categories

(人間) (人) (人) (人) (人)

э

글 🕨 🖌 글 🕨

Further examples

Soergel bimodules.

 $S(\mathcal{S})'\leftrightarrow S_n$

under this identification left cells of $S(\mathscr{S})'$ correspond to right cells of S_n and vice versa

E > < E >

Further examples

Soergel bimodules.

 $S(\mathcal{S})'\leftrightarrow S_n$

under this identification left cells of $S(\mathscr{S})'$ correspond to right cells of S_n and vice versa

The fiat category \mathscr{C}_A , $A = A_1 \oplus \cdots \oplus A_k$.
★ Ξ ► ★ Ξ ►

Further examples

Soergel bimodules.

 $S(\mathcal{S})'\leftrightarrow S_n$

under this identification left cells of $S(\mathscr{S})'$ correspond to right cells of S_n and vice versa

The fiat category \mathscr{C}_A , $A = A_1 \oplus \cdots \oplus A_k$. two-sided cells: $\{\mathbb{1}_1\}$, $\{\mathbb{1}_2\}$,..., $\{\mathbb{1}_k\}$, $J := \{A_i e \otimes_{\mathbb{k}} fA_j : e, f$ -primitive $\}$

A E > A E >

Further examples

Soergel bimodules.

 $S(\mathcal{S})'\leftrightarrow S_n$

under this identification left cells of $S(\mathscr{S})'$ correspond to right cells of S_n and vice versa

The fiat category \mathscr{C}_A , $A = A_1 \oplus \cdots \oplus A_k$. two-sided cells: $\{\mathbb{1}_1\}, \{\mathbb{1}_2\}, ..., \{\mathbb{1}_k\}, J := \{A_i e \otimes_{\mathbb{k}} fA_j : e, f\text{-primitive}\}$ left cells of J: $\{A_i e \otimes_{\mathbb{k}} fA_j : f \text{ fixed}\}$

★ 문 ► ★ 문 ►

Further examples

Soergel bimodules.

 $S(\mathcal{S})'\leftrightarrow S_n$

under this identification left cells of $S(\mathscr{S})'$ correspond to right cells of S_n and vice versa

The fiat category \mathscr{C}_A , $A = A_1 \oplus \cdots \oplus A_k$. two-sided cells: $\{\mathbb{1}_1\}, \{\mathbb{1}_2\}, ..., \{\mathbb{1}_k\}, J := \{A_i e \otimes_{\mathbb{k}} fA_j : e, f\text{-primitive}\}$ left cells of J: $\{A_i e \otimes_{\mathbb{k}} fA_j : f \text{ fixed}\}$ right cells of J: $\{A_i e \otimes_{\mathbb{k}} fA_j : e \text{ fixed}\}$

・ 御 と ・ 国 と ・ 国 と

Further examples

Soergel bimodules.

 $S(\mathcal{S})'\leftrightarrow S_n$

under this identification left cells of $S(\mathscr{S})'$ correspond to right cells of S_n and vice versa

The fiat category \mathscr{C}_{A} , $A = A_1 \oplus \cdots \oplus A_k$. two-sided cells: $\{\mathbb{1}_1\}, \{\mathbb{1}_2\}, ..., \{\mathbb{1}_k\}, J := \{A_i e \otimes_{\mathbb{k}} fA_j : e, f\text{-primitive}\}$ left cells of J: $\{A_i e \otimes_{\mathbb{k}} fA_j : f \text{ fixed}\}$ right cells of J: $\{A_i e \otimes_{\mathbb{k}} fA_j : e \text{ fixed}\}$ note: $\underbrace{A_j f \otimes_{\mathbb{k}} eA_i \otimes_A A_i e \otimes_{\mathbb{k}} fA_j}_{F^*} \cong \dim(A_i e) A_j f \otimes_{\mathbb{k}} fA_j \text{ and } \dim(A_i e) \text{ is}}_{F^*}$ constant on a right cell!!!

Duflo involution of a left cell

 ${\mathscr C}-{\mathsf{fiat}}$ category; ${\mathcal L}-{\mathsf{left}}$ cell of ${\mathscr C}$

Volodymyr Mazorchuk (Uppsala University)

< 🗇 🕨

- ∢ ≣ →

э

E >

Duflo involution of a left cell

 ${\mathscr C}-{\mathsf{fiat}}$ category; ${\mathcal L}-{\mathsf{left}}$ cell of ${\mathscr C}$

there is $i \in \mathscr{C}$ such that every $F \in \mathcal{L}$ belongs to some $\mathscr{C}(i, j)$

4 E b

- A 🗐 🕨

Duflo involution of a left cell

 ${\mathscr C}-{\mathsf{fiat}}$ category; ${\mathcal L}-{\mathsf{left}}$ cell of ${\mathscr C}$

there is $\mathtt{i}\in \mathscr{C}$ such that every ${\it F}\in \mathcal{L}$ belongs to some $\mathscr{C}(\mathtt{i},\mathtt{j})$

consider $\overline{\mathbb{P}}_i$ and for an indecomposable 1-morphism $F \in \mathcal{L} \cap \mathscr{C}(i, j)$ denote by P_F the projective object $0 \to F$ of $\overline{\mathbb{P}}_i(j)$ and by L_F the simple top of P_F

- A 🗐 🕨

Duflo involution of a left cell

 ${\mathscr C}-{\mathsf{fiat}}$ category; ${\mathcal L}-{\mathsf{left}}$ cell of ${\mathscr C}$

there is $\mathtt{i}\in \mathscr{C}$ such that every ${\it F}\in \mathcal{L}$ belongs to some $\mathscr{C}(\mathtt{i},\mathtt{j})$

consider $\overline{\mathbb{P}}_i$ and for an indecomposable 1-morphism $F \in \mathcal{L} \cap \mathscr{C}(i, j)$ denote by P_F the projective object $0 \to F$ of $\overline{\mathbb{P}}_i(j)$ and by L_F the simple top of P_F

Proposition.

글 🕨 🖌 글 🕨

Duflo involution of a left cell

 ${\mathscr C}-{\mathsf{fiat}}$ category; ${\mathcal L}-{\mathsf{left}}$ cell of ${\mathscr C}$

there is $\mathtt{i}\in \mathscr{C}$ such that every ${\it F}\in \mathcal{L}$ belongs to some $\mathscr{C}(\mathtt{i},\mathtt{j})$

consider $\overline{\mathbb{P}}_i$ and for an indecomposable 1-morphism $F \in \mathcal{L} \cap \mathscr{C}(i, j)$ denote by P_F the projective object $0 \to F$ of $\overline{\mathbb{P}}_i(j)$ and by L_F the simple top of P_F

Proposition.

1. There is a unique $K \subset P_{\mathbb{1}_i}$ such that $FP_{\mathbb{1}_i}/K = 0$ for any $F \in \mathcal{L}$ while $FX \neq 0$ for any $X \in \text{top}(K)$.

▲글▶ ▲글▶

Duflo involution of a left cell

 ${\mathscr C}-{\mathsf{fiat}}$ category; ${\mathcal L}-{\mathsf{left}}$ cell of ${\mathscr C}$

there is $\mathtt{i}\in \mathscr{C}$ such that every ${\it F}\in \mathcal{L}$ belongs to some $\mathscr{C}(\mathtt{i},\mathtt{j})$

consider $\overline{\mathbb{P}}_i$ and for an indecomposable 1-morphism $F \in \mathcal{L} \cap \mathscr{C}(i, j)$ denote by P_F the projective object $0 \to F$ of $\overline{\mathbb{P}}_i(j)$ and by L_F the simple top of P_F

Proposition.

- 1. There is a unique $K \subset P_{\mathbb{1}_i}$ such that $FP_{\mathbb{1}_i}/K = 0$ for any $F \in \mathcal{L}$ while $FX \neq 0$ for any $X \in \text{top}(K)$.
- 2. K has simple top $L_{G_{\mathcal{L}}}$.

Duflo involution of a left cell

 ${\mathscr C}-{\mathsf{fiat}}$ category; ${\mathcal L}-{\mathsf{left}}$ cell of ${\mathscr C}$

there is $\mathtt{i}\in \mathscr{C}$ such that every $F\in \mathcal{L}$ belongs to some $\mathscr{C}(\mathtt{i},\mathtt{j})$

consider $\overline{\mathbb{P}}_i$ and for an indecomposable 1-morphism $F \in \mathcal{L} \cap \mathscr{C}(i, j)$ denote by P_F the projective object $0 \to F$ of $\overline{\mathbb{P}}_i(j)$ and by L_F the simple top of P_F

Proposition.

- 1. There is a unique $K \subset P_{\mathbb{1}_i}$ such that $FP_{\mathbb{1}_i}/K = 0$ for any $F \in \mathcal{L}$ while $FX \neq 0$ for any $X \in \text{top}(K)$.
- 2. K has simple top $L_{G_{\mathcal{L}}}$.
- 3. Both $G_{\mathcal{L}}$ and $G_{\mathcal{L}}^*$ belong to \mathcal{L} .

▲글▶ ▲글▶

Duflo involution of a left cell

 ${\mathscr C}-{\mathsf{fiat}}$ category; ${\mathcal L}-{\mathsf{left}}$ cell of ${\mathscr C}$

there is $\mathtt{i}\in \mathscr{C}$ such that every ${\it F}\in \mathcal{L}$ belongs to some $\mathscr{C}(\mathtt{i},\mathtt{j})$

consider $\overline{\mathbb{P}}_i$ and for an indecomposable 1-morphism $F \in \mathcal{L} \cap \mathscr{C}(i, j)$ denote by P_F the projective object $0 \to F$ of $\overline{\mathbb{P}}_i(j)$ and by L_F the simple top of P_F

Proposition.

- 1. There is a unique $K \subset P_{\mathbb{1}_i}$ such that $FP_{\mathbb{1}_i}/K = 0$ for any $F \in \mathcal{L}$ while $FX \neq 0$ for any $X \in \text{top}(K)$.
- 2. K has simple top $L_{G_{\mathcal{L}}}$.
- 3. Both $G_{\mathcal{L}}$ and $G_{\mathcal{L}}^*$ belong to \mathcal{L} .

Definition. $G_{\mathcal{L}}$ is the *Duflo involution* in \mathcal{L}

글 🕨 🖌 글 🕨

Definition of a cell 2-representation

 ${\mathscr C}$ – fiat category; ${\mathcal L}$ – left cell of ${\mathscr C};$ ${G_{\!\mathcal L}}$ – Duflo involution

Volodymyr Mazorchuk (Uppsala University)

글 🕨 🖌 글 🕨

4 E b

Definition of a cell 2-representation

 \mathscr{C} – fiat category; \mathcal{L} – left cell of \mathscr{C} ; $G_{\mathcal{L}}$ – Duflo involution

Theorem. $\mathcal{X} := \operatorname{add} \{ F L_{G_{\mathcal{L}}} : F \in \mathcal{L} \}$ is closed under the action of \mathscr{C}

Definition of a cell 2-representation

 \mathscr{C} – fiat category; \mathcal{L} – left cell of \mathscr{C} ; $G_{\mathcal{L}}$ – Duflo involution

Theorem. $\mathcal{X} := \operatorname{add} \{ F L_{G_{\mathcal{L}}} : F \in \mathcal{L} \}$ is closed under the action of \mathscr{C}

Definition. The **cell** 2-**representation** of \mathscr{C} corresponding to \mathcal{L} is the finitary 2-representation obtained by restricting the action of \mathscr{C} to \mathcal{X} .

- A 🖻 🕨

Definition of a cell 2-representation

 \mathscr{C} – fiat category; \mathcal{L} – left cell of \mathscr{C} ; $G_{\mathcal{L}}$ – Duflo involution

Theorem. $\mathcal{X} := \operatorname{add} \{ F L_{G_{\mathcal{L}}} : F \in \mathcal{L} \}$ is closed under the action of \mathscr{C}

Definition. The **cell** 2-**representation** of \mathscr{C} corresponding to \mathcal{L} is the finitary 2-representation obtained by restricting the action of \mathscr{C} to \mathcal{X} .

Definition. Two 2-representations of \mathscr{C} are called **elementary** equivalent if there is a homomorphism between them which is an equivalence when restricted to every $i \in \mathscr{C}$.

Definition of a cell 2-representation

 \mathscr{C} – fiat category; \mathcal{L} – left cell of \mathscr{C} ; $G_{\mathcal{L}}$ – Duflo involution

Theorem. $\mathcal{X} := \operatorname{add} \{ F L_{G_{\mathcal{L}}} : F \in \mathcal{L} \}$ is closed under the action of \mathscr{C}

Definition. The **cell** 2-**representation** of \mathscr{C} corresponding to \mathcal{L} is the finitary 2-representation obtained by restricting the action of \mathscr{C} to \mathcal{X} .

Definition. Two 2-representations of \mathscr{C} are called **elementary** equivalent if there is a homomorphism between them which is an equivalence when restricted to every $i \in \mathscr{C}$.

Definition. Two 2-representations of \mathscr{C} are called **equivalent** if there is a finite sequence of 2-representations starting with the first one and ending with the second one such that every pair of neighbors in the sequence are elementary equivalent.

Comparison of cell 2-representation

Main theorem.

Volodymyr Mazorchuk (Uppsala University)

< ∃⇒

Comparison of cell 2-representation

Main theorem.

Let ${\mathcal J}$ be a 2-sided cell of ${\mathscr C}$ such that:

∃ >

∃ ⊳

Comparison of cell 2-representation

Main theorem.

Let ${\mathcal J}$ be a 2-sided cell of ${\mathscr C}$ such that:

 \blacktriangleright different left cells inside ${\cal J}$ are not comparable w.r.t. the left order;

4 E b

Comparison of cell 2-representation

Main theorem.

Let ${\mathcal J}$ be a 2-sided cell of ${\mathscr C}$ such that:

- \blacktriangleright different left cells inside ${\cal J}$ are not comparable w.r.t. the left order;
- for any $\mathcal{L}, \mathcal{R} \subset \mathcal{J}$ we have $|\mathcal{L} \cap \mathcal{R}| = 1$;

< ∃ →

Comparison of cell 2-representation

Main theorem.

Let $\mathcal J$ be a 2-sided cell of $\mathscr C$ such that:

- \blacktriangleright different left cells inside ${\cal J}$ are not comparable w.r.t. the left order;
- for any $\mathcal{L}, \mathcal{R} \subset \mathcal{J}$ we have $|\mathcal{L} \cap \mathcal{R}| = 1$;
- ▶ the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J} .

4 E b

Comparison of cell 2-representation

Main theorem.

Let $\mathcal J$ be a 2-sided cell of $\mathscr C$ such that:

- \blacktriangleright different left cells inside ${\cal J}$ are not comparable w.r.t. the left order;
- for any $\mathcal{L}, \mathcal{R} \subset \mathcal{J}$ we have $|\mathcal{L} \cap \mathcal{R}| = 1$;
- ▶ the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J} .

The for any two left cells \mathcal{L} and \mathcal{L}' of \mathcal{J} the corresponding cell 2-representations are equivalent.

Comparison of cell 2-representation

Main theorem.

Let $\mathcal J$ be a 2-sided cell of $\mathscr C$ such that:

- different left cells inside \mathcal{J} are not comparable w.r.t. the left order;
- for any $\mathcal{L}, \mathcal{R} \subset \mathcal{J}$ we have $|\mathcal{L} \cap \mathcal{R}| = 1$;
- ▶ the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J} .

The for any two left cells \mathcal{L} and \mathcal{L}' of \mathcal{J} the corresponding cell 2-representations are equivalent.

Example. Works for both \mathscr{C} (in type A) and \mathscr{C}_A .