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2-categories

Definition. A 2-category is a category enriched over the monoidal
category Cat of small categories (in the latter the monoidal structure is
induced by the cartesian product).

This means that a 2-category C is given by the following data:

I objects of C ;
I small categories C(i, j) of morphisms;
I bifunctorial composition C(j, k)× C(i, j)→ C(i, k);
I identity objects 1j;

which are subject to the obvious set of (strict) axioms.
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Terminology and the principal example

Terminology.

I An object in C(i, j) is called a 1-morphism of C .
I A morphism in C(i, j) is called a 2-morphism of C .
I Composition in C(i, j) is called vertical and denoted ◦1.
I Composition in C is called horizontal and denoted ◦0.

Principal example. The category Cat is a 2-category.

I Objects of Cat are small categories.
I 1-morphisms in Cat are functors.
I 2-morphisms in Cat are natural transformations.
I Composition is the usual composition.
I Identity 1-morphisms are the identity functors.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 3/21



Terminology and the principal example

Terminology.

I An object in C(i, j) is called a 1-morphism of C .
I A morphism in C(i, j) is called a 2-morphism of C .
I Composition in C(i, j) is called vertical and denoted ◦1.
I Composition in C is called horizontal and denoted ◦0.

Principal example. The category Cat is a 2-category.

I Objects of Cat are small categories.
I 1-morphisms in Cat are functors.
I 2-morphisms in Cat are natural transformations.
I Composition is the usual composition.
I Identity 1-morphisms are the identity functors.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 3/21



Terminology and the principal example

Terminology.

I An object in C(i, j) is called a 1-morphism of C .
I A morphism in C(i, j) is called a 2-morphism of C .
I Composition in C(i, j) is called vertical and denoted ◦1.
I Composition in C is called horizontal and denoted ◦0.

Principal example. The category Cat is a 2-category.

I Objects of Cat are small categories.
I 1-morphisms in Cat are functors.
I 2-morphisms in Cat are natural transformations.
I Composition is the usual composition.
I Identity 1-morphisms are the identity functors.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 3/21



Terminology and the principal example

Terminology.

I An object in C(i, j) is called a 1-morphism of C .
I A morphism in C(i, j) is called a 2-morphism of C .
I Composition in C(i, j) is called vertical and denoted ◦1.
I Composition in C is called horizontal and denoted ◦0.

Principal example. The category Cat is a 2-category.

I Objects of Cat are small categories.
I 1-morphisms in Cat are functors.
I 2-morphisms in Cat are natural transformations.
I Composition is the usual composition.
I Identity 1-morphisms are the identity functors.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 3/21



Terminology and the principal example

Terminology.

I An object in C(i, j) is called a 1-morphism of C .
I A morphism in C(i, j) is called a 2-morphism of C .
I Composition in C(i, j) is called vertical and denoted ◦1.
I Composition in C is called horizontal and denoted ◦0.

Principal example. The category Cat is a 2-category.

I Objects of Cat are small categories.
I 1-morphisms in Cat are functors.
I 2-morphisms in Cat are natural transformations.
I Composition is the usual composition.
I Identity 1-morphisms are the identity functors.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 3/21



Terminology and the principal example

Terminology.

I An object in C(i, j) is called a 1-morphism of C .
I A morphism in C(i, j) is called a 2-morphism of C .
I Composition in C(i, j) is called vertical and denoted ◦1.
I Composition in C is called horizontal and denoted ◦0.

Principal example. The category Cat is a 2-category.

I Objects of Cat are small categories.
I 1-morphisms in Cat are functors.
I 2-morphisms in Cat are natural transformations.
I Composition is the usual composition.
I Identity 1-morphisms are the identity functors.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 3/21



Terminology and the principal example

Terminology.

I An object in C(i, j) is called a 1-morphism of C .
I A morphism in C(i, j) is called a 2-morphism of C .
I Composition in C(i, j) is called vertical and denoted ◦1.
I Composition in C is called horizontal and denoted ◦0.

Principal example. The category Cat is a 2-category.

I Objects of Cat are small categories.
I 1-morphisms in Cat are functors.
I 2-morphisms in Cat are natural transformations.
I Composition is the usual composition.
I Identity 1-morphisms are the identity functors.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 3/21



Terminology and the principal example

Terminology.

I An object in C(i, j) is called a 1-morphism of C .
I A morphism in C(i, j) is called a 2-morphism of C .
I Composition in C(i, j) is called vertical and denoted ◦1.
I Composition in C is called horizontal and denoted ◦0.

Principal example. The category Cat is a 2-category.

I Objects of Cat are small categories.
I 1-morphisms in Cat are functors.
I 2-morphisms in Cat are natural transformations.
I Composition is the usual composition.
I Identity 1-morphisms are the identity functors.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 3/21



Terminology and the principal example

Terminology.

I An object in C(i, j) is called a 1-morphism of C .
I A morphism in C(i, j) is called a 2-morphism of C .
I Composition in C(i, j) is called vertical and denoted ◦1.
I Composition in C is called horizontal and denoted ◦0.

Principal example. The category Cat is a 2-category.

I Objects of Cat are small categories.
I 1-morphisms in Cat are functors.
I 2-morphisms in Cat are natural transformations.
I Composition is the usual composition.
I Identity 1-morphisms are the identity functors.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 3/21



Terminology and the principal example

Terminology.

I An object in C(i, j) is called a 1-morphism of C .
I A morphism in C(i, j) is called a 2-morphism of C .
I Composition in C(i, j) is called vertical and denoted ◦1.
I Composition in C is called horizontal and denoted ◦0.

Principal example. The category Cat is a 2-category.

I Objects of Cat are small categories.
I 1-morphisms in Cat are functors.
I 2-morphisms in Cat are natural transformations.
I Composition is the usual composition.
I Identity 1-morphisms are the identity functors.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 3/21



Terminology and the principal example

Terminology.

I An object in C(i, j) is called a 1-morphism of C .
I A morphism in C(i, j) is called a 2-morphism of C .
I Composition in C(i, j) is called vertical and denoted ◦1.
I Composition in C is called horizontal and denoted ◦0.

Principal example. The category Cat is a 2-category.

I Objects of Cat are small categories.
I 1-morphisms in Cat are functors.
I 2-morphisms in Cat are natural transformations.
I Composition is the usual composition.
I Identity 1-morphisms are the identity functors.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 3/21



Terminology and the principal example

Terminology.

I An object in C(i, j) is called a 1-morphism of C .
I A morphism in C(i, j) is called a 2-morphism of C .
I Composition in C(i, j) is called vertical and denoted ◦1.
I Composition in C is called horizontal and denoted ◦0.

Principal example. The category Cat is a 2-category.

I Objects of Cat are small categories.
I 1-morphisms in Cat are functors.
I 2-morphisms in Cat are natural transformations.
I Composition is the usual composition.
I Identity 1-morphisms are the identity functors.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 3/21



Terminology and the principal example

Terminology.

I An object in C(i, j) is called a 1-morphism of C .
I A morphism in C(i, j) is called a 2-morphism of C .
I Composition in C(i, j) is called vertical and denoted ◦1.
I Composition in C is called horizontal and denoted ◦0.

Principal example. The category Cat is a 2-category.

I Objects of Cat are small categories.
I 1-morphisms in Cat are functors.
I 2-morphisms in Cat are natural transformations.
I Composition is the usual composition.
I Identity 1-morphisms are the identity functors.

Volodymyr Mazorchuk Algebraic categorification and its applications, II 3/21



Decategorification of additive 2-categories

Definition. A 2-category C is additive if:

I Each C(i, j) is additive and idempotent split.
I Horizontal composition is biadditive.

Definition. The split Gorthendieck group [A]⊕ of an additive category A
is the quotient of the free abelian group generated by [X ], where X is an
object of A, modulo relations [X ] = [Y ] + [Z ] whenever X ∼= Y ⊕ Z .

Definition. The decategorification [C ] of an additive 2-category C is the
(usual 1-) category defined as follows:

I [C ] has the same objects as C ;
I [C ](i, j) := [C(i, j)]⊕;
I composition in [C ] is induced from that in C .
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Categorification

C — additive 2-category

[C ] — decategorification of C

Definition. C is called a categorification of [C ].

Put differently: Categorification is just the formal “inverse” of
decategorification.

Warning: Categorification is “multi-valued” in general.
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Example: projective functors on O0

g = sln

O0 — principal block of category O for g

S — the 2-category of projective functors on O0, that is:

I S has one object ♣ (identified with some small category C ∼= O0);
I 1-morphisms in S are functors isomorphic to projective functors;
I 2-morphisms in S are natural transformations of functors;
I horizontal composition in S is composition of functors.

Fact. S is an additive 2-category.

Theorem. [S ](♣,♣) ∼= Z[Sn]

Consequence: In this sense S is a categorification of Z[Sn].
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Finitary k-linear categories.

k — field

Definition: An additive k-linear category A is finitary if

I A is idempotent split;
I A has finitely many indecomposables;
I all morphism spaces in A are finite dimensional (over k).

Example: A-proj for a finite dimensional k-algebra A.

Fact: If A is finitary, then A ∼= A-proj for some A.
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Finitary 2-categories.

Definition: A 2-category C is finitary over k if

I C has finitely many objects;
I each C(i, j) is finitary k-linear;
I composition is biadditive and k-bilinear;
I identity 1-morphisms are indecomposable.

Examples:

I Projective functors on O0;
I Soergel bimodules over the coinvariant algebra.

Finitary 2-categories are 2-analogues of finite dimensional algebras
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Example: projective functors for finite dimensional algebras.

k — algebraically closed field

A — finite dimensional k-algebra

Definition. A projective endofunctor of A-mod is tensoring with a
projective A–A-bimodule, up to isomorphism

C — a small category equivalent to A-mod

Definition. The 2-category CA has:

I one object ♣ (identified with C);
I as 1-morphisms — functors in the additive closure of the identity

and projective functors;
I as 2-morphisms — natural transformations of functors;
I as horizontal composition — composition of functors.

Fact. The 2-category CA is finitary.
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Combinatorics of finitary 2-categories.

C — finitary 2-category

Σ(C) — isoclasses of indecomposable 1-morphisms in C

Fact: Σ(C) is a multisemigroup under

F ?G = {H : H is isomorphic to a direct summand of FG}

Left preorder: F ≥L G if F ∈ Σ(C) ?G

Left cells: equivalence classes w.r.t. ≥L (a.k.a. Green’s L-classes)

Similarly: right and two-sided preorders ≥R and ≥J and right and
two-sided cells

Example: For Soergel bimodules (projective functors on O0) these are
Kazhdan-Lusztig orders and cells
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More detailed example: CA

A — basic, connected finite dimensional k-algebra

1 = e1 + e2 + · · ·+ en — primitive decomposition of 1 ∈ A

Bij := Aei ⊗k ejA for i , j = 1, 2, . . . , n

Fact: Σ(CA) = {A, Bij : i , j = 1, 2, . . . , n}

For J1 = {A} and J2 = {Bij} we have J2 ≥J J1

Lj := {Bij : i = 1, 2, . . . , n} and Ri := {Bij : j = 1, 2, . . . , n}

J2 = L1 ∪ · · · ∪ Ln = R1 ∪ · · · ∪ Rn

Note: Lj and Lj′ are not ≥L-comparable if j 6= j ′, similarly for the Ri ’s
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The egg-box diagram

A J1

J2

Fij

L1 L2 Ln

Rn

R2

R1

Ri

Lj
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Fiat 2-categories

C — finitary 2-category

Definition: C is fiat if

I there is a weak involution ∗ : C → C ;
I there are adjunction 2-morphisms α : 1i → FF∗ and β : F∗F→ 1j

such that

F(β) ◦1 αF = idF and βF∗ ◦1 F∗(α) = idF∗

Note: This makes F and F∗ always biadjoint

Examples:

I Soergel bimodules (projective functors on O0)
I CA for A self-injective and weakly symmetric

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/21



Fiat 2-categories

C — finitary 2-category

Definition: C is fiat if

I there is a weak involution ∗ : C → C ;
I there are adjunction 2-morphisms α : 1i → FF∗ and β : F∗F→ 1j

such that

F(β) ◦1 αF = idF and βF∗ ◦1 F∗(α) = idF∗

Note: This makes F and F∗ always biadjoint

Examples:

I Soergel bimodules (projective functors on O0)
I CA for A self-injective and weakly symmetric

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/21



Fiat 2-categories

C — finitary 2-category

Definition: C is fiat if

I there is a weak involution ∗ : C → C ;
I there are adjunction 2-morphisms α : 1i → FF∗ and β : F∗F→ 1j

such that

F(β) ◦1 αF = idF and βF∗ ◦1 F∗(α) = idF∗

Note: This makes F and F∗ always biadjoint

Examples:

I Soergel bimodules (projective functors on O0)
I CA for A self-injective and weakly symmetric

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/21



Fiat 2-categories

C — finitary 2-category

Definition: C is fiat if

I there is a weak involution ∗ : C → C ;
I there are adjunction 2-morphisms α : 1i → FF∗ and β : F∗F→ 1j

such that

F(β) ◦1 αF = idF and βF∗ ◦1 F∗(α) = idF∗

Note: This makes F and F∗ always biadjoint

Examples:

I Soergel bimodules (projective functors on O0)
I CA for A self-injective and weakly symmetric

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/21



Fiat 2-categories

C — finitary 2-category

Definition: C is fiat if

I there is a weak involution ∗ : C → C ;
I there are adjunction 2-morphisms α : 1i → FF∗ and β : F∗F→ 1j

such that

F(β) ◦1 αF = idF and βF∗ ◦1 F∗(α) = idF∗

Note: This makes F and F∗ always biadjoint

Examples:

I Soergel bimodules (projective functors on O0)
I CA for A self-injective and weakly symmetric

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/21



Fiat 2-categories

C — finitary 2-category

Definition: C is fiat if

I there is a weak involution ∗ : C → C ;
I there are adjunction 2-morphisms α : 1i → FF∗ and β : F∗F→ 1j

such that

F(β) ◦1 αF = idF and βF∗ ◦1 F∗(α) = idF∗

Note: This makes F and F∗ always biadjoint

Examples:

I Soergel bimodules (projective functors on O0)
I CA for A self-injective and weakly symmetric

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/21



Fiat 2-categories

C — finitary 2-category

Definition: C is fiat if

I there is a weak involution ∗ : C → C ;
I there are adjunction 2-morphisms α : 1i → FF∗ and β : F∗F→ 1j

such that

F(β) ◦1 αF = idF and βF∗ ◦1 F∗(α) = idF∗

Note: This makes F and F∗ always biadjoint

Examples:

I Soergel bimodules (projective functors on O0)
I CA for A self-injective and weakly symmetric

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/21



Fiat 2-categories

C — finitary 2-category

Definition: C is fiat if

I there is a weak involution ∗ : C → C ;
I there are adjunction 2-morphisms α : 1i → FF∗ and β : F∗F→ 1j

such that

F(β) ◦1 αF = idF and βF∗ ◦1 F∗(α) = idF∗

Note: This makes F and F∗ always biadjoint

Examples:

I Soergel bimodules (projective functors on O0)
I CA for A self-injective and weakly symmetric

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/21



Fiat 2-categories

C — finitary 2-category

Definition: C is fiat if

I there is a weak involution ∗ : C → C ;
I there are adjunction 2-morphisms α : 1i → FF∗ and β : F∗F→ 1j

such that

F(β) ◦1 αF = idF and βF∗ ◦1 F∗(α) = idF∗

Note: This makes F and F∗ always biadjoint

Examples:

I Soergel bimodules (projective functors on O0)
I CA for A self-injective and weakly symmetric

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/21



Fiat 2-categories

C — finitary 2-category

Definition: C is fiat if

I there is a weak involution ∗ : C → C ;
I there are adjunction 2-morphisms α : 1i → FF∗ and β : F∗F→ 1j

such that

F(β) ◦1 αF = idF and βF∗ ◦1 F∗(α) = idF∗

Note: This makes F and F∗ always biadjoint

Examples:

I Soergel bimodules (projective functors on O0)
I CA for A self-injective and weakly symmetric

Volodymyr Mazorchuk Algebraic categorification and its applications, II 13/21



Example: 2-Kac-Moody algebras

g — Kac-Moody algebra

Uq(g) — the corresponding quantum group

U̇ — the idempotent completion of Uq(g)

U̇Z — the integral form for U̇

There is a number of 2-categories associated to g.

Due to: Khovanov-Lauda, Rouquier, Webster, Cautis-Lauda

Some of these categorify U̇Z.

Remark. They have involution and adjunctions but are not finitary.

Remark. Some of them have finitary quotients.
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Artin-Wedderburn Theorem

Artin-Wedderburn Theorem.

Every simple complex finite-dimensional algebra is isomorphic to
Matn×n(C) for some n.

Theorem. [M.-Miemietz]

Every “simple” fiat 2-category with a strongly regular maximal two-sided
cell is “essentially” CA for A self-injective and weakly symmetric.
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2-representations

C — finitary 2-category

“Definition”: A 2-representation of C is a functorial action of C on a
suitable category(ies).

Example: Principal 2-representation Pi := C(i,−) for i ∈ C

Note: 2-representations of C form a 2-category where

I 1-morphisms are 2-natural transformations
I 2-morphisms are modifications

Note: There is a natural notion of equivalence for 2-representations
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Cell 2-representations

C — finitary 2-category

L — left cell in C

i — the source for 1-morphisms in C

Pi — the i-th principal 2-representation

QL — 2-subrepresentation of Pi generated by F ≥L L

I — the unique maximal C -invariant ideal in QL

Definition: CL := QL/I — the cell 2-representation of C for L

Example: The defining (tautological) 2-representation of CA is
equivalent to CLj for any j = 1, 2, . . . , n.
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Transitive 2-representations

C — finitary 2-category

M — 2-representation of C

Definition: M is finitary if M(i) is finitary k-linear for all i

Definition: M is transitive if M is finitary and for any indecomposable
X ,Y in M there is a 1-morphism F such that X is isomorphic to a direct
summand of F Y

Intuition: Transitive action of a group (for us: a multisemigroup)

Definition: M is simple transitive if M is transitive and has no
non-trivial C-invariant ideals.

Example: Cell 2-representations are simple transitive.
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Classification of simple transitive 2-representations

Theorem. [M.-Miemietz]

Under some natural assumption, cell 2-representations are the only simple
transitive 2-representation.

Applies to:

I Soergel bimodules in type A.
I CA.
I Finitary quotients of 2-Kac-Moody algebras of finite type.
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Other results and future challenges

Known: Morita theory for finitary 2-categories ([M.-Miemietz]).

Known: Classification of isotypic 2-representations of certain fiat
2-categories ([M.-Miemietz]).

Known: An analogue of Schur’s lemma for cell 2-representations of
certain fiat 2-categories ([M.-Miemietz]).

Classification of 2-representations for finitary 2-categories?

Classification of simple transitive 2-representations for finitary
2-categories?

Is the number of simple transitive 2-representations always finite?

Homological algebra for 2-representations?
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