# Zomological propertief of category O, part II: Allerandru conjecture

### Volodymyr Mazorchuł

(Uppfala University)

"Enveloping Ulgebras and Representation Theory" Uugust 28 – September I, 2014, St. John's, CURUDU

200

## Some basic homological algebra

 $\mathcal{A}$  — an abelian category

 $\operatorname{Ext}^{n}_{\mathcal{A}}(N, M)$ : equivalence classes of exact sequences

 $0 \to M \to X_1 \to X_2 \to \cdots \to X_n \to N \to 0$ 

 $\mathcal{B}$  — another abelian category

 $\mathcal{A} \subset \mathcal{B}$  with exact inclusion **i** 

Fact. i induces a homomorphism  $i_n : \operatorname{Ext}^n_{\mathcal{A}}(N, M) \to \operatorname{Ext}^n_{\mathcal{B}}(N, M)$ 

Fact.  $i_n$  is usually neither injective nor surjective

Sac

 $\operatorname{Ext}^n_{\mathcal{A}}(N, M)$ : equivalence classes of exact sequences

 $0 \to M \to X_1 \to X_2 \to \cdots \to X_n \to N \to 0$ 

 $\mathcal{B}$  — another abelian category

 $\mathcal{A} \subset \mathcal{B}$  with exact inclusion **i** 

Fact. i induces a homomorphism  $\mathbf{i}_n : \operatorname{Ext}^n_{\mathcal{A}}(N, M) \to \operatorname{Ext}^n_{\mathcal{B}}(N, M)$ 

Fact.  $i_n$  is usually neither injective nor surjective

Sac

 $\operatorname{Ext}^{n}_{\mathcal{A}}(N, M)$ : equivalence classes of exact sequences

$$0 \rightarrow M \rightarrow X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_n \rightarrow N \rightarrow 0$$

 $\mathcal{B}$  — another abelian category

 $\mathcal{A} \subset \mathcal{B}$  with exact inclusion **i** 

Fact. i induces a homomorphism  $\mathbf{i}_n : \operatorname{Ext}^n_{\mathcal{A}}(N, M) \to \operatorname{Ext}^n_{\mathcal{B}}(N, M)$ 

Fact.  $\mathbf{i}_n$  is usually neither injective nor surjective

500

 $\operatorname{Ext}^{n}_{\mathcal{A}}(N, M)$ : equivalence classes of exact sequences

$$0 \rightarrow M \rightarrow X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_n \rightarrow N \rightarrow 0$$

#### $\mathcal{B}$ — another abelian category

 $\mathcal{A} \subset \mathcal{B}$  with exact inclusion **i** 

Fact. i induces a homomorphism  $i_n : \operatorname{Ext}^n_{\mathcal{A}}(N, M) \to \operatorname{Ext}^n_{\mathcal{B}}(N, M)$ 

Fact.  $\mathbf{i}_n$  is usually neither injective nor surjective

500

 $\operatorname{Ext}_{\mathcal{A}}^{n}(N, M)$ : equivalence classes of exact sequences

$$0 \rightarrow M \rightarrow X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_n \rightarrow N \rightarrow 0$$

 $\mathcal{B}$  — another abelian category

 $\mathcal{A} \subset \mathcal{B}$  with exact inclusion  $\boldsymbol{i}$ 

Fact. i induces a homomorphism  $\mathbf{i}_n : \operatorname{Ext}^n_{\mathcal{A}}(N, M) \to \operatorname{Ext}^n_{\mathcal{B}}(N, M)$ 

Fact. in is usually neither injective nor surjective

 $\operatorname{Ext}_{\mathcal{A}}^{n}(N, M)$ : equivalence classes of exact sequences

$$0 \rightarrow M \rightarrow X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_n \rightarrow N \rightarrow 0$$

 $\mathcal{B}$  — another abelian category

 $\mathcal{A} \subset \mathcal{B}$  with exact inclusion  $\boldsymbol{i}$ 

Fact. i induces a homomorphism  $i_n : \operatorname{Ext}^n_{\mathcal{A}}(N, M) \to \operatorname{Ext}^n_{\mathcal{B}}(N, M)$ 

Fact.  $\mathbf{i}_n$  is usually neither injective nor surjective

 $\operatorname{Ext}_{\mathcal{A}}^{n}(N, M)$ : equivalence classes of exact sequences

$$0 \rightarrow M \rightarrow X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_n \rightarrow N \rightarrow 0$$

 $\mathcal{B}$  — another abelian category

 $\mathcal{A} \subset \mathcal{B}$  with exact inclusion  $\boldsymbol{i}$ 

Fact. i induces a homomorphism  $i_n : \operatorname{Ext}^n_{\mathcal{A}}(N, M) \to \operatorname{Ext}^n_{\mathcal{B}}(N, M)$ 

Fact.  $\mathbf{i}_n$  is usually neither injective nor surjective

 $\operatorname{Ext}_{\mathcal{A}}^{n}(N, M)$ : equivalence classes of exact sequences

$$0 \rightarrow M \rightarrow X_1 \rightarrow X_2 \rightarrow \cdots \rightarrow X_n \rightarrow N \rightarrow 0$$

 $\mathcal{B}$  — another abelian category

 $\mathcal{A} \subset \mathcal{B}$  with exact inclusion  $\boldsymbol{i}$ 

Fact. i induces a homomorphism  $i_n : \operatorname{Ext}^n_{\mathcal{A}}(N, M) \to \operatorname{Ext}^n_{\mathcal{B}}(N, M)$ 

Fact.  $\mathbf{i}_n$  is usually neither injective nor surjective

Note.  $Ext^0$ -full = full

Note. Ext<sup>1</sup>-full  $\sim$  Serre subcategory

#### Motivating? example.

- A quasi-hereditary algebra w.r.t.  $e_1 < e_2 < \cdots < e_n$
- ► Ae<sub>n</sub>A heredity ideal
- ▶  $B = A/Ae_nA$  (also quasi-hereditary w.r.t.  $e_1 < e_2 < \cdots < e_{n-1}$ )
- ▶ Theorem. (CPS) *B*-mod is extension full in *A*-mod

500

Note.  $Ext^0$ -full = full

Note.  $Ext^1$ -full ~ Serre subcategory

- A quasi-hereditary algebra w.r.t.  $e_1 < e_2 < \cdots < e_n$
- ▶ Ae<sub>n</sub>A heredity ideal
- ▶  $B = A/Ae_nA$  (also quasi-hereditary w.r.t.  $e_1 < e_2 < \cdots < e_{n-1}$ )
- ▶ Theorem. (CPS) *B*-mod is extension full in *A*-mod

Note.  $Ext^0$ -full = full

Note.  $Ext^1$ -full ~ Serre subcategory

- A quasi-hereditary algebra w.r.t.  $e_1 < e_2 < \cdots < e_n$
- $Ae_nA$  heredity ideal
- ▶  $B = A/Ae_nA$  (also quasi-hereditary w.r.t.  $e_1 < e_2 < \cdots < e_{n-1}$ )
- ▶ Theorem. (CPS) *B*-mod is extension full in *A*-mod

- Note.  $Ext^0$ -full = full
- Note.  $\operatorname{Ext}^1$ -full ~ Serre subcategory

- ▶ A quasi-hereditary algebra w.r.t.  $e_1 < e_2 < \cdots < e_n$
- ▶ Ae<sub>n</sub>A heredity ideal
- ▶  $B = A/Ae_nA$  (also quasi-hereditary w.r.t.  $e_1 < e_2 < \cdots < e_{n-1}$ )
- ▶ Theorem. (CPS) *B*-mod is extension full in *A*-mod

Note.  $Ext^0$ -full = full

Note.  $\operatorname{Ext}^1$ -full ~ Serre subcategory

- ▶ A quasi-hereditary algebra w.r.t.  $e_1 < e_2 < \cdots < e_n$
- ► Ae<sub>n</sub>A heredity ideal
- ▶  $B = A/Ae_nA$  (also quasi-hereditary w.r.t.  $e_1 < e_2 < \cdots < e_{n-1}$ )
- ▶ Theorem. (CPS) *B*-mod is extension full in *A*-mod

Note.  $Ext^0$ -full = full

Note.  $\operatorname{Ext}^1$ -full ~ Serre subcategory

- ▶ A quasi-hereditary algebra w.r.t.  $e_1 < e_2 < \cdots < e_n$
- ► Ae<sub>n</sub>A heredity ideal
- ▶  $B = A/Ae_nA$  (also quasi-hereditary w.r.t.  $e_1 < e_2 < \cdots < e_{n-1}$ )
- ▶ Theorem. (CPS) B-mod is extension full in A-mod

Note.  $Ext^0$ -full = full

Note. Ext<sup>1</sup>-full  $\sim$  Serre subcategory

#### Motivating? example.

- A quasi-hereditary algebra w.r.t.  $e_1 < e_2 < \cdots < e_n$
- ► Ae<sub>n</sub>A heredity ideal

▶  $B = A/Ae_nA$  (also quasi-hereditary w.r.t.  $e_1 < e_2 < \cdots < e_{n-1}$ )

▶ Theorem. (CPS) *B*-mod is extension full in *A*-mod

Note.  $Ext^0$ -full = full

Note. Ext<sup>1</sup>-full  $\sim$  Serre subcategory

- ▶ A quasi-hereditary algebra w.r.t.  $e_1 < e_2 < \cdots < e_n$
- ► Ae<sub>n</sub>A heredity ideal
- ▶  $B = A/Ae_nA$  (also quasi-hereditary w.r.t.  $e_1 < e_2 < \cdots < e_{n-1}$ )
- ▶ Theorem. (CPS) *B*-mod is extension full in *A*-mod

Note.  $Ext^0$ -full = full

Note. Ext<sup>1</sup>-full  $\sim$  Serre subcategory

- ▶ A quasi-hereditary algebra w.r.t.  $e_1 < e_2 < \cdots < e_n$
- ► Ae<sub>n</sub>A heredity ideal
- ▶  $B = A/Ae_nA$  (also quasi-hereditary w.r.t.  $e_1 < e_2 < \cdots < e_{n-1}$ )
- ▶ Theorem. (CPS) *B*-mod is extension full in *A*-mod

Note.  $Ext^0$ -full = full

Note. Ext<sup>1</sup>-full  $\sim$  Serre subcategory

- ▶ A quasi-hereditary algebra w.r.t.  $e_1 < e_2 < \cdots < e_n$
- ► Ae<sub>n</sub>A heredity ideal
- ▶  $B = A/Ae_nA$  (also quasi-hereditary w.r.t.  $e_1 < e_2 < \cdots < e_{n-1}$ )
- ▶ Theorem. (CPS) *B*-mod is extension full in *A*-mod

- $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$  triangular decomposition
- $\mathcal{O}$  corresponding BGG category  $\mathcal{O}$

 $\mathfrak{g}$ -Mod — the category of all  $\mathfrak{g}$ -modules

 $\mathcal{W}$  — the category of all weight (i.e.  $\mathfrak{h}$ -diagonalizable) g-modules

 $\mathcal{GW}$  — the category of all generalized weight (i.e. locally  $U(\mathfrak{h})$ -finite)  $\mathfrak{g}$ -modules

- $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$  triangular decomposition
- $\mathcal{O}$  corresponding BGG category  $\mathcal{O}$
- g-Mod the category of all g-modules
- $\mathcal{W}$  the category of all weight (i.e.  $\mathfrak{h}$ -diagonalizable)  $\mathfrak{g}$ -modules
- $\mathcal{GW}$  the category of all generalized weight (i.e. locally  $U(\mathfrak{h})$ -finite) g-modules

- $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$  triangular decomposition
- $\mathcal{O}$  corresponding BGG category  $\mathcal{O}$
- g-Mod the category of all g-modules
- $\mathcal{W}$  the category of all weight (i.e.  $\mathfrak{h}$ -diagonalizable)  $\mathfrak{g}$ -modules
- $\mathcal{GW}$  the category of all generalized weight (i.e. locally  $U(\mathfrak{h})$ -finite)  $\mathfrak{g}$ -modules

 $\mathfrak{g}=\mathfrak{n}_{-}\oplus\mathfrak{h}\oplus\mathfrak{n}_{+}$  — triangular decomposition

#### $\mathcal{O}-\mathrm{corresponding}$ BGG category $\mathcal{O}$

g-Mod — the category of all g-modules

 $\mathcal{W}$  — the category of all weight (i.e.  $\mathfrak{h}$ -diagonalizable)  $\mathfrak{g}$ -modules

 $\mathcal{GW}$  — the category of all generalized weight (i.e. locally  $U(\mathfrak{h})$ -finite) g-modules

 $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$  — triangular decomposition

 $\mathcal{O}-\text{corresponding BGG category }\mathcal{O}$ 

 $\mathfrak{g}\operatorname{\mathsf{-Mod}}$  — the category of all  $\mathfrak{g}\operatorname{\mathsf{-modules}}$ 

 $\mathcal{W}$  — the category of all weight (i.e.  $\mathfrak{h}$ -diagonalizable) g-modules

 $\mathcal{GW}$  — the category of all generalized weight (i.e. locally  $U(\mathfrak{h})$ -finite)  $\mathfrak{g}$ -modules

500

 $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$  — triangular decomposition

 $\mathcal{O}-\text{corresponding BGG category }\mathcal{O}$ 

 $\mathfrak{g}\operatorname{\mathsf{-Mod}}$  — the category of all  $\mathfrak{g}\operatorname{\mathsf{-modules}}$ 

 $\mathcal{W}$  — the category of all weight (i.e.  $\mathfrak{h}$ -diagonalizable)  $\mathfrak{g}$ -modules

 $\mathcal{GW}$  — the category of all generalized weight (i.e. locally  $U(\mathfrak{h})$ -finite) g-modules

500

 $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$  — triangular decomposition

 $\mathcal{O}-\text{corresponding BGG category }\mathcal{O}$ 

 $\mathfrak{g}\operatorname{\mathsf{-Mod}}$  — the category of all  $\mathfrak{g}\operatorname{\mathsf{-modules}}$ 

 $\mathcal{W}$  — the category of all weight (i.e.  $\mathfrak{h}$ -diagonalizable)  $\mathfrak{g}$ -modules

 $\mathcal{GW}$  — the category of all generalized weight (i.e. locally  $U(\mathfrak{h})$ -finite)  $\mathfrak{g}$ -modules

DQC

 $\mathfrak{g} = \mathfrak{n}_{-} \oplus \mathfrak{h} \oplus \mathfrak{n}_{+}$  — triangular decomposition

 $\mathcal{O}-\text{corresponding BGG category }\mathcal{O}$ 

 $\mathfrak{g}\operatorname{\mathsf{-Mod}}$  — the category of all  $\mathfrak{g}\operatorname{\mathsf{-modules}}$ 

 $\mathcal{W}$  — the category of all weight (i.e.  $\mathfrak{h}$ -diagonalizable)  $\mathfrak{g}$ -modules

 $\mathcal{GW}$  — the category of all generalized weight (i.e. locally  $U(\mathfrak{h})$ -finite)  $\mathfrak{g}$ -modules

DQC

Definition. Thick category  $\widetilde{\mathcal{O}}$  is the full subcategory of g-Mod containing all M such that

- ► *M* is finitely generated;
- *M* is locally  $U(\mathfrak{h})$ -finite
- *M* is locally  $U(n_+)$ -finite

Alternative to the last two: M is locally  $U(\mathfrak{b})$ -finite for  $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}_+$ 

Difference to  $\mathcal{O}$ : category  $\widetilde{\mathcal{O}}$  has no projectives

Note.  ${\mathcal O}$  is not extension full in  $\widetilde{{\mathcal O}}$  (not even  $\operatorname{Ext}^1$ -full)

Definition. Thick category  $\widetilde{\mathcal{O}}$  is the full subcategory of  $\mathfrak{g}\text{-Mod}$  containing all M such that

- ► *M* is finitely generated;
- *M* is locally  $U(\mathfrak{h})$ -finite
- *M* is locally  $U(\mathfrak{n}_+)$ -finite

Alternative to the last two: M is locally  $U(\mathfrak{b})$ -finite for  $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}_+$ 

Difference to  $\mathcal{O}$ : category  $\widetilde{\mathcal{O}}$  has no projectives

Note.  ${\mathcal O}$  is not extension full in  $\widetilde{{\mathcal O}}$  (not even  $\operatorname{Ext}^1$ -full)

Definition. Thick category  $\widetilde{\mathcal{O}}$  is the full subcategory of g-Mod containing all M such that

- ► *M* is finitely generated;
- *M* is locally  $U(\mathfrak{h})$ -finite
- *M* is locally  $U(\mathfrak{n}_+)$ -finite

Alternative to the last two: M is locally  $U(\mathfrak{b})$ -finite for  $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}_+$ 

Difference to  $\mathcal{O}$ : category  $\widetilde{\mathcal{O}}$  has no projectives

Note.  ${\mathcal O}$  is not extension full in  $\widetilde{{\mathcal O}}$  (not even  $\operatorname{Ext}^1$ -full)

Definition. Thick category  $\widetilde{\mathcal{O}}$  is the full subcategory of g-Mod containing all M such that

- ► *M* is finitely generated;
- *M* is locally  $U(\mathfrak{h})$ -finite
- *M* is locally  $U(n_+)$ -finite

Alternative to the last two: M is locally  $U(\mathfrak{b})$ -finite for  $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}_+$ 

Difference to  $\mathcal{O}$ : category  $\widetilde{\mathcal{O}}$  has no projectives

Note.  ${\mathcal O}$  is not extension full in  $\widetilde{{\mathcal O}}$  (not even  $\operatorname{Ext}^1$ -full)

Definition. Thick category  $\widetilde{\mathcal{O}}$  is the full subcategory of g-Mod containing all M such that

- ► *M* is finitely generated;
- *M* is locally  $U(\mathfrak{h})$ -finite
- *M* is locally  $U(n_+)$ -finite

Alternative to the last two: M is locally  $U(\mathfrak{b})$ -finite for  $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}_+$ 

Difference to  $\mathcal{O}$ : category  $\widetilde{\mathcal{O}}$  has no projectives

Note.  ${\mathcal O}$  is not extension full in  $\widetilde{{\mathcal O}}$  (not even  $\operatorname{Ext}^1$ -full)

Definition. Thick category  $\widetilde{\mathcal{O}}$  is the full subcategory of g-Mod containing all M such that

- ► *M* is finitely generated;
- *M* is locally  $U(\mathfrak{h})$ -finite
- *M* is locally  $U(n_+)$ -finite

Alternative to the last two: *M* is locally  $U(\mathfrak{b})$ -finite for  $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}_+$ 

Difference to  $\mathcal{O}$ : category  $\widetilde{\mathcal{O}}$  has no projectives

Note.  $\mathcal{O}$  is not extension full in  $\widetilde{\mathcal{O}}$  (not even  $\operatorname{Ext}^1$ -full)

Definition. Thick category  $\widetilde{\mathcal{O}}$  is the full subcategory of  $\mathfrak{g}\text{-Mod}$  containing all M such that

- ► *M* is finitely generated;
- *M* is locally  $U(\mathfrak{h})$ -finite
- *M* is locally  $U(\mathfrak{n}_+)$ -finite

Alternative to the last two: *M* is locally  $U(\mathfrak{b})$ -finite for  $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}_+$ 

Difference to  $\mathcal{O}:$  category  $\widetilde{\mathcal{O}}$  has no projectives

Note.  $\mathcal{O}$  is not extension full in  $\widetilde{\mathcal{O}}$  (not even  $\operatorname{Ext}^1$ -full)

Definition. Thick category  $\widetilde{\mathcal{O}}$  is the full subcategory of  $\mathfrak{g}\text{-Mod}$  containing all M such that

- ► *M* is finitely generated;
- *M* is locally  $U(\mathfrak{h})$ -finite
- *M* is locally  $U(\mathfrak{n}_+)$ -finite

Alternative to the last two: *M* is locally  $U(\mathfrak{b})$ -finite for  $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}_+$ 

Difference to  $\mathcal{O}:$  category  $\widetilde{\mathcal{O}}$  has no projectives

Note.  $\mathcal{O}$  is not extension full in  $\widetilde{\mathcal{O}}$  (not even  $\operatorname{Ext}^1$ -full)

Definition. Thick category  $\widetilde{\mathcal{O}}$  is the full subcategory of g-Mod containing all M such that

- ► *M* is finitely generated;
- *M* is locally  $U(\mathfrak{h})$ -finite
- *M* is locally  $U(\mathfrak{n}_+)$ -finite

Alternative to the last two: *M* is locally  $U(\mathfrak{b})$ -finite for  $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}_+$ 

Difference to  $\mathcal{O}:$  category  $\widetilde{\mathcal{O}}$  has no projectives

Note.  $\mathcal{O}$  is not extension full in  $\widetilde{\mathcal{O}}$  (not even  $\operatorname{Ext}^1$ -full)

# Thick category ${\cal O}$

Definition. Thick category  $\widetilde{\mathcal{O}}$  is the full subcategory of g-Mod containing all M such that

- ► *M* is finitely generated;
- *M* is locally  $U(\mathfrak{h})$ -finite
- *M* is locally  $U(\mathfrak{n}_+)$ -finite

Alternative to the last two: *M* is locally  $U(\mathfrak{b})$ -finite for  $\mathfrak{b} = \mathfrak{h} \oplus \mathfrak{n}_+$ 

Difference to  $\mathcal{O}:$  category  $\widetilde{\mathcal{O}}$  has no projectives

Note.  $\mathcal{O}$  is not extension full in  $\widetilde{\mathcal{O}}$  (not even  $\operatorname{Ext}^1$ -full)

Note.  $\widetilde{\mathcal{O}}$  is the Serre subcategory of  $\mathfrak{g}\text{-Mod}$  generated by  $\mathcal{O}$ 

**Theorem 2.**  $\widetilde{\mathcal{O}}$  is extension full in  $\mathcal{GW}$ .

Theorem 3.  $\mathcal{GW}$  is extension full in g-Mod.

Theorem 4. Theorems 1, 2 and 3 are true for basic classical Lie superalgebras.

Corollary. gl.dim  $\widetilde{\mathcal{O}} = \operatorname{gl.dim} \mathcal{GW} = \operatorname{dim} \mathfrak{g} \ (= \operatorname{gl.dim} \mathfrak{g}\operatorname{-Mod})$ 

Sac

**Theorem 2.**  $\widetilde{\mathcal{O}}$  is extension full in  $\mathcal{GW}$ .

Theorem 3.  $\mathcal{GW}$  is extension full in g-Mod.

Theorem 4. Theorems 1, 2 and 3 are true for basic classical Lie superalgebras.

Corollary. gl.dim  $\widetilde{\mathcal{O}} = \text{gl.dim}\,\mathcal{GW} = \dim\mathfrak{g} \ (= \text{gl.dim}\,\mathfrak{g}\text{-Mod})$ 

nac

#### Theorem 2. $\widetilde{\mathcal{O}}$ is extension full in $\mathcal{GW}$ .

Theorem 3.  $\mathcal{GW}$  is extension full in g-Mod.

**Theorem 4**. Theorems 1, 2 and 3 are true for basic classical Lie superalgebras.

Corollary. gl.dim  $\widetilde{\mathcal{O}} = \text{gl.dim}\,\mathcal{GW} = \dim\mathfrak{g} \ (= \text{gl.dim}\,\mathfrak{g}\text{-Mod})$ 

Theorem 2.  $\widetilde{\mathcal{O}}$  is extension full in  $\mathcal{GW}$ .

#### Theorem 3. $\mathcal{GW}$ is extension full in $\mathfrak{g}$ -Mod.

**Theorem 4**. Theorems 1, 2 and 3 are true for basic classical Lie superalgebras.

Corollary. gl.dim  $\widetilde{\mathcal{O}}$  = gl.dim  $\mathcal{GW}$  = dim  $\mathfrak{g}$  (= gl.dim  $\mathfrak{g}$ -Mod)

Theorem 2.  $\widetilde{\mathcal{O}}$  is extension full in  $\mathcal{GW}$ .

Theorem 3.  $\mathcal{GW}$  is extension full in  $\mathfrak{g}$ -Mod.

Theorem 4. Theorems 1, 2 and 3 are true for basic classical Lie superalgebras.

Corollary. gl.dim  $\widetilde{\mathcal{O}}$  = gl.dim  $\mathcal{GW}$  = dim  $\mathfrak{g}$  (= gl.dim  $\mathfrak{g}$ -Mod)

Theorem 2.  $\widetilde{\mathcal{O}}$  is extension full in  $\mathcal{GW}$ .

Theorem 3.  $\mathcal{GW}$  is extension full in g-Mod.

Theorem 4. Theorems 1, 2 and 3 are true for basic classical Lie superalgebras.

Corollary. gl.dim  $\widetilde{\mathcal{O}} = \operatorname{gl.dim} \mathcal{GW} = \operatorname{dim} \mathfrak{g} (= \operatorname{gl.dim} \mathfrak{g}\operatorname{-Mod})$ 

Theorem 2.  $\widetilde{\mathcal{O}}$  is extension full in  $\mathcal{GW}$ .

Theorem 3.  $\mathcal{GW}$  is extension full in g-Mod.

Theorem 4. Theorems 1, 2 and 3 are true for basic classical Lie superalgebras.

Corollary. gl.dim  $\widetilde{\mathcal{O}} = \operatorname{gl.dim} \mathcal{GW} = \operatorname{dim} \mathfrak{g} (= \operatorname{gl.dim} \mathfrak{g}\operatorname{-Mod})$ 

Theorem 1.  $\mathcal{O}$  is extension full in  $\mathcal{W}$ .

"Easy" case: Both categories have projectives.

Use:

- ▶ Frobenius reciprocity (= adjunction of Ind and Res)
- BGG's construction of projectives in  $\mathcal{O}$
- ► Comparison of these projectives to projectives in *W*.
- ► the next lemma

#### Theorem 1. $\mathcal{O}$ is extension full in $\mathcal{W}$ .

"Easy" case: Both categories have projectives.

Use:

- ▶ Frobenius reciprocity (= adjunction of Ind and Res)
- BGG's construction of projectives in  $\mathcal{O}$
- ► Comparison of these projectives to projectives in *W*.
- ► the next lemma

Theorem 1.  $\mathcal{O}$  is extension full in  $\mathcal{W}$ .

"Easy" case: Both categories have projectives.

Use:

- ▶ Frobenius reciprocity (= adjunction of Ind and Res)
- BGG's construction of projectives in  $\mathcal{O}$
- ► Comparison of these projectives to projectives in *W*.
- ► the next lemma

Theorem 1.  $\mathcal{O}$  is extension full in  $\mathcal{W}$ .

"Easy" case: Both categories have projectives.

Use:

- ▶ Frobenius reciprocity (= adjunction of Ind and Res)
- BGG's construction of projectives in  $\mathcal{O}$
- ► Comparison of these projectives to projectives in *W*.
- ► the next lemma

Theorem 1.  $\mathcal{O}$  is extension full in  $\mathcal{W}$ .

"Easy" case: Both categories have projectives.

Use:

- ► Frobenius reciprocity (= adjunction of Ind and Res)
- BGG's construction of projectives in  $\mathcal{O}$
- ▶ Comparison of these projectives to projectives in *W*.
- ► the next lemma

Theorem 1.  $\mathcal{O}$  is extension full in  $\mathcal{W}$ .

"Easy" case: Both categories have projectives.

Use:

- ▶ Frobenius reciprocity (= adjunction of Ind and Res)
- $\blacktriangleright$  BGG's construction of projectives in  ${\cal O}$
- Comparison of these projectives to projectives in W.
- ► the next lemma

Theorem 1.  $\mathcal{O}$  is extension full in  $\mathcal{W}$ .

"Easy" case: Both categories have projectives.

Use:

- ▶ Frobenius reciprocity (= adjunction of Ind and Res)
- $\blacktriangleright$  BGG's construction of projectives in  ${\cal O}$
- $\blacktriangleright$  Comparison of these projectives to projectives in  $\mathcal W.$

► the next lemma

Theorem 1.  $\mathcal{O}$  is extension full in  $\mathcal{W}$ .

"Easy" case: Both categories have projectives.

Use:

- ► Frobenius reciprocity (= adjunction of Ind and Res)
- $\blacktriangleright$  BGG's construction of projectives in  ${\cal O}$
- $\blacktriangleright$  Comparison of these projectives to projectives in  $\mathcal W.$
- ► the next lemma

Theorem 1.  $\mathcal{O}$  is extension full in  $\mathcal{W}$ .

"Easy" case: Both categories have projectives.

Use:

- ▶ Frobenius reciprocity (= adjunction of Ind and Res)
- $\blacktriangleright$  BGG's construction of projectives in  ${\cal O}$
- $\blacktriangleright$  Comparison of these projectives to projectives in  $\mathcal W.$
- ► the next lemma

#### **Theorem 2.** $\widetilde{\mathcal{O}}$ is extension full in $\mathcal{GW}$ .

Note: None of the categories have projectives.

- $\blacktriangleright$  Restrict the size of Jordan cells allowed for the action of  $\mathfrak{h}$  to get  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$
- Both  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$  have projectives
- Use proof of Theorem 1 to show that  $\widetilde{\mathcal{O}}^{(n)}$  is extension full in  $\mathcal{GW}^{(n)}$
- Take limit  $n \to \infty$
- show that extension split into "stable" and "nilpotent" parts where the stable part gives the limit extension and the nilpotent part eventually dies when taking the limit

#### Theorem 2. $\widetilde{\mathcal{O}}$ is extension full in $\mathcal{GW}$ .

Note: None of the categories have projectives.

- $\blacktriangleright$  Restrict the size of Jordan cells allowed for the action of  $\mathfrak{h}$  to get  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$
- Both  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$  have projectives
- Use proof of Theorem 1 to show that  $\widetilde{\mathcal{O}}^{(n)}$  is extension full in  $\mathcal{GW}^{(n)}$
- Take limit  $n \to \infty$
- show that extension split into "stable" and "nilpotent" parts where the stable part gives the limit extension and the nilpotent part eventually dies when taking the limit

Theorem 2.  $\widetilde{\mathcal{O}}$  is extension full in  $\mathcal{GW}$ .

Note: None of the categories have projectives.

- ▶ Restrict the size of Jordan cells allowed for the action of  $\mathfrak{h}$  to get  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$
- Both  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$  have projectives
- Use proof of Theorem 1 to show that  $\widetilde{\mathcal{O}}^{(n)}$  is extension full in  $\mathcal{GW}^{(n)}$
- Take limit  $n \to \infty$
- show that extension split into "stable" and "nilpotent" parts where the stable part gives the limit extension and the nilpotent part eventually dies when taking the limit

Theorem 2.  $\widetilde{\mathcal{O}}$  is extension full in  $\mathcal{GW}$ .

Note: None of the categories have projectives.

- ▶ Restrict the size of Jordan cells allowed for the action of  $\mathfrak{h}$  to get  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$
- ▶ Both  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$  have projectives
- Use proof of Theorem 1 to show that  $\widetilde{\mathcal{O}}^{(n)}$  is extension full in  $\mathcal{GW}^{(n)}$
- Take limit  $n \to \infty$
- show that extension split into "stable" and "nilpotent" parts where the stable part gives the limit extension and the nilpotent part eventually dies when taking the limit

Theorem 2.  $\widetilde{\mathcal{O}}$  is extension full in  $\mathcal{GW}$ .

Note: None of the categories have projectives.

- ▶ Restrict the size of Jordan cells allowed for the action of  $\mathfrak{h}$  to get  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$
- Both  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$  have projectives
- Use proof of Theorem 1 to show that  $\widetilde{\mathcal{O}}^{(n)}$  is extension full in  $\mathcal{GW}^{(n)}$
- Take limit  $n \to \infty$
- show that extension split into "stable" and "nilpotent" parts where the stable part gives the limit extension and the nilpotent part eventually dies when taking the limit

Theorem 2.  $\widetilde{\mathcal{O}}$  is extension full in  $\mathcal{GW}$ .

Note: None of the categories have projectives.

- ▶ Restrict the size of Jordan cells allowed for the action of  $\mathfrak{h}$  to get  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$
- ▶ Both  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$  have projectives
- Use proof of Theorem 1 to show that  $\widetilde{\mathcal{O}}^{(n)}$  is extension full in  $\mathcal{GW}^{(n)}$
- Take limit  $n \to \infty$
- show that extension split into "stable" and "nilpotent" parts where the stable part gives the limit extension and the nilpotent part eventually dies when taking the limit

Theorem 2.  $\widetilde{\mathcal{O}}$  is extension full in  $\mathcal{GW}$ .

Note: None of the categories have projectives.

- ▶ Restrict the size of Jordan cells allowed for the action of  $\mathfrak{h}$  to get  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$
- Both  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$  have projectives
- Use proof of Theorem 1 to show that  $\widetilde{\mathcal{O}}^{(n)}$  is extension full in  $\mathcal{GW}^{(n)}$
- Take limit  $n \to \infty$
- show that extension split into "stable" and "nilpotent" parts where the stable part gives the limit extension and the nilpotent part eventually dies when taking the limit

Theorem 2.  $\widetilde{\mathcal{O}}$  is extension full in  $\mathcal{GW}$ .

Note: None of the categories have projectives.

- ▶ Restrict the size of Jordan cells allowed for the action of  $\mathfrak{h}$  to get  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$
- Both  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$  have projectives
- ▶ Use proof of Theorem 1 to show that  $\widetilde{\mathcal{O}}^{(n)}$  is extension full in  $\mathcal{GW}^{(n)}$
- ▶ Take limit  $n \to \infty$
- show that extension split into "stable" and "nilpotent" parts where the stable part gives the limit extension and the nilpotent part eventually dies when taking the limit

Theorem 2.  $\widetilde{\mathcal{O}}$  is extension full in  $\mathcal{GW}$ .

Note: None of the categories have projectives.

- ▶ Restrict the size of Jordan cells allowed for the action of 𝔥 to get  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$
- Both  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$  have projectives
- Use proof of Theorem 1 to show that  $\widetilde{\mathcal{O}}^{(n)}$  is extension full in  $\mathcal{GW}^{(n)}$
- ▶ Take limit  $n \to \infty$
- show that extension split into "stable" and "nilpotent" parts where the stable part gives the limit extension and the nilpotent part eventually dies when taking the limit

Theorem 2.  $\widetilde{\mathcal{O}}$  is extension full in  $\mathcal{GW}$ .

Note: None of the categories have projectives.

- ▶ Restrict the size of Jordan cells allowed for the action of 𝔥 to get  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$
- Both  $\widetilde{\mathcal{O}}^{(n)}$  and  $\mathcal{GW}^{(n)}$  have projectives
- Use proof of Theorem 1 to show that  $\widetilde{\mathcal{O}}^{(n)}$  is extension full in  $\mathcal{GW}^{(n)}$
- ▶ Take limit  $n \to \infty$
- show that extension split into "stable" and "nilpotent" parts where the stable part gives the limit extension and the nilpotent part eventually dies when taking the limit

Theorem 3.  $\mathcal{GW}$  is extension full in g-Mod.

Note: g-Mod has projectives while  $\mathcal{G}\mathcal{W}$  does not.

Using tricks and Frobenius reciprocity, Theorem 3 can be reduced to:

**Lemma**. Assume  $\mathcal{A} \subset \mathcal{B}$  with exact inclusion. Assume  $\mathcal{A}$  has a full subcategory  $\mathcal{A}_0$  such that

- $\mathcal{A}$  is the Serre subcategory of  $\mathcal{B}$  generated by  $\mathcal{A}_0$ ;
- $\mathcal{A}_0$  has enough projectives.

Then  $\mathcal A$  is extension full in  $\mathcal B$  if and only if the natural map

 $\operatorname{Ext}^n_{\mathcal{A}}(P,K) \to \operatorname{Ext}^n_{\mathcal{B}}(P,K)$ 

#### Theorem 3. $\mathcal{GW}$ is extension full in g-Mod.

Note:  $\mathfrak{g}$ -Mod has projectives while  $\mathcal{GW}$  does not.

Using tricks and Frobenius reciprocity, Theorem 3 can be reduced to:

**Lemma**. Assume  $\mathcal{A} \subset \mathcal{B}$  with exact inclusion. Assume  $\mathcal{A}$  has a full subcategory  $\mathcal{A}_0$  such that

- $\mathcal{A}$  is the Serre subcategory of  $\mathcal{B}$  generated by  $\mathcal{A}_0$ ;
- $\mathcal{A}_0$  has enough projectives.

Then  $\mathcal A$  is extension full in  $\mathcal B$  if and only if the natural map

 $\operatorname{Ext}^n_{\mathcal{A}}(P,K) \to \operatorname{Ext}^n_{\mathcal{B}}(P,K)$ 

#### Theorem 3. $\mathcal{GW}$ is extension full in g-Mod.

#### Note: $\mathfrak{g}$ -Mod has projectives while $\mathcal{GW}$ does not.

Using tricks and Frobenius reciprocity, Theorem 3 can be reduced to:

**Lemma**. Assume  $\mathcal{A} \subset \mathcal{B}$  with exact inclusion. Assume  $\mathcal{A}$  has a full subcategory  $\mathcal{A}_0$  such that

- $\mathcal{A}$  is the Serre subcategory of  $\mathcal{B}$  generated by  $\mathcal{A}_0$ ;
- $\mathcal{A}_0$  has enough projectives.

Then  $\mathcal A$  is extension full in  $\mathcal B$  if and only if the natural map

 $\operatorname{Ext}^n_{\mathcal{A}}(P,K) \to \operatorname{Ext}^n_{\mathcal{B}}(P,K)$ 

Theorem 3.  $\mathcal{GW}$  is extension full in  $\mathfrak{g}$ -Mod.

Note:  $\mathfrak{g}$ -Mod has projectives while  $\mathcal{GW}$  does not.

Using tricks and Frobenius reciprocity, Theorem 3 can be reduced to:

Lemma. Assume  $\mathcal{A} \subset \mathcal{B}$  with exact inclusion. Assume  $\mathcal{A}$  has a full subcategory  $\mathcal{A}_0$  such that

- $\mathcal{A}$  is the Serre subcategory of  $\mathcal{B}$  generated by  $\mathcal{A}_0$ ;
- $A_0$  has enough projectives.

Then  $\mathcal A$  is extension full in  $\mathcal B$  if and only if the natural map

 $\operatorname{Ext}^n_{\mathcal{A}}(P,K) \to \operatorname{Ext}^n_{\mathcal{B}}(P,K)$ 

Theorem 3.  $\mathcal{GW}$  is extension full in g-Mod.

Note:  $\mathfrak{g}$ -Mod has projectives while  $\mathcal{GW}$  does not.

Using tricks and Frobenius reciprocity, Theorem 3 can be reduced to:

#### Lemma. Assume $\mathcal{A} \subset \mathcal{B}$ with exact inclusion.

Assume  $\mathcal A$  has a full subcategory  $\mathcal A_0$  such that

- $\mathcal{A}$  is the Serre subcategory of  $\mathcal{B}$  generated by  $\mathcal{A}_0$ ;
- $\mathcal{A}_0$  has enough projectives.

Then  ${\mathcal A}$  is extension full in  ${\mathcal B}$  if and only if the natural map

 $\operatorname{Ext}^n_{\mathcal{A}}(P,K) \to \operatorname{Ext}^n_{\mathcal{B}}(P,K)$ 

Theorem 3.  $\mathcal{GW}$  is extension full in g-Mod.

Note:  $\mathfrak{g}$ -Mod has projectives while  $\mathcal{GW}$  does not.

Using tricks and Frobenius reciprocity, Theorem 3 can be reduced to:

Lemma. Assume  $\mathcal{A} \subset \mathcal{B}$  with exact inclusion. Assume  $\mathcal{A}$  has a full subcategory  $\mathcal{A}_0$  such that

- $\mathcal{A}$  is the Serre subcategory of  $\mathcal{B}$  generated by  $\mathcal{A}_0$ ;
- $\mathcal{A}_0$  has enough projectives.

Then  $\mathcal A$  is extension full in  $\mathcal B$  if and only if the natural map

 $\operatorname{Ext}^n_{\mathcal{A}}(P,K) \to \operatorname{Ext}^n_{\mathcal{B}}(P,K)$ 

Theorem 3.  $\mathcal{GW}$  is extension full in g-Mod.

Note:  $\mathfrak{g}$ -Mod has projectives while  $\mathcal{GW}$  does not.

Using tricks and Frobenius reciprocity, Theorem 3 can be reduced to:

Lemma. Assume  $\mathcal{A} \subset \mathcal{B}$  with exact inclusion. Assume  $\mathcal{A}$  has a full subcategory  $\mathcal{A}_0$  such that

- $\mathcal{A}$  is the Serre subcategory of  $\mathcal{B}$  generated by  $\mathcal{A}_0$ ;
- $\mathcal{A}_0$  has enough projectives.

Then  ${\mathcal A}$  is extension full in  ${\mathcal B}$  if and only if the natural map

 $\operatorname{Ext}^n_{\mathcal{A}}(P,K) \to \operatorname{Ext}^n_{\mathcal{B}}(P,K)$ 

Theorem 3.  $\mathcal{GW}$  is extension full in g-Mod.

Note:  $\mathfrak{g}$ -Mod has projectives while  $\mathcal{GW}$  does not.

Using tricks and Frobenius reciprocity, Theorem 3 can be reduced to:

Lemma. Assume  $\mathcal{A} \subset \mathcal{B}$  with exact inclusion. Assume  $\mathcal{A}$  has a full subcategory  $\mathcal{A}_0$  such that

- $\mathcal{A}$  is the Serre subcategory of  $\mathcal{B}$  generated by  $\mathcal{A}_0$ ;
- $\mathcal{A}_0$  has enough projectives.

Then  ${\mathcal A}$  is extension full in  ${\mathcal B}$  if and only if the natural map

 $\operatorname{Ext}^n_{\mathcal{A}}(P,K) \to \operatorname{Ext}^n_{\mathcal{B}}(P,K)$ 

**Definition**. p.dim<sub> $\widetilde{O}$ </sub>  $M := \sup\{k : \operatorname{Ext}_{\widetilde{O}}^{k}(M, N) \neq 0 \text{ for some } N \in \widetilde{O}\}$ 

Theorem 5. (Coulembier-M.) p.dim<sub> $\widetilde{\mathcal{O}}$ </sub>  $M \ge \dim \mathfrak{h}$  for  $M \in \widetilde{\mathcal{O}}$ 

Theorem 6. (Coulembier-M.)  $p.\dim_{\widetilde{O}} M = \dim \mathfrak{h} + p.\dim_{\mathcal{O}} M$  for  $M \in \mathcal{O}$ 

nac

Theorem 5. (Coulembier-M.)  $\operatorname{p.dim}_{\widetilde{O}} M \ge \dim \mathfrak{h}$  for  $M \in \widetilde{O}$ 

Theorem 6. (Coulembier-M.)  $\operatorname{p.dim}_{\widetilde{O}} M = \dim \mathfrak{h} + \operatorname{p.dim}_{\mathcal{O}} M$  for  $M \in \mathcal{O}$ 

Theorem 5. (Coulembier-M.) p.dim<sub> $\widetilde{O}$ </sub>  $M \ge \dim \mathfrak{h}$  for  $M \in \widetilde{O}$ 

Theorem 6. (Coulembier-M.)  $\operatorname{p.dim}_{\widetilde{\mathcal{O}}} M = \dim \mathfrak{h} + \operatorname{p.dim}_{\mathcal{O}} M$  for  $M \in \mathcal{O}$ 

Theorem 5. (Coulembier-M.) p.dim<sub> $\widetilde{\mathcal{O}}$ </sub>  $M \ge \dim \mathfrak{h}$  for  $M \in \widetilde{\mathcal{O}}$ 

Theorem 6. (Coulembier-M.)  $p.\dim_{\widetilde{O}} M = \dim \mathfrak{h} + p.\dim_{\mathcal{O}} M$  for  $M \in \mathcal{O}$ 

Theorem 5. (Coulembier-M.) p.dim<sub> $\widetilde{\mathcal{O}}$ </sub>  $M \ge \dim \mathfrak{h}$  for  $M \in \widetilde{\mathcal{O}}$ 

Theorem 6. (Coulembier-M.)  $p.\dim_{\widetilde{O}} M = \dim \mathfrak{h} + p.\dim_{\mathcal{O}} M$  for  $M \in \mathcal{O}$ 

Source: Pierre-Yves Gaillard. Statement of the Alexandru Conjecture. arXiv:math/0003070

 $\mathcal{A}$  — abelian length category

 $\operatorname{Irr}(\mathcal{A})$  — set of isoclasses of simple objects in  $\mathcal{A}$ 

< — smallest partial order on  $Irr(\mathcal{A})$  such that

 $p.\dim L = p.\dim L' + 1$  and  $Ext^1_{\mathcal{A}}(L,L') \neq 0$  imply  $L_i < L_j$ 

**Definition**. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is an initial segment if  $L_j \in \mathcal{B}$  and  $L_i < L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  $\mathcal A$  is Guichardet if any initial segment is extension full in  $\mathcal A$ 

Source: Pierre-Yves Gaillard. Statement of the Alexandru Conjecture. arXiv:math/0003070

 $\mathcal{A}$  — abelian length category

 $\operatorname{Irr}(\mathcal{A})$  — set of isoclasses of simple objects in  $\mathcal{A}$ 

< — smallest partial order on  $Irr(\mathcal{A})$  such that

 $p.\dim L = p.\dim L' + 1$  and  $Ext^1_{\mathcal{A}}(L,L') \neq 0$  imply  $L_i < L_j$ 

**Definition**. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is an initial segment if  $L_j \in \mathcal{B}$  and  $L_i < L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  $\mathcal A$  is Guichardet if any initial segment is extension full in  $\mathcal A$ 

Source: Pierre-Yves Gaillard. Statement of the Alexandru Conjecture. arXiv:math/0003070

 $\mathcal{A}$  — abelian length category

 $\operatorname{Irr}(\mathcal{A})$  — set of isoclasses of simple objects in  $\mathcal{A}$ 

< — smallest partial order on  $Irr(\mathcal{A})$  such that

 $p.\dim L = p.\dim L' + 1$  and  $Ext^1_{\mathcal{A}}(L,L') \neq 0$  imply  $L_i < L_j$ 

**Definition**. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is an initial segment if  $L_j \in \mathcal{B}$  and  $L_i < L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  $\mathcal A$  is Guichardet if any initial segment is extension full in  $\mathcal A$ 

Source: Pierre-Yves Gaillard. Statement of the Alexandru Conjecture. arXiv:math/0003070

 $\mathcal{A}$  — abelian length category

 $\operatorname{Irr}(\mathcal{A})$  — set of isoclasses of simple objects in  $\mathcal{A}$ 

< — smallest partial order on Irr(A) such that

 $p.\dim L = p.\dim L' + 1$  and  $Ext^1_{\mathcal{A}}(L,L') \neq 0$  imply  $L_i < L_j$ 

Definition. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is an initial segment if  $L_j \in \mathcal{B}$  and  $L_i < L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  $\mathcal A$  is Guichardet if any initial segment is extension full in  $\mathcal A$ 

Source: Pierre-Yves Gaillard. Statement of the Alexandru Conjecture. arXiv:math/0003070

 $\mathcal{A}$  — abelian length category

 $\operatorname{Irr}(\mathcal{A})$  — set of isoclasses of simple objects in  $\mathcal{A}$ 

< — smallest partial order on Irr(A) such that

 $p.\dim L = p.\dim L' + 1$  and  $Ext^1_{\mathcal{A}}(L,L') \neq 0$  imply  $L_i < L_j$ 

**Definition**. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is an initial segment if  $L_j \in \mathcal{B}$  and  $L_i < L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  $\mathcal A$  is Guichardet if any initial segment is extension full in  $\mathcal A$ 

Source: Pierre-Yves Gaillard. Statement of the Alexandru Conjecture. arXiv:math/0003070

 $\mathcal{A}$  — abelian length category

 $\operatorname{Irr}(\mathcal{A})$  — set of isoclasses of simple objects in  $\mathcal{A}$ 

< — smallest partial order on Irr(A) such that

 $p.\dim L = p.\dim L' + 1$  and  $Ext^1_{\mathcal{A}}(L,L') \neq 0$  imply  $L_i < L_j$ 

Definition. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is an initial segment if  $L_j \in \mathcal{B}$  and  $L_i < L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  $\mathcal A$  is Guichardet if any initial segment is extension full in  $\mathcal A$ 

Source: Pierre-Yves Gaillard. Statement of the Alexandru Conjecture. arXiv:math/0003070

 $\mathcal{A}$  — abelian length category

 $\operatorname{Irr}(\mathcal{A})$  — set of isoclasses of simple objects in  $\mathcal{A}$ 

< — smallest partial order on  $Irr(\mathcal{A})$  such that

 $p.\dim L = p.\dim L' + 1$  and  $Ext^1_{\mathcal{A}}(L,L') \neq 0$  imply  $L_i < L_j$ 

Definition. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is an initial segment if  $L_j \in \mathcal{B}$  and  $L_i < L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  $\mathcal{A}$  is Guichardet if any initial segment is extension full in  $\mathcal{A}$ 

Source: Pierre-Yves Gaillard. Statement of the Alexandru Conjecture. arXiv:math/0003070

 $\mathcal{A}$  — abelian length category

 $\operatorname{Irr}(\mathcal{A})$  — set of isoclasses of simple objects in  $\mathcal{A}$ 

< — smallest partial order on  $Irr(\mathcal{A})$  such that

 $p.\dim L = p.\dim L' + 1$  and  $Ext^1_{\mathcal{A}}(L,L') \neq 0$  imply  $L_i < L_j$ 

Definition. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is an initial segment if  $L_j \in \mathcal{B}$  and  $L_i < L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  $\mathcal{A}$  is Guichardet if any initial segment is extension full in  $\mathcal{A}$ 

Weak Alexandru conjecture: The principal block of the category of Harish-Chandra (g, ℓ)-modules is Guichardet.

Motivation:  $\mathcal{O}_0$  is Guichardet.

- ▶ we know explicitly p.dim of all simples in O<sub>0</sub>;
- we know the quiver of  $\mathcal{O}_0$ ;
- ▶ we can describe all initial segments in O<sub>0</sub> (they are coideals in the Bruhat order on W);
- $\mathcal{O}_0 \cong A$ -mod where A is quasi-hereditary
- ▶ to all such initial segments the theorem of CPS is applicable

Motivation:  $\mathcal{O}_0$  is Guichardet.

- ▶ we know explicitly p.dim of all simples in  $\mathcal{O}_0$ ;
- we know the quiver of  $\mathcal{O}_0$ ;
- ▶ we can describe all initial segments in O<sub>0</sub> (they are coideals in the Bruhat order on W);
- $\mathcal{O}_0 \cong A$ -mod where A is quasi-hereditary
- ▶ to all such initial segments the theorem of CPS is applicable

Motivation:  $\mathcal{O}_0$  is Guichardet.

- we know explicitly p.dim of all simples in  $\mathcal{O}_0$ ;
- we know the quiver of  $\mathcal{O}_0$ ;
- ▶ we can describe all initial segments in O<sub>0</sub> (they are coideals in the Bruhat order on W);
- $\mathcal{O}_0 \cong A$ -mod where A is quasi-hereditary
- ▶ to all such initial segments the theorem of CPS is applicable

Motivation:  $\mathcal{O}_0$  is Guichardet.

- ▶ we know explicitly p.dim of all simples in O<sub>0</sub>;
- we know the quiver of  $\mathcal{O}_0$ ;
- ▶ we can describe all initial segments in O<sub>0</sub> (they are coideals in the Bruhat order on W);
- $\mathcal{O}_0 \cong A$ -mod where A is quasi-hereditary
- ▶ to all such initial segments the theorem of CPS is applicable

Motivation:  $\mathcal{O}_0$  is Guichardet.

- we know explicitly p.dim of all simples in  $\mathcal{O}_0$ ;
- we know the quiver of  $\mathcal{O}_0$ ;
- ▶ we can describe all initial segments in O<sub>0</sub> (they are coideals in the Bruhat order on W);
- $\mathcal{O}_0 \cong A$ -mod where A is quasi-hereditary
- ▶ to all such initial segments the theorem of CPS is applicable

Motivation:  $\mathcal{O}_0$  is Guichardet.

- we know explicitly p.dim of all simples in  $\mathcal{O}_0$ ;
- we know the quiver of  $\mathcal{O}_0$ ;
- ▶ we can describe all initial segments in O<sub>0</sub> (they are coideals in the Bruhat order on W);
- $\mathcal{O}_0 \cong A$ -mod where A is quasi-hereditary
- ▶ to all such initial segments the theorem of CPS is applicable

Motivation:  $\mathcal{O}_0$  is Guichardet.

- we know explicitly p.dim of all simples in  $\mathcal{O}_0$ ;
- we know the quiver of  $\mathcal{O}_0$ ;
- ▶ we can describe all initial segments in O<sub>0</sub> (they are coideals in the Bruhat order on W);
- $\mathcal{O}_0 \cong A$ -mod where A is quasi-hereditary
- ▶ to all such initial segments the theorem of CPS is applicable

Motivation:  $\mathcal{O}_0$  is Guichardet.

Explanation:

- we know explicitly p.dim of all simples in  $\mathcal{O}_0$ ;
- we know the quiver of  $\mathcal{O}_0$ ;
- ▶ we can describe all initial segments in O<sub>0</sub> (they are coideals in the Bruhat order on W);
- $\mathcal{O}_0 \cong A$ -mod where A is quasi-hereditary

▶ to all such initial segments the theorem of CPS is applicable

Motivation:  $\mathcal{O}_0$  is Guichardet.

- we know explicitly p.dim of all simples in  $\mathcal{O}_0$ ;
- we know the quiver of  $\mathcal{O}_0$ ;
- ▶ we can describe all initial segments in O<sub>0</sub> (they are coideals in the Bruhat order on W);
- $\mathcal{O}_0 \cong A$ -mod where A is quasi-hereditary
- $\blacktriangleright$  to all such initial segments the theorem of CPS is applicable

Motivation:  $\mathcal{O}_0$  is Guichardet.

- we know explicitly p.dim of all simples in  $\mathcal{O}_0$ ;
- we know the quiver of  $\mathcal{O}_0$ ;
- ▶ we can describe all initial segments in O<sub>0</sub> (they are coideals in the Bruhat order on W);
- $\mathcal{O}_0 \cong A$ -mod where A is quasi-hereditary
- $\blacktriangleright$  to all such initial segments the theorem of CPS is applicable

## Alexandru conjecture for $\widetilde{\mathcal{O}}$ and for $\mathcal{H}$

Theorem 7. (Coulembier-M.)  $\widetilde{\mathcal{O}}_0$  is Guichardet.

 $\mathcal H$  — the category of Harish-Chandra bimodules for  $\mathfrak g$ 

Note:  $\mathcal{H} \in \mathfrak{g} \oplus \mathfrak{g}$ -mod

BG-equivalences.  $\mathcal{O}_0 \cong {}^\infty_0 \mathcal{H}^1_0$  and  $\widetilde{\mathcal{O}}_0 \cong {}^\infty_0 \mathcal{H}^\infty_0$ 

Corollary.  ${}^{\infty}_{\chi}\mathcal{H}^{1}_{\chi}, {}^{1}_{\chi}\mathcal{H}^{\infty}_{\chi}$  and  ${}^{\infty}_{0}\mathcal{H}^{\infty}_{0}$  are Guichardet.

Observation.  ${}^{\infty}_{0}\mathcal{H}^{\infty}_{0}$  is not extension full in  $\mathfrak{g}\oplus\mathfrak{g}$ -mod.

 $\mathcal H$  — the category of Harish-Chandra bimodules for  $\mathfrak g$ 

Note:  $\mathcal{H} \in \mathfrak{g} \oplus \mathfrak{g}$ -mod

BG-equivalences.  $\mathcal{O}_0 \cong {}^\infty_0 \mathcal{H}^1_0$  and  $\widetilde{\mathcal{O}}_0 \cong {}^\infty_0 \mathcal{H}^\infty_0$ 

Corollary.  ${}^{\infty}_{\chi}\mathcal{H}^{1}_{\chi}, {}^{1}_{\chi}\mathcal{H}^{\infty}_{\chi}$  and  ${}^{\infty}_{0}\mathcal{H}^{\infty}_{0}$  are Guichardet.

Observation.  ${}^{\infty}_{0}\mathcal{H}^{\infty}_{0}$  is not extension full in  $\mathfrak{g}\oplus\mathfrak{g}$ -mod.

San

 $\mathcal H$  — the category of Harish-Chandra bimodules for  $\mathfrak g$ 

Note:  $\mathcal{H} \in \mathfrak{g} \oplus \mathfrak{g}$ -mod

BG-equivalences.  $\mathcal{O}_0 \cong {}^\infty_0\mathcal{H}^1_0$  and  $\widetilde{\mathcal{O}}_0 \cong {}^\infty_0\mathcal{H}^\infty_0$ 

Corollary.  ${}^{\infty}_{\chi}\mathcal{H}^{1}_{\chi}, {}^{1}_{\chi}\mathcal{H}^{\infty}_{\chi}$  and  ${}^{\infty}_{0}\mathcal{H}^{\infty}_{0}$  are Guichardet.

Observation.  ${}^{\infty}_{0}\mathcal{H}^{\infty}_{0}$  is not extension full in  $\mathfrak{g}\oplus\mathfrak{g}$ -mod.

 $\mathcal H$  — the category of Harish-Chandra bimodules for  $\mathfrak g$ 

Note:  $\mathcal{H} \in \mathfrak{g} \oplus \mathfrak{g}\text{-mod}$ 

BG-equivalences.  $\mathcal{O}_0\cong {}^\infty_0\mathcal{H}^1_0$  and  $\widetilde{\mathcal{O}}_0\cong {}^\infty_0\mathcal{H}^\infty_0$ 

Corollary.  ${}^{\infty}_{\chi}\mathcal{H}^{1}_{\chi}, {}^{1}_{\chi}\mathcal{H}^{\infty}_{\chi}$  and  ${}^{\infty}_{0}\mathcal{H}^{\infty}_{0}$  are Guichardet.

Observation.  ${}^{\infty}_{0}\mathcal{H}^{\infty}_{0}$  is not extension full in  $\mathfrak{g}\oplus\mathfrak{g}$ -mod.

 $\mathcal H$  — the category of Harish-Chandra bimodules for  $\mathfrak g$ 

Note:  $\mathcal{H} \in \mathfrak{g} \oplus \mathfrak{g}\text{-mod}$ 

BG-equivalences.  $\mathcal{O}_0 \cong {}^\infty_0 \mathcal{H}^1_0$  and  $\widetilde{\mathcal{O}}_0 \cong {}^\infty_0 \mathcal{H}^\infty_0$ 

Corollary.  ${}^{\infty}_{\chi}\mathcal{H}^{1}_{\chi}, {}^{1}_{\chi}\mathcal{H}^{\infty}_{\chi}$  and  ${}^{\infty}_{0}\mathcal{H}^{\infty}_{0}$  are Guichardet.

Observation.  ${}_{0}^{\infty}\mathcal{H}_{0}^{\infty}$  is not extension full in  $\mathfrak{g} \oplus \mathfrak{g}$ -mod.

 $\mathcal H$  — the category of Harish-Chandra bimodules for  $\mathfrak g$ 

Note:  $\mathcal{H} \in \mathfrak{g} \oplus \mathfrak{g}$ -mod

BG-equivalences.  $\mathcal{O}_0 \cong {}^\infty_0 \mathcal{H}^1_0$  and  $\widetilde{\mathcal{O}}_0 \cong {}^\infty_0 \mathcal{H}^\infty_0$ 

Corollary.  ${}^{\infty}_{\chi}\mathcal{H}^{1}_{\chi}$ ,  ${}^{1}_{\chi}\mathcal{H}^{\infty}_{\chi}$  and  ${}^{\infty}_{0}\mathcal{H}^{\infty}_{0}$  are Guichardet.

Observation.  ${}^{\infty}_{0}\mathcal{H}^{\infty}_{0}$  is not extension full in  $\mathfrak{g} \oplus \mathfrak{g}$ -mod.

 $\mathcal H$  — the category of Harish-Chandra bimodules for  $\mathfrak g$ 

Note:  $\mathcal{H} \in \mathfrak{g} \oplus \mathfrak{g}$ -mod

BG-equivalences.  $\mathcal{O}_0 \cong {}^\infty_0 \mathcal{H}^1_0$  and  $\widetilde{\mathcal{O}}_0 \cong {}^\infty_0 \mathcal{H}^\infty_0$ 

Corollary.  ${}^{\infty}_{\chi}\mathcal{H}^{1}_{\chi}$ ,  ${}^{1}_{\chi}\mathcal{H}^{\infty}_{\chi}$  and  ${}^{\infty}_{0}\mathcal{H}^{\infty}_{0}$  are Guichardet.

Observation.  ${}_{0}^{\infty}\mathcal{H}_{0}^{\infty}$  is not extension full in  $\mathfrak{g}\oplus\mathfrak{g}$ -mod.

 $\mathcal H$  — the category of Harish-Chandra bimodules for  $\mathfrak g$ 

Note:  $\mathcal{H} \in \mathfrak{g} \oplus \mathfrak{g}$ -mod

BG-equivalences.  $\mathcal{O}_0 \cong {}^\infty_0 \mathcal{H}^1_0$  and  $\widetilde{\mathcal{O}}_0 \cong {}^\infty_0 \mathcal{H}^\infty_0$ 

Corollary.  ${}^{\infty}_{\chi}\mathcal{H}^{1}_{\chi}$ ,  ${}^{1}_{\chi}\mathcal{H}^{\infty}_{\chi}$  and  ${}^{\infty}_{0}\mathcal{H}^{\infty}_{0}$  are Guichardet.

Observation.  ${}_{0}^{\infty}\mathcal{H}_{0}^{\infty}$  is not extension full in  $\mathfrak{g}\oplus\mathfrak{g}$ -mod.

Observation. Singular blocks of  $\mathcal{O}$  for  $\mathfrak{sl}_3$  are not always Guichardet

Given by:



with relations  $\beta \gamma = 0$  and  $\gamma \beta = \alpha \delta$ .

Easy:  $p.\dim L_1 = 1$  and  $p.\dim L_2 = p.\dim L_3 = 2$ 

Note: Serre $(L_3)$  is an initial segment (and is semi-simple).

Note:  $\operatorname{Ext}^2_{\mathcal{O}}(L_3, L_3) \neq 0$ 

### Observation. Singular blocks of $\mathcal{O}$ for $\mathfrak{sl}_3$ are not always Guichardet

#### Given by:



with relations  $\beta \gamma = 0$  and  $\gamma \beta = \alpha \delta$ .

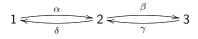
Easy:  $p.\dim L_1 = 1$  and  $p.\dim L_2 = p.\dim L_3 = 2$ 

Note: Serre $\langle L_3 \rangle$  is an initial segment (and is semi-simple).

Note:  $\operatorname{Ext}^2_{\mathcal{O}}(L_3, L_3) \neq 0$ 

Observation. Singular blocks of  $\mathcal{O}$  for  $\mathfrak{sl}_3$  are not always Guichardet

Given by:



with relations  $\beta \gamma = 0$  and  $\gamma \beta = \alpha \delta$ .

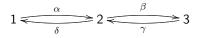
Easy:  $p.\dim L_1 = 1$  and  $p.\dim L_2 = p.\dim L_3 = 2$ 

Note: Serre $\langle L_3 \rangle$  is an initial segment (and is semi-simple).

Note:  $\operatorname{Ext}^2_{\mathcal{O}}(L_3, L_3) \neq 0$ 

Observation. Singular blocks of  $\mathcal{O}$  for  $\mathfrak{sl}_3$  are not always Guichardet

Given by:



with relations  $\beta \gamma = 0$  and  $\gamma \beta = \alpha \delta$ .

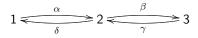
Easy:  $p.\dim L_1 = 1$  and  $p.\dim L_2 = p.\dim L_3 = 2$ 

Note: Serre $\langle L_3 \rangle$  is an initial segment (and is semi-simple).

Note:  $\operatorname{Ext}^2_{\mathcal{O}}(L_3, L_3) \neq 0$ 

Observation. Singular blocks of  $\mathcal{O}$  for  $\mathfrak{sl}_3$  are not always Guichardet

Given by:



with relations  $\beta \gamma = 0$  and  $\gamma \beta = \alpha \delta$ .

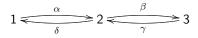
Easy:  $p.\dim L_1 = 1$  and  $p.\dim L_2 = p.\dim L_3 = 2$ 

Note: Serre $\langle L_3 \rangle$  is an initial segment (and is semi-simple).

Note:  $\operatorname{Ext}^2_{\mathcal{O}}(L_3, L_3) \neq 0$ 

Observation. Singular blocks of  $\mathcal{O}$  for  $\mathfrak{sl}_3$  are not always Guichardet

Given by:



with relations  $\beta \gamma = 0$  and  $\gamma \beta = \alpha \delta$ .

Easy:  $p.\dim L_1 = 1$  and  $p.\dim L_2 = p.\dim L_3 = 2$ 

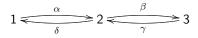
Note: Serre $\langle L_3 \rangle$  is an initial segment (and is semi-simple).

Note:  $\operatorname{Ext}^2_{\mathcal{O}}(L_3, L_3) \neq 0$ 

# Alexandru conjecture for singular blocks of ${\cal O}$

Observation. Singular blocks of  $\mathcal{O}$  for  $\mathfrak{sl}_3$  are not always Guichardet

Given by:



with relations  $\beta \gamma = 0$  and  $\gamma \beta = \alpha \delta$ .

Easy:  $p.\dim L_1 = 1$  and  $p.\dim L_2 = p.\dim L_3 = 2$ 

Note: Serre $\langle L_3 \rangle$  is an initial segment (and is semi-simple).

Note:  $\operatorname{Ext}^2_{\mathcal{O}}(L_3, L_3) \neq 0$ 

Sac

Source: Alain Fuser. The Alexandru conjectures. Prepublication de l'Institut Elie Cartan, Nancy, 1997

 $\mathcal{A}$  — abelian length category

 $\preceq$  — smallest partial pre-order on  $\operatorname{Irr}(\mathcal{A})$  such that

• 
$$L_i < L_j$$
 implies  $L_i \preceq L_j$ ;

▶ p.dim L = p.dim L' and Ext<sup>1</sup>(L, L')  $\neq$  0 or Ext<sup>1</sup>(L', L)  $\neq$  0 implies  $L \leq L'$ .

**Definition**. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is a saturated initial segment if  $L_j \in \mathcal{B}$  and  $L_i \preceq L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  $\mathcal A$  is saturated Guichardet if any saturated initial segment is extension full in  $\mathcal A$ 

Source: Alain Fuser. The Alexandru conjectures. Prepublication de l'Institut Elie Cartan, Nancy, 1997

 $\mathcal{A}$  — abelian length category

 $\preceq$  — smallest partial pre-order on  $\operatorname{Irr}(\mathcal{A})$  such that

- $L_i < L_j$  implies  $L_i \preceq L_j$ ;
- ▶ p.dim L = p.dim L' and Ext<sup>1</sup>(L, L')  $\neq$  0 or Ext<sup>1</sup>(L', L)  $\neq$  0 implies  $L \leq L'$ .

**Definition**. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is a saturated initial segment if  $L_j \in \mathcal{B}$  and  $L_i \preceq L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  $\mathcal A$  is saturated Guichardet if any saturated initial segment is extension full in  $\mathcal A$ 

Source: Alain Fuser. The Alexandru conjectures. Prepublication de l'Institut Elie Cartan, Nancy, 1997

 $\mathcal{A}$  — abelian length category

 $\preceq$  — smallest partial pre-order on  $\mathrm{Irr}(\mathcal{A})$  such that

- $L_i < L_j$  implies  $L_i \preceq L_j$ ;
- ▶ p.dim L = p.dim L' and Ext<sup>1</sup>(L, L')  $\neq$  0 or Ext<sup>1</sup>(L', L)  $\neq$  0 implies  $L \leq L'$ .

**Definition**. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is a saturated initial segment if  $L_j \in \mathcal{B}$  and  $L_i \preceq L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  $\mathcal A$  is saturated Guichardet if any saturated initial segment is extension full in  $\mathcal A$ 

Source: Alain Fuser. The Alexandru conjectures. Prepublication de l'Institut Elie Cartan, Nancy, 1997

- $\mathcal{A}$  abelian length category
- $\preceq$  smallest partial pre-order on  $\operatorname{Irr}(\mathcal{A})$  such that
  - ▶  $L_i < L_j$  implies  $L_i \preceq L_j$ ;
  - ▶ p.dim L = p.dim L' and Ext<sup>1</sup>(L, L')  $\neq 0$  or Ext<sup>1</sup>(L', L)  $\neq 0$  implies  $L \leq L'$ .

**Definition**. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is a saturated initial segment if  $L_j \in \mathcal{B}$  and  $L_i \preceq L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  ${\cal A}$  is saturated Guichardet if any saturated initial segment is extension full in  ${\cal A}$ 

Source: Alain Fuser. The Alexandru conjectures. Prepublication de l'Institut Elie Cartan, Nancy, 1997

 $\mathcal{A}$  — abelian length category

 $\preceq$  — smallest partial pre-order on  $\operatorname{Irr}(\mathcal{A})$  such that

• 
$$L_i < L_j$$
 implies  $L_i \preceq L_j$ ;

▶ p.dim L = p.dim L' and Ext<sup>1</sup>(L, L')  $\neq 0$  or Ext<sup>1</sup>(L', L)  $\neq 0$  implies  $L \leq L'$ .

Definition. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is a saturated initial segment if  $L_j \in \mathcal{B}$  and  $L_i \preceq L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  $\mathcal A$  is saturated Guichardet if any saturated initial segment is extension full in  $\mathcal A$ 

Source: Alain Fuser. The Alexandru conjectures. Prepublication de l'Institut Elie Cartan, Nancy, 1997

 $\mathcal{A}$  — abelian length category

 $\preceq$  — smallest partial pre-order on  $\operatorname{Irr}(\mathcal{A})$  such that

• 
$$L_i < L_j$$
 implies  $L_i \preceq L_j$ ;

▶ p.dim L = p.dim L' and Ext<sup>1</sup>(L, L')  $\neq 0$  or Ext<sup>1</sup>(L', L)  $\neq 0$  implies  $L \leq L'$ .

Definition. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is a saturated initial segment if  $L_j \in \mathcal{B}$  and  $L_i \preceq L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  $\mathcal A$  is saturated Guichardet if any saturated initial segment is extension full in  $\mathcal A$ 

Sac

Source: Alain Fuser. The Alexandru conjectures. Prepublication de l'Institut Elie Cartan, Nancy, 1997

 $\mathcal{A}$  — abelian length category

 $\preceq$  — smallest partial pre-order on  $\operatorname{Irr}(\mathcal{A})$  such that

• 
$$L_i < L_j$$
 implies  $L_i \preceq L_j$ ;

▶ p.dim L = p.dim L' and Ext<sup>1</sup>(L, L')  $\neq 0$  or Ext<sup>1</sup>(L', L)  $\neq 0$  implies  $L \leq L'$ .

Definition. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is a saturated initial segment if  $L_j \in \mathcal{B}$  and  $L_i \preceq L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  $\mathcal A$  is saturated Guichardet if any saturated initial segment is extension full in  $\mathcal A$ 

Sac

Source: Alain Fuser. The Alexandru conjectures. Prepublication de l'Institut Elie Cartan, Nancy, 1997

 $\mathcal{A}$  — abelian length category

 $\preceq$  — smallest partial pre-order on  $\operatorname{Irr}(\mathcal{A})$  such that

• 
$$L_i < L_j$$
 implies  $L_i \preceq L_j$ ;

▶ p.dim L = p.dim L' and Ext<sup>1</sup>(L, L')  $\neq 0$  or Ext<sup>1</sup>(L', L)  $\neq 0$  implies  $L \leq L'$ .

Definition. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is a saturated initial segment if  $L_j \in \mathcal{B}$  and  $L_i \preceq L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  ${\cal A}$  is saturated Guichardet if any saturated initial segment is extension full in  ${\cal A}$ 

DQC

Source: Alain Fuser. The Alexandru conjectures. Prepublication de l'Institut Elie Cartan, Nancy, 1997

 $\mathcal{A}$  — abelian length category

 $\preceq$  — smallest partial pre-order on  $\operatorname{Irr}(\mathcal{A})$  such that

• 
$$L_i < L_j$$
 implies  $L_i \preceq L_j$ ;

▶ p.dim L = p.dim L' and Ext<sup>1</sup>(L, L')  $\neq 0$  or Ext<sup>1</sup>(L', L)  $\neq 0$  implies  $L \leq L'$ .

Definition. A Serre subcategory  $\mathcal{B} \subset \mathcal{A}$  is a saturated initial segment if  $L_j \in \mathcal{B}$  and  $L_i \preceq L_j$  implies  $L_i \in \mathcal{B}$ 

Definition.  ${\cal A}$  is saturated Guichardet if any saturated initial segment is extension full in  ${\cal A}$ 

DQC

Reason: Saturated initial segments and initial segments coincide.

Observation: All blocks of  $\mathcal{O}_0$  for  $\mathfrak{sl}_3$  are saturated Guichardet.

Reason: Saturated initial segments are coideals in the Bruhat order.

Unknown: Is any block of  $\mathcal O$  saturated Guichardet?

Reason: Saturated initial segments and initial segments coincide.

Observation: All blocks of  $\mathcal{O}_0$  for  $\mathfrak{sl}_3$  are saturated Guichardet.

Reason: Saturated initial segments are coideals in the Bruhat order.

Unknown: Is any block of O saturated Guichardet?

Reason: Saturated initial segments and initial segments coincide.

Observation: All blocks of  $\mathcal{O}_0$  for  $\mathfrak{sl}_3$  are saturated Guichardet.

Reason: Saturated initial segments are coideals in the Bruhat order.

Unknown: Is any block of O saturated Guichardet?

Reason: Saturated initial segments and initial segments coincide.

Observation: All blocks of  $\mathcal{O}_0$  for  $\mathfrak{sl}_3$  are saturated Guichardet.

Reason: Saturated initial segments are coideals in the Bruhat order.

Unknown: Is any block of  $\mathcal O$  saturated Guichardet?

Reason: Saturated initial segments and initial segments coincide.

Observation: All blocks of  $\mathcal{O}_0$  for  $\mathfrak{sl}_3$  are saturated Guichardet.

Reason: Saturated initial segments are coideals in the Bruhat order.

Unknown: Is any block of *O* saturated Guichardet?

Reason: Saturated initial segments and initial segments coincide.

Observation: All blocks of  $\mathcal{O}_0$  for  $\mathfrak{sl}_3$  are saturated Guichardet.

Reason: Saturated initial segments are coideals in the Bruhat order.

Unknown: Is any block of  $\mathcal{O}$  saturated Guichardet?

Reason: Saturated initial segments and initial segments coincide.

Observation: All blocks of  $\mathcal{O}_0$  for  $\mathfrak{sl}_3$  are saturated Guichardet.

Reason: Saturated initial segments are coideals in the Bruhat order.

Unknown: Is any block of  $\mathcal{O}$  saturated Guichardet?

Our guess: Some blocks of  $\mathcal{O}$  are not saturated Guichardet.

Another difficulty: Difficult to estimate extensions in the saturated Serre subcategories.

sl<sub>4</sub>-computations: There is a singular block for which saturated initial segments are not always given by coideals in the Bruhat order.

Our guess: Some blocks of  $\mathcal{O}$  are not saturated Guichardet.

Another difficulty: Difficult to estimate extensions in the saturated Serre subcategories.

sl4-computations: There is a singular block for which saturated initial segments are not always given by coideals in the Bruhat order.

#### Our guess: Some blocks of $\ensuremath{\mathcal{O}}$ are not saturated Guichardet.

Another difficulty: Difficult to estimate extensions in the saturated Serre subcategories.

sl4-computations: There is a singular block for which saturated initial segments are not always given by coideals in the Bruhat order.

Our guess: Some blocks of  $\mathcal{O}$  are not saturated Guichardet.

Another difficulty: Difficult to estimate extensions in the saturated Serre subcategories.

sl4-computations: There is a singular block for which saturated initial segments are not always given by coideals in the Bruhat order.

Our guess: Some blocks of  $\mathcal{O}$  are not saturated Guichardet.

Another difficulty: Difficult to estimate extensions in the saturated Serre subcategories.

sl<sub>4</sub>-computations: There is a singular block for which saturated initial segments are not always given by coideals in the Bruhat order.

Our guess: Some blocks of  $\mathcal{O}$  are not saturated Guichardet.

Another difficulty: Difficult to estimate extensions in the saturated Serre subcategories.

sl<sub>4</sub>-computations: There is a singular block for which saturated initial segments are not always given by coideals in the Bruhat order.

# THANK YOU!!!

∃ ⊳

= nac