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A — the full subcategory of B given by representatives of
indecomposable projectives
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A — the full subcategory of B given by representatives of
indecomposable projectives

Theorem. [Chari – Greenstein] A is Koszul.

Note: again, A0 is not finite dimensional
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B — a block of gV -gmod

A — the full subcategory of B given by representatives of
indecomposable projectives

Theorem. [Chari – Greenstein] A is Koszul.

Note: again, A0 is not finite dimensional

Question: What is the Koszul dual of A?
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s = s(g,V ) — the generalized Takiff Lie superalgebra

s0 := g, s1 := V , {V ,V } = 0.
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Main Result. [Greenstein – M.]
For an appropriate B′ we have that A′ is the Koszul dual of A.

Corollary. There is an equivalence between the corresponding derived
categories of modules.
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Note: Extends to “locally category O-modules” in the setup of T -Koszul
algebras of Madsen.
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Corollary. There is an equivalence between the corresponding derived
categories of modules.

Note: Extends to “locally category O-modules” in the setup of T -Koszul
algebras of Madsen.

Note: s-gmod is not all supermodules, but only those which are
extendable to Z-graded modules
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