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Setup and notation

g — a semi-simple finite dimensional Lie algebra over C

For example: g = sln(C)

g = n− ⊕ h⊕ n+ — fixed triangular decomposition

For example, if g = sln(C), then

n− — lower triangular matrices
h — diagonal matrices
n+ — upper triangular matrices

for a Lie algebra a we denote by U(a) its universal enveloping algebra
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Category O
Definition. BGG category O is defined as the full subcategory of the
category of all g-modules containing all modules M satisfying the
following conditions:

I M is finitely generated;
I the action of h on M is diagonalizable (i.e M is a weight module);
I the action of U(n+) on M is locally finite.

M(λ) — the Verma module with highest weight λ ∈ h∗

Fact. M(λ) ∈ O

L(λ) — the simple top of M(λ)

Fact. L(λ) ∈ O

Fact. Every simple object in O is isomorphic to some L(λ)
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O and finite dimensional associative algebras

Z (g) — the center of U(g)

Central character decomposition: O =
⊕

m∈Max(Z(g))

Om

Om is the full subcategory of O consisting of all modules on which m acts
locally nilpotently

Fact. Om ∼= Am-mod for some finite dimensional basic associative algebra
Am

Fact. O is a highest weight category in the sense of Cline-Parshall-Scott
with Verma modules being standard modules

Reformulation. Am is quasi-hereditary in the sense of Dlab-Ringel

Note. Am is usually decomposable (for sln all indecomposable summands
of Am are isomorphic)
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Structural modules in O

λ ∈ h∗

L(λ) — simple module with highest weight λ

P(λ) — indecomposable projective cover of L(λ)

I (λ) — indecomposable injective envelope of L(λ)

∆(λ) = M(λ) — standard quotient of P(λ)

∇(λ) — costandard submodule of I (λ)

T (λ) — tilting envelope of ∆(λ)

Fact. T (λ) — tilting cover of ∇(λ)
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The problem

Theorem (BGG). gl.dimO ≤ number of roots of g

(the last remark of the BGG paper is that the equality holds, no proof)

Question. Determine projective dimension of all indecomposable
structural modules

Note. For almost all λ we have

L(λ) = P(λ) = I (λ) = ∆(λ) = ∇(λ) = T (λ)

and the answer to the question for these λ is: 0

Still open. proj.dim(L(λ)) =?, proj.dim(∆(λ)) =? (for singular λ)
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The principal block

m0 — the maximal ideal in Z (g) annihilating the trivial g-module

O0 := Om0 — the principal block of O

Fact. O0 is indecomposable

W — the Weyl group of g

W acts on h∗ in the usual way

ρ — the half of the sum of all positive roots

W acts on h∗ via the ρ-shifted dot action

Fact. Simples in O0 are L(w · 0), w ∈W (all different).

Notation. L(w) := L(w · 0), P(w) := P(w · 0) and so on
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Preliminary observations and reduction

Obvious: proj.dim(P(λ)) = 0 for all λ

Soergel’s combinatorial description of blocks in terms of root
systems: Each block of O can be reduced, up to equivalence, to an
integral block (maybe for some other g)

Note. O0 is a regular integral block

Note. Regular and singular integral blocks are connected via projective
functors (exact, with adjunction morphisms) whose combinatorics is
known
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Projective dimension of Verma modules in O0

l : W → {0, 1, 2, . . . } — the usual length function

w0 — the longest element in W

e — the identity element in W

Proposition. proj.dim(∆(w)) = l(w) for all w ∈W

The inequality ≤ (BGG): We have ∆(e) = P(e) and hence
proj.dim(∆(e)) = 0. We have Ker ↪→ P(w) � ∆(w) where Ker has a
filtration with subquotients ∆(x), l(x) < l(w). Now use the long exact
sequence and the standard dimension shift argument.

The inequality ≥: Enough to prove: proj.dim(∆(w0)) = l(w0)
(postponed).

Note. ∆(w0) = ∇(w0) = L(w0) = T (w0)
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Projective dimension of simple modules in O0

Proposition. proj.dim(L(w)) = 2l(w0)− l(w) for all w ∈W

The inequality ≤ (BGG): For w0 this is already done before. We have
Ker ↪→ ∆(w) � L(w) where Ker has a filtration with subquotients L(x),
l(x) > l(w). Now use the long exact sequence and the standard
dimension shift argument.

The inequality ≥: Enough to prove: proj.dim(L(e)) = 2l(w0)

Proof.

I Let X • be the BGG resolution of L(e) by Verma modules. It has
length l(w0) and X−l(w0) = ∆(w0), the simple Verma module.

I The dual Y• of X • is a coresolution of L(e) by costandard modules,
it has length l(w0) and Y l(w0) = ∇(w0) = ∆(w0).

I Standard and costandard modules are homologically orthogonal and
hence all derived homs are realized already in the homotopy category.

I The identity on ∆(w0) gives a homomorphism from X • to
Y•[2l(w0)] which is clearly not homotopic to zero.
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Projective dimension of costandard modules in O0

Proposition. proj.dim(∇(w)) = 2l(w0)− l(w) for all w ∈W

Proof.

I We have ∇(w0) = L(w0) so in this case the claim is already
established.

I Now do induction using standard dimension shift argument and the
short exact sequence L(w) ↪→ ∇(w) � Coker where Coker is
filtered by L(x) with l(x) > l(w).
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Kazhdan-Lusztig combinatorics

Z[W ] — the integral group algebra of W

{Hw := w} — the standard basis of Z[W ]

{Hw} — the Kazhdan-Lusztig basis of Z[W ]

Fact. HxHy =
∑

z cz
x,yHz with all cz

x,y ∈ {0, 1, 2, . . . }.

Left KL-order: z ≥L y if there is x such that cz
x,y > 0.

Left KL-cell: y ∼L z if y ≥L z and z ≥L y .

Note: Similarly right order ≥R and right cells ∼R

Note: Similarly two-sided order ≥J and two-sided cells ∼J
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Type A example (g = sln)

W = Sn

λ ` n

SYTλ — the set of standard Young tableaux of shape λ

Robinson-Schensted correspondence. Sn
RS−→

⋃
λ`n

SYTλ × SYTλ

Fact: Two-sided cell of w : all x such that RS(x) and RS(w) have the
same shape

Fact: Left cell of w : all x such that RS(x) and RS(w) have the same
first component

Fact: Right cell of w : all x such that RS(x) and RS(w) have the same
second component
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Lusztig’s a-function in type A

W = Sn

Fact: Each two-sided cell of w contains the longest element for some
parabolic (Young) subgroup

Fact: If some 2-sided cell contains longest elements for different
parabolic subgroups, all these elements have the same length

Definition of a-function: a : W → {0, 1, 2, . . . } is the unique function
such that

I a is constant on 2-sided cells;
I a(w) = l(w) if w is the longest element in a parabolic subgroup

Example. For S3 = {e, s, t, st, ts, sts = tst = w0} we have

w e s t st ts sts
a(w) 0 1 1 1 1 3
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KL-combinatorics and O

Fact (Bernstein-S. Gelfand):

O0

P

jj Grothendieck group7→ Z[W ]

Z[W ]

\\

Obvious fact: Gr(O0) ∼= Z[W ] via [∆(w)] 7→ Hw .

θw — indecomposable projective functor s.t. θwP(e) = P(w), w ∈W

Kazhdan-Lusztig conjecture=theorem: Gr⊕(P) ∼= Z[W ] via
[θw ] 7→ Hw .

Note: Recent algebraic proof by Elias and Williamson.
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Lusztig’s a-function in general

Left cell in W gives rise to a cell representation of W (in type A: Specht
module)

This can be modeled (i.e. categorified) via action of P on the additive
category of certain self-dual modules in O0

Such indecomposable self-dual modules are naturally indexed (for all cells
at the same time) by w ∈W , say w 7→ Q(w)

Definition. a(w) = 1
2 (Loewy.Length(Q(w))− 1)

Easy facts:

I a is constant on 2-sided cells;
I a(w) = l(w) if w is the longest element in a parabolic subgroup
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The main result

Theorem. Let w ∈W .

I proj.dim(T (w)) = a(w)

I proj.dim(I (w)) = 2a(w0w)

Step 1. Both proj.dim(T (w)) and proj.dim(I (w)) are constant on
two-sided cells.

Why:

I projective functors preserve both the additive category of tilting
modules, the additive category of projective modules and the
additive category of injective modules,

I use projective functors to related projective resolutions of
indecomposable (tilting or injective modules) inside the same
two-sided cell
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Step 2

for w the longest element in a parabolic subcategory, the value
proj.dim(T (w)) can be computed using Ringel self-duality of O, the
Koszul duality of Beilinson-Ginzburg-Soergel and computations of Loewy
lengths of certain structural modules in O by Irving

computation of proj.dim(I (w)) is similar

This implies the result in type A, that is for g = sln

General case:

I uses crucially the Koszul duality for O
I uses generalized parabolic categories associated with right KL-cells
I uses delicate computation of Loewy (=graded) lengths of certain

modules of the form θxL(y) and the fact that the set of these
modules is Koszul self-dual

Open problem: Determine proj.dim(θxL(y)) for all x , y ∈W
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Singular case

projectives: obvious

tilting: computable using the regular case and projective functors

injectives: computable using the regular case and projective functors

simples: open in general (known for the antidominant and the left cell of
the dominant)

Koszul dual problem: graded length of an indecomposable projective in a
parabolic O

standard: open in general

Koszul dual problem: graded length of a standard in a parabolic O

costandard: open in general
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THANK YOU!!!
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