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Definition. The split Gorthendieck group [A]g of A is the quotient of
the free abelian group generated by [M], M € A, modulo the relations
[X]—[Y] — [Z] whenever X 2 Y & Z in A.
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of — finitary 2-category

A 2-representation of .7 can often be understood as a functorial action of
&/ on a collection of certain categories.
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Examples:
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representation of ZW [Bernstein—S. Gelfand].
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Principal 2-representations

& — finitary 2-category

Definition. For i € % the corresponding principal 2-representation P; of
% is defined as the 2-functor €(i, ).
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Principal 2-representations

& — finitary 2-category

Definition. For i € % the corresponding principal 2-representation P; of
% is defined as the 2-functor €(i, ).

We have:

» = E(1,3);
»F:j—=k — Fo_:%(i,j) — €(i,k);
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» a:F—-G +— «aqogid_:Fo_ —Go_.

¢-afmod — 2-category of additive finitary 2-representations of ¢
(morphisms — additive strong transformations)
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& — finitary 2-category

Definition. For i € % the corresponding principal 2-representation P; of
% is defined as the 2-functor €(i, ).

We have:
> j—= 45, 3);

» F:j—ok — Fo_:%(i,j)— ¢(4,k);
» a:F—-G +— «aqogid_:Fo_ —Go_.

¢-afmod — 2-category of additive finitary 2-representations of ¢
(morphisms — additive strong transformations)

Fact. P; is projective in ¥-afmod in the sense that it preserves all small
colimits.
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2-Morita Theory

& — finitary 2-category
@-proj — 2-category of projective 2-representations of ¢
Definition. A progenerator is a projective 2-representation P of % such

that any other projective 2-representation is a retract of some
2-representation from add(P).
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@-proj — 2-category of projective 2-representations of ¢

Definition. A progenerator is a projective 2-representation P of % such
that any other projective 2-representation is a retract of some
2-representation from add(P).

Example. @ P; is a progenerator.
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F, G are composable indecomposable 1-morphisms in &, then

FoGz > H®MF.c.

H indec.
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€ — finitary 2-category
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0, else.
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€ — finitary 2-category
(5(%), ) — the multisemigroup of €

Definition. [F] ~, [G] if S(%) < [F] = S(%) < [G]
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€ — finitary 2-category
(5(%), ) — the multisemigroup of €
Definition. [F] ~; [G] if S(%) ¢ [F] = S(%) ¢ [G]

Definition. Equivalence classes of ~; are called left cells.
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Abelianization

Definition. The abelianization 2-functor - is defined as follows:
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Definition. The abelianization 2-functor - is defined as follows:

given M € %-afmod and i € % the category M(i) has objects

X—=vY, X, Y eM(i), a:X—=Y;

and morphisms

X——Y modulo X ——Y
ﬂi lw ﬁl 7 io/&
X! o > y! X! o > y!
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€ — fiat category;
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Properties of cell 2-representation

Assume:

v

J be a 2-sided cell of €;

v

different left cells inside J are not comparable w.r.t. the left order;

forany £L,R C J we have |[LNR| =1,

v

v

the function F — mpg, where F* o F = mgH is constant on right

cells of J.

Volodymyr Mazorchuk Finitary 2-categories and their 2-representations  21/23



Properties of cell 2-representation

Assume:
» 7 be a 2-sided cell of &,
» different left cells inside 7 are not comparable w.r.t. the left order;
» forany £,R C J we have |[LNR|=1;

v

the function F — mpg, where F* o F = mgH is constant on right

cells of J.

Theorem. [M.-Miemietz]

Volodymyr Mazorchuk Finitary 2-categories and their 2-representations  21/23



Properties of cell 2-representation

Assume:

v

J be a 2-sided cell of €;
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different left cells inside J are not comparable w.r.t. the left order;

forany £L,R C J we have |[LNR| =1,

v

v

the function F — mpg, where F* o F = mgH is constant on right

cells of J.
Theorem. [M.-Miemietz]

» For any two left cells £ and £’ of J the corresponding cell
2-representations C and C,/ are equivalent.

Volodymyr Mazorchuk Finitary 2-categories and their 2-representations  21/23



Properties of cell 2-representation

Assume:
» 7 be a 2-sided cell of &,
» different left cells inside 7 are not comparable w.r.t. the left order;
» forany £,R C J we have |[LNR|=1;

v

the function F — mpg, where F* o F = mgH is constant on right

cells of J.
Theorem. [M.-Miemietz]

» For any two left cells £ and £’ of J the corresponding cell
2-representations C and C,/ are equivalent.

» EndsC, = k-mod.
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» what are simple 2-representations?

v

any Jordan-Holder theory?
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Morita theory for abelian representations;
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