ALGEBRAIC CATEGORIFICATION

Volodymyr Mazorchuk

(Uppsala University)

1. DECATEGORIFICATION

 \mathscr{C} — a category (additive, abelian, or triangulated)

 $[\mathscr{C}]$ — Grothendieck group of \mathscr{C}

 \mathbb{F} — commutative ring with 1

Definition. The \mathbb{F} -module $[\mathscr{C}]^{\mathbb{F}} = \mathbb{F} \otimes_{\mathbb{Z}} [\mathscr{C}]$ is called the \mathbb{F} -decategorification of \mathscr{C} .

2. PRECATEGORIFICATION AND CATEGORIFICATION

 $V - \mathbb{F}\text{-}\mathbf{module}$

Definition. A precategorification of V is a pair (\mathscr{C}, φ) where \mathscr{C} is a category (additive, abelian, or triangulated) and $\varphi : V \to [\mathscr{C}]^{\mathbb{F}}$ is a monomorphism.

Definition. A precategorification (\mathscr{C}, φ) is called a *categorification* provided that φ is an isomorphism.

$$f \in \operatorname{End}_{\mathbb{F}}(V)$$

Definition. A categorification of f is a functor $F : \mathscr{C} \to \mathscr{C}$ (additive, exact, or triangulated) such that $[F] \circ \varphi = \varphi \circ f$, where [F] is the endomorphism of $[\mathscr{C}]^{\mathbb{F}}$, induced by F.

$$A = \langle a_1, a_2, \dots | R_1(a_1, \dots) = 0, \dots \rangle$$
 — \mathbb{F} -algebra

V - A-module

Definition. A weak categorification of V is a categorification of V and all a_1, a_2, \ldots

Definition. A categorification of V is a weak categorification with some functorial interpretation of the relations in A.

Definition??? A strong categorification of V is a categorification with some other properties which would guarantee some kind of uniqueness.

Example. There is a definition of a strong categorification for finite-dimensional \mathfrak{sl}_2 -modules by Chuang and Rouquier.

Problem. Give a "reasonable" definition of a strong categorification in the general case.

3. EXAMPLE: SPECHT MODULES

- n positive integer
- λ partition of n
- S_n symmetric group
- $S(\lambda)^{\mathbb{F}}$ Specht module over $\mathbb{F}[S_n]$
- λ' dual partition

 $\mathcal{O}_0^{\lambda'}$ — regular block of the $\lambda'\text{-parabolic category}\ \mathcal{O}$ for \mathfrak{sl}_n

Q — basic projective-injective module in $\mathcal{O}_0^{\lambda'}$

 \mathscr{C}_1 — additive category of projective-injective modules in $\mathcal{O}_0^{\lambda'}$

 \mathscr{C}_2 — abelian category $\operatorname{End}_{\mathcal{O}_0^{\lambda'}}(Q)$ -mod

 $\varphi : S(\lambda)^{\mathbb{F}} \to [\mathscr{C}]^{\mathbb{F}}$ given by sending Kazhdan-Lusztig basis elements to corresponding indecomposable projectives

Theorem (Khovanov-M.-Stroppel) (\mathscr{C}_2, φ) is a precategorification and (\mathscr{C}_1, φ) is a categorification of $S(\lambda)^{\mathbb{F}}$. (\mathscr{C}_2, φ) is a categorification of $S(\lambda)^{\mathbb{F}}$ if \mathbb{F} is a field of characteristic zero.

Difficulty: Projective modules do not form a basis in the Grothendieck group $(\operatorname{End}_{\mathcal{O}_0^{\lambda'}}(Q)$ is self-injective and hence has infinite global dimension in general).

Problem: What is $[\mathscr{C}_2]^{\mathbb{Z}}$ as a $\mathbb{Z}[S_n]$ -module?

Question: Why do we need \mathscr{C}_2 ?

Answer: Because it is abelian and we can derive. In particular, this allows us to lift the S_n -action on the Specht module to the functorial action of the canonical generators of the corresponding braid group (via shuffling functors).