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Classification of simple modules for semi-simple Lie algebras

“Full” answer: Only for sl2, R. Block 1979, — reduces to description of
equivalence classes of irreducible elements in a non-commutative
Euclidean ring

Some partial answers:

◮ Finite dimensional modules: E. Cartan 1913

◮ Whittaker modules: B. Kostant 1978

◮ Weight modules with fin.-dim. weight spaces: O. Mathieu 2000

Some other classes of simple modules:

◮ Parabolically induced modules: V. Futorny, E. McDowell,
O. Khomenko, D. Miličić, W. Soergel, C. Stroppel, V. M. and others
1980’s - now

◮ Gelfand-Zetlin modules: Yu. Drozd, V. Futorny, S. Ovsienko 1989

◮ Simple modules for exotic Whittaker pairs: J. Nilsson 2013
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Classical Lie superalgebras

g = g
0
⊕ g

1

g
0

— finite dimensional reductive

g
1

— finite dimensional and semi-simple over g
0

Some examples:

◮ General linear Lie superalgebra gl(m|n)

◮ Queer Lie superalgebra q(n)

◮ Generalized Takiff Lie superalgebra ga,V where g
0
= a,

g
1
= V ∈ a-mod and [V ,V ] = 0.

Main problem: Classification of simple g-supermodules

Reduction: Modulo classification of simple g
0
-modules
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Classification of simple supermodules for classical Lie

superalgebras

“Full” answer:

◮ gl(1, 1) and q(1) — exercise

◮ osp(1, 2): V. Bavula, F. van Oystaeyen 2000

◮ p(2): V. Serganova 2002

◮ sl(1, 2): V. Serganova 2003

◮ q(2): V. M. 2010
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Classification of simple supermodules for classical Lie

superalgebras

Special cases:

◮ Typical generic modules for basic: I. Penkov 1994

◮ Strongly typical modules for basic: M. Gorelik 2002

◮ Weight modules with fin.-dim. weight spaces for type I:
D. Grantcharov 2003

◮ Regular strongly typical for qn; A. Frisk, V. M. 2009

◮ Weight modules with fin.-dim. weight spaces for q(n):
M. Gorelik, D. Grantcharov 2012
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Further reduction

L — simple g-supermodule

AnnU(g)(L) — the annihilator of L in U(g)

AnnU(g)(L) is a primitive ideal of U(g)

Theorem. (I. Musson 1992) There is a simple highest weight
g-supermodule L(λ) such that AnnU(g)(L) = AnnU(g)(L(λ)).

L(λ) is of finite length over U(g
0
)

Take any µ such that Lg0(µ) is a simple g
0
-submodule of L(λ)

Note: µ is not uniquely defined

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 6/20



Further reduction

L — simple g-supermodule

AnnU(g)(L) — the annihilator of L in U(g)

AnnU(g)(L) is a primitive ideal of U(g)

Theorem. (I. Musson 1992) There is a simple highest weight
g-supermodule L(λ) such that AnnU(g)(L) = AnnU(g)(L(λ)).

L(λ) is of finite length over U(g
0
)

Take any µ such that Lg0(µ) is a simple g
0
-submodule of L(λ)

Note: µ is not uniquely defined

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 6/20



Further reduction

L — simple g-supermodule

AnnU(g)(L) — the annihilator of L in U(g)

AnnU(g)(L) is a primitive ideal of U(g)

Theorem. (I. Musson 1992) There is a simple highest weight
g-supermodule L(λ) such that AnnU(g)(L) = AnnU(g)(L(λ)).

L(λ) is of finite length over U(g
0
)

Take any µ such that Lg0(µ) is a simple g
0
-submodule of L(λ)

Note: µ is not uniquely defined

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 6/20



Further reduction

L — simple g-supermodule

AnnU(g)(L) — the annihilator of L in U(g)

AnnU(g)(L) is a primitive ideal of U(g)

Theorem. (I. Musson 1992) There is a simple highest weight
g-supermodule L(λ) such that AnnU(g)(L) = AnnU(g)(L(λ)).

L(λ) is of finite length over U(g
0
)

Take any µ such that Lg0(µ) is a simple g
0
-submodule of L(λ)

Note: µ is not uniquely defined

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 6/20



Further reduction

L — simple g-supermodule

AnnU(g)(L) — the annihilator of L in U(g)

AnnU(g)(L) is a primitive ideal of U(g)

Theorem. (I. Musson 1992) There is a simple highest weight
g-supermodule L(λ) such that AnnU(g)(L) = AnnU(g)(L(λ)).

L(λ) is of finite length over U(g
0
)

Take any µ such that Lg0(µ) is a simple g
0
-submodule of L(λ)

Note: µ is not uniquely defined

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 6/20



Further reduction

L — simple g-supermodule

AnnU(g)(L) — the annihilator of L in U(g)

AnnU(g)(L) is a primitive ideal of U(g)

Theorem. (I. Musson 1992) There is a simple highest weight
g-supermodule L(λ) such that AnnU(g)(L) = AnnU(g)(L(λ)).

L(λ) is of finite length over U(g
0
)

Take any µ such that Lg0(µ) is a simple g
0
-submodule of L(λ)

Note: µ is not uniquely defined

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 6/20



Further reduction

L — simple g-supermodule

AnnU(g)(L) — the annihilator of L in U(g)

AnnU(g)(L) is a primitive ideal of U(g)

Theorem. (I. Musson 1992) There is a simple highest weight
g-supermodule L(λ) such that AnnU(g)(L) = AnnU(g)(L(λ)).

L(λ) is of finite length over U(g
0
)

Take any µ such that Lg0(µ) is a simple g
0
-submodule of L(λ)

Note: µ is not uniquely defined

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 6/20



Further reduction

L — simple g-supermodule

AnnU(g)(L) — the annihilator of L in U(g)

AnnU(g)(L) is a primitive ideal of U(g)

Theorem. (I. Musson 1992) There is a simple highest weight
g-supermodule L(λ) such that AnnU(g)(L) = AnnU(g)(L(λ)).

L(λ) is of finite length over U(g
0
)

Take any µ such that Lg0(µ) is a simple g
0
-submodule of L(λ)

Note: µ is not uniquely defined

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 6/20



Further reduction

L — simple g-supermodule

AnnU(g)(L) — the annihilator of L in U(g)

AnnU(g)(L) is a primitive ideal of U(g)

Theorem. (I. Musson 1992) There is a simple highest weight
g-supermodule L(λ) such that AnnU(g)(L) = AnnU(g)(L(λ)).

L(λ) is of finite length over U(g
0
)

Take any µ such that Lg0(µ) is a simple g
0
-submodule of L(λ)

Note: µ is not uniquely defined

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 6/20



Harish-Chandra bimodules

X — g
0
-module

Y — g-supermodule

L(X ,Y ) — the set of locally ad(g
0
)-finite linear maps from X to Y

L(X ,Y ) is a U(g)-U(g
0
)–bimodule (a Harish-Chandra bimodule)

L(X ,Y )
⊗

U(g
0
)

− : U(g
0
)-mod → U(g)-smod
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The main conjecture

L — simple g-supermodule

I := AnnU(g)(L)

L(λ) — a simple highest weight module with I = AnnU(g)(L(λ))

L
g
0(µ) — a simple U(g

0
)-submodule of L(λ)

J := AnnU(g
0
)(L

g
0(µ))

L := L(Lg0(µ), L(λ))

Main conjecture. Tensoring with L induces a bijection between
isomorphism classes of simple U(g

0
)-modules with annihilator J and

isomorphism classes of simple U(g)-supermodules with annihilator I.
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The q(2)-example

Theorem. (V. M. 2010) The main conjecture is true for q(2).

Root system: {±α}

Alternatives: µ ∈ {λ, λ− α} (depending on regularity, typicality etc.)

Bonus: Describes the rough structure of any simple
U(q(2))-supermodule as a U(gl(2))-module

Very special feature: Every simple U(q(2))-supermodule is of finite
length as a U(gl(2))-module

Rough structure: (O. Khomenko, V. M. 2004) Multiplicities of simple
subquotients with “minimal possible” annihilators occurring in the module
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Rough structure conjecture

g — classical Lie superalgebra

L — simple g-supermodule

U(g) is finite over U(g
0
)

U(g
0
) is noetherian

Res
g

g
0

(L) is noetherian

Res
g

g
0

(L) does not have to be artinian (T. Stafford. 1985)

Rough structure conjecture. The rough structures of L and L(λ)
“coincide” in the sense that under the bijection given by the main
conjecture the multiplicities are preserved.

Note: Absolutely unclear how to control the “fine” structure
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Simple supermodules are submodules in induced modules

Lemma. Let L be a simple g-supermodule. Then there exists a simple
g
0
-module N such that L ⊂ Ind

g

g
0

(N) or L ⊂ Π Ind
g

g
0

(N).

Proof. U(g) is finite over U(g
0
).

U(g
0
) is noetherian, Res

g

g
0

(L) is noetherian

Zorn’s lemma implies that Res
g

g
0

(L) has a simple quotient, say N.

Ind
g

g
0

∼= Πdim g
1 ◦ Coind

g

g
0

Adjunction: Homg(L,Coind
g

g
0

(N)) = Homg
0
(Res

g

g
0

(L),N) 6= 0.

Q.E.D.

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 11/20



Simple supermodules are submodules in induced modules

Lemma. Let L be a simple g-supermodule. Then there exists a simple
g
0
-module N such that L ⊂ Ind

g

g
0

(N) or L ⊂ Π Ind
g

g
0

(N).

Proof. U(g) is finite over U(g
0
).

U(g
0
) is noetherian, Res

g

g
0

(L) is noetherian

Zorn’s lemma implies that Res
g

g
0

(L) has a simple quotient, say N.

Ind
g

g
0

∼= Πdim g
1 ◦ Coind

g

g
0

Adjunction: Homg(L,Coind
g

g
0

(N)) = Homg
0
(Res

g

g
0

(L),N) 6= 0.

Q.E.D.

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 11/20



Simple supermodules are submodules in induced modules

Lemma. Let L be a simple g-supermodule. Then there exists a simple
g
0
-module N such that L ⊂ Ind

g

g
0

(N) or L ⊂ Π Ind
g

g
0

(N).

Proof. U(g) is finite over U(g
0
).

U(g
0
) is noetherian, Res

g

g
0

(L) is noetherian

Zorn’s lemma implies that Res
g

g
0

(L) has a simple quotient, say N.

Ind
g

g
0

∼= Πdim g
1 ◦ Coind

g

g
0

Adjunction: Homg(L,Coind
g

g
0

(N)) = Homg
0
(Res

g

g
0

(L),N) 6= 0.

Q.E.D.

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 11/20



Simple supermodules are submodules in induced modules

Lemma. Let L be a simple g-supermodule. Then there exists a simple
g
0
-module N such that L ⊂ Ind

g

g
0

(N) or L ⊂ Π Ind
g

g
0

(N).

Proof. U(g) is finite over U(g
0
).

U(g
0
) is noetherian, Res

g

g
0

(L) is noetherian

Zorn’s lemma implies that Res
g

g
0

(L) has a simple quotient, say N.

Ind
g

g
0

∼= Πdim g
1 ◦ Coind

g

g
0

Adjunction: Homg(L,Coind
g

g
0

(N)) = Homg
0
(Res

g

g
0

(L),N) 6= 0.

Q.E.D.

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 11/20



Simple supermodules are submodules in induced modules

Lemma. Let L be a simple g-supermodule. Then there exists a simple
g
0
-module N such that L ⊂ Ind

g

g
0

(N) or L ⊂ Π Ind
g

g
0

(N).

Proof. U(g) is finite over U(g
0
).

U(g
0
) is noetherian, Res

g

g
0

(L) is noetherian

Zorn’s lemma implies that Res
g

g
0

(L) has a simple quotient, say N.

Ind
g

g
0

∼= Πdim g
1 ◦ Coind

g

g
0

Adjunction: Homg(L,Coind
g

g
0

(N)) = Homg
0
(Res

g

g
0

(L),N) 6= 0.

Q.E.D.

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 11/20



Simple supermodules are submodules in induced modules

Lemma. Let L be a simple g-supermodule. Then there exists a simple
g
0
-module N such that L ⊂ Ind

g

g
0

(N) or L ⊂ Π Ind
g

g
0

(N).

Proof. U(g) is finite over U(g
0
).

U(g
0
) is noetherian, Res

g

g
0

(L) is noetherian

Zorn’s lemma implies that Res
g

g
0

(L) has a simple quotient, say N.

Ind
g

g
0

∼= Πdim g
1 ◦ Coind

g

g
0

Adjunction: Homg(L,Coind
g

g
0

(N)) = Homg
0
(Res

g

g
0

(L),N) 6= 0.

Q.E.D.

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 11/20



Simple supermodules are submodules in induced modules

Lemma. Let L be a simple g-supermodule. Then there exists a simple
g
0
-module N such that L ⊂ Ind

g

g
0

(N) or L ⊂ Π Ind
g

g
0

(N).

Proof. U(g) is finite over U(g
0
).

U(g
0
) is noetherian, Res

g

g
0

(L) is noetherian

Zorn’s lemma implies that Res
g

g
0

(L) has a simple quotient, say N.

Ind
g

g
0

∼= Πdim g
1 ◦ Coind

g

g
0

Adjunction: Homg(L,Coind
g

g
0

(N)) = Homg
0
(Res

g

g
0

(L),N) 6= 0.

Q.E.D.

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 11/20



Simple supermodules are submodules in induced modules

Lemma. Let L be a simple g-supermodule. Then there exists a simple
g
0
-module N such that L ⊂ Ind

g

g
0

(N) or L ⊂ Π Ind
g

g
0

(N).

Proof. U(g) is finite over U(g
0
).

U(g
0
) is noetherian, Res

g

g
0

(L) is noetherian

Zorn’s lemma implies that Res
g

g
0

(L) has a simple quotient, say N.

Ind
g

g
0

∼= Πdim g
1 ◦ Coind

g

g
0

Adjunction: Homg(L,Coind
g

g
0

(N)) = Homg
0
(Res

g

g
0

(L),N) 6= 0.

Q.E.D.

Volodymyr Mazorchuk Simple supermodules for classical Lie superalgebras 11/20



Simple supermodules are submodules in induced modules

Lemma. Let L be a simple g-supermodule. Then there exists a simple
g
0
-module N such that L ⊂ Ind

g

g
0

(N) or L ⊂ Π Ind
g

g
0

(N).

Proof. U(g) is finite over U(g
0
).

U(g
0
) is noetherian, Res

g

g
0

(L) is noetherian

Zorn’s lemma implies that Res
g

g
0

(L) has a simple quotient, say N.

Ind
g

g
0

∼= Πdim g
1 ◦ Coind

g

g
0

Adjunction: Homg(L,Coind
g

g
0

(N)) = Homg
0
(Res

g

g
0

(L),N) 6= 0.

Q.E.D.
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Simple supermodules are quotients of induced modules

Dual statement: Each simple supermodule is a quotient of an induced
module.

Question: Is this true?

Idea: Same proof as above works?

Need: If L is a simple g-supermodule, then Res
g

g
0

(L) has a simple
submodule.

Note: This is obviously true if Res
g

g
0

(L) has finite length.

Note: If N is a simple g
0
-module, then Ind

g

g
0

(N) has simple quotients by
Zorn’s lemma. The unclear thing is why it has L as a quotient.
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Main result

Theorem: Let a be a finite dimensional reductive Lie algebra, V a simple
a-module and E a simple finite dimensional a-module. Then E ⊗ V has a
well-defined socle, that is there exists a unique submodule N of E ⊗ V

which has the following properties:

1. N has finite length;

2. N is semi-simple;

3. any non-zero submodule of E ⊗ V intersects N in a non-zero way.

Corollary 1: Every simple g supermodule has a well-defined socle (as a
g
0
-module).

Corollary 2: Every simple g supermodule is a quotient of an induced
module.
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Idea of the proof: projective functors

a — be a finite dimensional reductive Lie algebra

M — the full subcategory in a-Mod consisting of modules on which the
action of Z (a) is locally finite

E ⊗ − : M → M — a projective functor (in the sense of I. Bernstein and
S. Gelfand 1980)

Indecomposable projective functors are classified (I. Bernstein and
S. Gelfand 1980)

The tensor category of projective functors is generated by:

1. Jantzen’s translation functors (equivalences of categories);

2. translations onto a wall;

3. translations out of a wall.
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Idea of the proof: reduction to translations out of a wall

enough to prove the claim for indecomposable projective functors

induction reduces the claim to one of the three types of projective
functors described above

for equivalences of categories the claim is obvious

for the translation to a wall the claim follows from (A. Beilinson and
V. Ginzburg 1999)

Left: the case of the translation out of a wall
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Idea of the proof: the case of translation out of a wall

Main idea: Exploit the 2-categorical structure on the tensor category
(2-category) of projective functors

the endomorphism algebra of the translation θ out of a wall is known
(I. Bernstein and S. Gelfand 1980)

this endomorphism algebra is commutative, has simple socle, and Z (a)
surjects onto it (this is the algebra of certain invariants in a certain
coinvariant algebra), it is related to the endomorphism algebra of a
certain projective in the BGG category O

by noetherianity, we have at least one simple quotient of θV

applying the socle endomorphism of θ produces a simple submodule in
θV

the socle of E ⊗ V is obtained by adding up all these submodules in θV
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Rough structure of supermodules: setup

a — reductive finite dimensional Lie algebra of type A

V — simple a-module

J := AnnU(a)(V )

λ — a weight such that J = AnnU(a)(L(λ))

λ′ — the most singular weight with comparable annihilator appearing in
JH(E ⊗ L(λ)) where E is finite dimensional

J ′ := AnnU(a)(L(λ
′))

V ′ — the corresponding simple (sub)quotient of E ⊗ V

Note: V is a quotient of E∗ ⊗ V ′
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Rough structure of supermodules: description

Coker(E ⊗ V ′) — full subcategory of a-mod consisting of modules with
presentation X1 → X0 → M → 0 with X1,X0 ∈ add(E ⊗ V ′) for some
finite dimensional E

Proposition. V ′ is projective in Coker(E ⊗ V ′) (compare with R. Irving
and B. Shelton 1988)

Theorem. (V.M. and C. Stroppel 2008) Coker(E ⊗V ′) does not depend
on V ′ (if J ′ is fixed), up to equivalence.

Corollary. The rough structure conjecture is true if g
0

is of type A.

Consequently: Enough to describe the rough structure for highest
weight supermodules.
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Rough structure of supermodules: the q(2) example

α — the positive root

L(0) — trivial supermodule

L(λ)
0
∼= L(λ)

1
if λ 6= 0

Atypical λ 6= 0: L(λ)
0
= Lg

0(λ)

Regular typical λ 6= 0: L(λ)
0
= Lg

0(λ)⊕ Lg
0(λ− α)

Singular typical λ 6= 0: L(λ)
0

is indecomposable,
Lg

0(λ− α) →֒ L(λ)
0
։ Lg

0(λ− α), this sequence has one-dimensional
homology (i.e. the fine structure is different from the rough structure)

Note Taking e.g. a simple dense g-supermodule with the same
annihilator as L(λ), the corresponding sequence will be exact, that is in
this case the fine structure coincides with the rough structure.
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THANK YOU!!!
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