
Homological properties of
category O, part II:
Alexandru conjecture

Volodymyr MazorĚuk
(Uppsala University)

“Enveloping Algebras and Representation Theory”
AuguĆ 28 { September 1, 2014, St. John’s, CANADA

Volodymyr Mazorchuk Homological properties of category O, part II 1/18



Some basic homological algebra

A — an abelian category

ExtnA(N,M): equivalence classes of exact sequences

0→ M → X1 → X2 → · · · → Xn → N → 0

B — another abelian category

A ⊂ B with exact inclusion i

Fact. i induces a homomorphism in : ExtnA(N,M)→ ExtnB(N,M)

Fact. in is usually neither injective nor surjective
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Extension full subcategories

Definition. A is extension full in B provided that in is iso for all n.

Note. Ext0-full = full

Note. Ext1-full ∼ Serre subcategory

Motivating? example.

I A — quasi-hereditary algebra w.r.t. e1 < e2 < · · · < en

I AenA — heredity ideal
I B = A/AenA (also quasi-hereditary w.r.t. e1 < e2 < · · · < en−1)
I Theorem. (CPS) B-mod is extension full in A-mod
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Some categories of g-modules

g — semi-simple complex finite dimensional Lie algebra

g = n− ⊕ h⊕ n+ — triangular decomposition

O — corresponding BGG category O

g-Mod — the category of all g-modules

W — the category of all weight (i.e. h-diagonalizable) g-modules

GW — the category of all generalized weight (i.e. locally U(h)-finite)
g-modules
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Thick category O

Definition. Thick category Õ is the full subcategory of g-Mod containing
all M such that

I M is finitely generated;
I M is locally U(h)-finite
I M is locally U(n+)-finite

Alternative to the last two: M is locally U(b)-finite for b = h⊕ n+

Difference to O: category Õ has no projectives

Note. O is not extension full in Õ (not even Ext1-full)

Note. Õ is the Serre subcategory of g-Mod generated by O
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Note. Õ is the Serre subcategory of g-Mod generated by O

Volodymyr Mazorchuk Homological properties of category O, part II 5/18



Thick category O
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Main results (Coulembier-M.)

Theorem 1. O is extension full in W.

Theorem 2. Õ is extension full in GW.

Theorem 3. GW is extension full in g-Mod.

Theorem 4. Theorems 1, 2 and 3 are true for basic classical Lie
superalgebras.

Corollary. gl.dim Õ = gl.dimGW = dim g (= gl.dim g-Mod)
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Corollary. gl.dim Õ = gl.dimGW = dim g (= gl.dim g-Mod)

Volodymyr Mazorchuk Homological properties of category O, part II 6/18



Main results (Coulembier-M.)

Theorem 1. O is extension full in W.
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Very rough idea of the proof of Theorem 1.

Theorem 1. O is extension full in W.

“Easy” case: Both categories have projectives.

Use:

I Frobenius reciprocity (= adjunction of Ind and Res)
I BGG’s construction of projectives in O
I Comparison of these projectives to projectives in W.
I the next lemma

Lemma. Assume A ⊂ B with exact inclusion, both have enough
projectives, and any projective P ∈ A is acyclic for the functor
HomB(−,K ) for any K ∈ A. Then A is extension full in B.
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Very rough idea of the proof of Theorem 2.

Theorem 2. Õ is extension full in GW.

Note: None of the categories have projectives.

Steps:

I Restrict the size of Jordan cells allowed for the action of h to get
Õ(n) and GW(n)

I Both Õ(n) and GW(n) have projectives
I Use proof of Theorem 1 to show that Õ(n) is extension full in GW(n)

I Take limit n→∞
I show that extension split into “stable” and “nilpotent” parts where

the stable part gives the limit extension and the nilpotent part
eventually dies when taking the limit
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Õ(n) and GW(n)
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Very rough idea of the proof of Theorem 3.

Theorem 3. GW is extension full in g-Mod.

Note: g-Mod has projectives while GW does not.

Using tricks and Frobenius reciprocity, Theorem 3 can be reduced to:

Lemma. Assume A ⊂ B with exact inclusion.
Assume A has a full subcategory A0 such that

I A is the Serre subcategory of B generated by A0;
I A0 has enough projectives.

Then A is extension full in B if and only if the natural map

ExtnA(P,K )→ ExtnB(P,K )

is an isomorphism for all n, all projective P ∈ A0 and all K ∈ A0.
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Bonus: projective dimension in Õ

Definition. p.dimÕM := sup{k : ExtkÕ(M,N) 6= 0 for some N ∈ Õ}

Theorem 5. (Coulembier-M.) p.dimÕM ≥ dim h for M ∈ Õ

Theorem 6. (Coulembier-M.) p.dimÕM = dim h+ p.dimOM for
M ∈ O
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M ∈ O

Volodymyr Mazorchuk Homological properties of category O, part II 10/18



Bonus: projective dimension in Õ
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Motivation: Alexandru conjecture, part I

Source: Pierre-Yves Gaillard. Statement of the Alexandru Conjecture.
arXiv:math/0003070

A — abelian length category

Irr(A) — set of isoclasses of simple objects in A

< — smallest partial order on Irr(A) such that

p.dim L = p.dim L′ + 1 and Ext1A(L, L
′) 6= 0 imply Li < Lj

Definition. A Serre subcategory B ⊂ A is an initial segment if Lj ∈ B and
Li < Lj implies Li ∈ B

Definition. A is Guichardet if any initial segment is extension full in A
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Motivation: Alexandru conjecture, part II

Weak Alexandru conjecture: The principal block of the category of
Harish-Chandra (g, k)-modules is Guichardet.

Motivation: O0 is Guichardet.

Explanation:

I we know explicitly p.dim of all simples in O0;
I we know the quiver of O0;
I we can describe all initial segments in O0 (they are coideals in the

Bruhat order on W );
I O0 ∼= A-mod where A is quasi-hereditary
I to all such initial segments the theorem of CPS is applicable
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Alexandru conjecture for Õ and for H

Theorem 7. (Coulembier-M.) Õ0 is Guichardet.

H — the category of Harish-Chandra bimodules for g

Note: H ∈ g⊕ g-mod

BG-equivalences. O0 ∼= ∞0H1
0 and Õ0 ∼= ∞0H∞0

Corollary. ∞χ H1
χ, 1

χH∞χ and ∞0H∞0 are Guichardet.

Observation. ∞0H∞0 is not extension full in g⊕ g-mod.
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Alexandru conjecture for singular blocks of O

Observation. Singular blocks of O for sl3 are not always Guichardet

Given by:

1
α -- 2

β
--

δ

mm 3
γ

mm

with relations βγ = 0 and γβ = αδ.

Easy: p.dim L1 = 1 and p.dim L2 = p.dim L3 = 2

Note: Serre〈L3〉 is an initial segment (and is semi-simple).

Note: Ext2O(L3, L3) 6= 0
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Saturated Alexandru conjectures

Source: Alain Fuser. The Alexandru conjectures. Prepublication de
l’Institut Elie Cartan, Nancy, 1997

A — abelian length category

� — smallest partial pre-order on Irr(A) such that

I Li < Lj implies Li � Lj ;
I p.dim L = p.dim L′ and Ext1(L, L′) 6= 0 or Ext1(L′, L) 6= 0 implies

L � L′.

Definition. A Serre subcategory B ⊂ A is a saturated initial segment if
Lj ∈ B and Li � Lj implies Li ∈ B

Definition. A is saturated Guichardet if any saturated initial segment is
extension full in A
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Saturated Alexandru conjectures for O

Observation: O0 is saturated Guichardet.

Reason: Saturated initial segments and initial segments coincide.

Observation: All blocks of O0 for sl3 are saturated Guichardet.

Reason: Saturated initial segments are coideals in the Bruhat order.

Unknown: Is any block of O saturated Guichardet?
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Some speculations

Why difficult: We do not know projective dimensions of simples in O!

Our guess: Some blocks of O are not saturated Guichardet.

Another difficulty: Difficult to estimate extensions in the saturated Serre
subcategories.

sl4-computations: There is a singular block for which saturated initial
segments are not always given by coideals in the Bruhat order.
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THANK YOU!!!
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