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Proposition. proj.dim(A(w)) = I(w) for all w € W

The inequality < (BGG): We have A(e) = P(e) and hence
proj.dim(A(e)) = 0. We have Ker — P(w) — A(w) where Ker has a

filtration with subquotients A(x), I(x) < I(w). Now use the long exact
sequence and the standard dimension shift argument.
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for w the longest element in a parabolic subcategory, the value
proj.dim(T(w)) can be computed using Ringel self-duality of O, the
Koszul duality of Beilinson-Ginzburg-Soergel and computations of Loewy
lengths of certain structural modules in O by Irving
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