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Theorem 1. O is extension full in W.
“Easy” case: Both categories have projectives.

Use:

Frobenius reciprocity (= adjunction of Ind and Res)
BGG's construction of projectives in O

Comparison of these projectives to projectives in W.

vV v vy

the next lemma

Lemma. Assume A C B with exact inclusion, both have enough
projectives, and any projective P € A is acyclic for the functor
Homp(_, K) for any K € A. Then A is extension full in 5.
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THANK YOU!!
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