Zomological propertief of category O, part I: invariants of structural modules

Volodymyr Mazorchuł

(Uppfala University)

"Enveloping Ulgebras and Representation Theory" Uugust 28 – September I, 2014, St. John's, CUTUDU

 \mathfrak{g} — a semi-simple finite dimensional Lie algebra over \mathbb{C}

For example: $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$

 $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ — fixed triangular decomposition

For example, if $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$, then

- h diagonal matrices
- \mathfrak{n}_+ upper triangular matrices

for a Lie algebra \mathfrak{a} we denote by $U(\mathfrak{a})$ its universal enveloping algebra

\mathfrak{g} — a semi-simple finite dimensional Lie algebra over $\mathbb C$

For example: $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$

 $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ — fixed triangular decomposition

For example, if $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$, then

- h diagonal matrices
- \mathfrak{n}_+ upper triangular matrices

for a Lie algebra \mathfrak{a} we denote by $U(\mathfrak{a})$ its universal enveloping algebra

 \mathfrak{g} — a semi-simple finite dimensional Lie algebra over $\mathbb C$

For example: $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$

 $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$ — fixed triangular decomposition

For example, if $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$, then

n_ — lower triangular matrices

h — diagonal matrices

 \mathfrak{n}_+ — upper triangular matrices

for a Lie algebra \mathfrak{a} we denote by $U(\mathfrak{a})$ its universal enveloping algebra

 \mathfrak{g} — a semi-simple finite dimensional Lie algebra over $\mathbb C$

For example: $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$

 $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$ — fixed triangular decomposition

For example, if $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$, then

n_ — lower triangular matrices

- h diagonal matrices
- \mathfrak{n}_+ upper triangular matrices

 \mathfrak{g} — a semi-simple finite dimensional Lie algebra over $\mathbb C$

For example: $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$

 $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$ — fixed triangular decomposition

For example, if $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$, then

n_ — lower triangular matrices

h — diagonal matrices

n₊ — upper triangular matrices

 \mathfrak{g} — a semi-simple finite dimensional Lie algebra over $\mathbb C$

For example: $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$

 $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$ — fixed triangular decomposition

For example, if $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$, then

- \mathfrak{n}_{-} lower triangular matrices
- h diagonal matrices
- n_+ upper triangular matrices

 \mathfrak{g} — a semi-simple finite dimensional Lie algebra over $\mathbb C$

For example: $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$

 $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$ — fixed triangular decomposition

For example, if $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$, then

- \mathfrak{n}_{-} lower triangular matrices
- \mathfrak{h} diagonal matrices
- n₊ upper triangular matrices

 \mathfrak{g} — a semi-simple finite dimensional Lie algebra over $\mathbb C$

For example: $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$

 $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$ — fixed triangular decomposition

For example, if $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$, then

- \mathfrak{n}_- lower triangular matrices
- \mathfrak{h} diagonal matrices
- \mathfrak{n}_+ upper triangular matrices

 \mathfrak{g} — a semi-simple finite dimensional Lie algebra over $\mathbb C$

For example: $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$

 $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$ — fixed triangular decomposition

For example, if $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$, then

- \mathfrak{n}_{-} lower triangular matrices
- \mathfrak{h} diagonal matrices
- \mathfrak{n}_+ upper triangular matrices

 \mathfrak{g} — a semi-simple finite dimensional Lie algebra over $\mathbb C$

For example: $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$

 $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$ — fixed triangular decomposition

For example, if $\mathfrak{g} = \mathfrak{sl}_n(\mathbb{C})$, then

- \mathfrak{n}_{-} lower triangular matrices
- \mathfrak{h} diagonal matrices
- \mathfrak{n}_+ upper triangular matrices

Definition. BGG category \mathcal{O} is defined as the full subcategory of the category of all g-modules containing all modules M satisfying the following conditions:

- ► *M* is finitely generated;
- ▶ the action of h on *M* is diagonalizable (i.e *M* is a weight module);
- the action of $U(n_+)$ on M is locally finite

 $M(\lambda)$ — the Verma module with highest weight $\lambda \in \mathfrak{h}^*$

Fact. $M(\lambda) \in \mathcal{O}$

 $L(\lambda)$ — the simple top of $M(\lambda)$

Fact. $L(\lambda) \in \mathcal{O}$

Fact. Every simple object in O is isomorphic to some $L(\lambda)$

Definition. BGG category \mathcal{O} is defined as the full subcategory of the category of all g-modules containing all modules M satisfying the following conditions:

- ► *M* is finitely generated;
- the action of \mathfrak{h} on M is diagonalizable (i.e M is a weight module);
- the action of $U(n_+)$ on M is locally finite

 $M(\lambda)$ — the Verma module with highest weight $\lambda \in \mathfrak{h}^*$

Fact. $M(\lambda) \in \mathcal{O}$

 $L(\lambda)$ — the simple top of $M(\lambda)$

Fact. $L(\lambda) \in \mathcal{O}$

Fact. Every simple object in O is isomorphic to some $L(\lambda)$

Definition. BGG category \mathcal{O} is defined as the full subcategory of the category of all g-modules containing all modules M satisfying the following conditions:

► *M* is finitely generated;

▶ the action of h on M is diagonalizable (i.e M is a weight module);
▶ the action of U(n₊) on M is locally finite.

 $M(\lambda)$ — the Verma module with highest weight $\lambda \in \mathfrak{h}^*$

Fact. $M(\lambda) \in \mathcal{O}$

 $L(\lambda)$ — the simple top of $M(\lambda)$

Fact. $L(\lambda) \in \mathcal{O}$

Fact. Every simple object in O is isomorphic to some $L(\lambda)$

Definition. BGG category O is defined as the full subcategory of the category of all g-modules containing all modules M satisfying the following conditions:

► *M* is finitely generated;

• the action of \mathfrak{h} on M is diagonalizable (i.e M is a weight module);

• the action of $U(n_+)$ on M is locally finite.

 $M(\lambda)$ — the Verma module with highest weight $\lambda \in \mathfrak{h}^*$

Fact. $M(\lambda) \in \mathcal{O}$

 $L(\lambda)$ — the simple top of $M(\lambda)$

Fact. $L(\lambda) \in \mathcal{O}$

Fact. Every simple object in O is isomorphic to some $L(\lambda)$

Definition. BGG category O is defined as the full subcategory of the category of all g-modules containing all modules M satisfying the following conditions:

- ► *M* is finitely generated;
- the action of \mathfrak{h} on M is diagonalizable (i.e M is a weight module);
- the action of $U(\mathfrak{n}_+)$ on M is locally finite.

 $M(\lambda)$ — the Verma module with highest weight $\lambda \in \mathfrak{h}^*$

Fact. $M(\lambda) \in \mathcal{O}$

 $L(\lambda)$ — the simple top of $M(\lambda)$

Fact. $L(\lambda) \in \mathcal{O}$

Fact. Every simple object in O is isomorphic to some $L(\lambda)$

Definition. BGG category O is defined as the full subcategory of the category of all g-modules containing all modules M satisfying the following conditions:

- ► *M* is finitely generated;
- the action of \mathfrak{h} on M is diagonalizable (i.e M is a weight module);
- the action of $U(\mathfrak{n}_+)$ on M is locally finite.

 $M(\lambda)$ — the Verma module with highest weight $\lambda \in \mathfrak{h}^*$

Fact. $M(\lambda) \in \mathcal{O}$

 $L(\lambda)$ — the simple top of $M(\lambda)$

Fact. $L(\lambda) \in \mathcal{O}$

Fact. Every simple object in O is isomorphic to some $L(\lambda)$

Definition. BGG category O is defined as the full subcategory of the category of all g-modules containing all modules M satisfying the following conditions:

- ► *M* is finitely generated;
- the action of \mathfrak{h} on M is diagonalizable (i.e M is a weight module);
- the action of $U(\mathfrak{n}_+)$ on M is locally finite.

 $M(\lambda)$ — the Verma module with highest weight $\lambda \in \mathfrak{h}^*$

Fact. $M(\lambda) \in \mathcal{O}$

 $L(\lambda)$ — the simple top of $M(\lambda)$

Fact. $L(\lambda) \in \mathcal{O}$

Fact. Every simple object in \mathcal{O} is isomorphic to some $L(\lambda)$

Definition. BGG category O is defined as the full subcategory of the category of all g-modules containing all modules M satisfying the following conditions:

- ► *M* is finitely generated;
- the action of \mathfrak{h} on M is diagonalizable (i.e M is a weight module);
- the action of $U(\mathfrak{n}_+)$ on M is locally finite.

 $M(\lambda)$ — the Verma module with highest weight $\lambda \in \mathfrak{h}^*$

Fact. $M(\lambda) \in \mathcal{O}$

 $L(\lambda)$ — the simple top of $M(\lambda)$

Fact. $L(\lambda) \in \mathcal{O}$

Fact. Every simple object in \mathcal{O} is isomorphic to some $L(\lambda)$

Definition. BGG category O is defined as the full subcategory of the category of all g-modules containing all modules M satisfying the following conditions:

- ► *M* is finitely generated;
- the action of \mathfrak{h} on M is diagonalizable (i.e M is a weight module);
- the action of $U(\mathfrak{n}_+)$ on M is locally finite.

 $M(\lambda)$ — the Verma module with highest weight $\lambda \in \mathfrak{h}^*$

Fact. $M(\lambda) \in \mathcal{O}$

 $L(\lambda)$ — the simple top of $M(\lambda)$

Fact. $L(\lambda) \in \mathcal{O}$

Fact. Every simple object in \mathcal{O} is isomorphic to some $L(\lambda)$

Definition. BGG category O is defined as the full subcategory of the category of all g-modules containing all modules M satisfying the following conditions:

- ► *M* is finitely generated;
- the action of \mathfrak{h} on M is diagonalizable (i.e M is a weight module);
- the action of $U(\mathfrak{n}_+)$ on M is locally finite.

 $M(\lambda)$ — the Verma module with highest weight $\lambda \in \mathfrak{h}^*$

Fact. $M(\lambda) \in \mathcal{O}$

 $L(\lambda)$ — the simple top of $M(\lambda)$

Fact. $L(\lambda) \in \mathcal{O}$

Fact. Every simple object in \mathcal{O} is isomorphic to some $L(\lambda)$

DQC

1

Definition. BGG category O is defined as the full subcategory of the category of all g-modules containing all modules M satisfying the following conditions:

- ► *M* is finitely generated;
- the action of \mathfrak{h} on M is diagonalizable (i.e M is a weight module);
- the action of $U(\mathfrak{n}_+)$ on M is locally finite.

 $M(\lambda)$ — the Verma module with highest weight $\lambda \in \mathfrak{h}^*$

Fact. $M(\lambda) \in \mathcal{O}$

 $L(\lambda)$ — the simple top of $M(\lambda)$

Fact. $L(\lambda) \in \mathcal{O}$

Fact. Every simple object in \mathcal{O} is isomorphic to some $L(\lambda)$

DQC

1

$Z(\mathfrak{g})$ — the center of $U(\mathfrak{g})$

 \mathcal{O}_m is the full subcategory of $\mathcal O$ consisting of all modules on which m acts locally nilpotently

Fact. $\mathcal{O}_m \cong A_m$ -mod for some finite dimensional basic associative algebra A_m

Fact. \mathcal{O} is a highest weight category in the sense of Cline-Parshall-Scott with Verma modules being standard modules

Reformulation. A_m is quasi-hereditary in the sense of Dlab-Ringel

$Z(\mathfrak{g})$ — the center of $U(\mathfrak{g})$

 $\mathcal{O}_{\tt m}$ is the full subcategory of $\mathcal O$ consisting of all modules on which $\tt m$ acts locally nilpotently

Fact. $\mathcal{O}_m \cong A_m \operatorname{-mod}$ for some finite dimensional basic associative algebra A_m

Fact. \mathcal{O} is a highest weight category in the sense of Cline-Parshall-Scott with Verma modules being standard modules

Reformulation. A_m is quasi-hereditary in the sense of Dlab-Ringel

 $Z(\mathfrak{g})$ — the center of $U(\mathfrak{g})$

Central character decomposition: $\mathcal{O} = \bigoplus_{m \in \operatorname{Max}(Z(\mathfrak{g}))} \mathcal{O}_m$

 $\mathcal{O}_{\tt m}$ is the full subcategory of $\mathcal O$ consisting of all modules on which $\tt m$ acts locally nilpotently

Fact. $\mathcal{O}_m\cong A_m\text{-}\mathrm{mod}$ for some finite dimensional basic associative algebra A_m

Fact. \mathcal{O} is a highest weight category in the sense of Cline-Parshall-Scott with Verma modules being standard modules

Reformulation. A_m is quasi-hereditary in the sense of Dlab-Ringel

 $Z(\mathfrak{g})$ — the center of $U(\mathfrak{g})$

Central character decomposition: $\mathcal{O} = \bigoplus_{m \in \operatorname{Max}(Z(\mathfrak{g}))} \mathcal{O}_m$

 $\mathcal{O}_{\tt m}$ is the full subcategory of $\mathcal O$ consisting of all modules on which $\tt m$ acts locally nilpotently

Fact. $\mathcal{O}_{\tt m}\cong A_{\tt m}\text{-}{\rm mod}$ for some finite dimensional basic associative algebra $A_{\tt m}$

Fact. \mathcal{O} is a highest weight category in the sense of Cline-Parshall-Scott with Verma modules being standard modules

Reformulation. A_m is quasi-hereditary in the sense of Dlab-Ringel

 $Z(\mathfrak{g})$ — the center of $U(\mathfrak{g})$

Central character decomposition: $\mathcal{O} = \bigoplus_{m \in \operatorname{Max}(Z(\mathfrak{g}))} \mathcal{O}_m$

 $\mathcal{O}_{\tt m}$ is the full subcategory of $\mathcal O$ consisting of all modules on which $\tt m$ acts locally nilpotently

Fact. $\mathcal{O}_{\tt m}\cong A_{\tt m}\text{-}{\rm mod}$ for some finite dimensional basic associative algebra $A_{\tt m}$

Fact. ${\cal O}$ is a highest weight category in the sense of Cline-Parshall-Scott with Verma modules being standard modules

Reformulation. A_m is quasi-hereditary in the sense of Dlab-Ringel

Note. A_m is usually decomposable (for \mathfrak{sl}_n all indecomposable summands of A_m are isomorphic)

 $Z(\mathfrak{g})$ — the center of $U(\mathfrak{g})$

Central character decomposition: $\mathcal{O} = \bigoplus_{m \in \operatorname{Max}(Z(\mathfrak{g}))} \mathcal{O}_m$

 $\mathcal{O}_{\tt m}$ is the full subcategory of $\mathcal O$ consisting of all modules on which $\tt m$ acts locally nilpotently

Fact. $\mathcal{O}_{\tt m}\cong A_{\tt m}\text{-}{\rm mod}$ for some finite dimensional basic associative algebra $A_{\tt m}$

Fact. ${\cal O}$ is a highest weight category in the sense of Cline-Parshall-Scott with Verma modules being standard modules

Reformulation. A_m is quasi-hereditary in the sense of Dlab-Ringel

Note. A_m is usually decomposable (for \mathfrak{sl}_n all indecomposable summands of A_m are isomorphic)

▶ 4 Ξ ▶

 $Z(\mathfrak{g})$ — the center of $U(\mathfrak{g})$

Central character decomposition: $\mathcal{O} = \bigoplus_{m \in \operatorname{Max}(Z(\mathfrak{g}))} \mathcal{O}_m$

 $\mathcal{O}_{\tt m}$ is the full subcategory of $\mathcal O$ consisting of all modules on which $\tt m$ acts locally nilpotently

Fact. $\mathcal{O}_{\tt m}\cong A_{\tt m}\text{-}{\rm mod}$ for some finite dimensional basic associative algebra $A_{\tt m}$

Fact. ${\cal O}$ is a highest weight category in the sense of Cline-Parshall-Scott with Verma modules being standard modules

Reformulation. A_m is quasi-hereditary in the sense of Dlab-Ringel

 $Z(\mathfrak{g})$ — the center of $U(\mathfrak{g})$

Central character decomposition: $\mathcal{O} = \bigoplus_{m \in \operatorname{Max}(Z(\mathfrak{g}))} \mathcal{O}_m$

 $\mathcal{O}_{\tt m}$ is the full subcategory of $\mathcal O$ consisting of all modules on which $\tt m$ acts locally nilpotently

Fact. $\mathcal{O}_{\tt m}\cong A_{\tt m}\text{-}{\rm mod}$ for some finite dimensional basic associative algebra $A_{\tt m}$

Fact. ${\cal O}$ is a highest weight category in the sense of Cline-Parshall-Scott with Verma modules being standard modules

Reformulation. A_m is quasi-hereditary in the sense of Dlab-Ringel

Structural modules in $\ensuremath{\mathcal{O}}$

 $\lambda \in \mathfrak{h}^*$

- $L(\lambda)$ simple module with highest weight λ
- $P(\lambda)$ indecomposable projective cover of $L(\lambda)$
- $I(\lambda)$ indecomposable injective envelope of $L(\lambda)$
- $\Delta(\lambda) = M(\lambda)$ standard quotient of $P(\lambda)$
- $\nabla(\lambda)$ costandard submodule of $I(\lambda)$
- $T(\lambda)$ tilting envelope of $\Delta(\lambda)$
- **Fact.** $T(\lambda)$ tilting cover of $\nabla(\lambda)$

Structural modules in $\ensuremath{\mathcal{O}}$

$\lambda\in\mathfrak{h}^*$

- $L(\lambda)$ simple module with highest weight λ
- $P(\lambda)$ indecomposable projective cover of $L(\lambda)$
- $I(\lambda)$ indecomposable injective envelope of $L(\lambda)$
- $\Delta(\lambda) = M(\lambda)$ standard quotient of $P(\lambda)$
- $\nabla(\lambda)$ costandard submodule of $I(\lambda)$
- $T(\lambda)$ tilting envelope of $\Delta(\lambda)$
- **Fact.** $T(\lambda)$ tilting cover of $\nabla(\lambda)$

 $\lambda\in\mathfrak{h}^*$

$L(\lambda)$ — simple module with highest weight λ

 $P(\lambda)$ — indecomposable projective cover of $L(\lambda)$

 $I(\lambda)$ — indecomposable injective envelope of $L(\lambda)$

 $\Delta(\lambda) = M(\lambda)$ — standard quotient of $P(\lambda)$

 $\nabla(\lambda)$ — costandard submodule of $I(\lambda)$

 $T(\lambda)$ — tilting envelope of $\Delta(\lambda)$

Fact. $T(\lambda)$ — tilting cover of $\nabla(\lambda)$

DQA

 $\lambda \in \mathfrak{h}^*$

 $L(\lambda)$ — simple module with highest weight λ

 $P(\lambda)$ — indecomposable projective cover of $L(\lambda)$

 $I(\lambda)$ — indecomposable injective envelope of $L(\lambda)$

 $\Delta(\lambda) = M(\lambda)$ — standard quotient of $P(\lambda)$

 $\nabla(\lambda)$ — costandard submodule of $I(\lambda)$

 $T(\lambda)$ — tilting envelope of $\Delta(\lambda)$

Fact. $T(\lambda)$ — tilting cover of $\nabla(\lambda)$

DQA

 $\lambda \in \mathfrak{h}^*$

 $L(\lambda)$ — simple module with highest weight λ

 $P(\lambda)$ — indecomposable projective cover of $L(\lambda)$

 $I(\lambda)$ — indecomposable injective envelope of $L(\lambda)$

 $\Delta(\lambda) = M(\lambda)$ — standard quotient of $P(\lambda)$

 $\nabla(\lambda)$ — costandard submodule of $I(\lambda)$

 $T(\lambda)$ — tilting envelope of $\Delta(\lambda)$

Fact. $T(\lambda)$ — tilting cover of $\nabla(\lambda)$

 $\lambda \in \mathfrak{h}^*$

 $L(\lambda)$ — simple module with highest weight λ

 $P(\lambda)$ — indecomposable projective cover of $L(\lambda)$

 $I(\lambda)$ — indecomposable injective envelope of $L(\lambda)$

 $\Delta(\lambda) = M(\lambda) - \text{standard quotient of } P(\lambda)$

 $abla(\lambda)$ — costandard submodule of $I(\lambda)$

 $T(\lambda)$ — tilting envelope of $\Delta(\lambda)$

Fact. $T(\lambda)$ — tilting cover of $\nabla(\lambda)$

 $\lambda \in \mathfrak{h}^*$

 $L(\lambda)$ — simple module with highest weight λ

 $P(\lambda)$ — indecomposable projective cover of $L(\lambda)$

 $I(\lambda)$ — indecomposable injective envelope of $L(\lambda)$

 $\Delta(\lambda) = M(\lambda) - \text{standard quotient of } P(\lambda)$

 $\nabla(\lambda)$ — costandard submodule of $I(\lambda)$

 $T(\lambda)$ — tilting envelope of $\Delta(\lambda)$

Fact. $T(\lambda)$ — tilting cover of $\nabla(\lambda)$

▶ 4 Ξ ▶

-

 $\lambda \in \mathfrak{h}^*$

 $L(\lambda)$ — simple module with highest weight λ

 $P(\lambda)$ — indecomposable projective cover of $L(\lambda)$

 $I(\lambda)$ — indecomposable injective envelope of $L(\lambda)$

 $\Delta(\lambda) = M(\lambda) - \text{standard quotient of } P(\lambda)$

 $\nabla(\lambda)$ — costandard submodule of $I(\lambda)$

 $T(\lambda)$ — tilting envelope of $\Delta(\lambda)$

Fact. $T(\lambda)$ — tilting cover of $\nabla(\lambda)$

→ < E > _ E

DQC

 $\lambda \in \mathfrak{h}^*$

 $L(\lambda)$ — simple module with highest weight λ

 $P(\lambda)$ — indecomposable projective cover of $L(\lambda)$

 $I(\lambda)$ — indecomposable injective envelope of $L(\lambda)$

 $\Delta(\lambda) = M(\lambda)$ — standard quotient of $P(\lambda)$

 $\nabla(\lambda)$ — costandard submodule of $I(\lambda)$

 $T(\lambda)$ — tilting envelope of $\Delta(\lambda)$

Fact. $T(\lambda)$ — tilting cover of $\nabla(\lambda)$

프 (프) 프

DQC

 $\lambda \in \mathfrak{h}^*$

 $L(\lambda)$ — simple module with highest weight λ

 $P(\lambda)$ — indecomposable projective cover of $L(\lambda)$

 $I(\lambda)$ — indecomposable injective envelope of $L(\lambda)$

 $\Delta(\lambda) = M(\lambda)$ — standard quotient of $P(\lambda)$

 $\nabla(\lambda)$ — costandard submodule of $I(\lambda)$

 $T(\lambda)$ — tilting envelope of $\Delta(\lambda)$

Fact. $T(\lambda)$ — tilting cover of $\nabla(\lambda)$

프 (프) 프

DQC

(the last remark of the BGG paper is that the equality holds, no proof)

Question. Determine projective dimension of all indecomposable structural modules

Note. For almost all λ we have

$$L(\lambda) = P(\lambda) = I(\lambda) = \Delta(\lambda) = \nabla(\lambda) = T(\lambda)$$

and the answer to the question for these λ is: 0

(the last remark of the BGG paper is that the equality holds, no proof)

Question. Determine projective dimension of all indecomposable structural modules

Note. For almost all λ we have

$$L(\lambda) = P(\lambda) = I(\lambda) = \Delta(\lambda) = \nabla(\lambda) = T(\lambda)$$

and the answer to the question for these λ is: 0

Theorem (BGG). $gl.dim\mathcal{O} \leq number of roots of g$ (the last remark of the BGG paper is that the equality holds, no proof)

Question. Determine projective dimension of all indecomposable structural modules

Note. For almost all λ we have

$$L(\lambda) = P(\lambda) = I(\lambda) = \Delta(\lambda) = \nabla(\lambda) = T(\lambda)$$

and the answer to the question for these λ is: 0

Still open. proj.dim $(L(\lambda)) =$?, proj.dim $(\Delta(\lambda)) =$? (for singular λ)

San

(the last remark of the BGG paper is that the equality holds, no proof)

Question. Determine projective dimension of all indecomposable structural modules

Note. For almost all λ we have

$$L(\lambda) = P(\lambda) = I(\lambda) = \Delta(\lambda) = \nabla(\lambda) = T(\lambda)$$

and the answer to the question for these λ is: 0

(the last remark of the BGG paper is that the equality holds, no proof)

Question. Determine projective dimension of all indecomposable structural modules

Note. For almost all λ we have

$$L(\lambda) = P(\lambda) = I(\lambda) = \Delta(\lambda) = \nabla(\lambda) = T(\lambda)$$

and the answer to the question for these λ is: 0

(the last remark of the BGG paper is that the equality holds, no proof)

Question. Determine projective dimension of all indecomposable structural modules

Note. For almost all λ we have

$$L(\lambda) = P(\lambda) = I(\lambda) = \Delta(\lambda) = \nabla(\lambda) = T(\lambda)$$

and the answer to the question for these λ is: 0

(the last remark of the BGG paper is that the equality holds, no proof)

Question. Determine projective dimension of all indecomposable structural modules

Note. For almost all λ we have

$$L(\lambda) = P(\lambda) = I(\lambda) = \Delta(\lambda) = \nabla(\lambda) = T(\lambda)$$

and the answer to the question for these λ is: 0

 m_0 — the maximal ideal in Z(g) annihilating the trivial g-module

 $\mathcal{O}_0 := \mathcal{O}_{m_0}$ — the principal block of \mathcal{O}

Fact. \mathcal{O}_0 is indecomposable

W — the Weyl group of $\mathfrak g$

W acts on \mathfrak{h}^* in the usual way

 ρ — the half of the sum of all positive roots

W acts on \mathfrak{h}^* via the $\rho\text{-shifted}$ dot action

Fact. Simples in \mathcal{O}_0 are $L(w \cdot 0)$, $w \in W$ (all different).

Notation. $L(w) := L(w \cdot 0)$, $P(w) := P(w \cdot 0)$ and so on

 m_0 — the maximal ideal in $Z(\mathfrak{g})$ annihilating the trivial \mathfrak{g} -module

 $\mathcal{O}_0 := \mathcal{O}_{m_0}$ — the principal block of \mathcal{O}

Fact. \mathcal{O}_0 is indecomposable

W — the Weyl group of $\mathfrak g$

W acts on \mathfrak{h}^* in the usual way

ho — the half of the sum of all positive roots

W acts on \mathfrak{h}^* via the ρ -shifted dot action

Fact. Simples in \mathcal{O}_0 are $L(w \cdot 0)$, $w \in W$ (all different).

Notation. $L(w) := L(w \cdot 0)$, $P(w) := P(w \cdot 0)$ and so on

 m_0 — the maximal ideal in $Z(\mathfrak{g})$ annihilating the trivial \mathfrak{g} -module

 $\mathcal{O}_0:=\mathcal{O}_{\mathtt{m}_0}$ — the principal block of $\mathcal O$

Fact. \mathcal{O}_0 is indecomposable

W — the Weyl group of $\mathfrak g$

W acts on \mathfrak{h}^* in the usual way

ho — the half of the sum of all positive roots

W acts on \mathfrak{h}^* via the $\rho\text{-shifted}$ dot action

Fact. Simples in \mathcal{O}_0 are $L(w \cdot 0)$, $w \in W$ (all different).

Notation. $L(w) := L(w \cdot 0)$, $P(w) := P(w \cdot 0)$ and so on

 m_0 — the maximal ideal in $Z(\mathfrak{g})$ annihilating the trivial \mathfrak{g} -module

 $\mathcal{O}_0:=\mathcal{O}_{\mathtt{m}_0} \text{ — the principal block of } \mathcal{O}$

Fact. \mathcal{O}_0 is indecomposable

W — the Weyl group of \mathfrak{g}

W acts on \mathfrak{h}^* in the usual way

ho — the half of the sum of all positive roots

W acts on \mathfrak{h}^* via the $\rho\text{-shifted}$ dot action

Fact. Simples in \mathcal{O}_0 are $L(w \cdot 0)$, $w \in W$ (all different).

Notation. $L(w) := L(w \cdot 0)$, $P(w) := P(w \cdot 0)$ and so on

 m_0 — the maximal ideal in $Z(\mathfrak{g})$ annihilating the trivial \mathfrak{g} -module

 $\mathcal{O}_0:=\mathcal{O}_{\mathtt{m}_0} \text{ — the principal block of } \mathcal{O}$

Fact. \mathcal{O}_0 is indecomposable

 \mathcal{W} — the Weyl group of \mathfrak{g}

W acts on \mathfrak{h}^* in the usual way

 ρ — the half of the sum of all positive roots

W acts on \mathfrak{h}^* via the $\rho\text{-shifted}$ dot action

Fact. Simples in \mathcal{O}_0 are $L(w \cdot 0)$, $w \in W$ (all different).

Notation. $L(w) := L(w \cdot 0)$, $P(w) := P(w \cdot 0)$ and so on

 m_0 — the maximal ideal in $Z(\mathfrak{g})$ annihilating the trivial \mathfrak{g} -module

 $\mathcal{O}_0:=\mathcal{O}_{\mathtt{m}_0} \text{ — the principal block of } \mathcal{O}$

Fact. \mathcal{O}_0 is indecomposable

- W the Weyl group of $\mathfrak g$
- W acts on \mathfrak{h}^* in the usual way

 ρ — the half of the sum of all positive roots

W acts on \mathfrak{h}^* via the $\rho\text{-shifted}$ dot action

Fact. Simples in \mathcal{O}_0 are $L(w \cdot 0)$, $w \in W$ (all different).

Notation. $L(w) := L(w \cdot 0)$, $P(w) := P(w \cdot 0)$ and so on

 m_0 — the maximal ideal in $Z(\mathfrak{g})$ annihilating the trivial \mathfrak{g} -module

 $\mathcal{O}_0:=\mathcal{O}_{\mathtt{m}_0} \text{ — the principal block of } \mathcal{O}$

Fact. \mathcal{O}_0 is indecomposable

W — the Weyl group of $\mathfrak g$

W acts on \mathfrak{h}^* in the usual way

 ρ — the half of the sum of all positive roots

W acts on \mathfrak{h}^* via the $\rho\text{-shifted}$ dot action

Fact. Simples in \mathcal{O}_0 are $L(w \cdot 0)$, $w \in W$ (all different).

Notation. $L(w) := L(w \cdot 0)$, $P(w) := P(w \cdot 0)$ and so on

 m_0 — the maximal ideal in $Z(\mathfrak{g})$ annihilating the trivial \mathfrak{g} -module

 $\mathcal{O}_0:=\mathcal{O}_{\mathtt{m}_0} \text{ — the principal block of } \mathcal{O}$

Fact. \mathcal{O}_0 is indecomposable

W — the Weyl group of \mathfrak{g}

W acts on \mathfrak{h}^* in the usual way

 ρ — the half of the sum of all positive roots

W acts on \mathfrak{h}^* via the $\rho\text{-shifted}$ dot action

Fact. Simples in \mathcal{O}_0 are $L(w \cdot 0)$, $w \in W$ (all different).

Notation. $L(w) := L(w \cdot 0)$, $P(w) := P(w \cdot 0)$ and so on

 m_0 — the maximal ideal in $Z(\mathfrak{g})$ annihilating the trivial \mathfrak{g} -module

 $\mathcal{O}_0:=\mathcal{O}_{\mathtt{m}_0} \text{ — the principal block of } \mathcal{O}$

Fact. \mathcal{O}_0 is indecomposable

W — the Weyl group of \mathfrak{g}

W acts on \mathfrak{h}^* in the usual way

 ρ — the half of the sum of all positive roots

W acts on \mathfrak{h}^* via the ρ -shifted dot action

Fact. Simples in \mathcal{O}_0 are $L(w \cdot 0)$, $w \in W$ (all different).

Notation. $L(w) := L(w \cdot 0)$, $P(w) := P(w \cdot 0)$ and so on

 m_0 — the maximal ideal in $Z(\mathfrak{g})$ annihilating the trivial \mathfrak{g} -module

 $\mathcal{O}_0:=\mathcal{O}_{\mathtt{m}_0} \text{ — the principal block of } \mathcal{O}$

Fact. \mathcal{O}_0 is indecomposable

W — the Weyl group of \mathfrak{g}

W acts on \mathfrak{h}^* in the usual way

 ρ — the half of the sum of all positive roots

W acts on \mathfrak{h}^* via the $\rho\text{-shifted}$ dot action

Fact. Simples in \mathcal{O}_0 are $L(w \cdot 0)$, $w \in W$ (all different).

Notation. $L(w) := L(w \cdot 0)$, $P(w) := P(w \cdot 0)$ and so on

 m_0 — the maximal ideal in $Z(\mathfrak{g})$ annihilating the trivial \mathfrak{g} -module

 $\mathcal{O}_0:=\mathcal{O}_{\mathtt{m}_0} \text{ — the principal block of } \mathcal{O}$

Fact. \mathcal{O}_0 is indecomposable

W — the Weyl group of \mathfrak{g}

W acts on \mathfrak{h}^* in the usual way

 ρ — the half of the sum of all positive roots

W acts on \mathfrak{h}^* via the $\rho\text{-shifted}$ dot action

Fact. Simples in \mathcal{O}_0 are $L(w \cdot 0)$, $w \in W$ (all different).

Notation. $L(w) := L(w \cdot 0)$, $P(w) := P(w \cdot 0)$ and so on

Soergel's combinatorial description of blocks in terms of root systems: Each block of \mathcal{O} can be reduced, up to equivalence, to an integral block (maybe for some other g)

Note. \mathcal{O}_0 is a regular integral block

Soergel's combinatorial description of blocks in terms of root systems: Each block of O can be reduced, up to equivalence, to an integral block (maybe for some other g)

Note. \mathcal{O}_0 is a regular integral block

Soergel's combinatorial description of blocks in terms of root systems: Each block of \mathcal{O} can be reduced, up to equivalence, to an integral block (maybe for some other \mathfrak{g})

Note. \mathcal{O}_0 is a regular integral block

Soergel's combinatorial description of blocks in terms of root systems: Each block of \mathcal{O} can be reduced, up to equivalence, to an integral block (maybe for some other \mathfrak{g})

Note. \mathcal{O}_0 is a regular integral block

Soergel's combinatorial description of blocks in terms of root systems: Each block of \mathcal{O} can be reduced, up to equivalence, to an integral block (maybe for some other \mathfrak{g})

Note. \mathcal{O}_0 is a regular integral block

Soergel's combinatorial description of blocks in terms of root systems: Each block of \mathcal{O} can be reduced, up to equivalence, to an integral block (maybe for some other \mathfrak{g})

Note. \mathcal{O}_0 is a regular integral block

 $I: W \rightarrow \{0, 1, 2, \dots\}$ — the usual length function

 w_0 — the longest element in W

e — the identity element in W

Proposition. proj.dim $(\Delta(w)) = I(w)$ for all $w \in W$

The inequality \leq **(BGG):** We have $\Delta(e) = P(e)$ and hence proj.dim $(\Delta(e)) = 0$. We have Ker $\leftrightarrow P(w) \Rightarrow \Delta(w)$ where Ker has a filtration with subquotients $\Delta(x)$, I(x) < I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: $\operatorname{proj.dim}(\Delta(w_0)) = I(w_0)$ (postponed).

 $I: \mathcal{W} \rightarrow \{0,1,2,\dots\}$ — the usual length function

 w_0 — the longest element in W

e — the identity element in W

Proposition. proj.dim $(\Delta(w)) = I(w)$ for all $w \in W$

The inequality \leq **(BGG):** We have $\Delta(e) = P(e)$ and hence proj.dim $(\Delta(e)) = 0$. We have Ker $\hookrightarrow P(w) \twoheadrightarrow \Delta(w)$ where Ker has a filtration with subquotients $\Delta(x)$, I(x) < I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: $\operatorname{proj.dim}(\Delta(w_0)) = I(w_0)$ (postponed).

 $I: \mathcal{W} \rightarrow \{0,1,2,\dots\}$ — the usual length function

w_0 — the longest element in W

e — the identity element in W

Proposition. proj.dim $(\Delta(w)) = I(w)$ for all $w \in W$

The inequality \leq **(BGG):** We have $\Delta(e) = P(e)$ and hence proj.dim $(\Delta(e)) = 0$. We have Ker $\hookrightarrow P(w) \twoheadrightarrow \Delta(w)$ where Ker has a filtration with subquotients $\Delta(x)$, I(x) < I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: $\operatorname{proj.dim}(\Delta(w_0)) = I(w_0)$ (postponed).

 $I: \mathcal{W} \rightarrow \{0,1,2,\dots\}$ — the usual length function

- w_0 the longest element in W
- e the identity element in W

Proposition. proj.dim $(\Delta(w)) = I(w)$ for all $w \in W$

The inequality \leq **(BGG):** We have $\Delta(e) = P(e)$ and hence $\operatorname{proj.dim}(\Delta(e)) = 0$. We have $\operatorname{Ker} \hookrightarrow P(w) \twoheadrightarrow \Delta(w)$ where Ker has a filtration with subquotients $\Delta(x)$, I(x) < I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: proj.dim $(\Delta(w_0)) = I(w_0)$ (postponed).

 $I: \mathcal{W} \rightarrow \{0,1,2,\dots\}$ — the usual length function

 w_0 — the longest element in W

e — the identity element in W

Proposition. $\operatorname{proj.dim}(\Delta(w)) = I(w)$ for all $w \in W$

The inequality \leq **(BGG):** We have $\Delta(e) = P(e)$ and hence proj.dim $(\Delta(e)) = 0$. We have Ker $\hookrightarrow P(w) \twoheadrightarrow \Delta(w)$ where Ker has a filtration with subquotients $\Delta(x)$, I(x) < I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: proj.dim $(\Delta(w_0)) = I(w_0)$ (postponed).

 $I: \mathcal{W} \rightarrow \{0,1,2,\dots\}$ — the usual length function

 w_0 — the longest element in W

e — the identity element in W

Proposition. proj.dim $(\Delta(w)) = I(w)$ for all $w \in W$

The inequality \leq (BGG): We have $\Delta(e) = P(e)$ and hence $\operatorname{proj.dim}(\Delta(e)) = 0$. We have $\operatorname{Ker} \hookrightarrow P(w) \twoheadrightarrow \Delta(w)$ where Ker has a filtration with subquotients $\Delta(x)$, I(x) < I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: $\operatorname{proj.dim}(\Delta(w_0)) = I(w_0)$ (postponed).

 $I: \mathcal{W} \rightarrow \{0,1,2,\dots\}$ — the usual length function

 w_0 — the longest element in W

e — the identity element in W

Proposition. proj.dim $(\Delta(w)) = I(w)$ for all $w \in W$

The inequality \leq (BGG): We have $\Delta(e) = P(e)$ and hence $\operatorname{proj.dim}(\Delta(e)) = 0$. We have $\operatorname{Ker} \hookrightarrow P(w) \twoheadrightarrow \Delta(w)$ where Ker has a filtration with subquotients $\Delta(x)$, I(x) < I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: proj.dim $(\Delta(w_0)) = I(w_0)$ (postponed).

 $I: \mathcal{W} \rightarrow \{0,1,2,\dots\}$ — the usual length function

 w_0 — the longest element in W

e — the identity element in W

Proposition. proj.dim $(\Delta(w)) = I(w)$ for all $w \in W$

The inequality \leq (BGG): We have $\Delta(e) = P(e)$ and hence $\operatorname{proj.dim}(\Delta(e)) = 0$. We have $\operatorname{Ker} \hookrightarrow P(w) \twoheadrightarrow \Delta(w)$ where Ker has a filtration with subquotients $\Delta(x)$, I(x) < I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: proj.dim $(\Delta(w_0)) = I(w_0)$ (postponed).

 $I: \mathcal{W} \rightarrow \{0,1,2,\dots\}$ — the usual length function

 w_0 — the longest element in W

e — the identity element in W

Proposition. proj.dim $(\Delta(w)) = I(w)$ for all $w \in W$

The inequality \leq (BGG): We have $\Delta(e) = P(e)$ and hence $\operatorname{proj.dim}(\Delta(e)) = 0$. We have $\operatorname{Ker} \hookrightarrow P(w) \twoheadrightarrow \Delta(w)$ where Ker has a filtration with subquotients $\Delta(x)$, I(x) < I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: proj.dim $(\Delta(w_0)) = I(w_0)$ (postponed).

Note. $\Delta(w_0) = \nabla(w_0) = L(w_0) = T(w_0)$

Proposition. proj.dim $(L(w)) = 2I(w_0) - I(w)$ for all $w \in W$

The inequality \leq **(BGG)**: For w_0 this is already done before. We have $\text{Ker} \hookrightarrow \Delta(w) \twoheadrightarrow L(w)$ where Ker has a filtration with subquotients L(x), I(x) > I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: proj.dim(L(e)) = 2I(w_0)

Proof.

- ► Let \mathcal{X}^{\bullet} be the BGG resolution of L(e) by Verma modules. It has length $I(w_0)$ and $\mathcal{X}^{-I(w_0)} = \Delta(w_0)$, the simple Verma module.
- ▶ The dual \mathcal{Y}^{\bullet} of \mathcal{X}^{\bullet} is a coresolution of L(e) by costandard modules, it has length $I(w_0)$ and $\mathcal{Y}^{I(w_0)} = \nabla(w_0) = \Delta(w_0)$.
- Standard and costandard modules are homologically orthogonal and hence all derived homs are realized already in the homotopy category.
- The identity on Δ(w₀) gives a homomorphism from X° to Y°[2l(w₀)] which is clearly not homotopic to zero.

San

Projective dimension of simple modules in $\mathcal{O}_{\mathbf{0}}$

Proposition. proj.dim $(L(w)) = 2I(w_0) - I(w)$ for all $w \in W$

The inequality \leq **(BGG)**: For w_0 this is already done before. We have $\text{Ker} \hookrightarrow \Delta(w) \twoheadrightarrow L(w)$ where Ker has a filtration with subquotients L(x), I(x) > I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: proj.dim(L(e)) = 2I(w_0)

Proof.

- ► Let \mathcal{X}^{\bullet} be the BGG resolution of L(e) by Verma modules. It has length $I(w_0)$ and $\mathcal{X}^{-I(w_0)} = \Delta(w_0)$, the simple Verma module.
- ▶ The dual \mathcal{Y}^{\bullet} of \mathcal{X}^{\bullet} is a coresolution of L(e) by costandard modules, it has length $I(w_0)$ and $\mathcal{Y}^{I(w_0)} = \nabla(w_0) = \Delta(w_0)$.
- Standard and costandard modules are homologically orthogonal and hence all derived homs are realized already in the homotopy category.
- The identity on ∆(w₀) gives a homomorphism from X[•] to Y[•][2l(w₀)] which is clearly not homotopic to zero.

San

Proposition. proj.dim $(L(w)) = 2I(w_0) - I(w)$ for all $w \in W$

The inequality \leq **(BGG):** For w_0 this is already done before. We have $\text{Ker} \hookrightarrow \Delta(w) \twoheadrightarrow L(w)$ where Ker has a filtration with subquotients L(x), I(x) > I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: proj.dim(L(e)) = 2I(w_0)

- ► Let \mathcal{X}^{\bullet} be the BGG resolution of L(e) by Verma modules. It has length $I(w_0)$ and $\mathcal{X}^{-I(w_0)} = \Delta(w_0)$, the simple Verma module.
- ▶ The dual \mathcal{Y}^{\bullet} of \mathcal{X}^{\bullet} is a coresolution of L(e) by costandard modules, it has length $I(w_0)$ and $\mathcal{Y}^{I(w_0)} = \nabla(w_0) = \Delta(w_0)$.
- Standard and costandard modules are homologically orthogonal and hence all derived homs are realized already in the homotopy category.
- The identity on ∆(w₀) gives a homomorphism from X[•] to Y[•][2l(w₀)] which is clearly not homotopic to zero.

Proposition. proj.dim $(L(w)) = 2I(w_0) - I(w)$ for all $w \in W$

The inequality \leq **(BGG):** For w_0 this is already done before. We have $\text{Ker} \hookrightarrow \Delta(w) \twoheadrightarrow L(w)$ where Ker has a filtration with subquotients L(x), I(x) > I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: proj.dim $(L(e)) = 2I(w_0)$

Proof.

- ▶ Let \mathcal{X}^{\bullet} be the BGG resolution of L(e) by Verma modules. It has length $I(w_0)$ and $\mathcal{X}^{-I(w_0)} = \Delta(w_0)$, the simple Verma module.
- ▶ The dual \mathcal{Y}^{\bullet} of \mathcal{X}^{\bullet} is a coresolution of L(e) by costandard modules, it has length $I(w_0)$ and $\mathcal{Y}^{I(w_0)} = \nabla(w_0) = \Delta(w_0)$.
- Standard and costandard modules are homologically orthogonal and hence all derived homs are realized already in the homotopy category.
- The identity on ∆(w₀) gives a homomorphism from X[•] to Y[•][2l(w₀)] which is clearly not homotopic to zero.

Proposition. proj.dim $(L(w)) = 2I(w_0) - I(w)$ for all $w \in W$

The inequality \leq **(BGG):** For w_0 this is already done before. We have $\text{Ker} \hookrightarrow \Delta(w) \twoheadrightarrow L(w)$ where Ker has a filtration with subquotients L(x), I(x) > I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: $\operatorname{proj.dim}(L(e)) = 2I(w_0)$

- ▶ Let \mathcal{X}^{\bullet} be the BGG resolution of L(e) by Verma modules. It has length $\mathbf{I}(w_0)$ and $\mathcal{X}^{-\mathbf{I}(w_0)} = \Delta(w_0)$, the simple Verma module.
- ▶ The dual \mathcal{Y}^{\bullet} of \mathcal{X}^{\bullet} is a coresolution of L(e) by costandard modules, it has length $I(w_0)$ and $\mathcal{Y}^{I(w_0)} = \nabla(w_0) = \Delta(w_0)$.
- Standard and costandard modules are homologically orthogonal and hence all derived homs are realized already in the homotopy category.
- The identity on Δ(w₀) gives a homomorphism from X° to Y°[2l(w₀)] which is clearly not homotopic to zero.

Proposition. proj.dim $(L(w)) = 2I(w_0) - I(w)$ for all $w \in W$

The inequality \leq **(BGG):** For w_0 this is already done before. We have $\text{Ker} \hookrightarrow \Delta(w) \twoheadrightarrow L(w)$ where Ker has a filtration with subquotients L(x), I(x) > I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: $\operatorname{proj.dim}(L(e)) = 2I(w_0)$

Proof.

- ► Let \mathcal{X}^{\bullet} be the BGG resolution of L(e) by Verma modules. It has length $\mathbf{I}(w_0)$ and $\mathcal{X}^{-\mathbf{I}(w_0)} = \Delta(w_0)$, the simple Verma module.
- ▶ The dual \mathcal{Y}^{\bullet} of \mathcal{X}^{\bullet} is a coresolution of L(e) by costandard modules, it has length $I(w_0)$ and $\mathcal{Y}^{I(w_0)} = \nabla(w_0) = \Delta(w_0)$.
- Standard and costandard modules are homologically orthogonal and hence all derived homs are realized already in the homotopy category.
- The identity on $\Delta(w_0)$ gives a homomorphism from \mathcal{X}^{\bullet} to $\mathcal{Y}^{\bullet}[2l(w_0)]$ which is clearly not homotopic to zero.

Proposition. proj.dim $(L(w)) = 2I(w_0) - I(w)$ for all $w \in W$

The inequality \leq **(BGG):** For w_0 this is already done before. We have $\text{Ker} \hookrightarrow \Delta(w) \twoheadrightarrow L(w)$ where Ker has a filtration with subquotients L(x), I(x) > I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: $\operatorname{proj.dim}(L(e)) = 2I(w_0)$

Proof.

- ► Let \mathcal{X}^{\bullet} be the BGG resolution of L(e) by Verma modules. It has length $\mathbf{I}(w_0)$ and $\mathcal{X}^{-\mathbf{I}(w_0)} = \Delta(w_0)$, the simple Verma module.
- ► The dual \mathcal{Y}^{\bullet} of \mathcal{X}^{\bullet} is a coresolution of L(e) by costandard modules, it has length $I(w_0)$ and $\mathcal{Y}^{I(w_0)} = \nabla(w_0) = \Delta(w_0)$.
- Standard and costandard modules are homologically orthogonal and hence all derived homs are realized already in the homotopy category.
- The identity on $\Delta(w_0)$ gives a homomorphism from \mathcal{X}^{\bullet} to $\mathcal{Y}^{\bullet}[2l(w_0)]$ which is clearly not homotopic to zero.

DQC

Proposition. proj.dim $(L(w)) = 2I(w_0) - I(w)$ for all $w \in W$

The inequality \leq **(BGG):** For w_0 this is already done before. We have $\text{Ker} \hookrightarrow \Delta(w) \twoheadrightarrow L(w)$ where Ker has a filtration with subquotients L(x), I(x) > I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: $\operatorname{proj.dim}(L(e)) = 2I(w_0)$

Proof.

- ► Let \mathcal{X}^{\bullet} be the BGG resolution of L(e) by Verma modules. It has length $\mathbf{I}(w_0)$ and $\mathcal{X}^{-\mathbf{I}(w_0)} = \Delta(w_0)$, the simple Verma module.
- ► The dual \mathcal{Y}^{\bullet} of \mathcal{X}^{\bullet} is a coresolution of L(e) by costandard modules, it has length $I(w_0)$ and $\mathcal{Y}^{I(w_0)} = \nabla(w_0) = \Delta(w_0)$.
- Standard and costandard modules are homologically orthogonal and hence all derived homs are realized already in the homotopy category.
- The identity on ∆(w₀) gives a homomorphism from X[•] to Y[•][2l(w₀)] which is clearly not homotopic to zero.

Proposition. proj.dim $(L(w)) = 2I(w_0) - I(w)$ for all $w \in W$

The inequality \leq **(BGG):** For w_0 this is already done before. We have $\text{Ker} \hookrightarrow \Delta(w) \twoheadrightarrow L(w)$ where Ker has a filtration with subquotients L(x), I(x) > I(w). Now use the long exact sequence and the standard dimension shift argument.

The inequality \geq : Enough to prove: $\operatorname{proj.dim}(L(e)) = 2I(w_0)$

Proof.

- ► Let \mathcal{X}^{\bullet} be the BGG resolution of L(e) by Verma modules. It has length $\mathbf{I}(w_0)$ and $\mathcal{X}^{-\mathbf{I}(w_0)} = \Delta(w_0)$, the simple Verma module.
- ► The dual \mathcal{Y}^{\bullet} of \mathcal{X}^{\bullet} is a coresolution of L(e) by costandard modules, it has length $I(w_0)$ and $\mathcal{Y}^{I(w_0)} = \nabla(w_0) = \Delta(w_0)$.
- Standard and costandard modules are homologically orthogonal and hence all derived homs are realized already in the homotopy category.
- The identity on ∆(w₀) gives a homomorphism from X[•] to Y[•][2l(w₀)] which is clearly not homotopic to zero.

Proof.

- We have $\nabla(w_0) = L(w_0)$ so in this case the claim is already established.
- Now do induction using standard dimension shift argument and the short exact sequence L(w) → ∇(w) → Coker where Coker is filtered by L(x) with I(x) > I(w).

Proof.

- We have $\nabla(w_0) = L(w_0)$ so in this case the claim is already established.
- Now do induction using standard dimension shift argument and the short exact sequence L(w) → ∇(w) → Coker where Coker is filtered by L(x) with I(x) > I(w).

Proof.

- ▶ We have $\nabla(w_0) = L(w_0)$ so in this case the claim is already established.
- Now do induction using standard dimension shift argument and the short exact sequence L(w) → ∇(w) → Coker where Coker is filtered by L(x) with I(x) > I(w).

- We have $\nabla(w_0) = L(w_0)$ so in this case the claim is already established.
- Now do induction using standard dimension shift argument and the short exact sequence L(w) → ∇(w) → Coker where Coker is filtered by L(x) with I(x) > I(w).

- We have ∇(w₀) = L(w₀) so in this case the claim is already established.
- Now do induction using standard dimension shift argument and the short exact sequence L(w) → ∇(w) → Coker where Coker is filtered by L(x) with I(x) > I(w).

- We have ∇(w₀) = L(w₀) so in this case the claim is already established.
- Now do induction using standard dimension shift argument and the short exact sequence L(w) → ∇(w) → Coker where Coker is filtered by L(x) with I(x) > I(w).

 $\mathbb{Z}[W]$ — the integral group algebra of W

 $\{H_w := w\}$ — the standard basis of $\mathbb{Z}[W]$

 $\{\underline{H}_w\}$ — the Kazhdan-Lusztig basis of $\mathbb{Z}[W]$

Fact. $\underline{H}_{x}\underline{H}_{y} = \sum_{z} c_{x,y}^{z}\underline{H}_{z}$ with all $c_{x,y}^{z} \in \{0, 1, 2, \dots\}$.

Left KL-order: $z \ge_L y$ if there is x such that $c_{x,y}^z > 0$.

Left KL-cell: $y \sim_L z$ if $y \geq_L z$ and $z \geq_L y$.

Note: Similarly right order \geq_R and right cells \sim_R

Note: Similarly two-sided order \geq_J and two-sided cells \sim_J

$\mathbb{Z}[W]$ — the integral group algebra of W

 $\{H_w := w\}$ — the standard basis of $\mathbb{Z}[W]$

 $\{\underline{H}_w\}$ — the Kazhdan-Lusztig basis of $\mathbb{Z}[W]$

Fact. $\underline{H}_{x}\underline{H}_{y} = \sum_{z} c_{x,y}^{z}\underline{H}_{z}$ with all $c_{x,y}^{z} \in \{0, 1, 2, \dots\}$.

Left KL-order: $z \ge_L y$ if there is x such that $c_{x,y}^z > 0$.

Left KL-cell: $y \sim_L z$ if $y \geq_L z$ and $z \geq_L y$.

Note: Similarly right order \geq_R and right cells \sim_R

Note: Similarly two-sided order \geq_J and two-sided cells \sim_J

 $\mathbb{Z}[W]$ — the integral group algebra of W

 ${H_w := w}$ — the standard basis of $\mathbb{Z}[W]$

 $\{\underline{H}_w\}$ — the Kazhdan-Lusztig basis of $\mathbb{Z}[W]$

Fact. $\underline{H}_{x}\underline{H}_{y} = \sum_{z} c_{x,y}^{z}\underline{H}_{z}$ with all $c_{x,y}^{z} \in \{0, 1, 2, \dots\}$.

Left KL-order: $z \ge_L y$ if there is x such that $c_{x,y}^z > 0$.

Left KL-cell: $y \sim_L z$ if $y \geq_L z$ and $z \geq_L y$.

Note: Similarly right order \geq_R and right cells \sim_R

Note: Similarly two-sided order \geq_J and two-sided cells \sim_J

 $\mathbb{Z}[W]$ — the integral group algebra of W

 $\{H_w := w\}$ — the standard basis of $\mathbb{Z}[W]$

 $\{\underline{H}_w\}$ — the Kazhdan-Lusztig basis of $\mathbb{Z}[W]$

Fact. $\underline{H}_{x}\underline{H}_{y} = \sum_{z} c_{x,y}^{z}\underline{H}_{z}$ with all $c_{x,y}^{z} \in \{0, 1, 2, \dots\}$.

Left KL-order: $z \ge_L y$ if there is x such that $c_{x,y}^z > 0$.

Left KL-cell: $y \sim_L z$ if $y \geq_L z$ and $z \geq_L y$.

Note: Similarly right order \geq_R and right cells \sim_R

Note: Similarly two-sided order \geq_J and two-sided cells \sim_J

 $\mathbb{Z}[W]$ — the integral group algebra of W

 ${H_w := w}$ — the standard basis of $\mathbb{Z}[W]$

 $\{\underline{H}_w\}$ — the Kazhdan-Lusztig basis of $\mathbb{Z}[W]$

Fact. $\underline{H}_{x}\underline{H}_{y} = \sum_{z} c_{x,y}^{z}\underline{H}_{z}$ with all $c_{x,y}^{z} \in \{0, 1, 2, \dots\}$.

Left KL-order: $z \ge_L y$ if there is x such that $c_{x,v}^z > 0$.

Left KL-cell: $y \sim_L z$ if $y \geq_L z$ and $z \geq_L y$.

Note: Similarly right order \geq_R and right cells \sim_R

Note: Similarly two-sided order \geq_J and two-sided cells \sim_J

 $\mathbb{Z}[W] - \text{the integral group algebra of } W$ $\{H_w := w\} - \text{the standard basis of } \mathbb{Z}[W]$ $\{\underline{H}_w\} - \text{the Kazhdan-Lusztig basis of } \mathbb{Z}[W]$

Fact. $\underline{H}_{x}\underline{H}_{y} = \sum_{z} c_{x,y}^{z}\underline{H}_{z}$ with all $c_{x,y}^{z} \in \{0, 1, 2, \dots\}$.

Left KL-order: $z \ge_L y$ if there is x such that $c_{x,y}^z > 0$.

Left KL-cell: $y \sim_L z$ if $y \geq_L z$ and $z \geq_L y$.

Note: Similarly right order \geq_R and right cells \sim_R

Note: Similarly two-sided order \geq_J and two-sided cells \sim_J

 $\mathbb{Z}[W]$ — the integral group algebra of W

 ${H_w := w}$ — the standard basis of $\mathbb{Z}[W]$

 $\{\underline{H}_w\}$ — the Kazhdan-Lusztig basis of $\mathbb{Z}[W]$

Fact. $\underline{H}_{x}\underline{H}_{y} = \sum_{z} c_{x,y}^{z}\underline{H}_{z}$ with all $c_{x,y}^{z} \in \{0, 1, 2, ...\}$.

Left KL-order: $z \ge_L y$ if there is x such that $c_{x,y}^z > 0$.

Left KL-cell: $y \sim_L z$ if $y \geq_L z$ and $z \geq_L y$.

Note: Similarly right order \geq_R and right cells \sim_R

Note: Similarly two-sided order \geq_J and two-sided cells \sim_J

 $\mathbb{Z}[W]$ — the integral group algebra of W

 ${H_w := w}$ — the standard basis of $\mathbb{Z}[W]$

 $\{\underline{H}_w\}$ — the Kazhdan-Lusztig basis of $\mathbb{Z}[W]$

Fact. $\underline{H}_{x}\underline{H}_{y} = \sum_{z} c_{x,y}^{z}\underline{H}_{z}$ with all $c_{x,y}^{z} \in \{0, 1, 2, ...\}$.

Left KL-order: $z \ge_L y$ if there is x such that $c_{x,y}^z > 0$.

Left KL-cell: $y \sim_L z$ if $y \geq_L z$ and $z \geq_L y$.

Note: Similarly right order \geq_R and right cells \sim_R

Note: Similarly two-sided order \geq_J and two-sided cells \sim_J

 $\mathbb{Z}[W]$ — the integral group algebra of W

 ${H_w := w}$ — the standard basis of $\mathbb{Z}[W]$

 $\{\underline{H}_w\}$ — the Kazhdan-Lusztig basis of $\mathbb{Z}[W]$

Fact. $\underline{H}_{x}\underline{H}_{y} = \sum_{z} c_{x,y}^{z}\underline{H}_{z}$ with all $c_{x,y}^{z} \in \{0, 1, 2, ...\}$.

Left KL-order: $z \ge_L y$ if there is x such that $c_{x,y}^z > 0$.

Left KL-cell: $y \sim_L z$ if $y \geq_L z$ and $z \geq_L y$.

Note: Similarly right order \geq_R and right cells \sim_R

Note: Similarly two-sided order \geq_J and two-sided cells \sim_J

 $\mathbb{Z}[W]$ — the integral group algebra of W

 ${H_w := w}$ — the standard basis of $\mathbb{Z}[W]$

 $\{\underline{H}_w\}$ — the Kazhdan-Lusztig basis of $\mathbb{Z}[W]$

Fact. $\underline{H}_{x}\underline{H}_{y} = \sum_{z} c_{x,y}^{z}\underline{H}_{z}$ with all $c_{x,y}^{z} \in \{0, 1, 2, ...\}$.

Left KL-order: $z \ge_L y$ if there is x such that $c_{x,y}^z > 0$.

Left KL-cell: $y \sim_L z$ if $y \geq_L z$ and $z \geq_L y$.

Note: Similarly right order \geq_R and right cells \sim_R

Note: Similarly two-sided order \geq_J and two-sided cells \sim_J

 $W = S_n$

 $\lambda \vdash n$

 SYT_{λ} — the set of standard Young tableaux of shape λ

Robinson-Schensted correspondence. $S_n \xrightarrow{\mathsf{RS}} \bigcup_{\lambda \vdash n} \operatorname{SYT}_{\lambda} \times \operatorname{SYT}_{\lambda}$

Fact: Two-sided cell of w: all x such that RS(x) and RS(w) have the same shape

Fact: Left cell of w: all x such that RS(x) and RS(w) have the same first component

Fact: Right cell of w: all x such that RS(x) and RS(w) have the same second component

200

 $W = S_n$

 $\lambda \vdash n$

 SYT_{λ} — the set of standard Young tableaux of shape λ

Robinson-Schensted correspondence. $S_n \xrightarrow{\mathsf{RS}} \bigcup_{\lambda \vdash n} \operatorname{SYT}_{\lambda} \times \operatorname{SYT}_{\lambda}$

Fact: Two-sided cell of w: all x such that RS(x) and RS(w) have the same shape

Fact: Left cell of w: all x such that RS(x) and RS(w) have the same first component

Fact: Right cell of w: all x such that RS(x) and RS(w) have the same second component

200

 $W = S_n$

 $\lambda \vdash n$

 SYT_{λ} — the set of standard Young tableaux of shape λ

Robinson-Schensted correspondence. $S_n \xrightarrow{\mathsf{RS}} \bigcup_{\lambda \vdash n} \operatorname{SYT}_{\lambda} \times \operatorname{SYT}_{\lambda}$

Fact: Two-sided cell of w: all x such that RS(x) and RS(w) have the same shape

Fact: Left cell of w: all x such that RS(x) and RS(w) have the same first component

Fact: Right cell of w: all x such that RS(x) and RS(w) have the same second component

 $W = S_n$

 $\lambda \vdash n$

 SYT_{λ} — the set of standard Young tableaux of shape λ

Robinson-Schensted correspondence. $S_n \xrightarrow{\mathsf{RS}} \bigcup_{\lambda \vdash n} \operatorname{SYT}_{\lambda} \times \operatorname{SYT}_{\lambda}$

Fact: Two-sided cell of w: all x such that RS(x) and RS(w) have the same shape

Fact: Left cell of w: all x such that RS(x) and RS(w) have the same first component

Fact: Right cell of w: all x such that RS(x) and RS(w) have the same second component

 $W = S_n$

 $\lambda \vdash n$

 SYT_{λ} — the set of standard Young tableaux of shape λ

Robinson-Schensted correspondence. $S_n \xrightarrow{\mathsf{RS}} \bigcup_{\lambda \vdash n} \operatorname{SYT}_{\lambda} \times \operatorname{SYT}_{\lambda}$

Fact: Two-sided cell of w: all x such that RS(x) and RS(w) have the same shape

Fact: Left cell of w: all x such that RS(x) and RS(w) have the same first component

Fact: Right cell of w: all x such that RS(x) and RS(w) have the same second component

 $W = S_n$

 $\lambda \vdash n$

 SYT_{λ} — the set of standard Young tableaux of shape λ

Robinson-Schensted correspondence. $S_n \xrightarrow{\mathsf{RS}} \bigcup_{\lambda \vdash n} \operatorname{SYT}_{\lambda} \times \operatorname{SYT}_{\lambda}$

Fact: Two-sided cell of w: all x such that RS(x) and RS(w) have the same shape

Fact: Left cell of w: all x such that RS(x) and RS(w) have the same first component

Fact: Right cell of w: all x such that RS(x) and RS(w) have the same second component

 $W = S_n$

 $\lambda \vdash n$

 SYT_{λ} — the set of standard Young tableaux of shape λ

Robinson-Schensted correspondence. $S_n \xrightarrow{\mathsf{RS}} \bigcup_{\lambda \vdash n} \operatorname{SYT}_{\lambda} \times \operatorname{SYT}_{\lambda}$

Fact: Two-sided cell of w: all x such that RS(x) and RS(w) have the same shape

Fact: Left cell of w: all x such that RS(x) and RS(w) have the same first component

Fact: Right cell of w: all x such that RS(x) and RS(w) have the same second component

 $W = S_n$

 $\lambda \vdash n$

 SYT_{λ} — the set of standard Young tableaux of shape λ

Robinson-Schensted correspondence. $S_n \xrightarrow{\mathsf{RS}} \bigcup_{\lambda \vdash n} \operatorname{SYT}_{\lambda} \times \operatorname{SYT}_{\lambda}$

Fact: Two-sided cell of w: all x such that RS(x) and RS(w) have the same shape

Fact: Left cell of w: all x such that RS(x) and RS(w) have the same first component

Fact: Right cell of w: all x such that RS(x) and RS(w) have the same second component

 $W = S_n$

 $\lambda \vdash n$

 SYT_{λ} — the set of standard Young tableaux of shape λ

Robinson-Schensted correspondence. $S_n \xrightarrow{\mathsf{RS}} \bigcup_{\lambda \vdash n} \operatorname{SYT}_{\lambda} \times \operatorname{SYT}_{\lambda}$

Fact: Two-sided cell of w: all x such that RS(x) and RS(w) have the same shape

Fact: Left cell of w: all x such that RS(x) and RS(w) have the same first component

Fact: Right cell of w: all x such that RS(x) and RS(w) have the same second component

Lusztig's **a**-function in type A

 $W = S_n$

Fact: Each two-sided cell of w contains the longest element for some parabolic (Young) subgroup

Fact: If some 2-sided cell contains longest elements for different parabolic subgroups, all these elements have the same length

Definition of a-function: $\mathbf{a}: W \to \{0, 1, 2, ...\}$ is the unique function such that

- ► a is constant on 2-sided cells;
- a(w) = I(w) if w is the longest element in a parabolic subgroup

Example. For $S_3 = \{e, s, t, st, ts, sts = tst = w_0\}$ we have

$W = S_n$

Fact: Each two-sided cell of *w* contains the longest element for some parabolic (Young) subgroup

Fact: If some 2-sided cell contains longest elements for different parabolic subgroups, all these elements have the same length

Definition of a-function: $\mathbf{a}: W \to \{0, 1, 2, ...\}$ is the unique function such that

- ► a is constant on 2-sided cells;
- a(w) = I(w) if w is the longest element in a parabolic subgroup

Example. For $S_3 = \{e, s, t, st, ts, sts = tst = w_0\}$ we have

nac

 $W = S_n$

Fact: Each two-sided cell of w contains the longest element for some parabolic (Young) subgroup

Fact: If some 2-sided cell contains longest elements for different parabolic subgroups, all these elements have the same length

Definition of a-function: $\mathbf{a}: W \to \{0, 1, 2, ...\}$ is the unique function such that

- ► a is constant on 2-sided cells;
- a(w) = I(w) if w is the longest element in a parabolic subgroup

 $W = S_n$

Fact: Each two-sided cell of w contains the longest element for some parabolic (Young) subgroup

Fact: If some 2-sided cell contains longest elements for different parabolic subgroups, all these elements have the same length

Definition of a-function: $\mathbf{a}: W \to \{0, 1, 2, ...\}$ is the unique function such that

- ▶ a is constant on 2-sided cells;
- a(w) = I(w) if w is the longest element in a parabolic subgroup

 $W = S_n$

Fact: Each two-sided cell of *w* contains the longest element for some parabolic (Young) subgroup

Fact: If some 2-sided cell contains longest elements for different parabolic subgroups, all these elements have the same length

Definition of a-function: $\mathbf{a}: W \to \{0,1,2,\dots\}$ is the unique function such that

- ▶ a is constant on 2-sided cells;
- ▶ $\mathbf{a}(w) = \mathbf{I}(w)$ if w is the longest element in a parabolic subgroup

 $W = S_n$

Fact: Each two-sided cell of w contains the longest element for some parabolic (Young) subgroup

Fact: If some 2-sided cell contains longest elements for different parabolic subgroups, all these elements have the same length

Definition of a-function: $\mathbf{a}: W \to \{0,1,2,\dots\}$ is the unique function such that

- ► **a** is constant on 2-sided cells;
- ▶ $\mathbf{a}(w) = \mathbf{I}(w)$ if w is the longest element in a parabolic subgroup

 $W = S_n$

Fact: Each two-sided cell of w contains the longest element for some parabolic (Young) subgroup

Fact: If some 2-sided cell contains longest elements for different parabolic subgroups, all these elements have the same length

Definition of a-function: $\textbf{a}: \mathcal{W} \to \{0,1,2,\dots\}$ is the unique function such that

- ► **a** is constant on 2-sided cells;
- $\mathbf{a}(w) = \mathbf{I}(w)$ if w is the longest element in a parabolic subgroup

 $W = S_n$

Fact: Each two-sided cell of *w* contains the longest element for some parabolic (Young) subgroup

Fact: If some 2-sided cell contains longest elements for different parabolic subgroups, all these elements have the same length

Definition of a-function: a : $W \rightarrow \{0, 1, 2, ...\}$ is the unique function such that

- ▶ a is constant on 2-sided cells:
- $\mathbf{a}(w) = \mathbf{I}(w)$ if w is the longest element in a parabolic subgroup

Example. For $S_3 = \{e, s, t, st, ts, sts = tst = w_0\}$ we have

	Volodymyr Mazorchuk			myr Ma	azorchuk	Homological properties of category O, part I 14/20		
							《日》《國》《臣》《臣》 [][]	500

 $W = S_n$

Fact: Each two-sided cell of w contains the longest element for some parabolic (Young) subgroup

Fact: If some 2-sided cell contains longest elements for different parabolic subgroups, all these elements have the same length

Definition of a-function: $\textbf{a}: \mathcal{W} \to \{0,1,2,\dots\}$ is the unique function such that

- ► **a** is constant on 2-sided cells;
- $\mathbf{a}(w) = \mathbf{I}(w)$ if w is the longest element in a parabolic subgroup

w	e	s	t	st	ts	sts
a (w)	0	1	1	1	1	3

 $W = S_n$

Fact: Each two-sided cell of w contains the longest element for some parabolic (Young) subgroup

Fact: If some 2-sided cell contains longest elements for different parabolic subgroups, all these elements have the same length

Definition of a-function: $\textbf{a}: \mathcal{W} \to \{0,1,2,\dots\}$ is the unique function such that

- ► **a** is constant on 2-sided cells;
- $\mathbf{a}(w) = \mathbf{I}(w)$ if w is the longest element in a parabolic subgroup

w	e	s	t	st	ts	sts
a (w)	0	1	1	1	1	3

Fact (Bernstein-S. Gelfand):

Obvious fact: Gr(\mathcal{O}_0) $\cong \mathbb{Z}[W]$ via $[\Delta(w)] \mapsto H_w$.

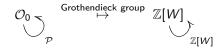
 θ_w — indecomposable projective functor s.t. $\theta_w P(e) = P(w)$, $w \in W$

Kazhdan-Lusztig conjecture=theorem: $Gr_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[W]$ via $[\theta_w] \mapsto \underline{H}_w$.

Note: Recent algebraic proof by Elias and Williamson.

nac

Fact (Bernstein-S. Gelfand):



Obvious fact: $Gr(\mathcal{O}_0) \cong \mathbb{Z}[W]$ via $[\Delta(w)] \mapsto H_w$.

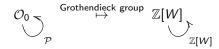
 θ_w — indecomposable projective functor s.t. $\theta_w P(e) = P(w)$, $w \in W$

Kazhdan-Lusztig conjecture=theorem: $Gr_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[W]$ via $[\theta_w] \mapsto \underline{H}_w$.

Note: Recent algebraic proof by Elias and Williamson.

nac

Fact (Bernstein-S. Gelfand):



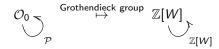
Obvious fact: Gr(\mathcal{O}_0) $\cong \mathbb{Z}[W]$ via $[\Delta(w)] \mapsto H_w$.

 θ_w — indecomposable projective functor s.t. $\theta_w P(e) = P(w)$, $w \in W$

Kazhdan-Lusztig conjecture=theorem: $Gr_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[W]$ via $[\theta_w] \mapsto \underline{H}_w$.

Note: Recent algebraic proof by Elias and Williamson.

Fact (Bernstein-S. Gelfand):



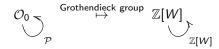
Obvious fact: $Gr(\mathcal{O}_0) \cong \mathbb{Z}[W]$ via $[\Delta(w)] \mapsto H_w$.

 θ_w — indecomposable projective functor s.t. $\theta_w P(e) = P(w)$, $w \in W$

Kazhdan-Lusztig conjecture=theorem: $Gr_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[W]$ via $[\theta_w] \mapsto \underline{H}_w$.

Note: Recent algebraic proof by Elias and Williamson.

Fact (Bernstein-S. Gelfand):



Obvious fact: $Gr(\mathcal{O}_0) \cong \mathbb{Z}[W]$ via $[\Delta(w)] \mapsto H_w$.

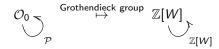
 θ_w — indecomposable projective functor s.t. $\theta_w P(e) = P(w)$, $w \in W$

Kazhdan-Lusztig conjecture=theorem: $Gr_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[W]$ via $[\theta_w] \mapsto \underline{H}_w$.

Note: Recent algebraic proof by Elias and Williamson.

DQC

Fact (Bernstein-S. Gelfand):



Obvious fact: $Gr(\mathcal{O}_0) \cong \mathbb{Z}[W]$ via $[\Delta(w)] \mapsto H_w$.

 θ_w — indecomposable projective functor s.t. $\theta_w P(e) = P(w)$, $w \in W$

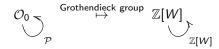
Kazhdan-Lusztig conjecture=theorem: $\operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[W]$ via $[\theta_w] \mapsto \underline{H}_w$.

Note: Recent algebraic proof by Elias and Williamson.

프 > 프

200

Fact (Bernstein-S. Gelfand):



Obvious fact: $Gr(\mathcal{O}_0) \cong \mathbb{Z}[W]$ via $[\Delta(w)] \mapsto H_w$.

 θ_w — indecomposable projective functor s.t. $\theta_w P(e) = P(w)$, $w \in W$

Kazhdan-Lusztig conjecture=theorem: $\operatorname{Gr}_{\oplus}(\mathcal{P}) \cong \mathbb{Z}[W]$ via $[\theta_w] \mapsto \underline{H}_w$.

Note: Recent algebraic proof by Elias and Williamson.

프 > 프

200

Lusztig's **a**-function in general

Left cell in W gives rise to a cell representation of W (in type A: Specht module)

This can be modeled (i.e. categorified) via action of ${\cal P}$ on the additive category of certain self-dual modules in ${\cal O}_0$

Such indecomposable self-dual modules are naturally indexed (for all cells at the same time) by $w \in W$, say $w \mapsto Q(w)$

Definition. $\mathbf{a}(w) = \frac{1}{2}(\text{Loewy.Length}(Q(w)) - 1)$

- ▶ a is constant on 2-sided cells;
- ▶ $\mathbf{a}(w) = \mathbf{I}(w)$ if w is the longest element in a parabolic subgroup

Lusztig's **a**-function in general

Left cell in W gives rise to a cell representation of W (in type A: Specht module)

This can be modeled (i.e. categorified) via action of ${\cal P}$ on the additive category of certain self-dual modules in ${\cal O}_0$

Such indecomposable self-dual modules are naturally indexed (for all cells at the same time) by $w \in W$, say $w \mapsto Q(w)$

Definition. $\mathbf{a}(w) = \frac{1}{2}(\text{Loewy.Length}(Q(w)) - 1)$

Easy facts:

▶ a is constant on 2-sided cells;

Lusztig's **a**-function in general

Left cell in W gives rise to a cell representation of W (in type A: Specht module)

This can be modeled (i.e. categorified) via action of ${\cal P}$ on the additive category of certain self-dual modules in ${\cal O}_0$

Such indecomposable self-dual modules are naturally indexed (for all cells at the same time) by $w \in W$, say $w \mapsto Q(w)$

Definition. $\mathbf{a}(w) = \frac{1}{2}(\text{Loewy.Length}(Q(w)) - 1)$

Easy facts:

▶ a is constant on 2-sided cells;

This can be modeled (i.e. categorified) via action of ${\cal P}$ on the additive category of certain self-dual modules in ${\cal O}_0$

Such indecomposable self-dual modules are naturally indexed (for all cells at the same time) by $w \in W$, say $w \mapsto Q(w)$

Definition. $\mathbf{a}(w) = \frac{1}{2}(\text{Loewy.Length}(Q(w)) - 1)$

Easy facts:

▶ a is constant on 2-sided cells;

This can be modeled (i.e. categorified) via action of ${\cal P}$ on the additive category of certain self-dual modules in ${\cal O}_0$

Such indecomposable self-dual modules are naturally indexed (for all cells at the same time) by $w \in W$, say $w \mapsto Q(w)$

Definition. $\mathbf{a}(w) = \frac{1}{2}(\text{Loewy.Length}(Q(w)) - 1)$

Easy facts:

▶ a is constant on 2-sided cells;

This can be modeled (i.e. categorified) via action of ${\cal P}$ on the additive category of certain self-dual modules in ${\cal O}_0$

Such indecomposable self-dual modules are naturally indexed (for all cells at the same time) by $w \in W$, say $w \mapsto Q(w)$

Definition. $\mathbf{a}(w) = \frac{1}{2}(\text{Loewy.Length}(Q(w)) - 1)$

- ▶ a is constant on 2-sided cells;
- ▶ $\mathbf{a}(w) = \mathbf{I}(w)$ if w is the longest element in a parabolic subgroup

This can be modeled (i.e. categorified) via action of ${\cal P}$ on the additive category of certain self-dual modules in ${\cal O}_0$

Such indecomposable self-dual modules are naturally indexed (for all cells at the same time) by $w \in W$, say $w \mapsto Q(w)$

Definition. $\mathbf{a}(w) = \frac{1}{2}(\text{Loewy.Length}(Q(w)) - 1)$

- ▶ a is constant on 2-sided cells;
- ▶ $\mathbf{a}(w) = \mathbf{I}(w)$ if w is the longest element in a parabolic subgroup

This can be modeled (i.e. categorified) via action of ${\cal P}$ on the additive category of certain self-dual modules in ${\cal O}_0$

Such indecomposable self-dual modules are naturally indexed (for all cells at the same time) by $w \in W$, say $w \mapsto Q(w)$

Definition. $\mathbf{a}(w) = \frac{1}{2}(\text{Loewy.Length}(Q(w)) - 1)$

- ▶ a is constant on 2-sided cells;
- $\mathbf{a}(w) = \mathbf{I}(w)$ if w is the longest element in a parabolic subgroup

This can be modeled (i.e. categorified) via action of ${\cal P}$ on the additive category of certain self-dual modules in ${\cal O}_0$

Such indecomposable self-dual modules are naturally indexed (for all cells at the same time) by $w \in W$, say $w \mapsto Q(w)$

Definition. $\mathbf{a}(w) = \frac{1}{2}(\text{Loewy.Length}(Q(w)) - 1)$

- ▶ a is constant on 2-sided cells;
- $\mathbf{a}(w) = \mathbf{I}(w)$ if w is the longest element in a parabolic subgroup

Theorem. Let $w \in W$.

- ▶ proj.dim $(T(w)) = \mathbf{a}(w)$
- $\operatorname{proj.dim}(I(w)) = 2\mathbf{a}(w_0 w)$

Step 1. Both $\operatorname{proj.dim}(T(w))$ and $\operatorname{proj.dim}(I(w))$ are constant on two-sided cells.

Why:

- projective functors preserve both the additive category of tilting modules, the additive category of projective modules and the additive category of injective modules,
- use projective functors to related projective resolutions of indecomposable (tilting or injective modules) inside the same two-sided cell

San

Theorem. Let $w \in W$.

▶ proj.dim(T(w)) = a(w)
▶ proj.dim(I(w)) = 2a(w₀w)

Step 1. Both $\operatorname{proj.dim}(T(w))$ and $\operatorname{proj.dim}(I(w))$ are constant on two-sided cells.

Why:

- projective functors preserve both the additive category of tilting modules, the additive category of projective modules and the additive category of injective modules,
- use projective functors to related projective resolutions of indecomposable (tilting or injective modules) inside the same two-sided cell

San

Theorem. Let $w \in W$.

- ▶ proj.dim $(T(w)) = \mathbf{a}(w)$
- $\operatorname{proj.dim}(I(w)) = 2\mathbf{a}(w_0 w)$

Step 1. Both $\operatorname{proj.dim}(T(w))$ and $\operatorname{proj.dim}(I(w))$ are constant on two-sided cells.

Why:

- projective functors preserve both the additive category of tilting modules, the additive category of projective modules and the additive category of injective modules,
- use projective functors to related projective resolutions of indecomposable (tilting or injective modules) inside the same two-sided cell

nac

Theorem. Let $w \in W$.

- ▶ proj.dim $(T(w)) = \mathbf{a}(w)$
- $\operatorname{proj.dim}(I(w)) = 2\mathbf{a}(w_0 w)$

Step 1. Both $\operatorname{proj.dim}(T(w))$ and $\operatorname{proj.dim}(I(w))$ are constant on two-sided cells.

Why:

- projective functors preserve both the additive category of tilting modules, the additive category of projective modules and the additive category of injective modules,
- use projective functors to related projective resolutions of indecomposable (tilting or injective modules) inside the same two-sided cell

Theorem. Let $w \in W$.

- ▶ proj.dim $(T(w)) = \mathbf{a}(w)$
- $\operatorname{proj.dim}(I(w)) = 2\mathbf{a}(w_0 w)$

Step 1. Both $\operatorname{proj.dim}(T(w))$ and $\operatorname{proj.dim}(I(w))$ are constant on two-sided cells.

Why:

- projective functors preserve both the additive category of tilting modules, the additive category of projective modules and the additive category of injective modules,
- use projective functors to related projective resolutions of indecomposable (tilting or injective modules) inside the same two-sided cell

Theorem. Let $w \in W$.

- ▶ proj.dim $(T(w)) = \mathbf{a}(w)$
- $\operatorname{proj.dim}(I(w)) = 2\mathbf{a}(w_0 w)$

Step 1. Both $\operatorname{proj.dim}(T(w))$ and $\operatorname{proj.dim}(I(w))$ are constant on two-sided cells.

Why:

- projective functors preserve both the additive category of tilting modules, the additive category of projective modules and the additive category of injective modules,
- use projective functors to related projective resolutions of indecomposable (tilting or injective modules) inside the same two-sided cell

Theorem. Let $w \in W$.

- ▶ proj.dim $(T(w)) = \mathbf{a}(w)$
- $\operatorname{proj.dim}(I(w)) = 2\mathbf{a}(w_0 w)$

Step 1. Both $\operatorname{proj.dim}(T(w))$ and $\operatorname{proj.dim}(I(w))$ are constant on two-sided cells.

Why:

- projective functors preserve both the additive category of tilting modules, the additive category of projective modules and the additive category of injective modules,
- use projective functors to related projective resolutions of indecomposable (tilting or injective modules) inside the same two-sided cell

DQC

Theorem. Let $w \in W$.

- ▶ proj.dim $(T(w)) = \mathbf{a}(w)$
- $\operatorname{proj.dim}(I(w)) = 2\mathbf{a}(w_0 w)$

Step 1. Both $\operatorname{proj.dim}(T(w))$ and $\operatorname{proj.dim}(I(w))$ are constant on two-sided cells.

Why:

- projective functors preserve both the additive category of tilting modules, the additive category of projective modules and the additive category of injective modules,
- use projective functors to related projective resolutions of indecomposable (tilting or injective modules) inside the same two-sided cell

Theorem. Let $w \in W$.

- ▶ proj.dim $(T(w)) = \mathbf{a}(w)$
- $\operatorname{proj.dim}(I(w)) = 2\mathbf{a}(w_0 w)$

Step 1. Both $\operatorname{proj.dim}(T(w))$ and $\operatorname{proj.dim}(I(w))$ are constant on two-sided cells.

Why:

- projective functors preserve both the additive category of tilting modules, the additive category of projective modules and the additive category of injective modules,
- use projective functors to related projective resolutions of indecomposable (tilting or injective modules) inside the same two-sided cell

Step 2

for w the longest element in a parabolic subcategory, the value $\operatorname{proj.dim}(\mathcal{T}(w))$ can be computed using Ringel self-duality of \mathcal{O} , the Koszul duality of Beilinson-Ginzburg-Soergel and computations of Loewy lengths of certain structural modules in \mathcal{O} by Irving

computation of $\operatorname{proj.dim}(I(w))$ is similar

This implies the result in type A, that is for $\mathfrak{g} = \mathfrak{sl}_n$

General case:

- uses crucially the Koszul duality for \mathcal{O}
- uses generalized parabolic categories associated with right KL-cells
- uses delicate computation of Loewy (=graded) lengths of certain modules of the form $\theta_x L(y)$ and the fact that the set of these modules is Koszul self-dual

Open problem: Determine proj.dim $(\theta_x L(y))$ for all $x, y \in W$

San

Step 2

for *w* the longest element in a parabolic subcategory, the value $\operatorname{proj.dim}(\mathcal{T}(w))$ can be computed using Ringel self-duality of \mathcal{O} , the Koszul duality of Beilinson-Ginzburg-Soergel and computations of Loewy lengths of certain structural modules in \mathcal{O} by Irving

computation of $\operatorname{proj.dim}(I(w))$ is similar

This implies the result in type A, that is for $\mathfrak{g} = \mathfrak{sl}_n$

General case:

- uses crucially the Koszul duality for \mathcal{O}
- uses generalized parabolic categories associated with right KL-cells
- uses delicate computation of Loewy (=graded) lengths of certain modules of the form $\theta_x L(y)$ and the fact that the set of these modules is Koszul self-dual

Open problem: Determine proj.dim $(\theta_x L(y))$ for all $x, y \in W$

San

for *w* the longest element in a parabolic subcategory, the value $\operatorname{proj.dim}(\mathcal{T}(w))$ can be computed using Ringel self-duality of \mathcal{O} , the Koszul duality of Beilinson-Ginzburg-Soergel and computations of Loewy lengths of certain structural modules in \mathcal{O} by Irving

computation of $\operatorname{proj.dim}(I(w))$ is similar

This implies the result in type A, that is for $\mathfrak{g} = \mathfrak{sl}_n$

General case:

- uses crucially the Koszul duality for \mathcal{O}
- uses generalized parabolic categories associated with right KL-cells
- uses delicate computation of Loewy (=graded) lengths of certain modules of the form $\theta_x L(y)$ and the fact that the set of these modules is Koszul self-dual

Open problem: Determine proj.dim $(\theta_x L(y))$ for all $x, y \in W$

for *w* the longest element in a parabolic subcategory, the value $\operatorname{proj.dim}(\mathcal{T}(w))$ can be computed using Ringel self-duality of \mathcal{O} , the Koszul duality of Beilinson-Ginzburg-Soergel and computations of Loewy lengths of certain structural modules in \mathcal{O} by Irving

computation of $\operatorname{proj.dim}(I(w))$ is similar

This implies the result in type A, that is for $\mathfrak{g} = \mathfrak{sl}_n$

General case:

- \blacktriangleright uses crucially the Koszul duality for ${\cal O}$
- uses generalized parabolic categories associated with right KL-cells
- uses delicate computation of Loewy (=graded) lengths of certain modules of the form $\theta_x L(y)$ and the fact that the set of these modules is Koszul self-dual

Open problem: Determine proj.dim $(\theta_x L(y))$ for all $x, y \in W$

for *w* the longest element in a parabolic subcategory, the value $\operatorname{proj.dim}(\mathcal{T}(w))$ can be computed using Ringel self-duality of \mathcal{O} , the Koszul duality of Beilinson-Ginzburg-Soergel and computations of Loewy lengths of certain structural modules in \mathcal{O} by Irving

computation of $\operatorname{proj.dim}(I(w))$ is similar

This implies the result in type A, that is for $\mathfrak{g} = \mathfrak{sl}_n$

General case:

- \blacktriangleright uses crucially the Koszul duality for ${\cal O}$
- ▶ uses generalized parabolic categories associated with right KL-cells
- ▶ uses delicate computation of Loewy (=graded) lengths of certain modules of the form θ_xL(y) and the fact that the set of these modules is Koszul self-dual

Open problem: Determine proj.dim $(\theta_x L(y))$ for all $x, y \in W$

500

for *w* the longest element in a parabolic subcategory, the value $\operatorname{proj.dim}(\mathcal{T}(w))$ can be computed using Ringel self-duality of \mathcal{O} , the Koszul duality of Beilinson-Ginzburg-Soergel and computations of Loewy lengths of certain structural modules in \mathcal{O} by Irving

computation of $\operatorname{proj.dim}(I(w))$ is similar

This implies the result in type A, that is for $\mathfrak{g} = \mathfrak{sl}_n$

General case:

 \blacktriangleright uses crucially the Koszul duality for ${\cal O}$

▶ uses generalized parabolic categories associated with right KL-cells

▶ uses delicate computation of Loewy (=graded) lengths of certain modules of the form θ_xL(y) and the fact that the set of these modules is Koszul self-dual

Open problem: Determine proj.dim $(\theta_x L(y))$ for all $x, y \in W$

DQC

for *w* the longest element in a parabolic subcategory, the value $\operatorname{proj.dim}(\mathcal{T}(w))$ can be computed using Ringel self-duality of \mathcal{O} , the Koszul duality of Beilinson-Ginzburg-Soergel and computations of Loewy lengths of certain structural modules in \mathcal{O} by Irving

computation of $\operatorname{proj.dim}(I(w))$ is similar

This implies the result in type A, that is for $\mathfrak{g} = \mathfrak{sl}_n$

General case:

- \blacktriangleright uses crucially the Koszul duality for ${\cal O}$
- ► uses generalized parabolic categories associated with right KL-cells
- ▶ uses delicate computation of Loewy (=graded) lengths of certain modules of the form θ_xL(y) and the fact that the set of these modules is Koszul self-dual

Open problem: Determine $\operatorname{proj.dim}(\theta_{x}L(y))$ for all $x, y \in W$

-

for *w* the longest element in a parabolic subcategory, the value $\operatorname{proj.dim}(\mathcal{T}(w))$ can be computed using Ringel self-duality of \mathcal{O} , the Koszul duality of Beilinson-Ginzburg-Soergel and computations of Loewy lengths of certain structural modules in \mathcal{O} by Irving

computation of $\operatorname{proj.dim}(I(w))$ is similar

This implies the result in type A, that is for $\mathfrak{g} = \mathfrak{sl}_n$

General case:

- \blacktriangleright uses crucially the Koszul duality for ${\cal O}$
- ► uses generalized parabolic categories associated with right KL-cells
- ► uses delicate computation of Loewy (=graded) lengths of certain modules of the form θ_xL(y) and the fact that the set of these modules is Koszul self-dual

Open problem: Determine $\operatorname{proj.dim}(\theta_{\times}L(y))$ for all $x, y \in W$

-

DQC

for *w* the longest element in a parabolic subcategory, the value $\operatorname{proj.dim}(\mathcal{T}(w))$ can be computed using Ringel self-duality of \mathcal{O} , the Koszul duality of Beilinson-Ginzburg-Soergel and computations of Loewy lengths of certain structural modules in \mathcal{O} by Irving

computation of $\operatorname{proj.dim}(I(w))$ is similar

This implies the result in type A, that is for $\mathfrak{g} = \mathfrak{sl}_n$

General case:

- \blacktriangleright uses crucially the Koszul duality for ${\cal O}$
- ► uses generalized parabolic categories associated with right KL-cells
- ► uses delicate computation of Loewy (=graded) lengths of certain modules of the form θ_xL(y) and the fact that the set of these modules is Koszul self-dual

Open problem: Determine $\operatorname{proj.dim}(\theta_{x}L(y))$ for all $x, y \in W$

= nac

for *w* the longest element in a parabolic subcategory, the value $\operatorname{proj.dim}(\mathcal{T}(w))$ can be computed using Ringel self-duality of \mathcal{O} , the Koszul duality of Beilinson-Ginzburg-Soergel and computations of Loewy lengths of certain structural modules in \mathcal{O} by Irving

computation of $\operatorname{proj.dim}(I(w))$ is similar

This implies the result in type A, that is for $\mathfrak{g} = \mathfrak{sl}_n$

General case:

- \blacktriangleright uses crucially the Koszul duality for ${\cal O}$
- ► uses generalized parabolic categories associated with right KL-cells
- ► uses delicate computation of Loewy (=graded) lengths of certain modules of the form θ_xL(y) and the fact that the set of these modules is Koszul self-dual

Open problem: Determine $\operatorname{proj.dim}(\theta_{x}L(y))$ for all $x, y \in W$

= nac

tilting: computable using the regular case and projective functors

injectives: computable using the regular case and projective functors

simples: open in general (known for the antidominant and the left cell of the dominant)

Koszul dual problem: graded length of an indecomposable projective in a parabolic $\ensuremath{\mathcal{O}}$

standard: open in general

Koszul dual problem: graded length of a standard in a parabolic ${\cal O}$

costandard: open in general

tilting: computable using the regular case and projective functors injectives: computable using the regular case and projective functors simples: open in general (known for the antidominant and the left cell of the dominant)

Koszul dual problem: graded length of an indecomposable projective in a parabolic $\ensuremath{\mathcal{O}}$

standard: open in general

Koszul dual problem: graded length of a standard in a parabolic ${\cal O}$

tilting: computable using the regular case and projective functors

injectives: computable using the regular case and projective functors simples: open in general (known for the antidominant and the left cell of the dominant)

Koszul dual problem: graded length of an indecomposable projective in a parabolic $\ensuremath{\mathcal{O}}$

standard: open in general

Koszul dual problem: graded length of a standard in a parabolic ${\cal O}$

- tilting: computable using the regular case and projective functors
- injectives: computable using the regular case and projective functors
- simples: open in general (known for the antidominant and the left cell of the dominant)
- Koszul dual problem: graded length of an indecomposable projective in a parabolic $\ensuremath{\mathcal{O}}$
- standard: open in general
- Koszul dual problem: graded length of a standard in a parabolic $\ensuremath{\mathcal{O}}$
- costandard: open in general

tilting: computable using the regular case and projective functors injectives: computable using the regular case and projective functors simples: open in general (known for the antidominant and the left cell of the dominant)

Koszul dual problem: graded length of an indecomposable projective in a parabolic $\ensuremath{\mathcal{O}}$

standard: open in general

Koszul dual problem: graded length of a standard in a parabolic ${\cal O}$

tilting: computable using the regular case and projective functors injectives: computable using the regular case and projective functors simples: open in general (known for the antidominant and the left cell of the dominant)

Koszul dual problem: graded length of an indecomposable projective in a parabolic $\ensuremath{\mathcal{O}}$

standard: open in general

Koszul dual problem: graded length of a standard in a parabolic ${\cal O}$

tilting: computable using the regular case and projective functors injectives: computable using the regular case and projective functors simples: open in general (known for the antidominant and the left cell of the dominant)

Koszul dual problem: graded length of an indecomposable projective in a parabolic $\ensuremath{\mathcal{O}}$

standard: open in general

Koszul dual problem: graded length of a standard in a parabolic ${\cal O}$

tilting: computable using the regular case and projective functors

injectives: computable using the regular case and projective functors

simples: open in general (known for the antidominant and the left cell of the dominant)

Koszul dual problem: graded length of an indecomposable projective in a parabolic $\ensuremath{\mathcal{O}}$

standard: open in general

Koszul dual problem: graded length of a standard in a parabolic ${\cal O}$

tilting: computable using the regular case and projective functors injectives: computable using the regular case and projective functors simples: open in general (known for the antidominant and the left cell of the dominant)

Koszul dual problem: graded length of an indecomposable projective in a parabolic $\ensuremath{\mathcal{O}}$

standard: open in general

Koszul dual problem: graded length of a standard in a parabolic O costandard: open in general

tilting: computable using the regular case and projective functors injectives: computable using the regular case and projective functors simples: open in general (known for the antidominant and the left cell of the dominant)

Koszul dual problem: graded length of an indecomposable projective in a parabolic $\ensuremath{\mathcal{O}}$

standard: open in general

Koszul dual problem: graded length of a standard in a parabolic O costandard: open in general

THANK YOU!!!

≡ ∽ < (~

3

3 N