Algebraic categorification and its applications, III

Volodymyr Mazorchuk

(Uppsala University)

Winter School "Geometry and physics" January 17.24, 2015, Srni, Czech Republic

Definition. A 2-category is a category enriched over the monoidal category **Cat** of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2-category $\mathscr C$ is given by the following data:

- ▶ objects of *C*;
- ▶ small categories \(\mathcal{E}(i, j) \) of morphisms;
- lacktriangle bifunctorial composition $\mathscr{C}(\mathtt{j},\mathtt{k}) imes\mathscr{C}(\mathtt{i},\mathtt{j}) o\mathscr{C}(\mathtt{i},\mathtt{k})$;
- ▶ identity objects 1_j;

Definition. A 2-category is a category enriched over the monoidal category **Cat** of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2-category $\mathscr C$ is given by the following data:

- ightharpoonup objects of \mathscr{C} ;
- ▶ small categories ℰ(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

Definition. A 2-category is a category enriched over the monoidal category **Cat** of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2-category $\mathscr C$ is given by the following data:

- ▶ objects of \(\mathscr{C} \);
- ▶ small categories $\mathscr{C}(i,j)$ of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

Definition. A 2-category is a category enriched over the monoidal category **Cat** of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2-category $\mathscr C$ is given by the following data:

- ightharpoonup objects of \mathscr{C} ;
- ▶ small categories $\mathscr{C}(i,j)$ of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

Definition. A 2-category is a category enriched over the monoidal category **Cat** of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2-category $\mathscr C$ is given by the following data:

- ightharpoonup objects of \mathscr{C} ;
- ▶ small categories $\mathscr{C}(i, j)$ of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

Definition. A 2-category is a category enriched over the monoidal category **Cat** of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2-category $\mathscr C$ is given by the following data:

- ightharpoonup objects of \mathscr{C} ;
- ▶ small categories \(\mathcal{E}(i,j) \) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

Definition. A 2-category is a category enriched over the monoidal category **Cat** of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2-category $\mathscr C$ is given by the following data:

- ightharpoonup objects of \mathscr{C} ;
- ▶ small categories \(\mathcal{C}(i, j) \) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k)$;
- ▶ identity objects 1j;

Definition. A 2-category is a category enriched over the monoidal category **Cat** of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2-category $\mathscr C$ is given by the following data:

- ightharpoonup objects of \mathscr{C} ;
- ▶ small categories $\mathscr{C}(i,j)$ of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k)$;
- ▶ identity objects 1j;

Definition. A 2-category is a category enriched over the monoidal category **Cat** of small categories (in the latter the monoidal structure is induced by the cartesian product).

This means that a 2-category $\mathscr C$ is given by the following data:

- ightharpoonup objects of \mathscr{C} ;
- ▶ small categories $\mathscr{C}(i,j)$ of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k)$;
- ▶ identity objects 1j;

Terminology.

- ▶ An object in $\mathscr{C}(i,j)$ is called a 1-morphism of \mathscr{C}
- ▶ A morphism in $\mathscr{C}(i,j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i,j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of Cat are small categories
- ▶ 1-morphisms in **Cat** are functors.
- ▶ 2-morphisms in **Cat** are natural transformations.
- ▶ Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- ▶ An object in $\mathscr{C}(i,j)$ is called a 1-morphism of \mathscr{C}
- ▶ A morphism in $\mathscr{C}(i,j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i,j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of Cat are small categories
- ▶ 1-morphisms in **Cat** are functors.
- ▶ 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- ▶ An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- ▶ A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i,j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of Cat are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- ▶ 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- ▶ An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- ▶ A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i,j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of Cat are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- ▶ 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- ▶ An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- ▶ A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of Cat are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- ▶ 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- ▶ An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- ▶ A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of Cat are small categories.
- ▶ 1-morphisms in Cat are functors.
- ▶ 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- ▶ An object in $\mathscr{C}(i,j)$ is called a 1-morphism of \mathscr{C} .
- ▶ A morphism in $\mathscr{C}(i,j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of Cat are small categories.
- ► 1-morphisms in **Cat** are functors.
- ▶ 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- ▶ An object in $\mathscr{C}(i,j)$ is called a 1-morphism of \mathscr{C} .
- ▶ A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- ▶ Objects of Cat are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- ▶ 2-morphisms in **Cat** are natural transformations.
- ► Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- ▶ An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- ▶ A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- ▶ Objects of Cat are small categories.
- ► 1-morphisms in **Cat** are functors.
- ▶ 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- ▶ An object in $\mathscr{C}(i,j)$ is called a 1-morphism of \mathscr{C} .
- ▶ A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- ▶ Objects of Cat are small categories.
- ► 1-morphisms in **Cat** are functors.
- ▶ 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- ▶ An object in $\mathscr{C}(i,j)$ is called a 1-morphism of \mathscr{C} .
- ▶ A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- ▶ Objects of Cat are small categories.
- ► 1-morphisms in **Cat** are functors.
- ▶ 2-morphisms in **Cat** are natural transformations.
- ► Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- ▶ An object in $\mathscr{C}(i,j)$ is called a 1-morphism of \mathscr{C} .
- ▶ A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- ▶ Objects of Cat are small categories.
- ► 1-morphisms in **Cat** are functors.
- ▶ 2-morphisms in **Cat** are natural transformations.
- ► Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- ▶ An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- ▶ A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- ▶ Objects of Cat are small categories.
- ► 1-morphisms in **Cat** are functors.
- ▶ 2-morphisms in **Cat** are natural transformations.
- ► Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Definition. A 2-category $\mathscr C$ is additive if:

- ▶ Each $\mathscr{C}(i, j)$ is additive and idempotent split.
- Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[A]_{\oplus}$ of an additive category A is the quotient of the free abelian group generated by [X], where X is an object of A, modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- ▶ [%] has the same objects as %;
- $\blacktriangleright [\mathscr{C}](\mathtt{i},\mathtt{j}) := [\mathscr{C}(\mathtt{i},\mathtt{j})]_{\oplus};$
- ightharpoonup composition in $[\mathscr{C}]$ is induced from that in \mathscr{C} .

Definition. A 2-category \mathscr{C} is additive if:

- ▶ Each $\mathscr{C}(i, j)$ is additive and idempotent split.
- ► Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[A]_{\oplus}$ of an additive category A is the quotient of the free abelian group generated by [X], where X is an object of A, modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- ▶ [%] has the same objects as %;
- $\blacktriangleright \ [\mathscr{C}](\mathtt{i},\mathtt{j}) := [\mathscr{C}(\mathtt{i},\mathtt{j})]_{\oplus};$
- ightharpoonup composition in $[\mathscr{C}]$ is induced from that in \mathscr{C} .

Definition. A 2-category \mathscr{C} is additive if:

- ▶ Each $\mathscr{C}(i,j)$ is additive and idempotent split.
- ▶ Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[A]_{\oplus}$ of an additive category A is the quotient of the free abelian group generated by [X], where X is an object of A, modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- ▶ [%] has the same objects as %;
- $\blacktriangleright \ [\mathscr{C}](\mathtt{i},\mathtt{j}) := [\mathscr{C}(\mathtt{i},\mathtt{j})]_{\oplus};$
- ightharpoonup composition in $[\mathscr{C}]$ is induced from that in \mathscr{C} .

Definition. A 2-category \mathscr{C} is additive if:

- ▶ Each $\mathscr{C}(i,j)$ is additive and idempotent split.
- ► Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[A]_{\oplus}$ of an additive category A is the quotient of the free abelian group generated by [X], where X is an object of A, modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- ▶ [%] has the same objects as %;
- $\blacktriangleright [\mathscr{C}](\mathtt{i},\mathtt{j}) := [\mathscr{C}(\mathtt{i},\mathtt{j})]_{\oplus};$
- ▶ composition in [8] is induced from that in 8.

Definition. A 2-category $\mathscr C$ is additive if:

- ▶ Each $\mathscr{C}(i, j)$ is additive and idempotent split.
- ► Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[A]_{\oplus}$ of an additive category A is the quotient of the free abelian group generated by [X], where X is an object of A, modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- \blacktriangleright [\mathscr{C}] has the same objects as \mathscr{C} ;
- $\blacktriangleright [\mathscr{C}](\mathtt{i},\mathtt{j}) := [\mathscr{C}(\mathtt{i},\mathtt{j})]_{\oplus};$
- ightharpoonup composition in $[\mathscr{C}]$ is induced from that in \mathscr{C} .

Definition. A 2-category $\mathscr C$ is additive if:

- ▶ Each $\mathscr{C}(i, j)$ is additive and idempotent split.
- ► Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[A]_{\oplus}$ of an additive category A is the quotient of the free abelian group generated by [X], where X is an object of A, modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- \blacktriangleright [$\mathscr C$] has the same objects as $\mathscr C$;
- $\blacktriangleright \ [\mathscr{C}](\mathtt{i},\mathtt{j}) := [\mathscr{C}(\mathtt{i},\mathtt{j})]_{\oplus};$
- ightharpoonup composition in $[\mathscr{C}]$ is induced from that in \mathscr{C} .

Definition. A 2-category \mathscr{C} is additive if:

- ▶ Each $\mathscr{C}(i, j)$ is additive and idempotent split.
- ► Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[A]_{\oplus}$ of an additive category A is the quotient of the free abelian group generated by [X], where X is an object of A, modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- \blacktriangleright [\mathscr{C}] has the same objects as \mathscr{C} ;
- $\blacktriangleright \ [\mathscr{C}](\mathtt{i},\mathtt{j}) := [\mathscr{C}(\mathtt{i},\mathtt{j})]_{\oplus};$
- ightharpoonup composition in $[\mathscr{C}]$ is induced from that in \mathscr{C} .

Definition. A 2-category \mathscr{C} is additive if:

- ▶ Each $\mathscr{C}(i, j)$ is additive and idempotent split.
- ► Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[A]_{\oplus}$ of an additive category A is the quotient of the free abelian group generated by [X], where X is an object of A, modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- \blacktriangleright [\mathscr{C}] has the same objects as \mathscr{C} ;
- $\blacktriangleright \ [\mathscr{C}](\mathtt{i},\mathtt{j}) := [\mathscr{C}(\mathtt{i},\mathtt{j})]_{\oplus};$
- ightharpoonup composition in $[\mathscr{C}]$ is induced from that in \mathscr{C}

Definition. A 2-category \mathscr{C} is additive if:

- ▶ Each $\mathscr{C}(i, j)$ is additive and idempotent split.
- ► Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[A]_{\oplus}$ of an additive category A is the quotient of the free abelian group generated by [X], where X is an object of A, modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- \blacktriangleright [\mathscr{C}] has the same objects as \mathscr{C} ;
- $\blacktriangleright \ [\mathscr{C}](\mathtt{i},\mathtt{j}) := [\mathscr{C}(\mathtt{i},\mathtt{j})]_{\oplus};$
- ightharpoonup composition in $[\mathscr{C}]$ is induced from that in \mathscr{C} .

Definition. A 2-category \mathscr{C} is additive if:

- ▶ Each $\mathscr{C}(i, j)$ is additive and idempotent split.
- ► Horizontal composition is biadditive.

Definition. The split Gorthendieck group $[A]_{\oplus}$ of an additive category A is the quotient of the free abelian group generated by [X], where X is an object of A, modulo relations [X] = [Y] + [Z] whenever $X \cong Y \oplus Z$.

- \blacktriangleright [\mathscr{C}] has the same objects as \mathscr{C} ;
- $\blacktriangleright \ [\mathscr{C}](\mathtt{i},\mathtt{j}) := [\mathscr{C}(\mathtt{i},\mathtt{j})]_{\oplus};$
- ightharpoonup composition in $[\mathscr{C}]$ is induced from that in \mathscr{C} .

Categorification

 $[\mathscr{C}]$ — decategorification of \mathscr{C}

Definition. C is called a categorification of [C].

Put differently: Categorification is just the formal "inverse" of decategorification.

Warning: Categorification is "multi-valued" in general.

Categorification

 \mathscr{C} — additive 2-category

 $[\mathscr{C}]$ — decategorification of \mathscr{C}

Definition. \mathscr{C} is called a categorification of $[\mathscr{C}]$.

Put differently: Categorification is just the formal "inverse" of decategorification.

Warning: Categorification is "multi-valued" in general.

Categorification

 \mathscr{C} — additive 2-category

 $[\mathscr{C}]$ — decategorification of \mathscr{C}

Definition. \mathscr{C} is called a categorification of $[\mathscr{C}]$.

Put differently: Categorification is just the formal "inverse" of decategorification.

Warning: Categorification is "multi-valued" in general.

 \mathscr{C} — additive 2-category

 $[\mathscr{C}]$ — decategorification of \mathscr{C}

Definition. \mathscr{C} is called a categorification of $[\mathscr{C}]$.

Put differently: Categorification is just the formal "inverse" of decategorification.

 \mathscr{C} — additive 2-category

 $[\mathscr{C}]$ — decategorification of \mathscr{C}

Definition. \mathscr{C} is called a categorification of $[\mathscr{C}]$.

Put differently: Categorification is just the formal "inverse" of decategorification.

 \mathscr{C} — additive 2-category

 $[\mathscr{C}]$ — decategorification of \mathscr{C}

Definition. \mathscr{C} is called a categorification of $[\mathscr{C}]$.

Put differently: Categorification is just the formal "inverse" of decategorification.

 \mathscr{C} — additive 2-category

 $[\mathscr{C}]$ — decategorification of \mathscr{C}

Definition. \mathscr{C} is called a categorification of $[\mathscr{C}]$.

Put differently: Categorification is just the formal "inverse" of decategorification.

$$g = \mathfrak{sl}_n$$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

- \blacktriangleright $\mathscr S$ has one object \clubsuit (identified with some small category $\mathcal C\cong\mathcal O_0$);
- ▶ 1-morphisms in S are functors isomorphic to projective functors;
- ▶ 2-morphisms in 𝒯 are natural transformations of functors;
- ightharpoonup horizontal composition in $\mathcal S$ is composition of functors.

Fact. \mathscr{S} is an additive 2-category.

Theorem.
$$[\mathscr{S}](\clubsuit,\clubsuit)\cong \mathbb{Z}[S_n]$$

Consequence: In this sense $\mathscr S$ is a categorification of $\mathbb Z[S_n]$

$$\mathfrak{g}=\mathfrak{sl}_n$$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

- \blacktriangleright $\mathscr S$ has one object \clubsuit (identified with some small category $\mathcal C\cong\mathcal O_0$);
- ▶ 1-morphisms in S are functors isomorphic to projective functors;
- ▶ 2-morphisms in 𝒯 are natural transformations of functors;
- ightharpoonup horizontal composition in $\mathcal S$ is composition of functors.

Fact. $\mathscr S$ is an additive 2-category.

Theorem.
$$[\mathscr{S}](\clubsuit,\clubsuit)\cong \mathbb{Z}[S_n]$$

Consequence: In this sense $\mathscr S$ is a categorification of $\mathbb Z[S_n]$

$$\mathfrak{g}=\mathfrak{sl}_n$$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

- ▶ \mathscr{S} has one object \clubsuit (identified with some small category $\mathcal{C} \cong \mathcal{O}_0$);
- lacktriangle 1-morphisms in ${\mathscr S}$ are functors isomorphic to projective functors
- \triangleright 2-morphisms in $\mathscr S$ are natural transformations of functors;
- ightharpoonup horizontal composition in $\mathcal S$ is composition of functors.

Fact. \mathscr{S} is an additive 2-category.

Theorem.
$$[\mathscr{S}](\clubsuit,\clubsuit)\cong \mathbb{Z}[S_n]$$

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$.

$$\mathfrak{g}=\mathfrak{sl}_n$$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

- ▶ \mathscr{S} has one object \clubsuit (identified with some small category $\mathscr{C} \cong \mathscr{O}_0$);
- lacktriangle 1-morphisms in ${\mathscr S}$ are functors isomorphic to projective functors;
- 2-morphisms in \(\mathcal{S} \) are natural transformations of functors;
- \blacktriangleright horizontal composition in $\mathscr S$ is composition of functors.

Fact. $\mathscr S$ is an additive 2-category.

Theorem.
$$[\mathscr{S}](\clubsuit,\clubsuit)\cong \mathbb{Z}[S_n]$$

Consequence: In this sense $\mathscr S$ is a categorification of $\mathbb Z[S_n]$

$$\mathfrak{g}=\mathfrak{sl}_n$$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

- $\mathscr S$ has one object \clubsuit (identified with some small category $\mathcal C\cong\mathcal O_0$);
- ightharpoonup 1-morphisms in $\mathscr S$ are functors isomorphic to projective functors
- 2-morphisms in \(\mathcal{S} \) are natural transformations of functors;
- ightharpoonup horizontal composition in $\mathcal S$ is composition of functors.

Fact. \mathscr{S} is an additive 2-category.

Theorem.
$$[\mathscr{S}](\clubsuit,\clubsuit)\cong \mathbb{Z}[S_n]$$

Consequence: In this sense $\mathscr S$ is a categorification of $\mathbb Z[S_n]$

$$\mathfrak{g}=\mathfrak{sl}_n$$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

- ▶ \mathscr{S} has one object \clubsuit (identified with some small category $\mathscr{C} \cong \mathscr{O}_0$);
- lacktriangle 1-morphisms in $\mathscr S$ are functors isomorphic to projective functors;
- 2-morphisms in \(\mathcal{S} \) are natural transformations of functors;
- ightharpoonup horizontal composition in $\mathscr S$ is composition of functors.

Fact. $\mathscr S$ is an additive 2-category.

Theorem.
$$[\mathscr{S}](\clubsuit,\clubsuit)\cong \mathbb{Z}[S_n]$$

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$

 $\mathfrak{g}=\mathfrak{sl}_n$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

- ▶ \mathscr{S} has one object \clubsuit (identified with some small category $\mathscr{C} \cong \mathscr{O}_0$);
- ightharpoonup 1-morphisms in $\mathscr S$ are functors isomorphic to projective functors;
- ightharpoonup 2-morphisms in $\mathscr S$ are natural transformations of functors;
- horizontal composition in \(\mathcal{S} \) is composition of functors.

Fact. \mathscr{S} is an additive 2-category.

Theorem. $[\mathscr{S}](\clubsuit,\clubsuit)\cong \mathbb{Z}[S_n]$

Consequence: In this sense $\mathscr S$ is a categorification of $\mathbb Z[S_n]$

$$\mathfrak{g}=\mathfrak{sl}_n$$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

- ▶ \mathscr{S} has one object \clubsuit (identified with some small category $\mathcal{C} \cong \mathcal{O}_0$);
- lacktriangle 1-morphisms in $\mathscr S$ are functors isomorphic to projective functors;
- ightharpoonup 2-morphisms in $\mathscr S$ are natural transformations of functors;
- lacktriangle horizontal composition in ${\mathscr S}$ is composition of functors.

Fact. \mathscr{S} is an additive 2-category.

Theorem.
$$[\mathscr{S}](\clubsuit,\clubsuit)\cong \mathbb{Z}[S_n]$$

Consequence: In this sense $\mathscr S$ is a categorification of $\mathbb Z[S_n]$

 $\mathfrak{g}=\mathfrak{sl}_n$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

- $\mathscr S$ has one object \clubsuit (identified with some small category $\mathcal C\cong\mathcal O_0$);
- lacktriangle 1-morphisms in ${\mathscr S}$ are functors isomorphic to projective functors;
- ightharpoonup 2-morphisms in $\mathscr S$ are natural transformations of functors;
- lacktriangle horizontal composition in ${\mathscr S}$ is composition of functors.

Fact. $\mathscr S$ is an additive 2-category.

Theorem. $[\mathscr{S}](\clubsuit,\clubsuit)\cong \mathbb{Z}[S_n]$

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$

$$\mathfrak{g}=\mathfrak{sl}_n$$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

- ▶ \mathscr{S} has one object \clubsuit (identified with some small category $\mathscr{C} \cong \mathscr{O}_0$);
- ightharpoonup 1-morphisms in $\mathscr S$ are functors isomorphic to projective functors;
- ightharpoonup 2-morphisms in $\mathscr S$ are natural transformations of functors;
- lacktriangle horizontal composition in ${\mathscr S}$ is composition of functors.

Fact. $\mathscr S$ is an additive 2-category.

Theorem.
$$[\mathscr{S}](\clubsuit,\clubsuit)\cong \mathbb{Z}[S_n]$$

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$

$$\mathfrak{g}=\mathfrak{sl}_n$$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

- ▶ \mathscr{S} has one object \clubsuit (identified with some small category $\mathscr{C} \cong \mathscr{O}_0$);
- lacktriangle 1-morphisms in ${\mathscr S}$ are functors isomorphic to projective functors;
- ightharpoonup 2-morphisms in $\mathscr S$ are natural transformations of functors;
- lacktriangle horizontal composition in ${\mathscr S}$ is composition of functors.

Fact. $\mathscr S$ is an additive 2-category.

Theorem.
$$[\mathscr{S}](\clubsuit,\clubsuit)\cong \mathbb{Z}[S_n]$$

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$.

$$\mathfrak{g}=\mathfrak{sl}_n$$

 \mathcal{O}_0 — principal block of category \mathcal{O} for \mathfrak{g}

 \mathscr{S} — the 2-category of projective functors on \mathcal{O}_0 , that is:

- ▶ \mathscr{S} has one object \clubsuit (identified with some small category $\mathscr{C} \cong \mathscr{O}_0$);
- lacktriangle 1-morphisms in ${\mathscr S}$ are functors isomorphic to projective functors;
- ightharpoonup 2-morphisms in $\mathscr S$ are natural transformations of functors;
- lacktriangle horizontal composition in ${\mathscr S}$ is composition of functors.

Fact. $\mathscr S$ is an additive 2-category.

Theorem.
$$[\mathscr{S}](\clubsuit,\clubsuit)\cong \mathbb{Z}[S_n]$$

Consequence: In this sense \mathscr{S} is a categorification of $\mathbb{Z}[S_n]$.

k — field

Definition: An additive k-linear category $\mathcal A$ is finitary if

- $ightharpoonup \mathcal{A}$ is idempotent split.
- A has finitely many indecomposables;
- ightharpoonup all morphism spaces in ${\mathcal A}$ are finite dimensional (over ${\Bbb k}$).

Example: A-proj for a finite dimensional k-algebra A.

Definition: An additive k-linear category A is finitary if

- \blacktriangleright \mathcal{A} is idempotent split;
- A has finitely many indecomposables;
- lacktriangle all morphism spaces in ${\mathcal A}$ are finite dimensional (over ${\mathbb k}$).

Example: A-proj for a finite dimensional k-algebra A.

Definition: An additive k-linear category A is finitary if

- ► A is idempotent split:
- A has finitely many indecomposables;
- ightharpoonup all morphism spaces in A are finite dimensional (over k).

Example: A-proj for a finite dimensional k-algebra A.

Definition: An additive k-linear category A is finitary if

- ► A is idempotent split;
- $ightharpoonup \mathcal{A}$ has finitely many indecomposables;
- lacktriangle all morphism spaces in ${\mathcal A}$ are finite dimensional (over ${\mathbb k}$).

Example: A-proj for a finite dimensional k-algebra A.

Definition: An additive k-linear category A is finitary if

- \blacktriangleright \mathcal{A} is idempotent split;
- ▶ A has finitely many indecomposables;
- ightharpoonup all morphism spaces in A are finite dimensional (over k)

Example: A-proj for a finite dimensional k-algebra A.

Definition: An additive k-linear category A is finitary if

- \blacktriangleright \mathcal{A} is idempotent split;
- ▶ A has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over k).

Example: A-proj for a finite dimensional k-algebra A.

Definition: An additive k-linear category A is finitary if

- \blacktriangleright \mathcal{A} is idempotent split;
- ▶ A has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over k).

Example: A-proj for a finite dimensional k-algebra A.

Definition: An additive k-linear category A is finitary if

- \blacktriangleright \mathcal{A} is idempotent split;
- ▶ A has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over k).

Example: A-proj for a finite dimensional k-algebra A.

Definition: An additive k-linear category A is finitary if

- \blacktriangleright \mathcal{A} is idempotent split;
- ▶ A has finitely many indecomposables;
- ▶ all morphism spaces in A are finite dimensional (over k).

Example: A-proj for a finite dimensional k-algebra A.

Definition: A 2-category \mathscr{C} is finitary over \mathbb{k} if

- ► % has finitely many objects;
- ▶ each 𝒞(i,j) is finitary k-linear;
- ▶ composition is biadditive and k-bilinear
- ▶ identity 1-morphisms are indecomposable

Examples:

- ▶ Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

Definition: A 2-category \mathscr{C} is finitary over \Bbbk if

- ► % has finitely many objects;
- ► each $\mathscr{C}(i,j)$ is finitary k-linear;
- ▶ composition is biadditive and k-bilinear
- identity 1-morphisms are indecomposable.

Examples:

- ▶ Projective functors on \mathcal{O}_0
- Soergel bimodules over the coinvariant algebra.

Definition: A 2-category \mathscr{C} is finitary over \Bbbk if

- ▶ % has finitely many objects;
- ▶ each \(\mathscr{C}(i, j)\) is finitary \(\mathscr{k}\)-linear;
- ► composition is biadditive and k-bilinear
- ▶ identity 1-morphisms are indecomposable

Examples

- ▶ Projective functors on \mathcal{O}_0
- Soergel bimodules over the coinvariant algebra.

Definition: A 2-category \mathscr{C} is finitary over \Bbbk if

- ▶ % has finitely many objects;
- ▶ each $\mathscr{C}(i,j)$ is finitary k-linear;
- ► composition is biadditive and k-bilinear
- ▶ identity 1-morphisms are indecomposable.

Examples:

- ▶ Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

Definition: A 2-category \mathscr{C} is finitary over \Bbbk if

- ▶ % has finitely many objects;
- ▶ each $\mathscr{C}(i, j)$ is finitary k-linear;
- ► composition is biadditive and k-bilinear;
- identity 1-morphisms are indecomposable.

Examples:

- ▶ Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

Definition: A 2-category \mathscr{C} is finitary over \Bbbk if

- ▶ ℰ has finitely many objects;
- ▶ each $\mathscr{C}(i,j)$ is finitary k-linear;
- ► composition is biadditive and k-bilinear;
- ▶ identity 1-morphisms are indecomposable.

Examples:

- ▶ Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

Definition: A 2-category \mathscr{C} is finitary over \Bbbk if

- ▶ ℰ has finitely many objects;
- ▶ each $\mathscr{C}(i, j)$ is finitary k-linear;
- ► composition is biadditive and k-bilinear;
- ▶ identity 1-morphisms are indecomposable.

Examples:

- ▶ Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

Definition: A 2-category \mathscr{C} is finitary over \Bbbk if

- ▶ ℰ has finitely many objects;
- ▶ each $\mathscr{C}(i,j)$ is finitary k-linear;
- ► composition is biadditive and k-bilinear;
- ▶ identity 1-morphisms are indecomposable.

Examples:

- ▶ Projective functors on \mathcal{O}_0 ;
- Soergel bimodules over the coinvariant algebra.

Definition: A 2-category \mathscr{C} is finitary over \Bbbk if

- ▶ ℰ has finitely many objects;
- ▶ each $\mathscr{C}(i, j)$ is finitary k-linear;
- ► composition is biadditive and k-bilinear;
- ▶ identity 1-morphisms are indecomposable.

Examples:

- ▶ Projective functors on \mathcal{O}_0 ;
- ► Soergel bimodules over the coinvariant algebra.

Definition: A 2-category \mathscr{C} is finitary over \Bbbk if

- ▶ ℰ has finitely many objects;
- ▶ each \(\mathscr{C}(i, j)\) is finitary \(\mathscr{k}\)-linear;
- ► composition is biadditive and k-bilinear;
- ▶ identity 1-morphisms are indecomposable.

Examples:

- ▶ Projective functors on \mathcal{O}_0 ;
- ► Soergel bimodules over the coinvariant algebra.

Definition: A 2-category \mathscr{C} is finitary over \Bbbk if

- ▶ ℰ has finitely many objects;
- ▶ each \(\mathscr{C}(i, j)\) is finitary \(\mathscr{k}\)-linear;
- ► composition is biadditive and k-bilinear;
- ▶ identity 1-morphisms are indecomposable.

Examples:

- ▶ Projective functors on \mathcal{O}_0 ;
- ► Soergel bimodules over the coinvariant algebra.

k — algebraically closed field

A — finite dimensional k-algebra

Definition. A projective endofunctor of *A*-mod is tensoring with a projective *A*–*A*-bimodule, up to isomorphism

 ${\cal C}$ — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- ▶ one object \clubsuit (identified with C)
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors;
- ▶ as horizontal composition composition of functors.

A — finite dimensional k-algebra

Definition. A projective endofunctor of *A*-mod is tensoring with a projective *A*–*A*-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- ▶ one object ♣ (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors;
- ▶ as horizontal composition composition of functors.

A — finite dimensional k-algebra

Definition. A projective endofunctor of *A*-mod is tensoring with a projective *A*–*A*-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- ▶ one object ♣ (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors;
- ▶ as horizontal composition composition of functors.

A — finite dimensional k-algebra

Definition. A projective endofunctor of *A*-mod is tensoring with a projective *A*–*A*-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- ▶ one object ♣ (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors;
- ▶ as horizontal composition composition of functors.

A — finite dimensional k-algebra

Definition. A projective endofunctor of *A*-mod is tensoring with a projective *A*–*A*-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- ▶ one object **♣** (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors;
- ▶ as horizontal composition composition of functors.

A — finite dimensional k-algebra

Definition. A projective endofunctor of *A*-mod is tensoring with a projective *A*–*A*-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- \triangleright one object \clubsuit (identified with \mathcal{C});
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors
- ▶ as horizontal composition composition of functors.

A — finite dimensional k-algebra

Definition. A projective endofunctor of *A*-mod is tensoring with a projective *A*–*A*-bimodule, up to isomorphism

C — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- ▶ one object ♣ (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors:
- ▶ as horizontal composition composition of functors.

A — finite dimensional k-algebra

Definition. A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

C — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- ▶ one object ♣ (identified with C);
- ► as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors:
- ▶ as horizontal composition composition of functors.

A — finite dimensional k-algebra

Definition. A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- ▶ one object ♣ (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors;
- ▶ as horizontal composition composition of functors.

A — finite dimensional k-algebra

Definition. A projective endofunctor of *A*-mod is tensoring with a projective *A*–*A*-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- ▶ one object ♣ (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors;
- ▶ as horizontal composition composition of functors.

A — finite dimensional k-algebra

Definition. A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- ▶ one object ♣ (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors;
- ▶ as horizontal composition composition of functors.

A — finite dimensional k-algebra

Definition. A projective endofunctor of A-mod is tensoring with a projective A-A-bimodule, up to isomorphism

 \mathcal{C} — a small category equivalent to A-mod

Definition. The 2-category \mathscr{C}_A has:

- ▶ one object ♣ (identified with C);
- as 1-morphisms functors in the additive closure of the identity and projective functors;
- ▶ as 2-morphisms natural transformations of functors;
- ▶ as horizontal composition composition of functors.

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F\star G=\{H: H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_{L} G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells

 \mathscr{C} — finitary 2-category

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F\star G=\{H: H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

900

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

900

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

 \mathscr{C} — finitary 2-category

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H: H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_{\mathcal{L}} G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F >_I G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

10 Q Q

 \mathscr{C} — finitary 2-category

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H: H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F \geq_L G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders \geq_R and \geq_J and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells

10 Q Q

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F >_I G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders $>_R$ and $>_I$ and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells

 $\Sigma(\mathscr{C})$ — isoclasses of indecomposable 1-morphisms in \mathscr{C}

Fact: $\Sigma(\mathscr{C})$ is a multisemigroup under

 $F \star G = \{H : H \text{ is isomorphic to a direct summand of } FG\}$

Left preorder: $F >_I G$ if $F \in \Sigma(\mathscr{C}) \star G$

Left cells: equivalence classes w.r.t. \geq_L (a.k.a. Green's \mathcal{L} -classes)

Similarly: right and two-sided preorders $>_R$ and $>_I$ and right and two-sided cells

Example: For Soergel bimodules (projective functors on \mathcal{O}_0) these are Kazhdan-Lusztig orders and cells

More detailed example: \mathcal{C}_{A_i}

A — basic, connected finite dimensional k-algebra

$$1 = e_1 + e_2 + \cdots + e_n$$
 — primitive decomposition of $1 \in A$

$$B_{ij} := Ae_i \otimes_{\mathbb{k}} e_j A \text{ for } i, j = 1, 2, \dots, n$$

Fact:
$$\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$$

For
$$\mathcal{J}_1=\{A\}$$
 and $\mathcal{J}_2=\{B_{ij}\}$ we have $\mathcal{J}_2\geq_J \mathcal{J}_1$

$$\mathcal{L}_j:=\{B_{ij}:i=1,2,\ldots,n\} \text{ and } \mathcal{R}_i:=\{B_{ij}:j=1,2,\ldots,n\}$$

$$\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$$

More detailed example: C_A

A — basic, connected finite dimensional k-algebra

$$1 = e_1 + e_2 + \cdots + e_n$$
 — primitive decomposition of $1 \in A$

$$B_{ij} := Ae_i \otimes_{\mathbb{k}} e_j A \text{ for } i, j = 1, 2, \dots, n$$

Fact:
$$\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$$

For
$$\mathcal{J}_1 = \{A\}$$
 and $\mathcal{J}_2 = \{B_{ij}\}$ we have $\mathcal{J}_2 \geq_J \mathcal{J}_1$

$$\mathcal{L}_j := \{B_{ij}: i=1,2,\ldots,n\} \text{ and } \mathcal{R}_i := \{B_{ij}: j=1,2,\ldots,n\}$$

$$\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$$

More detailed example: C_A

A — basic, connected finite dimensional k-algebra

$$1=e_1+e_2+\cdots+e_n$$
 — primitive decomposition of $1\in A$

$$B_{ij} := Ae_i \otimes_{\Bbbk} e_j A \text{ for } i, j = 1, 2, \dots, n$$

Fact:
$$\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$$

For
$$\mathcal{J}_1=\{A\}$$
 and $\mathcal{J}_2=\{\mathtt{B}_{ij}\}$ we have $\mathcal{J}_2\geq_J\mathcal{J}_1$

$$\mathcal{L}_j := \{\mathtt{B}_{ij} : i = 1, 2, \dots, n\}$$
 and $\mathcal{R}_i := \{\mathtt{B}_{ij} : j = 1, 2, \dots, n\}$

$$\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$$

A — basic, connected finite dimensional k-algebra

$$1 = e_1 + e_2 + \cdots + e_n$$
 — primitive decomposition of $1 \in A$

$$\mathtt{B}_{ij} := Ae_i \otimes_{\Bbbk} e_j A ext{ for } i,j=1,2,\ldots,n$$

Fact:
$$\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$$

For
$$\mathcal{J}_1=\{A\}$$
 and $\mathcal{J}_2=\{\mathtt{B}_{ij}\}$ we have $\mathcal{J}_2\geq_J\mathcal{J}_1$

$$\mathcal{L}_j := \{B_{ij} : i = 1, 2, \dots, n\} \text{ and } \mathcal{R}_i := \{B_{ij} : j = 1, 2, \dots, n\}$$

$$\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$$

A — basic, connected finite dimensional k-algebra

$$1 = e_1 + e_2 + \cdots + e_n$$
 — primitive decomposition of $1 \in A$

$$B_{ij} := Ae_i \otimes_{\Bbbk} e_j A$$
 for $i, j = 1, 2, \dots, n$

Fact:
$$\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$$

For
$$\mathcal{J}_1=\{A\}$$
 and $\mathcal{J}_2=\{\mathtt{B}_{ij}\}$ we have $\mathcal{J}_2\geq_J\mathcal{J}_1$

$$\mathcal{L}_j := \{B_{ij} : i = 1, 2, \dots, n\} \text{ and } \mathcal{R}_i := \{B_{ij} : j = 1, 2, \dots, n\}$$

$$\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$$

A — basic, connected finite dimensional k-algebra

$$1 = e_1 + e_2 + \cdots + e_n$$
 — primitive decomposition of $1 \in A$

$$B_{ij} := Ae_i \otimes_{\Bbbk} e_j A$$
 for $i, j = 1, 2, \dots, n$

Fact:
$$\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$$

For
$$\mathcal{J}_1=\{A\}$$
 and $\mathcal{J}_2=\{\mathtt{B}_{ij}\}$ we have $\mathcal{J}_2\geq_J\mathcal{J}_1$

$$\mathcal{L}_j := \{B_{ij} : i = 1, 2, \dots, n\} \text{ and } \mathcal{R}_i := \{B_{ij} : j = 1, 2, \dots, n\}$$

$$\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$$

A — basic, connected finite dimensional k-algebra

$$1 = e_1 + e_2 + \cdots + e_n$$
 — primitive decomposition of $1 \in A$

$$B_{ij} := Ae_i \otimes_{\Bbbk} e_j A$$
 for $i, j = 1, 2, \dots, n$

Fact:
$$\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$$

For
$$\mathcal{J}_1=\{A\}$$
 and $\mathcal{J}_2=\{\mathtt{B}_{ij}\}$ we have $\mathcal{J}_2\geq_J\mathcal{J}_1$

$$\mathcal{L}_{j} := \{B_{ij} : i = 1, 2, \dots, n\} \text{ and } \mathcal{R}_{i} := \{B_{ij} : j = 1, 2, \dots, n\}$$

$$\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$$

A — basic, connected finite dimensional k-algebra

$$1 = e_1 + e_2 + \cdots + e_n$$
 — primitive decomposition of $1 \in A$

$$B_{ij} := Ae_i \otimes_{\mathbb{k}} e_i A$$
 for $i, j = 1, 2, \dots, n$

Fact:
$$\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$$

For
$$\mathcal{J}_1=\{A\}$$
 and $\mathcal{J}_2=\{\mathtt{B}_{ij}\}$ we have $\mathcal{J}_2\geq_J\mathcal{J}_1$

$$\mathcal{L}_j := \{B_{ij} : i = 1, 2, \dots, n\} \text{ and } \mathcal{R}_i := \{B_{ij} : j = 1, 2, \dots, n\}$$

$$\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$$

More detailed example: C_A

A — basic, connected finite dimensional k-algebra

$$1 = e_1 + e_2 + \cdots + e_n$$
 — primitive decomposition of $1 \in A$

$$B_{ij} := Ae_i \otimes_{\mathbb{k}} e_i A$$
 for $i, j = 1, 2, \dots, n$

Fact:
$$\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$$

For
$$\mathcal{J}_1=\{A\}$$
 and $\mathcal{J}_2=\{\mathtt{B}_{ij}\}$ we have $\mathcal{J}_2\geq_J\mathcal{J}_1$

$$\mathcal{L}_j := \{B_{ij} : i = 1, 2, \dots, n\} \text{ and } \mathcal{R}_i := \{B_{ij} : j = 1, 2, \dots, n\}$$

$$\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$$

More detailed example: C_A

A — basic, connected finite dimensional k-algebra

$$1 = e_1 + e_2 + \cdots + e_n$$
 — primitive decomposition of $1 \in A$

$$B_{ij} := Ae_i \otimes_{\mathbb{k}} e_i A$$
 for $i, j = 1, 2, \dots, n$

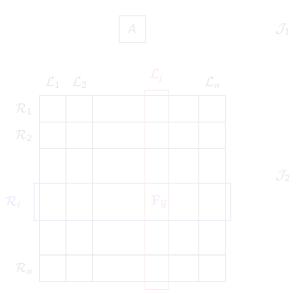
Fact:
$$\Sigma(C_A) = \{A, B_{ij} : i, j = 1, 2, ..., n\}$$

For
$$\mathcal{J}_1=\{A\}$$
 and $\mathcal{J}_2=\{\mathtt{B}_{ij}\}$ we have $\mathcal{J}_2\geq_J\mathcal{J}_1$

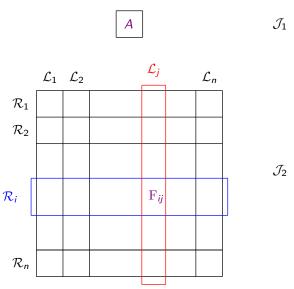
$$\mathcal{L}_j := \{B_{ij} : i = 1, 2, \dots, n\} \text{ and } \mathcal{R}_i := \{B_{ij} : j = 1, 2, \dots, n\}$$

$$\mathcal{J}_2 = \mathcal{L}_1 \cup \cdots \cup \mathcal{L}_n = \mathcal{R}_1 \cup \cdots \cup \mathcal{R}_n$$

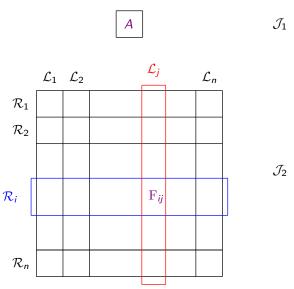
The egg-box diagram



The egg-box diagram



The egg-box diagram



Fiat 2-categories

Definition: % is fiat if

- ▶ there is a weak involution $*: \mathscr{C} \to \mathscr{C}$
- ▶ there are adjunction 2-morphisms $\alpha: \mathbb{1}_i \to FF^*$ and $\beta: F^*F \to \mathbb{1}_j$ such that

$$\mathrm{F}(eta)\circ_1lpha_{\mathrm{F}}=\mathrm{id}_{\mathrm{F}}\quad ext{ and }\quadeta_{\mathrm{F}^*}\circ_1\mathrm{F}^*(lpha)=\mathrm{id}_{\mathrm{F}^*}$$

Note: This makes F and F* always biadjoint

Examples:

- ▶ Soergel bimodules (projective functors on \mathcal{O}_0)
- \blacktriangleright \mathscr{C}_A for A self-injective and weakly symmetric

\mathscr{C} — finitary 2-category

Definition: \mathscr{C} is fiat if

- ▶ there is a weak involution $*: \mathscr{C} \to \mathscr{C}$
- ▶ there are adjunction 2-morphisms $\alpha: \mathbb{1}_i \to FF^*$ and $\beta: F^*F \to \mathbb{1}_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F^* always biadjoint

- ▶ Soergel bimodules (projective functors on \mathcal{O}_0)
- \triangleright \mathscr{C}_A for A self-injective and weakly symmetric

 \mathscr{C} — finitary 2-category

Definition: \mathscr{C} is fiat if

- ▶ there is a weak involution $*: \mathscr{C} \to \mathscr{C}$
- ▶ there are adjunction 2-morphisms $\alpha: \mathbb{1}_i \to FF^*$ and $\beta: F^*F \to \mathbb{1}_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F* always biadjoint

- ▶ Soergel bimodules (projective functors on \mathcal{O}_0)
- \triangleright \mathscr{C}_A for A self-injective and weakly symmetric

 \mathscr{C} — finitary 2-category

Definition: \mathscr{C} is fiat if

- ▶ there is a weak involution $*: \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha: \mathbb{1}_i \to FF^*$ and $\beta: F^*F \to \mathbb{1}_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F* always biadjoint

- ▶ Soergel bimodules (projective functors on \mathcal{O}_0)
- \triangleright \mathscr{C}_A for A self-injective and weakly symmetric

 \mathscr{C} — finitary 2-category

Definition: \mathscr{C} is fiat if

- ▶ there is a weak involution $*: \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha: \mathbb{1}_i \to FF^*$ and $\beta: F^*F \to \mathbb{1}_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F^* always biadjoint

- ▶ Soergel bimodules (projective functors on \mathcal{O}_0)
- \blacktriangleright \mathscr{C}_A for A self-injective and weakly symmetric

Definition: \mathscr{C} is fiat if

- ▶ there is a weak involution $*: \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha:\mathbb{1}_i\to FF^*$ and $\beta:F^*F\to\mathbb{1}_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F^* always biadjoint

- ▶ Soergel bimodules (projective functors on \mathcal{O}_0)
- \triangleright \mathscr{C}_A for A self-injective and weakly symmetric

Definition: \mathscr{C} is fiat if

- ▶ there is a weak involution $*: \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha:\mathbb{1}_i\to FF^*$ and $\beta:F^*F\to\mathbb{1}_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F* always biadjoint

- ▶ Soergel bimodules (projective functors on \mathcal{O}_0)
- \blacktriangleright \mathscr{C}_A for A self-injective and weakly symmetric

Definition: \mathscr{C} is fiat if

- ▶ there is a weak involution $*: \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha:\mathbb{1}_i\to FF^*$ and $\beta:F^*F\to\mathbb{1}_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F^* always biadjoint

- ▶ Soergel bimodules (projective functors on \mathcal{O}_0)
- \blacktriangleright \mathscr{C}_A for A self-injective and weakly symmetric

 \mathscr{C} — finitary 2-category

Definition: \mathscr{C} is fiat if

- ▶ there is a weak involution $*: \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha:\mathbb{1}_i\to FF^*$ and $\beta:F^*F\to\mathbb{1}_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F^* always biadjoint

- ▶ Soergel bimodules (projective functors on \mathcal{O}_0)
- $ightharpoonup \mathscr{C}_A$ for A self-injective and weakly symmetric

 \mathscr{C} — finitary 2-category

Definition: \mathscr{C} is fiat if

- ▶ there is a weak involution $*: \mathscr{C} \to \mathscr{C}$;
- ▶ there are adjunction 2-morphisms $\alpha:\mathbb{1}_i\to FF^*$ and $\beta:F^*F\to\mathbb{1}_j$ such that

$$F(\beta) \circ_1 \alpha_F = id_F$$
 and $\beta_{F^*} \circ_1 F^*(\alpha) = id_{F^*}$

Note: This makes F and F^* always biadjoint

- ▶ Soergel bimodules (projective functors on \mathcal{O}_0)
- $ightharpoonup \mathscr{C}_A$ for A self-injective and weakly symmetric

g — Kac-Moody algebra

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to $\mathfrak{g}.$

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}.$

Remark. They have involution and adjunctions but are not finitary.

g — Kac-Moody algebra

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to $\mathfrak g$

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}$.

Remark. They have involution and adjunctions but are not finitary.

g — Kac-Moody algebra

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to $\mathfrak{g}.$

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}$.

Remark. They have involution and adjunctions but are not finitary.

g — Kac-Moody algebra

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to \mathfrak{g} .

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}$.

Remark. They have involution and adjunctions but are not finitary

g — Kac-Moody algebra

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to \mathfrak{g} .

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{\mathrm{U}}_{\mathbb{Z}}.$

Remark. They have involution and adjunctions but are not finitary

g — Kac-Moody algebra

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to \mathfrak{g} .

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}$.

Remark. They have involution and adjunctions but are not finitary

g — Kac-Moody algebra

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathbf{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to g.

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

g — Kac-Moody algebra

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to \mathfrak{g} .

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}.$

Remark. They have involution and adjunctions but are not finitary.

g — Kac-Moody algebra

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathbf{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to \mathfrak{g} .

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}.$

Remark. They have involution and adjunctions but are not finitary.

g — Kac-Moody algebra

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to \mathfrak{g} .

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}.$

Remark. They have involution and adjunctions but are not finitary.

g — Kac-Moody algebra

 $U_q(\mathfrak{g})$ — the corresponding quantum group

 $\dot{\mathrm{U}}$ — the idempotent completion of $U_q(\mathfrak{g})$

 $\dot{U}_{\mathbb{Z}}$ — the integral form for \dot{U}

There is a number of 2-categories associated to \mathfrak{g} .

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify $\dot{U}_{\mathbb{Z}}.$

Remark. They have involution and adjunctions but are not finitary.

Artin-Wedderburn Theorem

Every simple complex finite-dimensional algebra is isomorphic to $\operatorname{Mat}_{n\times n}(\mathbb{C})$ for some n.

Theorem. [M.-Miemietz]

Artin-Wedderburn Theorem.

Every simple complex finite-dimensional algebra is isomorphic to $\operatorname{Mat}_{n\times n}(\mathbb{C})$ for some n.

Theorem. [M.-Miemietz]

Artin-Wedderburn Theorem.

Every simple complex finite-dimensional algebra is isomorphic to $\operatorname{Mat}_{n\times n}(\mathbb{C})$ for some n.

Theorem. [M.-Miemietz]

Artin-Wedderburn Theorem.

Every simple complex finite-dimensional algebra is isomorphic to $\operatorname{Mat}_{n\times n}(\mathbb{C})$ for some n.

Theorem. [M.-Miemietz]

Artin-Wedderburn Theorem.

Every simple complex finite-dimensional algebra is isomorphic to $\operatorname{Mat}_{n\times n}(\mathbb{C})$ for some n.

Theorem. [M.-Miemietz]

Artin-Wedderburn Theorem.

Every simple complex finite-dimensional algebra is isomorphic to $\operatorname{Mat}_{n\times n}(\mathbb{C})$ for some n.

Theorem. [M.-Miemietz]

"Definition": A 2-representation of $\mathscr C$ is a functorial action of $\mathscr C$ on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of $\mathscr C$ form a 2-category where

- ▶ 1-morphisms are 2-natural transformations
- 2-morphisms are modifications

 \mathscr{C} — finitary 2-category

"Definition": A 2-representation of $\mathscr C$ is a functorial action of $\mathscr C$ on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of $\mathscr C$ form a 2-category where

- ▶ 1-morphisms are 2-natural transformations
- ▶ 2-morphisms are modifications

 \mathscr{C} — finitary 2-category

"Definition": A 2-representation of $\mathscr C$ is a functorial action of $\mathscr C$ on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of $\mathscr C$ form a 2-category where

- ▶ 1-morphisms are 2-natural transformations
- 2-morphisms are modifications

 \mathscr{C} — finitary 2-category

"Definition": A 2-representation of $\mathscr C$ is a functorial action of $\mathscr C$ on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of $\mathscr C$ form a 2-category where

- ▶ 1-morphisms are 2-natural transformations
- ► 2-morphisms are modifications

 \mathscr{C} — finitary 2-category

"Definition": A 2-representation of $\mathscr C$ is a functorial action of $\mathscr C$ on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of $\mathscr C$ form a 2-category where

- ▶ 1-morphisms are 2-natural transformations
- ▶ 2-morphisms are modifications

 \mathscr{C} — finitary 2-category

"Definition": A 2-representation of $\mathscr C$ is a functorial action of $\mathscr C$ on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of $\mathscr C$ form a 2-category where

- ► 1-morphisms are 2-natural transformations
- ▶ 2-morphisms are modifications

 \mathscr{C} — finitary 2-category

"Definition": A 2-representation of $\mathscr C$ is a functorial action of $\mathscr C$ on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of $\mathscr C$ form a 2-category where

- ► 1-morphisms are 2-natural transformations
- ► 2-morphisms are modifications

 \mathscr{C} — finitary 2-category

"Definition": A 2-representation of $\mathscr C$ is a functorial action of $\mathscr C$ on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of $\mathscr C$ form a 2-category where

- ► 1-morphisms are 2-natural transformations
- ► 2-morphisms are modifications

 \mathscr{C} — finitary 2-category

"Definition": A 2-representation of $\mathscr C$ is a functorial action of $\mathscr C$ on a suitable category(ies).

Example: Principal 2-representation $P_i := \mathscr{C}(i, _)$ for $i \in \mathscr{C}$

Note: 2-representations of $\mathscr C$ form a 2-category where

- ► 1-morphisms are 2-natural transformations
- ► 2-morphisms are modifications

Cell 2-representations

 \mathcal{L} — left cell in \mathscr{C}

i — the source for 1-morphisms in $\mathscr C$

P_i — the i-th principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of $\mathbf{P}_{\mathtt{i}}$ generated by $\mathrm{F} \geq_{L} \mathcal{L}$

I — the unique maximal $\mathscr C$ -invariant ideal in $\mathbf Q_{\mathcal L}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

Example: The defining (tautological) 2-representation of \mathscr{C}_A is equivalent to $C_{\mathcal{L}_j}$ for any $j=1,2,\ldots,n$.

 \mathscr{C} — finitary 2-category

 \mathcal{L} — left cell in \mathscr{C}

i — the source for 1-morphisms in $\mathscr C$

P_i — the i-th principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of \mathbf{P}_{i} generated by $\mathrm{F} \geq_{L} \mathcal{L}$

I — the unique maximal $\mathscr C$ -invariant ideal in $\mathbf Q_{\mathcal L}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

 \mathscr{C} — finitary 2-category

 \mathcal{L} — left cell in \mathscr{C}

i — the source for 1-morphisms in $\mathscr C$

P_i — the i-th principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of $\mathbf{P_i}$ generated by $\mathrm{F} \geq_L \mathcal{L}$

I — the unique maximal $\operatorname{\mathscr{C} ext{-invariant}}$ ideal in $\mathbf{Q}_{\mathcal{L}}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

 \mathscr{C} — finitary 2-category

 \mathcal{L} — left cell in \mathscr{C}

i — the source for 1-morphisms in $\mathscr C$

P_i — the i-th principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of $\mathbf{P_i}$ generated by $\mathrm{F} \geq_L \mathcal{L}$

I — the unique maximal $\mathscr C$ -invariant ideal in $\mathbf Q_{\mathcal L}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

 \mathscr{C} — finitary 2-category

 \mathcal{L} — left cell in \mathscr{C}

i — the source for 1-morphisms in $\mathscr C$

 P_{i} — the i-th principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of $\mathbf{P_i}$ generated by $\mathrm{F} \geq_L \mathcal{L}$

I — the unique maximal \mathscr{C} -invariant ideal in $\mathbf{Q}_{\mathcal{L}}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

 \mathscr{C} — finitary 2-category

 \mathcal{L} — left cell in \mathscr{C}

i — the source for 1-morphisms in $\mathscr C$

 P_{i} — the i-th principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of $\mathbf{P_i}$ generated by $F \geq_{L} \mathcal{L}$

I — the unique maximal \mathscr{C} -invariant ideal in $\mathsf{Q}_{\mathcal{L}}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

 \mathscr{C} — finitary 2-category

 \mathcal{L} — left cell in \mathscr{C}

i — the source for 1-morphisms in $\mathscr C$

 P_{i} — the i-th principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of $\mathbf{P_i}$ generated by $F \geq_{\mathcal{L}} \mathcal{L}$

I — the unique maximal $\operatorname{\mathscr{C}}$ -invariant ideal in $\mathbf{Q}_{\mathcal{L}}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

 \mathscr{C} — finitary 2-category

 \mathcal{L} — left cell in \mathscr{C}

i — the source for 1-morphisms in $\mathscr C$

 P_{i} — the i-th principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of $\mathbf{P_i}$ generated by $F \geq_{\mathcal{L}} \mathcal{L}$

I — the unique maximal $\operatorname{\mathscr{C}}$ -invariant ideal in $\mathbf{Q}_{\mathcal{L}}$

Definition: $C_{\mathcal{L}} := Q_{\mathcal{L}}/I$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

 \mathscr{C} — finitary 2-category

 \mathcal{L} — left cell in \mathscr{C}

i — the source for 1-morphisms in $\mathscr C$

 P_{i} — the i-th principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of $\mathbf{P_i}$ generated by $F \geq_{\mathcal{L}} \mathcal{L}$

I — the unique maximal $\operatorname{\mathscr{C}}$ -invariant ideal in $\mathbf{Q}_{\mathcal{L}}$

Definition: $\mathbf{C}_{\mathcal{L}} := \mathbf{Q}_{\mathcal{L}}/\mathbf{I}$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

 \mathscr{C} — finitary 2-category

 \mathcal{L} — left cell in \mathscr{C}

i — the source for 1-morphisms in $\mathscr C$

 P_{i} — the i-th principal 2-representation

 $\mathbf{Q}_{\mathcal{L}}$ — 2-subrepresentation of $\mathbf{P_i}$ generated by $F \geq_{\mathcal{L}} \mathcal{L}$

I — the unique maximal $\operatorname{\mathscr{C}}$ -invariant ideal in $\mathbf{Q}_{\mathcal{L}}$

Definition: $\mathbf{C}_{\mathcal{L}} := \mathbf{Q}_{\mathcal{L}}/\mathbf{I}$ — the cell 2-representation of \mathscr{C} for \mathcal{L}

M — 2-representation of $\mathscr C$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial *C*-invariant ideals.

 \mathscr{C} — finitary 2-category

M — 2-representation of $\mathscr C$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial *C*-invariant ideals.

 \mathscr{C} — finitary 2-category

 \mathbf{M} — 2-representation of $\mathscr C$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial *C*-invariant ideals.

 \mathscr{C} — finitary 2-category

 \mathbf{M} — 2-representation of $\mathscr C$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial *%*-invariant ideals.

 \mathscr{C} — finitary 2-category

M — 2-representation of $\mathscr C$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial *C*-invariant ideals.

 \mathscr{C} — finitary 2-category

 \mathbf{M} — 2-representation of $\mathscr C$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial *C*-invariant ideals.

 \mathscr{C} — finitary 2-category

M — 2-representation of $\mathscr C$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial *C*-invariant ideals.

 \mathscr{C} — finitary 2-category

M — 2-representation of $\mathscr C$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial *C*-invariant ideals.

 \mathscr{C} — finitary 2-category

M — 2-representation of $\mathscr C$

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable X, Y in M there is a 1-morphism F such that X is isomorphic to a direct summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no non-trivial *C*-invariant ideals.

Theorem. [M.-Miemietz]

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

- ▶ Soergel bimodules in type *A*.
- ▶ 8A.
- Finitary quotients of 2-Kac-Moody algebras of finite type.

Theorem. [M.-Miemietz]

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

- ▶ Soergel bimodules in type *A*.
- ▶ 8A.
- ► Finitary quotients of 2-Kac-Moody algebras of finite type.

Theorem. [M.-Miemietz]

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

- ► Soergel bimodules in type *A*.
- ▶ 8A.
- Finitary quotients of 2-Kac-Moody algebras of finite type.

Theorem. [M.-Miemietz]

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

- ► Soergel bimodules in type *A*.
- ▶ 8A.
- Finitary quotients of 2-Kac-Moody algebras of finite type.

Theorem. [M.-Miemietz]

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

- ► Soergel bimodules in type *A*.
- ▶ 8A.
- ▶ Finitary quotients of 2-Kac-Moody algebras of finite type.

Theorem. [M.-Miemietz]

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

- ► Soergel bimodules in type *A*.
- $\blacktriangleright \mathscr{C}_A$.
- ▶ Finitary quotients of 2-Kac-Moody algebras of finite type.

Theorem. [M.-Miemietz]

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

- ► Soergel bimodules in type *A*.
- $\triangleright \mathscr{C}_A$.
- ► Finitary quotients of 2-Kac-Moody algebras of finite type.

Theorem. [M.-Miemietz]

Under some natural assumption, cell 2-representations are the only simple transitive 2-representation.

- ► Soergel bimodules in type *A*.
- $\triangleright \mathscr{C}_A$.
- ► Finitary quotients of 2-Kac-Moody algebras of finite type.

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Known: An analogue of Schur's lemma for cell 2-representations of certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary 2-categories?

Is the number of simple transitive 2-representations always finite?

THANK YOU!!!