Algebraic categorification and its applications, II

Volodymyr Mazorchuk

(Uppsala University)

Winter School "Geometry and physics" January 17.24, 2015, Srni, Czech Republic

 S_n — the symmetric group on $\{1, 2, ..., n\}$

$$\mathbf{P}_n := \{ \lambda = (\lambda_1, \dots, \lambda_k) : \lambda_1 \ge \dots \ge \lambda_k, \ \lambda_1 + \dots + \lambda_k = n \}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $\triangleright \mathcal{S}^{(n)}$ is the trivial module
- $\triangleright \mathcal{S}^{(1,1,\ldots,1)}$ is the sign module
- $\triangleright \mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \dots, \lambda_k) : \lambda_1 \ge \dots \ge \lambda_k, \ \lambda_1 + \dots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $\triangleright \mathcal{S}^{(n)}$ is the trivial module
- $\triangleright S^{(1,1,\ldots,1)}$ is the sign module
- $\triangleright \mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\textbf{P}_n := \{\lambda = (\lambda_1, \dots, \lambda_k) : \lambda_1 \ge \dots \ge \lambda_k, \ \lambda_1 + \dots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $\triangleright S^{(n)}$ is the trivial module
- $\triangleright S^{(1,1,\ldots,1)}$ is the sign module
- $\triangleright \mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \dots, \lambda_k) : \lambda_1 \ge \dots \ge \lambda_k, \, \lambda_1 + \dots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $\triangleright \mathcal{S}^{(n)}$ is the trivial module
- $\triangleright S^{(1,1,\ldots,1)}$ is the sign module
- $\triangleright \mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \dots, \lambda_k) : \lambda_1 \ge \dots \ge \lambda_k, \, \lambda_1 + \dots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $\triangleright S^{(n)}$ is the trivial module
- $\triangleright S^{(1,1,\ldots,1)}$ is the sign module
- $\triangleright \mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \dots, \lambda_k) : \lambda_1 \ge \dots \ge \lambda_k, \, \lambda_1 + \dots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $\triangleright S^{(n)}$ is the trivial module
- $\triangleright S^{(1,1,\ldots,1)}$ is the sign module
- $\triangleright \mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \dots, \lambda_k) : \lambda_1 \ge \dots \ge \lambda_k, \, \lambda_1 + \dots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- $\triangleright \mathcal{S}^{(n)}$ is the trivial module
- $\triangleright S^{(1,1,\ldots,1)}$ is the sign module
- $\triangleright \mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \dots, \lambda_k) : \lambda_1 \ge \dots \ge \lambda_k, \, \lambda_1 + \dots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- \triangleright $S^{(n)}$ is the trivial module
- $\triangleright S^{(1,1,\ldots,1)}$ is the sign module
- $\triangleright \mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \dots, \lambda_k) : \lambda_1 \ge \dots \ge \lambda_k, \ \lambda_1 + \dots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- \triangleright $S^{(n)}$ is the trivial module
- \triangleright $\mathcal{S}^{(1,1,\ldots,1)}$ is the sign module
- $\triangleright \mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \dots, \lambda_k) : \lambda_1 \ge \dots \ge \lambda_k, \, \lambda_1 + \dots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- \triangleright $S^{(n)}$ is the trivial module
- \triangleright $\mathcal{S}^{(1,1,\ldots,1)}$ is the sign module
- $ightharpoonup \mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

 S_n — the symmetric group on $\{1, 2, \ldots, n\}$

$$\mathbf{P}_n := \{\lambda = (\lambda_1, \dots, \lambda_k) : \lambda_1 \ge \dots \ge \lambda_k, \, \lambda_1 + \dots + \lambda_k = n\}$$

 $\lambda \in \mathbf{P}_n$ is called a partition of n, denoted $\lambda \vdash n$

 \mathcal{S}^{λ} — the Specht module associated to λ

Theorem. $\{S^{\lambda} : \lambda \vdash n\}$ is a cross-section of isomorphism classes of simple S_n -modules.

- \triangleright $S^{(n)}$ is the trivial module
- \triangleright $\mathcal{S}^{(1,1,\ldots,1)}$ is the sign module
- $ightharpoonup \mathcal{S}^{(n)} \oplus \mathcal{S}^{(n-1,1)}$ is the natural module

$$\mathfrak{g}:=\mathfrak{sl}_n(\mathbb{C})$$

○ — BGG category ○

 \mathcal{O}_0 — principal block of \mathcal{O}

 S_n — Weyl group of \mathfrak{g}

 $M(\mu)$ — Verma module with highest weight μ

 $L(\mu)$ — unique simple quotient of $M(\mu)$

$$\mathfrak{g}:=\mathfrak{sl}_n(\mathbb{C})$$

 \mathcal{O} — BGG category \mathcal{O}

 \mathcal{O}_0 — principal block of \mathcal{O}

 S_n — Weyl group of \mathfrak{g}

 $M(\mu)$ — Verma module with highest weight μ

 $L(\mu)$ — unique simple quotient of $M(\mu)$

$$\mathfrak{g}:=\mathfrak{sl}_n(\mathbb{C})$$

 \mathcal{O} — BGG category \mathcal{O}

 \mathcal{O}_0 — principal block of \mathcal{O}

 S_n — Weyl group of \mathfrak{g}

 $M(\mu)$ — Verma module with highest weight μ

 $L(\mu)$ — unique simple quotient of $M(\mu)$

$$\mathfrak{g}:=\mathfrak{sl}_n(\mathbb{C})$$

 \mathcal{O} — BGG category \mathcal{O}

 \mathcal{O}_0 — principal block of \mathcal{O}

 S_n — Weyl group of \mathfrak{g}

 $M(\mu)$ — Verma module with highest weight μ

 $L(\mu)$ — unique simple quotient of $M(\mu)$

$$\mathfrak{g}:=\mathfrak{sl}_n(\mathbb{C})$$

 \mathcal{O} — BGG category \mathcal{O}

 \mathcal{O}_0 — principal block of \mathcal{O}

 S_n — Weyl group of \mathfrak{g}

 $M(\mu)$ — Verma module with highest weight μ

 $L(\mu)$ — unique simple quotient of $M(\mu)$

$$\mathfrak{g} := \mathfrak{sl}_n(\mathbb{C})$$

 \mathcal{O} — BGG category \mathcal{O}

 \mathcal{O}_0 — principal block of \mathcal{O}

 S_n — Weyl group of $\mathfrak g$

 $M(\mu)$ — Verma module with highest weight μ

 $L(\mu)$ — unique simple quotient of $M(\mu)$

$$\mathfrak{g} := \mathfrak{sl}_n(\mathbb{C})$$

 \mathcal{O} — BGG category \mathcal{O}

 \mathcal{O}_0 — principal block of \mathcal{O}

 S_n — Weyl group of \mathfrak{g}

 $M(\mu)$ — Verma module with highest weight μ

 $L(\mu)$ — unique simple quotient of $M(\mu)$

$$\mathfrak{g}:=\mathfrak{sl}_n(\mathbb{C})$$

 \mathcal{O} — BGG category \mathcal{O}

 \mathcal{O}_0 — principal block of \mathcal{O}

 S_n — Weyl group of \mathfrak{g}

 $M(\mu)$ — Verma module with highest weight μ

 $L(\mu)$ — unique simple quotient of $M(\mu)$

$$\mathfrak{g}:=\mathfrak{sl}_n(\mathbb{C})$$

 \mathcal{O} — BGG category \mathcal{O}

 \mathcal{O}_0 — principal block of \mathcal{O}

 S_n — Weyl group of \mathfrak{g}

 $M(\mu)$ — Verma module with highest weight μ

 $L(\mu)$ — unique simple quotient of $M(\mu)$

Corollary. $Gr(\mathcal{O}_0) \cong \mathbb{Z}[S_n]$.

Note. $\{[L(w)]: w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)]: w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$

Reason: $[\Delta(x):L(y)]\neq 0$ implies $x\leq y$ and $[\Delta(x):L(x)]=1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $Gr(\mathcal{O}_0) \cong \mathbb{Z}[S_n]$.

Note. $\{[L(w)]: w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)]: w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x):L(y)]\neq 0$ implies $x\leq y$ and $[\Delta(x):L(x)]=1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $Gr(\mathcal{O}_0) \cong \mathbb{Z}[S_n]$.

Note. $\{[L(w)]: w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

$$\Delta(w) := M(w \cdot 0)$$

Fact. $\{[\Delta(w)]: w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x):L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x):L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $Gr(\mathcal{O}_0) \cong \mathbb{Z}[S_n]$.

Note. $\{[L(w)]: w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

$$\Delta(w) := M(w \cdot 0)$$

Fact. $\{[\Delta(w)]: w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$

Reason: $[\Delta(x):L(y)]\neq 0$ implies $x\leq y$ and $[\Delta(x):L(x)]=1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $Gr(\mathcal{O}_0) \cong \mathbb{Z}[S_n]$.

Note. $\{[L(w)]: w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)]: w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x):L(y)]\neq 0$ implies $x\leq y$ and $[\Delta(x):L(x)]=1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $Gr(\mathcal{O}_0) \cong \mathbb{Z}[S_n]$.

Note. $\{[L(w)]: w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)]: w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x):L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x):L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $Gr(\mathcal{O}_0) \cong \mathbb{Z}[S_n]$.

Note. $\{[L(w)]: w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)]: w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x):L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x):L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $Gr(\mathcal{O}_0) \cong \mathbb{Z}[S_n]$.

Note. $\{[L(w)]: w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)]: w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x):L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x):L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $Gr(\mathcal{O}_0) \cong \mathbb{Z}[S_n]$.

Note. $\{[L(w)]: w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)]: w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x):L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x):L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Corollary. $Gr(\mathcal{O}_0) \cong \mathbb{Z}[S_n]$.

Note. $\{[L(w)]: w \in S_n\}$ is the natural basis in $Gr(\mathcal{O}_0)$.

 $\Delta(w) := M(w \cdot 0)$

Fact. $\{[\Delta(w)]: w \in S_n\}$ is the standard basis in $Gr(\mathcal{O}_0)$.

Reason: $[\Delta(x):L(y)] \neq 0$ implies $x \leq y$ and $[\Delta(x):L(x)] = 1$.

Fact. \mathcal{O}_0 has finite global dimension.

P(w) — the indecomposable projective cover of L(w)

Theorem.[Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- ▶ $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ightharpoonup T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)]: w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

- $\{[L(w)]: w \in S_n\}?$
- $\{ [\Delta(w)] : w \in S_n \}?$
- $\{[P(w)]: w \in S_n\}?$
- $\blacktriangleright \{[T(w)]: w \in S_n\}?$

Theorem. [Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- $ightharpoonup \Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ightharpoonup T(w) is self-dual.

$$T(w)$$
 — tilting module

Fact.
$$\{[T(w)]: w \in S_n\}$$
 is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

```
► {[L(w)] : w \in S_n}?

► {[\Delta(w)] : w \in S_n}?

► {[P(w)] : w \in S_n}?

► {[T(w)] : w \in S_n}?
```

Theorem. [Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- ▶ $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ightharpoonup T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)]: w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

```
► {[L(w)] : w \in S_n}?

► {[\Delta(w)] : w \in S_n}?

► {[P(w)] : w \in S_n}?

► {[T(w)] : w \in S_n}?
```

Theorem. [Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- ▶ $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ightharpoonup T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)]: w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

```
► {[L(w)] : w \in S_n}?

► {[\Delta(w)] : w \in S_n}?

► {[P(w)] : w \in S_n}?

► {[T(w)] : w \in S_n}?
```

Theorem. [Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- ▶ $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ightharpoonup T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)]: w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

```
► {[L(w)] : w \in S_n}?

► {[\Delta(w)] : w \in S_n}?

► {[P(w)] : w \in S_n}?

► {[T(w)] : w \in S_n}?
```

Theorem. [Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- ▶ $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ightharpoonup T(w) is self-dual.

$$T(w)$$
 — tilting module

Fact.
$$\{[T(w)]: w \in S_n\}$$
 is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

```
► {[L(w)] : w \in S_n}?

► {[\Delta(w)] : w \in S_n}?

► {[P(w)] : w \in S_n}?

► {[T(w)] : w \in S_n}?
```

Theorem. [Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- ▶ $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ightharpoonup T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)]: w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

```
▶ {[L(w)] : w \in S_n}?

▶ {[\Delta(w)] : w \in S_n}?

▶ {[P(w)] : w \in S_n}?

▶ {[T(w)] : w \in S_n}?
```

Theorem. [Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- ▶ $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ightharpoonup T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)]: w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

```
▶ {[L(w)] : w \in S_n}?

▶ {[\Delta(w)] : w \in S_n}?

▶ {[P(w)] : w \in S_n}?

▶ {[T(w)] : w \in S_n}?
```

Theorem. [Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- ▶ $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ightharpoonup T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)]: w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

Question. Which bases in $\mathbb{Z}[S_n]$ correspond to:

▶ { $[L(w)] : w \in S_n$ }? ▶ { $[\Delta(w)] : w \in S_n$ }? ▶ { $[P(w)] : w \in S_n$ }? ▶ { $[T(w)] : w \in S_n$ }?

Theorem. [Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- ▶ $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ightharpoonup T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)]: w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

- $\blacktriangleright \{[L(w)]: w \in S_n\}?$
- $\blacktriangleright \{[\Delta(w)]: w \in S_n\}?$
- $\qquad \qquad \{ [P(w)] : w \in S_n \}?$
- ▶ $\{[T(w)]: w \in S_n\}$?

Theorem. [Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- ▶ $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ightharpoonup T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)]: w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

- $\blacktriangleright \{[L(w)]: w \in S_n\}?$
- $\blacktriangleright \{[\Delta(w)]: w \in S_n\}?$
- ▶ $\{[P(w)] : w \in S_n\}$?
- $[T(w)]: w \in S_n$?

Theorem. [Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- ▶ $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ightharpoonup T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)]: w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

- $\blacktriangleright \{[L(w)]: w \in S_n\}?$
- $\blacktriangleright \{[\Delta(w)]: w \in S_n\}?$
- ▶ $\{[P(w)] : w \in S_n\}$?
- $\blacktriangleright \{[T(w)]: w \in S_n\}?$

Theorem. [Collingwood-Irving, Ringel] For $w \in S_n$ there is a unique indecomposable module T(w) such that

- ▶ $\Delta(w) \subset T(w)$ and the cokernel has a Verma flag;
- ightharpoonup T(w) is self-dual.

T(w) — tilting module

Fact. $\{[T(w)]: w \in S_n\}$ is a basis in $Gr(\mathcal{O}_0)$.

Reason: Extensions between Vermas are directed.

- $\blacktriangleright \{[L(w)]: w \in S_n\}?$
- $\blacktriangleright \{[\Delta(w)]: w \in S_n\}?$
- ▶ $\{[P(w)] : w \in S_n\}$?
- $\blacktriangleright \{[T(w)]: w \in S_n\}?$

Recall: A projective functor $\theta: \mathcal{O}_0 \to \mathcal{O}_0$ is a direct summand of $V \otimes_{\mathbb{C}}$ —, where V is finite dimensional

Theorem. [Bernstein-S. Gelfand]

- (a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.
- (b) $\{\theta_w: w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. \mathcal{P} — the category of projective functors.

Recall: A projective functor $\theta: \mathcal{O}_0 \to \mathcal{O}_0$ is a direct summand of $V \otimes_{\mathbb{C}}$ —, where V is finite dimensional

Theorem. [Bernstein-S. Gelfand]

- (a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.
- (b) $\{\theta_w : w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. \mathcal{P} — the category of projective functors.

Recall: A projective functor $\theta: \mathcal{O}_0 \to \mathcal{O}_0$ is a direct summand of $V \otimes_{\mathbb{C}}$, where V is finite dimensional

Theorem. [Bernstein-S. Gelfand]

- (a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.
- (b) $\{\theta_w : w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. \mathcal{P} — the category of projective functors.

Recall: A projective functor $\theta: \mathcal{O}_0 \to \mathcal{O}_0$ is a direct summand of $V \otimes_{\mathbb{C}}$ —, where V is finite dimensional

Theorem. [Bernstein-S. Gelfand]

- (a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.
- (b) $\{\theta_w : w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. P — the category of projective functors.

Recall: A projective functor $\theta: \mathcal{O}_0 \to \mathcal{O}_0$ is a direct summand of $V \otimes_{\mathbb{C}}$, where V is finite dimensional

Theorem. [Bernstein-S. Gelfand]

- (a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.
- (b) $\{\theta_w : w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. \mathcal{P} — the category of projective functors.

Recall: A projective functor $\theta: \mathcal{O}_0 \to \mathcal{O}_0$ is a direct summand of $V \otimes_{\mathbb{C}}$ —, where V is finite dimensional

Theorem. [Bernstein-S. Gelfand]

- (a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.
- (b) $\{\theta_w : w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. \mathcal{P} — the category of projective functors.

Recall: A projective functor $\theta: \mathcal{O}_0 \to \mathcal{O}_0$ is a direct summand of $V \otimes_{\mathbb{C}}$ —, where V is finite dimensional

Theorem. [Bernstein-S. Gelfand]

- (a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.
- (b) $\{\theta_w : w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. \mathcal{P} — the category of projective functors.

Recall: A projective functor $\theta: \mathcal{O}_0 \to \mathcal{O}_0$ is a direct summand of $V \otimes_{\mathbb{C}}$ —, where V is finite dimensional

Theorem. [Bernstein-S. Gelfand]

- (a) There is a unique (up to isomorphism) indecomposable projective functor θ_w such that $\theta_w P(e) \cong P(w)$.
- (b) $\{\theta_w : w \in S_n\}$ is a cross-section of isomorphism classes of indecomposable projective endofunctors of \mathcal{O}_0 .

Definition. \mathcal{P} — the category of projective functors.

Observation. For s simple reflection and $w \in S_n$ there are s.e.s.

$$\Delta(ws) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(w) \text{ if } ws > w$$

$$\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$$
 if $ws < w$.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

Corollary. $\operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]$

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

Observation. For s simple reflection and $w \in S_n$ there are s.e.s.

$$\Delta(ws) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(w)$$
 if $ws > w$,

$$\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$$
 if $ws < w$.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

Corollary. $\operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]$

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

Observation. For s simple reflection and $w \in S_n$ there are s.e.s.

$$\Delta(ws) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(w)$$
 if $ws > w$,

$$\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws) \text{ if } ws < w.$$

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

Corollary. $\mathrm{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]$

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

Observation. For s simple reflection and $w \in S_n$ there are s.e.s.

$$\Delta(ws) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(w)$$
 if $ws > w$,

$$\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$$
 if $ws < w$.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

Corollary. $Gr_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]$

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

Observation. For s simple reflection and $w \in S_n$ there are s.e.s.

$$\Delta(ws) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(w) \text{ if } ws > w$$
,

$$\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$$
 if $ws < w$.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

Corollary. $\operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]$

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

Observation. For s simple reflection and $w \in S_n$ there are s.e.s.

$$\Delta(ws) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(w) \text{ if } ws > w$$
,

$$\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$$
 if $ws < w$.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

Corollary. $Gr_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]$

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

Observation. For s simple reflection and $w \in S_n$ there are s.e.s.

$$\Delta(ws) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(w)$$
 if $ws > w$,

$$\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$$
 if $ws < w$.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

Corollary. $Gr_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]$

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

Observation. For s simple reflection and $w \in S_n$ there are s.e.s.

$$\Delta(ws) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(w)$$
 if $ws > w$,

$$\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$$
 if $ws < w$.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

Corollary.
$$Gr_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]$$

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

Observation. For s simple reflection and $w \in S_n$ there are s.e.s.

$$\Delta(ws) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(w)$$
 if $ws > w$,

$$\Delta(w) \hookrightarrow \theta_s \Delta(w) \twoheadrightarrow \Delta(ws)$$
 if $ws < w$.

Fact. \mathcal{P} is generated by θ_s , s simple reflection, as a tensor category.

Corollary.
$$Gr_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[S_n]$$

Question. Which basis of $\mathbb{Z}[S_n]$ is $\{[\theta_w], w \in S_n\}$?

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $\mathrm{Gr}(\mathcal{O}_0)$

Identify: $Gr(\mathcal{O}_0)$ with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $Gr_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

$$\mathcal{O}_0 \searrow_{\mathcal{P}} \stackrel{\operatorname{Gr}}{\longrightarrow} \mathbb{Z}[S_n] \searrow_{\mathbb{Z}[S_n]}$$

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $\mathrm{Gr}(\mathcal{O}_0)$

Identify: $\operatorname{Gr}(\mathcal{O}_0)$ with $\mathbb{Z}[S_n]$ via $[\Delta(w)]\mapsto w$.

Identify: $Gr_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

$$\mathcal{O}_0 \searrow_{\mathcal{P}} \stackrel{\operatorname{Gr}}{\longmapsto} \mathbb{Z}[S_n] \underset{\mathbb{Z}[S_n]}{\searrow}$$

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $Gr(\mathcal{O}_0)$

Identify: $\operatorname{Gr}(\mathcal{O}_0)$ with $\mathbb{Z}[S_n]$ via $[\Delta(w)]\mapsto w$.

Identify: $\mathrm{Gr}_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s]\mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

$$\mathcal{O}_0 \searrow_{\mathcal{P}} \stackrel{\operatorname{Gr}}{\longmapsto} \mathbb{Z}[S_n]_{\mathbb{Z}[S_n]}$$

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $Gr(\mathcal{O}_0)$

Identify: $Gr(\mathcal{O}_0)$ with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $Gr_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

$$\mathcal{O}_0 \lesssim_{\mathcal{P}} \stackrel{\operatorname{Gr}}{\longrightarrow} \mathbb{Z}[S_n] \underset{\mathbb{Z}[S_n]}{\searrow}$$

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $Gr(\mathcal{O}_0)$

Identify: $Gr(\mathcal{O}_0)$ with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $Gr_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

$$\mathcal{O}_0 \searrow_{\mathcal{P}} \stackrel{\operatorname{Gr}}{\longrightarrow} \mathbb{Z}[S_n]_{\mathcal{Z}[S_n]}$$

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $Gr(\mathcal{O}_0)$

Identify: $Gr(\mathcal{O}_0)$ with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $Gr_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

$$\mathcal{O}_0 \searrow_{\mathcal{P}} \stackrel{\operatorname{Gr}}{\longmapsto} \mathbb{Z}[S_n] \searrow_{\mathbb{Z}[S_n]}$$

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $\mathrm{Gr}(\mathcal{O}_0)$

Identify: $Gr(\mathcal{O}_0)$ with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $Gr_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

$$\mathcal{O}_0 \searrow_{\mathcal{P}} \stackrel{\operatorname{Gr}}{\longmapsto} \mathbb{Z}[S_n] \searrow_{\mathbb{Z}[S_n]}$$

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $\mathrm{Gr}(\mathcal{O}_0)$

Identify: $Gr(\mathcal{O}_0)$ with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $Gr_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

$$\mathcal{O}_0 \underset{\mathcal{P}}{ \smile} \stackrel{\operatorname{Gr}}{\longmapsto} \quad \mathbb{Z}[S_n] \underset{\mathbb{Z}[S_n]}{ \smile}$$

Note. Projective functors are exact.

Consequence. Each $[\theta_w]$ is an endomorphism of $\mathrm{Gr}(\mathcal{O}_0)$

Identify: $Gr(\mathcal{O}_0)$ with $\mathbb{Z}[S_n]$ via $[\Delta(w)] \mapsto w$.

Identify: $Gr_{\oplus}(\mathcal{P})$ with $\mathbb{Z}[S_n]$ via $[\theta_s] \mapsto (e+s)$.

Theorem The action of \mathcal{P} on \mathcal{O}_0 is a categorification of the right regular $\mathbb{Z}[S_n]$ -module.

$$\mathcal{O}_0 \underset{\mathcal{P}}{ \smile} \stackrel{\operatorname{Gr}}{\longmapsto} \quad \mathbb{Z}[S_n] \underset{\mathbb{Z}[S_n]}{ \smile}$$

Kazhdan-Lusztig basis

Note. The action of \mathcal{P} categorifies $\mathbb{Z}[S_n]$ and not S_n .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0 .

Kazhdan-Lusztig basis

Note. The action of \mathcal{P} categorifies $\mathbb{Z}[S_n]$ and not S_n .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0

Note. The action of \mathcal{P} categorifies $\mathbb{Z}[S_n]$ and not S_n .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0

Note. The action of \mathcal{P} categorifies $\mathbb{Z}[S_n]$ and not S_n .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0 .

Note. The action of \mathcal{P} categorifies $\mathbb{Z}[S_n]$ and not S_n .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0

Note. The action of \mathcal{P} categorifies $\mathbb{Z}[S_n]$ and not S_n .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0 .

Note. The action of \mathcal{P} categorifies $\mathbb{Z}[S_n]$ and not S_n .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0

Note. The action of \mathcal{P} categorifies $\mathbb{Z}[S_n]$ and not S_n .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0 .

Note. The action of \mathcal{P} categorifies $\mathbb{Z}[S_n]$ and not S_n .

Question. What is $\{[\theta_w], w \in S_n\}$?

Answer. This is the Kazhdan-Lusztig basis.

Remark. This is equivalent to Kazhdan-Lusztig conjecture (=theorem).

Remark. Recent algebraic proof by Elias-Williamson.

Remark. To define Kazhdan-Lusztig basis one needs to deform $\mathbb{Z}[S_n]$ to the Hecke algebra.

Categorically this means to introduce a grading on \mathcal{O}_0 .

$$\mathbb{C}[x_1, x_2, \dots, x_n]$$
 — polynomial algebra

grading:
$$\deg(x_i) = 2$$

$$S_n$$
 acts on $\mathbb{C}[x_1, x_2, \dots, x_n]$ by permuting indices

$$\mathbb{C}[x_1,x_2,\ldots,x_n]_i^{S_n}$$
 — invariant homogeneous polynomials of degree i

$$\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n} = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$$

Definition. The coinvariant algebra is

$$\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$$

$$\mathbb{C}[x_1, x_2, \dots, x_n]$$
 — polynomial algebra

grading:
$$deg(x_i) = 2$$

$$S_n$$
 acts on $\mathbb{C}[x_1, x_2, \dots, x_n]$ by permuting indices

$$\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$$
 — invariant homogeneous polynomials of degree i

$$\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n} = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]_i^{s_n}$$

Definition. The coinvariant algebra is $\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n})$

$$\mathbb{C}[x_1, x_2, \dots, x_n]$$
 — polynomial algebra

grading:
$$deg(x_i) = 2$$

$$S_n$$
 acts on $\mathbb{C}[x_1, x_2, \dots, x_n]$ by permuting indices

$$\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$$
 — invariant homogeneous polynomials of degree i

$$\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n} = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]_i^{s_n}$$

Definition. The coinvariant algebra is

$$\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n})$$

 $\mathbb{C}[x_1, x_2, \dots, x_n]$ — polynomial algebra

grading: $deg(x_i) = 2$

 S_n acts on $\mathbb{C}[x_1, x_2, \dots, x_n]$ by permuting indices

 $\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$ — invariant homogeneous polynomials of degree i

$$\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n} = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$$

Definition. The coinvariant algebra is $\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$

$$\mathbb{C}[x_1, x_2, \dots, x_n]$$
 — polynomial algebra

grading:
$$deg(x_i) = 2$$

$$S_n$$
 acts on $\mathbb{C}[x_1, x_2, \dots, x_n]$ by permuting indices

$$\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$$
 — invariant homogeneous polynomials of degree i

$$\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n} = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$$

Definition. The coinvariant algebra is $\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$

$$\mathbb{C}[x_1, x_2, \dots, x_n]$$
 — polynomial algebra

grading:
$$deg(x_i) = 2$$

$$S_n$$
 acts on $\mathbb{C}[x_1, x_2, \dots, x_n]$ by permuting indices

$$\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$$
 — invariant homogeneous polynomials of degree i

$$\mathbb{C}[x_1, x_2, \dots, x_n]_+^{s_n} = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]_i^{s_n}$$

Definition. The coinvariant algebra is $\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$

$$\mathbb{C}[x_1, x_2, \dots, x_n]$$
 — polynomial algebra

grading:
$$deg(x_i) = 2$$

$$S_n$$
 acts on $\mathbb{C}[x_1, x_2, \dots, x_n]$ by permuting indices

$$\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$$
 — invariant homogeneous polynomials of degree i

$$\mathbb{C}[x_1, x_2, \dots, x_n]_+^{s_n} = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]_i^{s_n}$$

Definition. The coinvariant algebra is

$$\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$$

$$\mathbb{C}[x_1, x_2, \dots, x_n]$$
 — polynomial algebra

grading:
$$deg(x_i) = 2$$

$$S_n$$
 acts on $\mathbb{C}[x_1, x_2, \dots, x_n]$ by permuting indices

$$\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$$
 — invariant homogeneous polynomials of degree i

$$\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n} = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$$

Definition. The coinvariant algebra is

$$\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$$

$$\mathbb{C}[x_1, x_2, \dots, x_n]$$
 — polynomial algebra

grading:
$$deg(x_i) = 2$$

$$S_n$$
 acts on $\mathbb{C}[x_1, x_2, \dots, x_n]$ by permuting indices

$$\mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$$
 — invariant homogeneous polynomials of degree i

$$\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n} = \bigoplus_{i>0} \mathbb{C}[x_1, x_2, \dots, x_n]_i^{S_n}$$

Definition. The coinvariant algebra is

$$\mathbf{C} := \mathbb{C}[x_1, x_2, \dots, x_n] / (\mathbb{C}[x_1, x_2, \dots, x_n]_+^{S_n}).$$

$$s_i = (i, i+1)$$
 — simple reflection in S_n for $i = 1, 2, ..., n-1$

Fact. S_n is a Coxeter group with generators s_i

$$\mathfrak{l}:S_n o \mathbb{Z}$$
 — the length function

 C^{s_i} — the algebra of s_i -invariants in C

Definition. [Soergel] Define inductively C-C-bimodules B_w , $w \in S_n$ as follows:

- \triangleright $B_e := \mathbf{C}$
- ▶ For $w = s_{i_1} s_{i_2} \dots s_{i_k}$ reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$\mathsf{C} \otimes_{\mathsf{C}^{s_{i_1}}} \mathsf{C} \otimes_{\mathsf{C}^{s_{i_2}}} \cdots \otimes_{\mathsf{C}^{s_{i_k}}} \mathsf{C}$$

$$s_i = (i, i+1)$$
 — simple reflection in S_n for $i = 1, 2, ..., n-1$

Fact. S_n is a Coxeter group with generators s_i

$$\mathfrak{l}:S_n \to \mathbb{Z}$$
 — the length function

 C^{s_i} — the algebra of s_i -invariants in C

Definition. [Soergel] Define inductively C-C-bimodules B_w , $w \in S_n$ as follows:

- \triangleright $B_e := \mathbf{C}$
- ▶ For $w = s_{i_1} s_{i_2} \dots s_{i_k}$ reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$C \otimes_{C^{\mathfrak{s}_{i_1}}} C \otimes_{C^{\mathfrak{s}_{i_2}}} \cdots \otimes_{C^{\mathfrak{s}_{i_k}}} C$$

$$s_i = (i, i+1)$$
 — simple reflection in S_n for $i = 1, 2, \dots, n-1$

Fact. S_n is a Coxeter group with generators s_i

$$l: S_n \to \mathbb{Z}$$
 — the length function

 C^{s_i} — the algebra of s_i -invariants in C

Definition. [Soergel] Define inductively C-C-bimodules B_w , $w \in S_n$ as follows:

- \triangleright $B_e := \mathbf{C}$
- ▶ For $w = s_{i_1} s_{i_2} \dots s_{i_k}$ reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$C \otimes_{C^{\mathfrak{s}_{i_1}}} C \otimes_{C^{\mathfrak{s}_{i_2}}} \cdots \otimes_{C^{\mathfrak{s}_{i_k}}} C$$

$$s_i = (i, i+1)$$
 — simple reflection in S_n for $i=1,2,\ldots,n-1$

Fact. S_n is a Coxeter group with generators s_i

$$\mathfrak{l}:S_n \to \mathbb{Z}$$
 — the length function

 C^{s_i} — the algebra of s_i -invariants in C

Definition. [Soergel] Define inductively C-C-bimodules B_w , $w \in S_n$ as follows:

- ▶ B_e := **C**
- ▶ For $w = s_{i_1} s_{i_2} \dots s_{i_k}$ reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$\mathsf{C} \otimes_{\mathsf{C}^{s_{i_1}}} \mathsf{C} \otimes_{\mathsf{C}^{s_{i_2}}} \cdots \otimes_{\mathsf{C}^{s_{i_k}}} \mathsf{C}$$

$$s_i = (i, i+1)$$
 — simple reflection in S_n for $i = 1, 2, \dots, n-1$

Fact. S_n is a Coxeter group with generators s_i

 $l: S_n \to \mathbb{Z}$ — the length function

 C^{s_i} — the algebra of s_i -invariants in C

Definition. [Soergel] Define inductively C-C-bimodules B_w , $w \in S_n$ as follows:

- \triangleright $B_e := \mathbf{C}$
- ▶ For $w = s_{i_1} s_{i_2} \dots s_{i_k}$ reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$\mathsf{C} \otimes_{\mathsf{C}^{s_{i_1}}} \mathsf{C} \otimes_{\mathsf{C}^{s_{i_2}}} \cdots \otimes_{\mathsf{C}^{s_{i_k}}} \mathsf{C}$$

$$s_i = (i, i+1)$$
 — simple reflection in S_n for $i=1,2,\ldots,n-1$

Fact. S_n is a Coxeter group with generators s_i

 $\mathfrak{l}:S_n \to \mathbb{Z}$ — the length function

 C^{s_i} — the algebra of s_i -invariants in C

Definition. [Soergel] Define inductively **C-C**-bimodules B_w , $w \in S_n$ as follows:

- \triangleright $B_e := \mathbf{C}$
- ▶ For $w = s_{i_1} s_{i_2} \dots s_{i_k}$ reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$\mathsf{C} \otimes_{\mathsf{C}^{s_{i_1}}} \mathsf{C} \otimes_{\mathsf{C}^{s_{i_2}}} \cdots \otimes_{\mathsf{C}^{s_{i_k}}} \mathsf{C}$$

which is not isomorphic to B_x , where l(x) < l(w).

$$s_i = (i, i+1)$$
 — simple reflection in S_n for $i=1,2,\ldots,n-1$

Fact. S_n is a Coxeter group with generators s_i

 $\mathfrak{l}:S_n \to \mathbb{Z}$ — the length function

 C^{s_i} — the algebra of s_i -invariants in C

Definition. [Soergel] Define inductively **C-C**-bimodules B_w , $w \in S_n$ as follows:

- \triangleright $B_e := \mathbf{C}$
- ▶ For $w = s_{i_1} s_{i_2} \dots s_{i_k}$ reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$C\otimes_{C^{\mathfrak{s}_{i_1}}}C\otimes_{C^{\mathfrak{s}_{i_2}}}\cdots\otimes_{C^{\mathfrak{s}_{i_k}}}C$$

which is not isomorphic to B_x , where l(x) < l(w).

$$s_i = (i, i+1)$$
 — simple reflection in S_n for $i=1,2,\ldots,n-1$

Fact. S_n is a Coxeter group with generators s_i

 $\mathfrak{l}:S_n \to \mathbb{Z}$ — the length function

 C^{s_i} — the algebra of s_i -invariants in C

Definition. [Soergel] Define inductively **C-C**-bimodules B_w , $w \in S_n$ as follows:

- \triangleright $B_e := \mathbf{C}$
- ▶ For $w = s_{i_1} s_{i_2} \dots s_{i_k}$ reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$\mathsf{C} \otimes_{\mathsf{C}^{s_{i_1}}} \mathsf{C} \otimes_{\mathsf{C}^{s_{i_2}}} \cdots \otimes_{\mathsf{C}^{s_{i_k}}} \mathsf{C}$$

$$s_i = (i, i+1)$$
 — simple reflection in S_n for $i=1,2,\ldots,n-1$

Fact. S_n is a Coxeter group with generators s_i

 $\mathfrak{l}:S_n \to \mathbb{Z}$ — the length function

 C^{s_i} — the algebra of s_i -invariants in C

Definition. [Soergel] Define inductively **C-C**-bimodules B_w , $w \in S_n$ as follows:

- \triangleright $B_e := \mathbf{C}$
- ▶ For $w = s_{i_1} s_{i_2} \dots s_{i_k}$ reduced decomposition, the bimodule B_w is the unique indecomposable direct summand of

$$\mathsf{C} \otimes_{\mathsf{C}^{s_{i_1}}} \mathsf{C} \otimes_{\mathsf{C}^{s_{i_2}}} \cdots \otimes_{\mathsf{C}^{s_{i_k}}} \mathsf{C}$$

 B_w , $w \in S_n$ — Soergel bimodules

Note: For s simple reflection, $B_s \otimes_{\mathbf{C}} B_s \cong B_s \oplus B_s$

Fact. For $x, y \in S_n$, each direct summand of the **C-C**-bimodule $B_x \otimes_{\mathbf{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description]

The categories ${\mathcal P}$ and ${\mathcal S}$ are equivalent as tensor categories

Corollary. $\operatorname{Gr}_{\oplus}[\mathcal{S}] \cong \mathbb{Z}[S_n]$

 B_w , $w \in S_n$ — Soergel bimodules

Note: For s simple reflection, $B_s \otimes_{\mathbf{C}} B_s \cong B_s \oplus B_s$

Fact. For $x, y \in S_n$, each direct summand of the **C-C**-bimodule $B_x \otimes_{\mathbf{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. ${\cal S}$ is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description]

The categories $\mathcal P$ and $\mathcal S$ are equivalent as tensor categories.

Corollary. $\operatorname{Gr}_{\oplus}[\mathcal{S}] \cong \mathbb{Z}[\mathcal{S}_n]$

 B_w , $w \in S_n$ — Soergel bimodules

Note: For s simple reflection, $B_s \otimes_{\mathbf{C}} B_s \cong B_s \oplus B_s$.

Fact. For $x, y \in S_n$, each direct summand of the **C-C**-bimodule $B_x \otimes_{\mathbf{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description]

The categories ${\mathcal P}$ and ${\mathcal S}$ are equivalent as tensor categories

Corollary. $\operatorname{Gr}_{\oplus}[\mathcal{S}] \cong \mathbb{Z}[\mathcal{S}_n]$

 B_w , $w \in S_n$ — Soergel bimodules

Note: For s simple reflection, $B_s \otimes_{\mathbf{C}} B_s \cong B_s \oplus B_s$.

Fact. For $x, y \in S_n$, each direct summand of the **C-C**-bimodule $B_x \otimes_{\mathbf{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. ${\cal S}$ is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description]

The categories ${\mathcal P}$ and ${\mathcal S}$ are equivalent as tensor categories

Corollary. $\operatorname{Gr}_{\oplus}[S] \cong \mathbb{Z}[S_n]$

 B_w , $w \in S_n$ — Soergel bimodules

Note: For s simple reflection, $B_s \otimes_{\mathbf{C}} B_s \cong B_s \oplus B_s$.

Fact. For $x, y \in S_n$, each direct summand of the **C-C**-bimodule $B_x \otimes_{\mathbf{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description]

The categories ${\mathcal P}$ and ${\mathcal S}$ are equivalent as tensor categories.

Corollary. $\operatorname{Gr}_{\oplus}[S] \cong \mathbb{Z}[S_n]$.

 B_w , $w \in S_n$ — Soergel bimodules

Note: For s simple reflection, $B_s \otimes_{\mathbf{C}} B_s \cong B_s \oplus B_s$.

Fact. For $x, y \in S_n$, each direct summand of the **C-C**-bimodule $B_x \otimes_{\mathbf{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description]

The categories ${\cal P}$ and ${\cal S}$ are equivalent as tensor categories.

Corollary. $\operatorname{Gr}_{\oplus}[\mathcal{S}] \cong \mathbb{Z}[S_n]$

 B_w , $w \in S_n$ — Soergel bimodules

Note: For s simple reflection, $B_s \otimes_{\mathbf{C}} B_s \cong B_s \oplus B_s$.

Fact. For $x, y \in S_n$, each direct summand of the **C-C**-bimodule $B_x \otimes_{\mathbf{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description]

The categories ${\cal P}$ and ${\cal S}$ are equivalent as tensor categories.

Corollary. $Gr_{\oplus}[S] \cong \mathbb{Z}[S_n]$.

 B_w , $w \in S_n$ — Soergel bimodules

Note: For s simple reflection, $B_s \otimes_{\mathbf{C}} B_s \cong B_s \oplus B_s$.

Fact. For $x, y \in S_n$, each direct summand of the **C-C**-bimodule $B_x \otimes_{\mathbf{C}} B_y$ is isomorphic to B_z for some $z \in S_n$.

Definition. S is the (additive) tensor category of Soergel bimodules.

Theorem. [Soergel's combinatorial description]

The categories ${\cal P}$ and ${\cal S}$ are equivalent as tensor categories.

Corollary. $Gr_{\oplus}[S] \cong \mathbb{Z}[S_n]$.

Categorification of permutation modules

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_\lambda\subset\mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda} \mathrm{Long}$ — longest representatives in $W_{\lambda} \backslash W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by $\mathit{L}(w)$, $w
ot \in {}_{\lambda}\mathrm{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_\lambda$ categorifies the permutation module $\mathrm{Ind}_{W_\lambda}^W$ triv.

Categorification of permutation modules

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_{\lambda}\subset\mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda} \mathrm{Long}$ — longest representatives in $W_{\lambda} \backslash W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by $\mathit{L}(w)$, $w
ot\in {}_{\lambda}\mathrm{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_\lambda$ categorifies the permutation module $\operatorname{Ind}_{W_\lambda}^W$ triv.

Categorification of permutation modules

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_{\lambda}\subset\mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_r

 $_{\lambda} \mathrm{Long}$ — longest representatives in $W_{\lambda} \backslash W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \notin {}_{\lambda}\mathrm{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_\lambda$ categorifies the permutation module $\mathrm{Ind}_{W_\lambda}^W$ triv.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_{\lambda}\subset\mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda} \mathrm{Long}$ — longest representatives in $W_{\lambda} \backslash W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \notin {}_{\lambda}\mathrm{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_\lambda$ categorifies the permutation module $\mathrm{Ind}_{W_\lambda}^W$ triv.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda} \mathrm{Long}$ — longest representatives in $W_{\lambda} \backslash W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \notin {}_{\lambda}\mathrm{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_\lambda$ categorifies the permutation module $\operatorname{Ind}_{W_\lambda}^W\operatorname{triv}$.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda} \mathrm{Long}$ — longest representatives in $W_{\lambda} \backslash W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \notin {}_{\lambda}\mathrm{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_\lambda$ categorifies the permutation module $\operatorname{Ind}_{W_\lambda}^W$ triv.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda} \mathrm{Long}$ — longest representatives in $W_{\lambda} \backslash W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \notin {}_{\lambda}\mathrm{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_\lambda$ categorifies the permutation module $\operatorname{Ind}_{W_\lambda}^W$ triv.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda} \mathrm{Long}$ — longest representatives in $W_{\lambda} \backslash W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \notin {}_{\lambda}\mathrm{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_\lambda$ categorifies the permutation module $\operatorname{Ind}_{W_\lambda}^W\operatorname{triv}$.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $_{\lambda} \mathrm{Long}$ — longest representatives in $W_{\lambda} \backslash W$

 \mathcal{X}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \notin {}_{\lambda}\mathrm{Long}$

Fact: \mathcal{P} preserves \mathcal{X}_{λ}

Theorem. [M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{O}_0/\mathcal{X}_\lambda$ categorifies the permutation module $\operatorname{Ind}_{W_\lambda}^W\operatorname{triv}$.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_\lambda\subset\mathfrak{g}$ — corresponding parabolic subalgebra

 W_{λ} — corresponding Young subgroup of S_n

 $\operatorname{Short}_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \operatorname{Short}_{\lambda}$ (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel]

The action of \mathcal{P} on \mathcal{Y}_{λ} categorifies the induced sign module $\mathrm{Ind}_{W_{\lambda}}^{W}$ sign

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_\lambda\subset\mathfrak{g}$ — corresponding parabolic subalgebra

 W_{λ} — corresponding Young subgroup of S_r

Short $_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \operatorname{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel]

The action of $\mathcal P$ on $\mathcal Y_\lambda$ categorifies the induced sign module $\mathrm{Ind}_{\mathcal W_\lambda}^W \mathrm{sign}$

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_{\lambda}\subset\mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_r

Short $_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \operatorname{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel]

The action of $\mathcal P$ on $\mathcal Y_\lambda$ categorifies the induced sign module $\mathrm{Ind}_{\mathcal W_\lambda}^W \mathrm{sign}$

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_{\lambda}\subset\mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

Short $_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \operatorname{Short}_{\lambda}$ (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel]

The action of $\mathcal P$ on $\mathcal Y_\lambda$ categorifies the induced sign module $\mathrm{Ind}_{\mathcal W_\lambda}^W \mathrm{sign}$

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_{\lambda}\subset\mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $\operatorname{Short}_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \mathrm{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel]

The action of $\mathcal P$ on $\mathcal Y_\lambda$ categorifies the induced sign module $\operatorname{Ind}_{W_\lambda}^W\operatorname{sign}$.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_{\lambda}\subset\mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $\operatorname{Short}_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \mathrm{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel]

The action of \mathcal{P} on \mathcal{Y}_{λ} categorifies the induced sign module $\mathrm{Ind}_{\mathcal{W}_{\lambda}}^{\mathcal{W}}$ sign

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_{\lambda}\subset\mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $\operatorname{Short}_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \mathrm{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel

The action of \mathcal{P} on \mathcal{Y}_{λ} categorifies the induced sign module $\mathrm{Ind}_{\mathcal{W}_{\lambda}}^{\mathcal{W}}$ sign

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $\operatorname{Short}_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \mathrm{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel]

The action of \mathcal{P} on \mathcal{Y}_{λ} categorifies the induced sign module $\operatorname{Ind}_{W_{\lambda}}^{W}\operatorname{sign}$.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — composition of n

 $\mathfrak{g}_{\lambda} \subset \mathfrak{g}$ — corresponding parabolic subalgebra.

 W_{λ} — corresponding Young subgroup of S_n

 $\operatorname{Short}_{\lambda}$ — shortest representatives in W/W_{λ}

 \mathcal{Y}_{λ} — Serre subcategory of \mathcal{O}_0 generated by L(w), $w \in \mathrm{Short}_{\lambda}$, (Rocha-Caridi's parabolic category \mathcal{O})

Fact: \mathcal{P} preserves \mathcal{Y}_{λ}

Theorem. [Soergel]

The action of \mathcal{P} on \mathcal{Y}_{λ} categorifies the induced sign module $\operatorname{Ind}_{W_{\lambda}}^{W}\operatorname{sign}$.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

 w_0 — longest element in W

 w_0^{λ} — longest element in W_{λ}

 \mathcal{Y}'_{λ} — Serre subcategory of \mathcal{Y}_{λ} generated by L(w), $w \in \mathrm{Short}_{\lambda}$, such that $\mathrm{GKdim}(L(w)) < \mathrm{GKdim}(L(w_0^{\lambda}w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}'_{λ}

Theorem. [Khovanov-M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{Y}_{\lambda}/\mathcal{Y}'_{\lambda}$ categorifies $\mathcal{S}^{\lambda^{t}}$

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

 w_0 — longest element in W

 w_0^{λ} — longest element in W_{λ}

 \mathcal{Y}'_{λ} — Serre subcategory of \mathcal{Y}_{λ} generated by L(w), $w \in \operatorname{Short}_{\lambda}$, such that $\operatorname{GKdim}(L(w)) < \operatorname{GKdim}(L(w_0^{\lambda}w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}'_{λ}

Theorem. [Khovanov-M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{Y}_{\lambda}/\mathcal{Y}'_{\lambda}$ categorifies \mathcal{S}^{λ^t} .

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

 w_0 — longest element in W

 w_0^{λ} — longest element in W_{λ}

 \mathcal{Y}'_{λ} — Serre subcategory of \mathcal{Y}_{λ} generated by L(w), $w \in \operatorname{Short}_{\lambda}$, such that $\operatorname{GKdim}(L(w)) < \operatorname{GKdim}(L(w_0^{\lambda}w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}'_{λ}

Theorem. [Khovanov-M.-Stroppel] The induced action of $\mathcal P$ on $\mathcal Y_\lambda/\mathcal Y_\lambda'$ categorifies $\mathcal S^{\lambda^t}$

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

 w_0 — longest element in W

 w_0^λ — longest element in W_λ

 \mathcal{Y}'_{λ} — Serre subcategory of \mathcal{Y}_{λ} generated by L(w), $w \in \operatorname{Short}_{\lambda}$, such that $\operatorname{GKdim}(L(w)) < \operatorname{GKdim}(L(w_0^{\lambda}w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}_{2}^{\prime}

Theorem. [Khovanov-M.-Stroppel] The induced action of $\mathcal P$ on $\mathcal Y_\lambda/\mathcal Y_\lambda'$ categorifies $\mathcal S^{\lambda^t}$

$$\lambda=(\lambda_1,\lambda_2,\ldots,\lambda_k)$$
 — partition of n w_0 — longest element in W w_0^λ — longest element in W_λ \mathcal{Y}_λ' — Serre subcategory of \mathcal{Y}_λ generated by $L(w),\ w\in\operatorname{Short}_\lambda$, such

that $GKdim(L(w)) < GKdim(L(w_0^{\lambda}w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}_{2}^{\prime}

Theorem. [Khovanov-M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{Y}_{\lambda}/\mathcal{Y}'_{\lambda}$ categorifies \mathcal{S}^{λ^t} .

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n w_0 — longest element in W w_0^{λ} — longest element in W_{λ} \mathcal{Y}'_{λ} — Serre subcategory of \mathcal{Y}_{λ} generated by $L(w)$, $w \in \mathrm{Short}_{\lambda}$, such that $\mathrm{GKdim}(L(w)) < \mathrm{GKdim}(L(w_0^{\lambda}w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}'_{λ}

Theorem. [Khovanov-M.-Stroppel] The induced action of \mathcal{P} on $\mathcal{Y}_{\lambda}/\mathcal{Y}'_{\lambda}$ categorifies $\mathcal{S}^{\lambda^{\mathfrak{t}}}$.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

 w_0 — longest element in W

 w_0^λ — longest element in W_λ

 \mathcal{Y}'_{λ} — Serre subcategory of \mathcal{Y}_{λ} generated by L(w), $w \in \mathrm{Short}_{\lambda}$, such that $\mathrm{GKdim}(L(w)) < \mathrm{GKdim}(L(w_0^{\lambda}w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}'_{λ}

Theorem. [Khovanov-M.-Stroppel]

The induced action of \mathcal{P} on $\mathcal{Y}_{\lambda}/\mathcal{Y}'_{\lambda}$ categorifies \mathcal{S}^{λ^t} .

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

 w_0 — longest element in W

 w_0^λ — longest element in W_λ

 \mathcal{Y}'_{λ} — Serre subcategory of \mathcal{Y}_{λ} generated by L(w), $w \in \mathrm{Short}_{\lambda}$, such that $\mathrm{GKdim}(L(w)) < \mathrm{GKdim}(L(w_0^{\lambda}w_0))$

Fact: \mathcal{P} preserves \mathcal{Y}'_{λ}

Theorem. [Khovanov-M.-Stroppel]

The induced action of \mathcal{P} on $\mathcal{Y}_{\lambda}/\mathcal{Y}'_{\lambda}$ categorifies \mathcal{S}^{λ^t} .

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

 w_0^{λ} — longest element in W_{λ}

 \mathcal{X}'_{λ} — Serre subcategory of $\mathcal{O}_0/\mathcal{X}_{\lambda}$ generated by L(w), $w \in {}_{\lambda}\mathrm{Long}$, such that $\mathrm{GKdim}(L(w)) = \mathrm{GKdim}(L(w_0^{\lambda}))$

Fact: \mathcal{P} preserves \mathcal{X}'_{λ}

Theorem. [M.-Stroppel] The action of ${\mathcal P}$ on ${\mathcal X}'_\lambda$ categorifies ${\mathcal S}$

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

 w_0^{λ} — longest element in W_{λ}

 \mathcal{X}'_{λ} — Serre subcategory of $\mathcal{O}_0/\mathcal{X}_{\lambda}$ generated by L(w), $w \in {}_{\lambda}\mathrm{Long}$, such that $\mathrm{GKdim}(L(w)) = \mathrm{GKdim}(L(w_0^{\lambda}))$

Fact: \mathcal{P} preserves \mathcal{X}'_{λ}

Theorem. [M.-Stroppel]

The action of \mathcal{P} on \mathcal{X}'_{λ} categorifies \mathcal{S}^{λ}

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

 w_0^{λ} — longest element in W_{λ}

 \mathcal{X}'_{λ} — Serre subcategory of $\mathcal{O}_0/\mathcal{X}_{\lambda}$ generated by L(w), $w \in {}_{\lambda}\mathrm{Long}$, such that $\mathrm{GKdim}(L(w)) = \mathrm{GKdim}(L(w_0^{\lambda}))$

Fact: \mathcal{P} preserves \mathcal{X}'_{λ}

Theorem. [M.-Stroppel]

The action of \mathcal{P} on \mathcal{X}'_{λ} categorifies \mathcal{S}^{λ}

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

 w_0^{λ} — longest element in W_{λ}

 \mathcal{X}'_{λ} — Serre subcategory of $\mathcal{O}_0/\mathcal{X}_{\lambda}$ generated by L(w), $w \in {}_{\lambda}\mathrm{Long}$, such that $\mathrm{GKdim}(L(w)) = \mathrm{GKdim}(L(w_0^{\lambda}))$

Fact: \mathcal{P} preserves \mathcal{X}'_{λ}

The action of \mathcal{P} on \mathcal{X}' categorif

The action of \mathcal{P} on \mathcal{X}'_{λ} categorifies \mathcal{S}^{λ}

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

 w_0^{λ} — longest element in W_{λ}

 \mathcal{X}'_{λ} — Serre subcategory of $\mathcal{O}_0/\mathcal{X}_{\lambda}$ generated by L(w), $w \in {}_{\lambda}\mathrm{Long}$, such that $\mathrm{GKdim}(L(w)) = \mathrm{GKdim}(L(w_0^{\lambda}))$

Fact: \mathcal{P} preserves \mathcal{X}'_{λ}

The action of \mathcal{P} on \mathcal{X}' categorifies \mathcal{S}

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

 w_0^{λ} — longest element in W_{λ}

 \mathcal{X}'_{λ} — Serre subcategory of $\mathcal{O}_0/\mathcal{X}_{\lambda}$ generated by L(w), $w \in {}_{\lambda}\mathrm{Long}$, such that $\mathrm{GKdim}(L(w)) = \mathrm{GKdim}(L(w_0^{\lambda}))$

Fact: \mathcal{P} preserves \mathcal{X}'_{λ}

Theorem. [M.-Stroppel]

The action of \mathcal{P} on \mathcal{X}'_{λ} categorifies \mathcal{S}^{λ} .

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

 w_0^{λ} — longest element in W_{λ}

 \mathcal{X}'_{λ} — Serre subcategory of $\mathcal{O}_0/\mathcal{X}_{\lambda}$ generated by L(w), $w \in {}_{\lambda}\mathrm{Long}$, such that $\mathrm{GKdim}(L(w)) = \mathrm{GKdim}(L(w_0^{\lambda}))$

Fact: \mathcal{P} preserves \mathcal{X}'_{λ}

Theorem. [M.-Stroppel]

The action of \mathcal{P} on \mathcal{X}'_{λ} categorifies \mathcal{S}^{λ} .

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of ${\cal P}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

${\sf Theorem.}\,\,[{\sf M.-Miemietz}]$

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of ${\cal P}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

${\sf Theorem.}\,\,[{\sf M.-Miemietz}]$

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of ${\cal P}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of ${\cal P}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of ${\cal P}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of ${\cal P}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

Comparison

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of ${\cal P}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

Note. The latter works only in type A.

Comparison

$$\lambda = (\lambda_1, \lambda_2, \dots, \lambda_k)$$
 — partition of n

Question. Are categorifications of S^{λ} via \mathcal{X}'_{λ} and $\mathcal{Y}_{\lambda^{t}}/\mathcal{Y}'_{\lambda^{t}}$ equivalent?

Need: An equivalence between these two categories which naturally commutes with the action of ${\cal P}$

Theorem. [M.-Stroppel]

These two categorifications are indeed equivalent (using derived completion functors).

Theorem. [M.-Miemietz]

Simple transitive categorification of a Specht module (using \mathcal{P}) is unique up to equivalence.

Note. The latter works only in type A.

Kazhdan-Lusztig's cell modules for S_n

Note. This requires a generalization of parabolic category ${\mathcal O}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Kazhdan-Lusztig's cell modules for S_n

Note. This requires a generalization of parabolic category ${\cal O}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Kazhdan-Lusztig's cell modules for S_n

Note. This requires a generalization of parabolic category ${\mathcal O}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Kazhdan-Lusztig's cell modules for S_n

Note. This requires a generalization of parabolic category ${\mathcal O}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Kazhdan-Lusztig's cell modules for S_n

Note. This requires a generalization of parabolic category ${\mathcal O}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Kazhdan-Lusztig's cell modules for S_n

Note. This requires a generalization of parabolic category ${\mathcal O}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W} \operatorname{cell}$

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Kazhdan-Lusztig's cell modules for S_n

Note. This requires a generalization of parabolic category ${\mathcal O}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Kazhdan-Lusztig's cell modules for S_n

Note. This requires a generalization of parabolic category ${\cal O}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Kazhdan-Lusztig's cell modules for S_n

Note. This requires a generalization of parabolic category ${\cal O}$

Induced cell modules $\operatorname{Ind}_{W_{\lambda}}^{W}$ cell

Note. Uses combinatorially defined subquotients of \mathcal{O}_0

Note. Permutation and induced sign modules are special cases

Wedderburn's basis for $\mathbb{Q}[S_n]$

Various bases in $\mathbb{Z}[S_n]$ and in other categorified modules

Different submodules in $\mathbb{Z}[S_n]$

Filtration of $\mathbb{Z}[S_n]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}

Uniqueness of categorification allows to compare different categories of g-modules

Various bases in $\mathbb{Z}[S_n]$ and in other categorified modules

Different submodules in $\mathbb{Z}[S_n]$

Filtration of $\mathbb{Z}[S_n]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}

Uniqueness of categorification allows to compare different categories of g-modules

Various bases in $\mathbb{Z}[S_n]$ and in other categorified modules

Different submodules in $\mathbb{Z}[S_n]$

Filtration of $\mathbb{Z}[S_n]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}

Uniqueness of categorification allows to compare different categories of g-modules

Various bases in $\mathbb{Z}[S_n]$ and in other categorified modules

Different submodules in $\mathbb{Z}[S_n]$

Filtration of $\mathbb{Z}[S_n]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}

Uniqueness of categorification allows to compare different categories of g-modules

Various bases in $\mathbb{Z}[S_n]$ and in other categorified modules

Different submodules in $\mathbb{Z}[S_n]$

Filtration of $\mathbb{Z}[S_n]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}

Uniqueness of categorification allows to compare different categories of $\mathfrak{g}\text{-modules}$

Various bases in $\mathbb{Z}[S_n]$ and in other categorified modules

Different submodules in $\mathbb{Z}[S_n]$

Filtration of $\mathbb{Z}[S_n]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}

Uniqueness of categorification allows to compare different categories of $\mathfrak{g}\text{-modules}$

Various bases in $\mathbb{Z}[S_n]$ and in other categorified modules

Different submodules in $\mathbb{Z}[S_n]$

Filtration of $\mathbb{Z}[S_n]$ using Gelfand-Kirillov dimension of simples in \mathcal{O}

Uniqueness of categorification allows to compare different categories of $\mathfrak{g}\text{-modules}$

THANK YOU!!!