finitary 2-categories and their 2-representations

Volodymyr Mazorchuł

(Uppfala University)

Workshop "NWDA 17" July 12, 2013, Wuppertal, Germany

 \Bbbk — algebraically closed field

A — finite dimensional algebra over \Bbbk

 mod -A — the category of right finitely generated A-modules

 P_1, P_2, \ldots, P_k — indecomposable projectives in mod-A up to iso.

 \mathcal{P} — the full subcategory of mod-A with objects P_1, P_2, \ldots, P_k

 $\mathcal{P} - \mathbb{k}$ -linear category (i.e. enriched over \mathbb{k} -mod)

 $\mathcal{P} ext{-mod}$ — the category of k-linear functors from \mathcal{P} to k-mod

Theorem. \mathcal{P} -mod \cong mod- \mathcal{A} .

\Bbbk — algebraically closed field

A — finite dimensional algebra over \Bbbk

 mod -A — the category of right finitely generated A-modules

 P_1, P_2, \ldots, P_k — indecomposable projectives in mod-A up to iso.

 \mathcal{P} — the full subcategory of $\operatorname{mod} A$ with objects P_1, P_2, \ldots, P_k

 $\mathcal{P} - \mathbb{k}$ -linear category (i.e. enriched over \mathbb{k} -mod)

 $\mathcal{P} ext{-mod}$ — the category of ${f k} ext{-linear}$ functors from \mathcal{P} to ${f k} ext{-mod}$

Theorem. \mathcal{P} -mod \cong mod-A.

\Bbbk — algebraically closed field

A — finite dimensional algebra over \Bbbk

 mod -A — the category of right finitely generated A-modules

 P_1, P_2, \ldots, P_k — indecomposable projectives in mod-A up to iso.

 \mathcal{P} — the full subcategory of $\operatorname{mod} A$ with objects P_1, P_2, \ldots, P_k

 $\mathcal{P} - \mathbb{k}$ -linear category (i.e. enriched over \mathbb{k} -mod)

 $\mathcal{P} ext{-mod}$ — the category of $\Bbbk ext{-linear}$ functors from \mathcal{P} to $\Bbbk ext{-mod}$

Theorem. \mathcal{P} -mod \cong mod-A.

 $\Bbbk - algebraically closed field$

A — finite dimensional algebra over \Bbbk

 mod -A — the category of right finitely generated A-modules

 P_1, P_2, \ldots, P_k — indecomposable projectives in mod-A up to iso.

 \mathcal{P} — the full subcategory of mod -A with objects P_1, P_2, \ldots, P_k

 $\mathcal{P} - \mathbb{k}$ -linear category (i.e. enriched over \mathbb{k} -mod)

 $\mathcal{P} ext{-mod}$ — the category of ${f k} ext{-linear}$ functors from \mathcal{P} to ${f k} ext{-mod}$

Theorem. \mathcal{P} -mod \cong mod- \mathcal{A} .

 $\Bbbk - algebraically closed field$

A — finite dimensional algebra over \Bbbk

 mod -A — the category of right finitely generated A-modules

 P_1, P_2, \ldots, P_k — indecomposable projectives in mod-A up to iso.

 \mathcal{P} — the full subcategory of mod-A with objects P_1, P_2, \ldots, P_k

 $\mathcal{P} - \Bbbk$ -linear category (i.e. enriched over &-mod)

 $\mathcal{P} ext{-mod}$ — the category of ${f k} ext{-linear}$ functors from \mathcal{P} to ${f k} ext{-mod}$

Theorem. \mathcal{P} -mod \cong mod- \mathcal{A} .

 $\Bbbk - algebraically closed field$

A — finite dimensional algebra over \Bbbk

 $\operatorname{mod-}A$ — the category of right finitely generated A-modules

 P_1, P_2, \ldots, P_k — indecomposable projectives in mod-A up to iso.

 \mathcal{P} — the full subcategory of mod-A with objects P_1, P_2, \ldots, P_k

 \mathcal{P} — k-linear category (i.e. enriched over k-mod)

 $\mathcal{P} ext{-mod}$ — the category of k-linear functors from \mathcal{P} to k-mod

Theorem. \mathcal{P} -mod \cong mod-A.

 \Bbbk — algebraically closed field

A — finite dimensional algebra over \Bbbk

 $\operatorname{mod-}A$ — the category of right finitely generated A-modules

 P_1, P_2, \ldots, P_k — indecomposable projectives in mod-A up to iso.

 \mathcal{P} — the full subcategory of mod-A with objects P_1, P_2, \ldots, P_k

 \mathcal{P} — k-linear category (i.e. enriched over k-mod)

 $\mathcal{P}\text{-}\mathrm{mod}$ — the category of k-linear functors from \mathcal{P} to k-mod

Theorem. \mathcal{P} -mod \cong mod- \mathcal{A} .

 \Bbbk — algebraically closed field

A — finite dimensional algebra over \Bbbk

 $\operatorname{mod-}A$ — the category of right finitely generated A-modules

 P_1, P_2, \ldots, P_k — indecomposable projectives in mod-A up to iso.

 \mathcal{P} — the full subcategory of mod-A with objects P_1, P_2, \ldots, P_k

 \mathcal{P} — k-linear category (i.e. enriched over k-mod)

 $\mathcal{P}\operatorname{-mod}$ — the category of k-linear functors from \mathcal{P} to k-mod

Theorem. \mathcal{P} -mod \cong mod- \mathcal{A} .

 \Bbbk — algebraically closed field

A — finite dimensional algebra over \Bbbk

 $\operatorname{mod-}A$ — the category of right finitely generated A-modules

 P_1, P_2, \ldots, P_k — indecomposable projectives in mod-A up to iso.

 \mathcal{P} — the full subcategory of mod-A with objects P_1, P_2, \ldots, P_k

 \mathcal{P} — k-linear category (i.e. enriched over k-mod)

 $\mathcal{P}\operatorname{-mod}$ — the category of k-linear functors from \mathcal{P} to k-mod

Theorem. \mathcal{P} -mod \cong mod- \mathcal{A} .

 \Bbbk — algebraically closed field

A — finite dimensional algebra over \Bbbk

 $\operatorname{mod-}A$ — the category of right finitely generated A-modules

 P_1, P_2, \ldots, P_k — indecomposable projectives in mod-A up to iso.

 \mathcal{P} — the full subcategory of mod-A with objects P_1, P_2, \ldots, P_k

 \mathcal{P} — k-linear category (i.e. enriched over k-mod)

 $\mathcal{P}\operatorname{-mod}$ — the category of k-linear functors from \mathcal{P} to k-mod

Theorem. \mathcal{P} -mod \cong mod- \mathcal{A} .

 ${\cal P}$ is finitary in the following sense:

► It has finitely many objects.

Morphism spaces are finite dimensional over k.

Additionally: Each id_{Pi} is primitive

${\mathcal P}$ is finitary in the following sense:

- ▶ It has finitely many objects.
- Morphism spaces are finite dimensional over k.

Additionally: Each id_{Pi} is primitive

 ${\cal P}$ is finitary in the following sense:

► It has finitely many objects.

▶ Morphism spaces are finite dimensional over k.

Additionally: Each id_{Pi} is primitive

 ${\cal P}$ is finitary in the following sense:

- ► It has finitely many objects.
- ► Morphism spaces are finite dimensional over k.

Additionally: Each id_{Pi} is primitive

 \mathcal{P} is finitary in the following sense:

- ► It has finitely many objects.
- ► Morphism spaces are finite dimensional over k.

Additionally: Each id_{P_i} is primitive

 \mathcal{P} is finitary in the following sense:

- ► It has finitely many objects.
- ► Morphism spaces are finite dimensional over k.

Additionally: Each id_{P_i} is primitive

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of *C*;
- ▶ small categories C(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of *C*;
- ▶ small categories C(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ▶ objects of *C*;
- ▶ small categories C(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ► objects of *C*;
- ▶ small categories 𝒞(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k);$
- ▶ identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ► objects of *C*;
- ► small categories C(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \to \mathscr{C}(i,k);$
- ▶ identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ► objects of *C*;
- small categories $\mathscr{C}(i, j)$ of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ▶ identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ► objects of *C*;
- ▶ small categories 𝒞(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ► identity objects 1_j;

This means that a 2-category $\mathscr C$ is given by the following data:

- ► objects of *C*;
- ▶ small categories 𝒞(i, j) of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ► identity objects 1_j;

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ► objects of *C*;
- small categories $\mathscr{C}(i, j)$ of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ► identity objects 1_j;

This means that a 2-category ${\mathscr C}$ is given by the following data:

- ► objects of *C*;
- small categories $\mathscr{C}(i, j)$ of morphisms;
- ▶ bifunctorial composition $\mathscr{C}(j,k) \times \mathscr{C}(i,j) \rightarrow \mathscr{C}(i,k)$;
- ► identity objects 1_j;

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in C(i, j) is called vertical and denoted o₁.
- ▶ Composition in *C* is called horizontal and denoted ∘₀

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0

- Objects of Cat are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- ► Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- \blacktriangleright Composition in ${\mathscr C}$ is called horizontal and denoted \circ_0

Principal example. The category Cat is a 2-category.

- Objects of Cat are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- ▶ Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in *C* is called horizontal and denoted ○0.

Principal example. The category Cat is a 2-category.

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

Principal example. The category Cat is a 2-category.

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- > 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in C is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in C is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ▶ 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- Identity 1-morphisms are the identity functors.
Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ► 1-morphisms in **Cat** are functors.
- 2-morphisms in Cat are natural transformations.
- Composition is the usual composition.
- Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ► 1-morphisms in **Cat** are functors.
- ► 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ▶ Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

Principal example. The category Cat is a 2-category.

- Objects of **Cat** are small categories.
- ► 1-morphisms in **Cat** are functors.
- ► 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.

▶ Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ► 1-morphisms in **Cat** are functors.
- ► 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ► 1-morphisms in **Cat** are functors.
- ► 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

Terminology.

- An object in $\mathscr{C}(i, j)$ is called a 1-morphism of \mathscr{C} .
- A morphism in $\mathscr{C}(i, j)$ is called a 2-morphism of \mathscr{C} .
- Composition in $\mathscr{C}(i, j)$ is called vertical and denoted \circ_1 .
- ▶ Composition in \mathscr{C} is called horizontal and denoted \circ_0 .

- Objects of **Cat** are small categories.
- ► 1-morphisms in **Cat** are functors.
- ► 2-morphisms in **Cat** are natural transformations.
- Composition is the usual composition.
- ► Identity 1-morphisms are the identity functors.

- ▶ *C* has finitely many objects;
- ▶ each C(i, j) is additive, k-linear, idempotent split, with finitely many indecomposables (up to isomorphism);
- ▶ all spaces of 2-morphisms are finite dimensional (over k);
- ▶ the identity 1-morphisms are indecomposable.

200

- ▶ *C* has finitely many objects;
- ▶ each C(i, j) is additive, k-linear, idempotent split, with finitely many indecomposables (up to isomorphism);
- ▶ all spaces of 2-morphisms are finite dimensional (over k);
- ▶ the identity 1-morphisms are indecomposable.

▶ *C* has finitely many objects;

- each C(i, j) is additive, k-linear, idempotent split, with finitely many indecomposables (up to isomorphism);
- ▶ all spaces of 2-morphisms are finite dimensional (over k);
- ▶ the identity 1-morphisms are indecomposable.

- ▶ *C* has finitely many objects;
- ► each C(i, j) is additive, k-linear, idempotent split, with finitely many indecomposables (up to isomorphism);
- ▶ all spaces of 2-morphisms are finite dimensional (over k);
- ▶ the identity 1-morphisms are indecomposable.

- ▶ *C* has finitely many objects;
- ► each C(i, j) is additive, k-linear, idempotent split, with finitely many indecomposables (up to isomorphism);
- ▶ all spaces of 2-morphisms are finite dimensional (over k);
- ▶ the identity 1-morphisms are indecomposable.

- ▶ *C* has finitely many objects;
- ► each C(i, j) is additive, k-linear, idempotent split, with finitely many indecomposables (up to isomorphism);
- ▶ all spaces of 2-morphisms are finite dimensional (over k);
- ► the identity 1-morphisms are indecomposable.

- ▶ *C* has finitely many objects;
- ► each C(i, j) is additive, k-linear, idempotent split, with finitely many indecomposables (up to isomorphism);
- ▶ all spaces of 2-morphisms are finite dimensional (over k);
- ► the identity 1-morphisms are indecomposable.

A — finite dimensional connected associative k-algebra

A-mod — the category of finitely generated left A-modules

Definition: F : A-mod \rightarrow A-mod is **projective** is it is isomorphic to tensoring with a projective bimodule.

Definition: [M.-Miemietz] The 2-category \mathcal{P}_A is defined as follows:

- \mathcal{P}_A has one object **\$** (which is identified with A-mod);
- ▶ 1-morphisms in 𝒫_A(♣,♣) are functors isomorphic to direct sums of the identity and projective functors;
- ▶ 2-morphisms in $\mathscr{P}_A(\clubsuit, \clubsuit)$ are natural transformations of functors.

Remark: \mathscr{P}_A is a "simple" finitary 2-category (~ Artin-Wedderburn)

A — finite dimensional connected associative \Bbbk -algebra

A-mod — the category of finitely generated left A-modules

Definition: $F : A \text{-mod} \rightarrow A \text{-mod}$ is projective is it is isomorphic to tensoring with a projective bimodule.

Definition: [M.-Miemietz] The 2-category \mathcal{P}_A is defined as follows:

- \mathcal{P}_A has one object **\$** (which is identified with A-mod);
- ▶ 1-morphisms in 𝒫_A(♣,♣) are functors isomorphic to direct sums of the identity and projective functors;
- ▶ 2-morphisms in $\mathscr{P}_A(\clubsuit, \clubsuit)$ are natural transformations of functors.

Remark: \mathcal{P}_A is a "simple" finitary 2-category (~ Artin-Wedderburn)

A — finite dimensional connected associative \Bbbk -algebra

$A\operatorname{-mod}$ — the category of finitely generated left $A\operatorname{-modules}$

Definition: $F : A \text{-mod} \rightarrow A \text{-mod}$ is projective is it is isomorphic to tensoring with a projective bimodule.

Definition: [M.-Miemietz] The 2-category \mathcal{P}_A is defined as follows:

- \mathcal{P}_A has one object **\$** (which is identified with A-mod);
- ▶ 1-morphisms in 𝒫_A(♣,♣) are functors isomorphic to direct sums of the identity and projective functors;
- ▶ 2-morphisms in $\mathscr{P}_A(\clubsuit, \clubsuit)$ are natural transformations of functors.

Remark: \mathscr{P}_A is a "simple" finitary 2-category (~ Artin-Wedderburn)

A — finite dimensional connected associative k-algebra

 $A\operatorname{-mod}$ — the category of finitely generated left $A\operatorname{-modules}$

Definition: $F : A \text{-mod} \rightarrow A \text{-mod}$ is projective is it is isomorphic to tensoring with a projective bimodule.

Definition: [M.-Miemietz] The 2-category \mathcal{P}_A is defined as follows:

- \mathcal{P}_A has one object \clubsuit (which is identified with A-mod);
- ▶ 1-morphisms in 𝒫_A(♣,♣) are functors isomorphic to direct sums of the identity and projective functors;
- ▶ 2-morphisms in $\mathscr{P}_A(\clubsuit, \clubsuit)$ are natural transformations of functors.

Remark: \mathscr{P}_A is a "simple" finitary 2-category (~ Artin-Wedderburn)

A — finite dimensional connected associative k-algebra

 $A\operatorname{-mod}$ — the category of finitely generated left $A\operatorname{-modules}$

Definition: $F : A \text{-mod} \rightarrow A \text{-mod}$ is projective is it is isomorphic to tensoring with a projective bimodule.

Definition: [M.-Miemietz] The 2-category \mathcal{P}_A is defined as follows:

- \mathcal{P}_A has one object **4** (which is identified with A-mod);
- ▶ 1-morphisms in 𝒫_A(♣,♣) are functors isomorphic to direct sums of the identity and projective functors;
- ▶ 2-morphisms in $\mathscr{P}_A(\clubsuit, \clubsuit)$ are natural transformations of functors.

Remark: \mathscr{P}_A is a "simple" finitary 2-category (~ Artin-Wedderburn)

A — finite dimensional connected associative k-algebra

 $A\operatorname{-mod}$ — the category of finitely generated left $A\operatorname{-modules}$

Definition: $F : A \text{-mod} \rightarrow A \text{-mod}$ is projective is it is isomorphic to tensoring with a projective bimodule.

Definition: [M.-Miemietz] The 2-category \mathscr{P}_A is defined as follows:

• \mathcal{P}_A has one object \clubsuit (which is identified with A-mod);

- ▶ 1-morphisms in 𝒫_A(♣,♣) are functors isomorphic to direct sums of the identity and projective functors;
- ▶ 2-morphisms in $\mathscr{P}_A(\clubsuit, \clubsuit)$ are natural transformations of functors.

Remark: \mathscr{P}_A is a "simple" finitary 2-category (~ Artin-Wedderburn)

A — finite dimensional connected associative k-algebra

A-mod — the category of finitely generated left A-modules

Definition: $F : A \text{-mod} \rightarrow A \text{-mod}$ is projective is it is isomorphic to tensoring with a projective bimodule.

Definition: [M.-Miemietz] The 2-category \mathcal{P}_A is defined as follows:

- \mathcal{P}_A has one object \clubsuit (which is identified with A-mod);
- ▶ 1-morphisms in 𝒫_A(♣,♣) are functors isomorphic to direct sums of the identity and projective functors;
- ▶ 2-morphisms in $\mathcal{P}_A(\clubsuit, \clubsuit)$ are natural transformations of functors.

Remark: \mathscr{P}_A is a "simple" finitary 2-category (~ Artin-Wedderburn)

A — finite dimensional connected associative k-algebra

A-mod — the category of finitely generated left A-modules

Definition: $F : A \text{-mod} \rightarrow A \text{-mod}$ is projective is it is isomorphic to tensoring with a projective bimodule.

Definition: [M.-Miemietz] The 2-category \mathcal{P}_A is defined as follows:

- \mathcal{P}_A has one object \clubsuit (which is identified with A-mod);
- ▶ 1-morphisms in 𝒫_A(♣,♣) are functors isomorphic to direct sums of the identity and projective functors;
- ▶ 2-morphisms in $\mathscr{P}_A(\clubsuit, \clubsuit)$ are natural transformations of functors.

Remark: \mathscr{P}_A is a "simple" finitary 2-category (~ Artin-Wedderburn)

A — finite dimensional connected associative k-algebra

A-mod — the category of finitely generated left A-modules

Definition: $F : A \text{-mod} \rightarrow A \text{-mod}$ is projective is it is isomorphic to tensoring with a projective bimodule.

Definition: [M.-Miemietz] The 2-category \mathcal{P}_A is defined as follows:

- \mathcal{P}_A has one object \clubsuit (which is identified with A-mod);
- ▶ 1-morphisms in 𝒫_A(♣,♣) are functors isomorphic to direct sums of the identity and projective functors;
- ▶ 2-morphisms in $\mathscr{P}_A(\clubsuit, \clubsuit)$ are natural transformations of functors.

Remark: \mathscr{P}_A is a "simple" finitary 2-category (~ Artin-Wedderburn)

A — finite dimensional connected associative k-algebra

A-mod — the category of finitely generated left A-modules

Definition: $F : A \text{-mod} \rightarrow A \text{-mod}$ is projective is it is isomorphic to tensoring with a projective bimodule.

Definition: [M.-Miemietz] The 2-category \mathcal{P}_A is defined as follows:

- \mathcal{P}_A has one object \clubsuit (which is identified with A-mod);
- ▶ 1-morphisms in 𝒫_A(♣,♣) are functors isomorphic to direct sums of the identity and projective functors;
- ▶ 2-morphisms in $\mathscr{P}_A(\clubsuit, \clubsuit)$ are natural transformations of functors.

Remark: \mathscr{P}_A is a "simple" finitary 2-category (~ Artin-Wedderburn)

Example 2: projection functors

 Γ — finite acyclic quiver

 $\Bbbk\Gamma$ — the path algebra of Γ

For $i \in \Gamma$ let $F_i : \Bbbk\Gamma \text{-mod} \to \Bbbk\Gamma \text{-mod}$ be the *i*-th projection functor "factor out the trace of the *i*-th simple module"

Fact: $F_i : k\Gamma$ -inj $\rightarrow k\Gamma$ -inj.

 $G_i: \Bbbk\Gamma\operatorname{-mod} \to \Bbbk\Gamma\operatorname{-mod} -$ the unique (up to iso) left exact functor such that $G_i|_{\Bbbk\Gamma\operatorname{-inj}} \cong F_i|_{\Bbbk\Gamma\operatorname{-inj}}$

Fact: G_i is exact.

 $\Bbbk\Gamma$ — the path algebra of Γ

For $i\in\Gamma$ let $F_i:\Bbbk\Gamma\operatorname{-mod}\to\Bbbk\Gamma\operatorname{-mod}$ be the i-th projection functor "factor out the trace of the i-th simple module"

Fact: $F_i : k\Gamma$ -inj $\rightarrow k\Gamma$ -inj.

 $G_i: \Bbbk \Gamma\operatorname{-mod} \to \Bbbk \Gamma\operatorname{-mod} -$ the unique (up to iso) left exact functor such that $G_i|_{\Bbbk \Gamma\operatorname{-inj}} \cong F_i|_{\Bbbk \Gamma\operatorname{-inj}}$

Fact: G_i is exact.

Example 2: projection functors

 Γ — finite acyclic quiver

$\Bbbk\Gamma$ — the path algebra of Γ

For $i\in\Gamma$ let $F_i:\Bbbk\Gamma\operatorname{-mod}\to\Bbbk\Gamma\operatorname{-mod}$ be the i-th projection functor "factor out the trace of the i-th simple module"

Fact: $F_i : k\Gamma$ -inj $\rightarrow k\Gamma$ -inj.

 $G_i: \Bbbk \Gamma\operatorname{-mod} \to \Bbbk \Gamma\operatorname{-mod} -$ the unique (up to iso) left exact functor such that $G_i|_{\Bbbk \Gamma\operatorname{-inj}} \cong F_i|_{\Bbbk \Gamma\operatorname{-inj}}$

Fact: G_i is exact.

 $\Bbbk\Gamma$ — the path algebra of Γ

For $i\in\Gamma$ let $F_i:\Bbbk\Gamma\operatorname{-mod}\to\Bbbk\Gamma\operatorname{-mod}$ be the i-th projection functor "factor out the trace of the i-th simple module"

Fact: $F_i : k\Gamma - inj \rightarrow k\Gamma - inj$.

 $G_i: \Bbbk\Gamma\operatorname{-mod} \to \Bbbk\Gamma\operatorname{-mod} -$ the unique (up to iso) left exact functor such that $G_i|_{\Bbbk\Gamma\operatorname{-inj}} \cong F_i|_{\Bbbk\Gamma\operatorname{-inj}}$

Fact: G_i is exact.

 $\Bbbk\Gamma$ — the path algebra of Γ

For $i\in\Gamma$ let $F_i:\Bbbk\Gamma\operatorname{-mod}\to\Bbbk\Gamma\operatorname{-mod}$ be the i-th projection functor "factor out the trace of the i-th simple module"

Fact: $F_i : \Bbbk\Gamma\text{-inj} \to \Bbbk\Gamma\text{-inj}.$

 $G_i: \Bbbk\Gamma\operatorname{-mod} \to \Bbbk\Gamma\operatorname{-mod} -$ the unique (up to iso) left exact functor such that $G_i|_{\Bbbk\Gamma\operatorname{-inj}} \cong F_i|_{\Bbbk\Gamma\operatorname{-inj}}$

Fact: G_i is exact.

 $\Bbbk\Gamma$ — the path algebra of Γ

For $i \in \Gamma$ let $F_i : \Bbbk\Gamma \operatorname{-mod} \to \Bbbk\Gamma \operatorname{-mod}$ be the i-th projection functor "factor out the trace of the i-th simple module"

Fact: $F_i : \Bbbk\Gamma\text{-inj} \to \Bbbk\Gamma\text{-inj}.$

 $G_i: \Bbbk \Gamma\operatorname{-mod} \to \Bbbk \Gamma\operatorname{-mod}$ — the unique (up to iso) left exact functor such that $G_i|_{\Bbbk \Gamma\operatorname{-inj}} \cong F_i|_{\Bbbk \Gamma\operatorname{-inj}}$

Fact: G_i is exact.

 $\Bbbk\Gamma$ — the path algebra of Γ

For $i \in \Gamma$ let $F_i : \Bbbk\Gamma \operatorname{-mod} \to \Bbbk\Gamma \operatorname{-mod}$ be the i-th projection functor "factor out the trace of the i-th simple module"

Fact: $F_i : \Bbbk\Gamma\text{-inj} \to \Bbbk\Gamma\text{-inj}.$

 $\begin{array}{l} G_i: \Bbbk \Gamma \operatorname{\!-mod} \to \Bbbk \Gamma \operatorname{\!-mod} \longrightarrow \text{the unique (up to iso) left exact functor such that } G_i|_{\Bbbk \Gamma \operatorname{\!-inj}} \cong F_i|_{\Bbbk \Gamma \operatorname{\!-inj}} \end{array}$

Fact: G_i is exact.

 $\Bbbk\Gamma$ — the path algebra of Γ

For $i \in \Gamma$ let $F_i : \Bbbk\Gamma \operatorname{-mod} \to \Bbbk\Gamma \operatorname{-mod}$ be the i-th projection functor "factor out the trace of the i-th simple module"

Fact: $F_i : \Bbbk\Gamma\text{-inj} \to \Bbbk\Gamma\text{-inj}.$

 $\begin{array}{l} G_i: \Bbbk \Gamma \operatorname{\!-mod} \to \Bbbk \Gamma \operatorname{\!-mod} \longrightarrow \text{the unique (up to iso) left exact functor such that } G_i|_{\Bbbk \Gamma \operatorname{\!-inj}} \cong F_i|_{\Bbbk \Gamma \operatorname{\!-inj}} \end{array}$

Fact: G_i is exact.

Definition: [Grensing-M.] The 2-category \mathscr{G}_{Γ} is defined as follows:

▶ \mathscr{G}_{Γ} has one object **♣** (which is identified with **k** Γ -mod);

- ▶ 1-morphisms in 𝒢_Γ(♣,♣) are functors isomorphic to direct summands of sums of compositions of projection functors;
- ▶ 2-morphisms in $\mathscr{G}_{\Gamma}(\clubsuit, \clubsuit)$ are natural transformations of functors.

Fact: \mathscr{G}_{Γ} is finitary.

To check: \mathscr{G}_{Γ} has only finitely many 1-morphisms up to iso.

Problem: Classify indecomposable 1-morphisms in \mathscr{G}_{Γ} .

Inspired by: A.-L. Grensing's PhD Thesis.

200

Definition: [Grensing-M.] The 2-category \mathscr{G}_{Γ} is defined as follows:

▶ \mathscr{G}_{Γ} has one object **♣** (which is identified with **k** Γ -mod);

- ▶ 1-morphisms in 𝒢_Γ(♣,♣) are functors isomorphic to direct summands of sums of compositions of projection functors;
- ▶ 2-morphisms in $\mathscr{G}_{\Gamma}(\clubsuit, \clubsuit)$ are natural transformations of functors.

Fact: \mathscr{G}_{Γ} is finitary.

To check: \mathscr{G}_{Γ} has only finitely many 1-morphisms up to iso.

Problem: Classify indecomposable 1-morphisms in \mathscr{G}_{Γ} .

Inspired by: A.-L. Grensing's PhD Thesis.

200

Definition: [Grensing-M.] The 2-category \mathscr{G}_{Γ} is defined as follows:

• \mathscr{G}_{Γ} has one object \clubsuit (which is identified with $\Bbbk\Gamma$ -mod);

▶ 1-morphisms in 𝒢_Γ(♣,♣) are functors isomorphic to direct summands of sums of compositions of projection functors;

▶ 2-morphisms in $\mathscr{G}_{\Gamma}(\clubsuit, \clubsuit)$ are natural transformations of functors.

Fact: \mathscr{G}_{Γ} is finitary.

To check: \mathscr{G}_{Γ} has only finitely many 1-morphisms up to iso.

Problem: Classify indecomposable 1-morphisms in \mathscr{G}_{Γ} .

Inspired by: A.-L. Grensing's PhD Thesis.

Definition: [Grensing-M.] The 2-category \mathscr{G}_{Γ} is defined as follows:

- \mathscr{G}_{Γ} has one object \clubsuit (which is identified with $\Bbbk\Gamma$ -mod);
- ► 1-morphisms in G_Γ(♣,♣) are functors isomorphic to direct summands of sums of compositions of projection functors;
- ▶ 2-morphisms in $\mathscr{G}_{\Gamma}(\clubsuit, \clubsuit)$ are natural transformations of functors.

Fact: \mathscr{G}_{Γ} is finitary.

To check: \mathscr{G}_{Γ} has only finitely many 1-morphisms up to iso.

Problem: Classify indecomposable 1-morphisms in \mathscr{G}_{Γ} .

Inspired by: A.-L. Grensing's PhD Thesis.

Definition: [Grensing-M.] The 2-category \mathscr{G}_{Γ} is defined as follows:

- \mathscr{G}_{Γ} has one object \clubsuit (which is identified with $\Bbbk\Gamma$ -mod);
- ► 1-morphisms in G_Γ(♣,♣) are functors isomorphic to direct summands of sums of compositions of projection functors;
- ▶ 2-morphisms in $\mathscr{G}_{\Gamma}(\clubsuit, \clubsuit)$ are natural transformations of functors.

Fact: \mathscr{G}_{Γ} is finitary.

To check: \mathscr{G}_{Γ} has only finitely many 1-morphisms up to iso.

Problem: Classify indecomposable 1-morphisms in \mathscr{G}_{Γ} .

Inspired by: A.-L. Grensing's PhD Thesis.
Definition: [Grensing-M.] The 2-category \mathscr{G}_{Γ} is defined as follows:

- \mathscr{G}_{Γ} has one object \clubsuit (which is identified with $\Bbbk\Gamma$ -mod);
- ► 1-morphisms in G_Γ(♣,♣) are functors isomorphic to direct summands of sums of compositions of projection functors;
- ▶ 2-morphisms in $\mathscr{G}_{\Gamma}(\clubsuit, \clubsuit)$ are natural transformations of functors.

Fact: \mathscr{G}_{Γ} is finitary.

To check: \mathscr{G}_{Γ} has only finitely many 1-morphisms up to iso.

Problem: Classify indecomposable 1-morphisms in \mathscr{G}_{Γ} .

Definition: [Grensing-M.] The 2-category \mathscr{G}_{Γ} is defined as follows:

- \mathscr{G}_{Γ} has one object \clubsuit (which is identified with $\Bbbk\Gamma$ -mod);
- ► 1-morphisms in G_Γ(♣,♣) are functors isomorphic to direct summands of sums of compositions of projection functors;
- ▶ 2-morphisms in $\mathscr{G}_{\Gamma}(\clubsuit, \clubsuit)$ are natural transformations of functors.

Fact: \mathscr{G}_{Γ} is finitary.

To check: \mathscr{G}_{Γ} has only finitely many 1-morphisms up to iso.

Problem: Classify indecomposable 1-morphisms in \mathscr{G}_{Γ} .

Definition: [Grensing-M.] The 2-category \mathscr{G}_{Γ} is defined as follows:

- \mathscr{G}_{Γ} has one object \clubsuit (which is identified with $\Bbbk\Gamma$ -mod);
- ► 1-morphisms in G_Γ(♣,♣) are functors isomorphic to direct summands of sums of compositions of projection functors;
- ▶ 2-morphisms in $\mathscr{G}_{\Gamma}(\clubsuit, \clubsuit)$ are natural transformations of functors.

Fact: \mathscr{G}_{Γ} is finitary.

To check: \mathscr{G}_{Γ} has only finitely many 1-morphisms up to iso.

Problem: Classify indecomposable 1-morphisms in \mathscr{G}_{Γ} .

Definition: [Grensing-M.] The 2-category \mathscr{G}_{Γ} is defined as follows:

- \mathscr{G}_{Γ} has one object \clubsuit (which is identified with $\Bbbk\Gamma$ -mod);
- ► 1-morphisms in 𝒢_Γ(♣,♣) are functors isomorphic to direct summands of sums of compositions of projection functors;
- ▶ 2-morphisms in $\mathscr{G}_{\Gamma}(\clubsuit, \clubsuit)$ are natural transformations of functors.

Fact: \mathscr{G}_{Γ} is finitary.

To check: \mathscr{G}_{Γ} has only finitely many 1-morphisms up to iso.

Problem: Classify indecomposable 1-morphisms in \mathscr{G}_{Γ} .

Definition: [Grensing-M.] The 2-category \mathscr{G}_{Γ} is defined as follows:

- \mathscr{G}_{Γ} has one object \clubsuit (which is identified with $\Bbbk\Gamma$ -mod);
- ► 1-morphisms in 𝒢_Γ(♣,♣) are functors isomorphic to direct summands of sums of compositions of projection functors;
- ▶ 2-morphisms in $\mathscr{G}_{\Gamma}(\clubsuit, \clubsuit)$ are natural transformations of functors.

Fact: \mathscr{G}_{Γ} is finitary.

To check: \mathscr{G}_{Γ} has only finitely many 1-morphisms up to iso.

Problem: Classify indecomposable 1-morphisms in \mathscr{G}_{Γ} .

(W, S) — finite Coxeter system

 \mathbf{C} — the coinvariant algebra of a fixed geometric realization of (W, S)

 B_w — the Soergel **C-C**-bimodule corresponding to $w \in W$

Definition: [M.-Miemietz] The 2-category $\mathscr{S}_{(W,S)}$ is defined as follows:

- ▶ 1-morphisms in S_(W,S)(♣,♣) are functors isomorphic to tensoring with directs sums of Soergel bimodules;
- ▶ 2-morphisms in S_(W,S)(♣,♣) are natural transformations of functors.

Inspired by: W. Soergel's combinatorial description of projective functors acting on the regular block of the BGG category O.

(W, S) — finite Coxeter system

C — the coinvariant algebra of a fixed geometric realization of (W, S)

 B_w — the Soergel **C-C**-bimodule corresponding to $w \in W$

Definition: [M.-Miemietz] The 2-category $\mathscr{S}_{(W,S)}$ is defined as follows:

- $\mathscr{S}_{(W,S)}$ has one object **4** (which is identified with **C**-mod);
- ▶ 1-morphisms in S_(W,S)(♣,♣) are functors isomorphic to tensoring with directs sums of Soergel bimodules;
- ▶ 2-morphisms in S_(W,S)(♣,♣) are natural transformations of functors.

Inspired by: W. Soergel's combinatorial description of projective functors acting on the regular block of the BGG category O.

(W, S) — finite Coxeter system

${\bf C}$ — the coinvariant algebra of a fixed geometric realization of (W,S)

 B_w — the Soergel **C-C**-bimodule corresponding to $w \in W$

Definition: [M.-Miemietz] The 2-category $\mathscr{S}_{(W,S)}$ is defined as follows:

- $\mathscr{S}_{(W,S)}$ has one object **4** (which is identified with **C**-mod);
- ▶ 1-morphisms in S_(W,S)(♣,♣) are functors isomorphic to tensoring with directs sums of Soergel bimodules;
- ▶ 2-morphisms in S_(W,S)(♣,♣) are natural transformations of functors.

Inspired by: W. Soergel's combinatorial description of projective functors acting on the regular block of the BGG category O.

(W, S) — finite Coxeter system

C — the coinvariant algebra of a fixed geometric realization of (W, S)

 B_w — the Soergel **C-C**-bimodule corresponding to $w \in W$

Definition: [M.-Miemietz] The 2-category $\mathscr{S}_{(W,S)}$ is defined as follows:

- ▶ $\mathscr{S}_{(W,S)}$ has one object ♣ (which is identified with **C**-mod);
- ▶ 1-morphisms in S_(W,S)(♣,♣) are functors isomorphic to tensoring with directs sums of Soergel bimodules;
- ▶ 2-morphisms in S_(W,S)(♣,♣) are natural transformations of functors.

Inspired by: W. Soergel's combinatorial description of projective functors acting on the regular block of the BGG category O.

(W, S) — finite Coxeter system

C — the coinvariant algebra of a fixed geometric realization of (W, S)

 B_w — the Soergel **C-C**-bimodule corresponding to $w \in W$

Definition: [M.-Miemietz] The 2-category $\mathscr{S}_{(W,S)}$ is defined as follows:

- $\mathscr{S}_{(W,S)}$ has one object **4** (which is identified with **C**-mod);
- ▶ 1-morphisms in S_(W,S)(♣,♣) are functors isomorphic to tensoring with directs sums of Soergel bimodules;
- ▶ 2-morphisms in S_(W,S)(♣,♣) are natural transformations of functors.

Inspired by: W. Soergel's combinatorial description of projective functors acting on the regular block of the BGG category O.

 \mathbf{C} — the coinvariant algebra of a fixed geometric realization of (W, S)

 B_w — the Soergel **C**-**C**-bimodule corresponding to $w \in W$

Definition: [M.-Miemietz] The 2-category $\mathscr{S}_{(W,S)}$ is defined as follows:

- $\mathscr{S}_{(W,S)}$ has one object \clubsuit (which is identified with **C**-mod);
- ▶ 1-morphisms in S_(W,S)(♣,♣) are functors isomorphic to tensoring with directs sums of Soergel bimodules;
- ▶ 2-morphisms in S_(W,S)(♣,♣) are natural transformations of functors.

Inspired by: W. Soergel's combinatorial description of projective functors acting on the regular block of the BGG category O.

 \mathbf{C} — the coinvariant algebra of a fixed geometric realization of (W, S)

 B_w — the Soergel **C-C**-bimodule corresponding to $w \in W$

Definition: [M.-Miemietz] The 2-category $\mathscr{S}_{(W,S)}$ is defined as follows:

- $\mathscr{S}_{(W,S)}$ has one object \clubsuit (which is identified with **C**-mod);
- ▶ 1-morphisms in S_(W,S)(♣,♣) are functors isomorphic to tensoring with directs sums of Soergel bimodules;
- ▶ 2-morphisms in S_(W,S)(♣,♣) are natural transformations of functors.

Inspired by: W. Soergel's combinatorial description of projective functors acting on the regular block of the BGG category O.

 \mathbf{C} — the coinvariant algebra of a fixed geometric realization of (W, S)

 B_w — the Soergel **C**-**C**-bimodule corresponding to $w \in W$

Definition: [M.-Miemietz] The 2-category $\mathscr{S}_{(W,S)}$ is defined as follows:

- $\mathscr{S}_{(W,S)}$ has one object \clubsuit (which is identified with **C**-mod);
- ▶ 1-morphisms in S_(W,S)(♣,♣) are functors isomorphic to tensoring with directs sums of Soergel bimodules;
- ► 2-morphisms in S_(W,S)(♣,♣) are natural transformations of functors.

Inspired by: W. Soergel's combinatorial description of projective functors acting on the regular block of the BGG category O.

 \mathbf{C} — the coinvariant algebra of a fixed geometric realization of (W, S)

 B_w — the Soergel **C**-**C**-bimodule corresponding to $w \in W$

Definition: [M.-Miemietz] The 2-category $\mathscr{S}_{(W,S)}$ is defined as follows:

- $\mathscr{S}_{(W,S)}$ has one object \clubsuit (which is identified with **C**-mod);
- ▶ 1-morphisms in S_(W,S)(♣,♣) are functors isomorphic to tensoring with directs sums of Soergel bimodules;
- ► 2-morphisms in S_(W,S)(♣,♣) are natural transformations of functors.

Inspired by: W. Soergel's combinatorial description of projective functors acting on the regular block of the BGG category O.

 \mathbf{C} — the coinvariant algebra of a fixed geometric realization of (W, S)

 B_w — the Soergel **C**-**C**-bimodule corresponding to $w \in W$

Definition: [M.-Miemietz] The 2-category $\mathscr{S}_{(W,S)}$ is defined as follows:

- $\mathscr{S}_{(W,S)}$ has one object \clubsuit (which is identified with **C**-mod);
- ▶ 1-morphisms in S_(W,S)(♣,♣) are functors isomorphic to tensoring with directs sums of Soergel bimodules;
- ► 2-morphisms in S_(W,S)(♣,♣) are natural transformations of functors.

Inspired by: W. Soergel's combinatorial description of projective functors acting on the regular block of the BGG category O.

\mathscr{A} and \mathscr{C} — two 2-categories

Definition. A 2-functor $F : \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor from \mathscr{C} to some "classical" 2-category.

Example. Categories \mathscr{P}_A , \mathscr{G}_{Γ} and $\mathscr{S}_{(W,S)}$ were defined using the corresponding defining 2-representation

"Classical" 2-representations:

- ▶ in Cat;
- ▶ in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ▶ a the 2-category **ab** of abelian categories and exact functors.

(1)

\mathscr{A} and \mathscr{C} — two 2-categories

Definition. A 2-functor $F : \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor from \mathscr{C} to some "classical" 2-category.

Example. Categories \mathscr{P}_A , \mathscr{G}_{Γ} and $\mathscr{S}_{(W,S)}$ were defined using the corresponding defining 2-representation

"Classical" 2-representations:

- ▶ in Cat;
- ▶ in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ▶ a the 2-category **ab** of abelian categories and exact functors.

(1)

 $\mathscr{A} \text{ and } \mathscr{C} \longrightarrow$ two 2-categories

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Definition. A 2-representation of a 2-category *C* is a 2-functor from *C* to some "classical" 2-category.

Example. Categories \mathscr{P}_A , \mathscr{G}_{Γ} and $\mathscr{S}_{(W,S)}$ were defined using the corresponding defining 2-representation

"Classical" 2-representations:

- ▶ in Cat;
- in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ▶ a the 2-category **ab** of abelian categories and exact functors.

 $\mathscr{A} \text{ and } \mathscr{C} \longrightarrow$ two 2-categories

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor from \mathscr{C} to some "classical" 2-category.

Example. Categories \mathscr{P}_A , \mathscr{G}_{Γ} and $\mathscr{S}_{(W,S)}$ were defined using the corresponding defining 2-representation

"Classical" 2-representations:

- ▶ in Cat;
- in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ► a the 2-category **ab** of abelian categories and exact functors.

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor from \mathscr{C} to some "classical" 2-category.

Example. Categories \mathscr{P}_A , \mathscr{G}_{Γ} and $\mathscr{S}_{(W,S)}$ were defined using the corresponding defining 2-representation

"Classical" 2-representations:

▶ in Cat;

- in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ► a the 2-category **ab** of abelian categories and exact functors.

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor from \mathscr{C} to some "classical" 2-category.

Example. Categories \mathscr{P}_A , \mathscr{G}_{Γ} and $\mathscr{S}_{(W,S)}$ were defined using the corresponding defining 2-representation

"Classical" 2-representations:

▶ in Cat;

▶ in the 2-category Add of additive categories and additive functors;

- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ► a the 2-category **ab** of abelian categories and exact functors.

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor from \mathscr{C} to some "classical" 2-category.

Example. Categories \mathscr{P}_A , \mathscr{G}_{Γ} and $\mathscr{S}_{(W,S)}$ were defined using the corresponding defining 2-representation

"Classical" 2-representations:

- ► in Cat;
- ▶ in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ► a the 2-category **ab** of abelian categories and exact functors.

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor from \mathscr{C} to some "classical" 2-category.

Example. Categories \mathscr{P}_A , \mathscr{G}_{Γ} and $\mathscr{S}_{(W,S)}$ were defined using the corresponding defining 2-representation

"Classical" 2-representations:

- ► in Cat;
- ▶ in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ▶ a the 2-category **ab** of abelian categories and exact functors.

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor from \mathscr{C} to some "classical" 2-category.

Example. Categories \mathscr{P}_A , \mathscr{G}_{Γ} and $\mathscr{S}_{(W,S)}$ were defined using the corresponding defining 2-representation

"Classical" 2-representations:

- ▶ in Cat;
- ▶ in the 2-category Add of additive categories and additive functors;
- ► in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;

▶ a the 2-category **ab** of abelian categories and exact functors.

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor from \mathscr{C} to some "classical" 2-category.

Example. Categories \mathscr{P}_A , \mathscr{G}_{Γ} and $\mathscr{S}_{(W,S)}$ were defined using the corresponding defining 2-representation

"Classical" 2-representations:

- ▶ in Cat;
- ▶ in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ► a the 2-category **ab** of abelian categories and exact functors.

Definition. A 2-functor $F: \mathscr{A} \to \mathscr{C}$ is a functor which sends 1-morphisms to 1-morphisms and 2-morphisms to 2-morphisms in a way that is coordinated with all the categorical structures (domains, codomains, identities and compositions).

Definition. A 2-representation of a 2-category \mathscr{C} is a 2-functor from \mathscr{C} to some "classical" 2-category.

Example. Categories \mathscr{P}_A , \mathscr{G}_{Γ} and $\mathscr{S}_{(W,S)}$ were defined using the corresponding defining 2-representation

"Classical" 2-representations:

- ▶ in Cat;
- ▶ in the 2-category Add of additive categories and additive functors;
- in the 2-subcategory add of Add consisting of all fully additive categories with finitely many isoclasses of indecomposable objects;
- ► a the 2-category **ab** of abelian categories and exact functors.

$\mathcal{A}-\operatorname{additive}$ category

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of \mathcal{A} is the quotient of the free abelian group generated by [M], $M \in \mathcal{A}$, modulo the relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

A — finitary 2-category

Definition. The decategorification $[\mathscr{A}]$ of \mathscr{A} is a category with same objects as \mathscr{A} , with morphisms defined via $[\mathscr{A}](i, j) := [\mathscr{A}(i, j))]_{\oplus}$ and with multiplication and identities induced from \mathscr{A} .

Examples.

- $\blacktriangleright [\mathscr{S}_{(W,S)}](\clubsuit,\clubsuit) \cong \mathbb{Z}W.$
- For Γ = → → → (with n − 1 vertices), [𝔅_Γ](♣,♣) is isomorphic to the integral semigroup algebra of the n-th Catalan monoid C_n, that is the monoid of order-preserving and order-decreasing transformations of 1, 2, ..., n.

$\mathcal{A}-\operatorname{additive}$ category

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of \mathcal{A} is the quotient of the free abelian group generated by [M], $M \in \mathcal{A}$, modulo the relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

 \mathscr{A} — finitary 2-category

Definition. The decategorification $[\mathscr{A}]$ of \mathscr{A} is a category with same objects as \mathscr{A} , with morphisms defined via $[\mathscr{A}](i, j) := [\mathscr{A}(i, j))]_{\oplus}$ and with multiplication and identities induced from \mathscr{A} .

Examples.

- $\blacktriangleright [\mathscr{S}_{(W,S)}](\clubsuit,\clubsuit) \cong \mathbb{Z}W.$
- For Γ = → → → (with n − 1 vertices), [𝔅_Γ](♣,♣) is isomorphic to the integral semigroup algebra of the n-th Catalan monoid C_n, that is the monoid of order-preserving and order-decreasing transformations of 1, 2, ..., n.

 $\mathcal{A}-\operatorname{additive}$ category

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of \mathcal{A} is the quotient of the free abelian group generated by [M], $M \in \mathcal{A}$, modulo the relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

Definition. The decategorification $[\mathscr{A}]$ of \mathscr{A} is a category with same objects as \mathscr{A} , with morphisms defined via $[\mathscr{A}](i,j) := [\mathscr{A}(i,j))]_{\oplus}$ and with multiplication and identities induced from \mathscr{A} .

Examples.

- $\blacktriangleright \ [\mathscr{S}_{(W,S)}](\clubsuit,\clubsuit) \cong \mathbb{Z}W.$
- For Γ = → → → (with n − 1 vertices), [𝔅_Γ](♣,♣) is isomorphic to the integral semigroup algebra of the n-th Catalan monoid C_n, that is the monoid of order-preserving and order-decreasing transformations of 1, 2, ..., n.

 $\mathcal{A}-\operatorname{additive}$ category

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of \mathcal{A} is the quotient of the free abelian group generated by [M], $M \in \mathcal{A}$, modulo the relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

 \mathscr{A} — finitary 2-category

Definition. The decategorification $[\mathscr{A}]$ of \mathscr{A} is a category with same objects as \mathscr{A} , with morphisms defined via $[\mathscr{A}](i, j) := [\mathscr{A}(i, j))]_{\oplus}$ and with multiplication and identities induced from \mathscr{A} .

Examples.

- $\blacktriangleright [\mathscr{S}_{(W,S)}](\clubsuit, \clubsuit) \cong \mathbb{Z}W.$
- For Γ = → → → (with n − 1 vertices), [𝔅_Γ](♣,♣) is isomorphic to the integral semigroup algebra of the n-th Catalan monoid C_n, that is the monoid of order-preserving and order-decreasing transformations of 1, 2, ..., n.

 $\mathcal{A}-\operatorname{additive}$ category

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of \mathcal{A} is the quotient of the free abelian group generated by [M], $M \in \mathcal{A}$, modulo the relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

 \mathscr{A} — finitary 2-category

Definition. The decategorification $[\mathscr{A}]$ of \mathscr{A} is a category with same objects as \mathscr{A} , with morphisms defined via $[\mathscr{A}](i,j) := [\mathscr{A}(i,j))]_{\oplus}$ and with multiplication and identities induced from \mathscr{A} .

Examples.

- $\blacktriangleright \ [\mathscr{S}_{(W,S)}](\clubsuit,\clubsuit) \cong \mathbb{Z}W.$
- For Γ = → → → (with n − 1 vertices), [𝔅_Γ](♣,♣) is isomorphic to the integral semigroup algebra of the n-th Catalan monoid 𝔅_n, that is the monoid of order-preserving and order-decreasing transformations of 1, 2, ..., n.

 $\mathcal{A}-\operatorname{additive}$ category

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of \mathcal{A} is the quotient of the free abelian group generated by [M], $M \in \mathcal{A}$, modulo the relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

 \mathscr{A} — finitary 2-category

Definition. The decategorification $[\mathscr{A}]$ of \mathscr{A} is a category with same objects as \mathscr{A} , with morphisms defined via $[\mathscr{A}](i,j) := [\mathscr{A}(i,j))]_{\oplus}$ and with multiplication and identities induced from \mathscr{A} .

Examples.

- $\blacktriangleright [\mathscr{S}_{(W,S)}](\clubsuit, \clubsuit) \cong \mathbb{Z}W.$
- For Γ = → → → (with n − 1 vertices), [𝔅_Γ](♣,♣) is isomorphic to the integral semigroup algebra of the n-th Catalan monoid C_n, that is the monoid of order-preserving and order-decreasing transformations of 1, 2, ..., n.

 $\mathcal{A}-\operatorname{additive}$ category

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of \mathcal{A} is the quotient of the free abelian group generated by [M], $M \in \mathcal{A}$, modulo the relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

 \mathscr{A} — finitary 2-category

Definition. The decategorification $[\mathscr{A}]$ of \mathscr{A} is a category with same objects as \mathscr{A} , with morphisms defined via $[\mathscr{A}](i,j) := [\mathscr{A}(i,j))]_{\oplus}$ and with multiplication and identities induced from \mathscr{A} .

Examples.

► $[\mathscr{S}_{(W,S)}](\clubsuit, \clubsuit) \cong \mathbb{Z}W.$

For Γ = • → • → • → • (with n − 1 vertices), [𝔅_Γ](♣,♣) is isomorphic to the integral semigroup algebra of the n-th Catalan monoid C_n, that is the monoid of order-preserving and order-decreasing transformations of 1, 2, ..., n.

 $\mathcal{A}-\operatorname{additive}$ category

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of \mathcal{A} is the quotient of the free abelian group generated by [M], $M \in \mathcal{A}$, modulo the relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

 \mathscr{A} — finitary 2-category

Definition. The decategorification $[\mathscr{A}]$ of \mathscr{A} is a category with same objects as \mathscr{A} , with morphisms defined via $[\mathscr{A}](i,j) := [\mathscr{A}(i,j))]_{\oplus}$ and with multiplication and identities induced from \mathscr{A} .

Examples.

- $\blacktriangleright \ [\mathscr{S}_{(W,S)}](\clubsuit,\clubsuit) \cong \mathbb{Z}W.$
- for Γ = → → ··· → (with n − 1 vertices),
 [𝔅_Γ](♣,♣) is isomorphic to the integral semigroup algebra of the n-th Catalan monoid C_n, that is the monoid of order-preserving and order-decreasing transformations of 1, 2, ..., n.

 $\mathcal{A}-\operatorname{additive}$ category

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of \mathcal{A} is the quotient of the free abelian group generated by [M], $M \in \mathcal{A}$, modulo the relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

 \mathscr{A} — finitary 2-category

Definition. The decategorification $[\mathscr{A}]$ of \mathscr{A} is a category with same objects as \mathscr{A} , with morphisms defined via $[\mathscr{A}](i,j) := [\mathscr{A}(i,j))]_{\oplus}$ and with multiplication and identities induced from \mathscr{A} .

Examples.

- $\blacktriangleright \ [\mathscr{S}_{(W,S)}](\clubsuit,\clubsuit) \cong \mathbb{Z}W.$
- for Γ = → → ··· → (with n − 1 vertices),
 [𝔅_Γ](♣,♣) is isomorphic to the integral semigroup algebra of the n-th Catalan monoid C_n, that is the monoid of order-preserving and order-decreasing transformations of 1, 2, ..., n.

 $\mathcal{A}-\operatorname{additive}$ category

Definition. The split Gorthendieck group $[\mathcal{A}]_{\oplus}$ of \mathcal{A} is the quotient of the free abelian group generated by [M], $M \in \mathcal{A}$, modulo the relations [X] - [Y] - [Z] whenever $X \cong Y \oplus Z$ in \mathcal{A} .

 \mathscr{A} — finitary 2-category

Definition. The decategorification $[\mathscr{A}]$ of \mathscr{A} is a category with same objects as \mathscr{A} , with morphisms defined via $[\mathscr{A}](i,j) := [\mathscr{A}(i,j))]_{\oplus}$ and with multiplication and identities induced from \mathscr{A} .

Examples.

- $\blacktriangleright \ [\mathscr{S}_{(W,S)}](\clubsuit,\clubsuit) \cong \mathbb{Z}W.$
- for Γ = → → ··· → (with n − 1 vertices),
 [𝔅_Γ](♣,♣) is isomorphic to the integral semigroup algebra of the n-th Catalan monoid C_n, that is the monoid of order-preserving and order-decreasing transformations of 1, 2, ..., n.
Decategorification of 2-representations

𝒜 — finitary 2-category

A 2-representation of \mathscr{A} can often be understood as a functorial action of \mathscr{A} on a collection of certain categories.

If \mathscr{A} acts on \mathscr{M} , then $[\mathscr{A}]$ acts on $[\mathscr{M}]_{(\oplus)}$.

Hence: A 2-representation of \mathscr{A} decategorifies to a usual representation of $[\mathscr{A}]$.

Examples:

- ► The functorial action of S_(W,S) on O₀ decategorifies to the regular representation of ZW [Bernstein–S. Gelfand].
- ▶ for $\Gamma = \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$ (with n-1 vertices), the defining representation of \mathscr{G}_{Γ} decategorifies to the (linearization of the) defining representation of \mathcal{C}_n .

San

A 2-representation of \mathscr{A} can often be understood as a functorial action of \mathscr{A} on a collection of certain categories.

If \mathscr{A} acts on \mathscr{M} , then $[\mathscr{A}]$ acts on $[\mathscr{M}]_{(\oplus)}$.

Hence: A 2-representation of \mathscr{A} decategorifies to a usual representation of $[\mathscr{A}]$.

- ► The functorial action of S_(W,S) on O₀ decategorifies to the regular representation of ZW [Bernstein–S. Gelfand].
- ▶ for $\Gamma = \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$ (with n-1 vertices), the defining representation of \mathscr{G}_{Γ} decategorifies to the (linearization of the) defining representation of \mathcal{C}_n .

Decategorification of 2-representations

 \mathscr{A} — finitary 2-category

A 2-representation of \mathscr{A} can often be understood as a functorial action of \mathscr{A} on a collection of certain categories.

If \mathscr{A} acts on \mathscr{M} , then $[\mathscr{A}]$ acts on $[\mathscr{M}]_{(\oplus)}$.

Hence: A 2-representation of \mathscr{A} decategorifies to a usual representation of $[\mathscr{A}]$.

Examples:

- ► The functorial action of S_(W,S) on O₀ decategorifies to the regular representation of ZW [Bernstein–S. Gelfand].
- ▶ for $\Gamma = \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$ (with n-1 vertices), the defining representation of \mathscr{G}_{Γ} decategorifies to the (linearization of the) defining representation of \mathcal{C}_n .

A 2-representation of \mathscr{A} can often be understood as a functorial action of \mathscr{A} on a collection of certain categories.

If \mathscr{A} acts on \mathscr{M} , then $[\mathscr{A}]$ acts on $[\mathscr{M}]_{(\oplus)}$.

Hence: A 2-representation of *A* decategorifies to a usual representation of [*A*].

Examples:

- ► The functorial action of S_(W,S) on O₀ decategorifies to the regular representation of ZW [Bernstein–S. Gelfand].
- ▶ for $\Gamma = \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$ (with n-1 vertices), the defining representation of \mathscr{G}_{Γ} decategorifies to the (linearization of the) defining representation of \mathcal{C}_n .

Sac

A — finitary 2-category

A 2-representation of \mathscr{A} can often be understood as a functorial action of \mathscr{A} on a collection of certain categories.

If \mathscr{A} acts on \mathscr{M} , then $[\mathscr{A}]$ acts on $[\mathscr{M}]_{(\oplus)}$.

Hence: A 2-representation of $\mathscr A$ decategorifies to a usual representation of $[\mathscr A].$

Examples:

- ► The functorial action of S_(W,S) on O₀ decategorifies to the regular representation of ZW [Bernstein–S. Gelfand].
- For Γ = → → → (with n − 1 vertices), the defining representation of 𝒢_Γ decategorifies to the (linearization of the) defining representation of 𝔅_n.

A 2-representation of \mathscr{A} can often be understood as a functorial action of \mathscr{A} on a collection of certain categories.

If \mathscr{A} acts on \mathscr{M} , then $[\mathscr{A}]$ acts on $[\mathscr{M}]_{(\oplus)}$.

Hence: A 2-representation of $\mathscr A$ decategorifies to a usual representation of $[\mathscr A].$

- ► The functorial action of S_(W,S) on O₀ decategorifies to the regular representation of ZW [Bernstein–S. Gelfand].
- ▶ for $\Gamma = \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$ (with n-1 vertices), the defining representation of \mathscr{G}_{Γ} decategorifies to the (linearization of the) defining representation of \mathcal{C}_n .

A 2-representation of \mathscr{A} can often be understood as a functorial action of \mathscr{A} on a collection of certain categories.

If \mathscr{A} acts on \mathscr{M} , then $[\mathscr{A}]$ acts on $[\mathscr{M}]_{(\oplus)}$.

Hence: A 2-representation of $\mathscr A$ decategorifies to a usual representation of $[\mathscr A].$

- ► The functorial action of S_(W,S) on O₀ decategorifies to the regular representation of ZW [Bernstein–S. Gelfand].
- ▶ for $\Gamma = \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$ (with n-1 vertices), the defining representation of \mathscr{G}_{Γ} decategorifies to the (linearization of the) defining representation of \mathcal{C}_n .

A 2-representation of \mathscr{A} can often be understood as a functorial action of \mathscr{A} on a collection of certain categories.

If \mathscr{A} acts on \mathscr{M} , then $[\mathscr{A}]$ acts on $[\mathscr{M}]_{(\oplus)}$.

Hence: A 2-representation of $\mathscr A$ decategorifies to a usual representation of $[\mathscr A].$

- ► The functorial action of S_(W,S) on O₀ decategorifies to the regular representation of ZW [Bernstein–S. Gelfand].
- ► for $\Gamma = \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$ (with n-1 vertices), the defining representation of \mathscr{G}_{Γ} decategorifies to the (linearization of the) defining representation of \mathcal{C}_n .

A 2-representation of \mathscr{A} can often be understood as a functorial action of \mathscr{A} on a collection of certain categories.

If \mathscr{A} acts on \mathscr{M} , then $[\mathscr{A}]$ acts on $[\mathscr{M}]_{(\oplus)}$.

Hence: A 2-representation of $\mathscr A$ decategorifies to a usual representation of $[\mathscr A].$

- ► The functorial action of S_(W,S) on O₀ decategorifies to the regular representation of ZW [Bernstein–S. Gelfand].
- ► for $\Gamma = \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$ (with n-1 vertices), the defining representation of \mathscr{G}_{Γ} decategorifies to the (linearization of the) defining representation of \mathcal{C}_n .

A 2-representation of \mathscr{A} can often be understood as a functorial action of \mathscr{A} on a collection of certain categories.

If \mathscr{A} acts on \mathscr{M} , then $[\mathscr{A}]$ acts on $[\mathscr{M}]_{(\oplus)}$.

Hence: A 2-representation of $\mathscr A$ decategorifies to a usual representation of $[\mathscr A].$

- ► The functorial action of S_(W,S) on O₀ decategorifies to the regular representation of ZW [Bernstein–S. Gelfand].
- ► for $\Gamma = \bullet \longrightarrow \bullet \longrightarrow \bullet \longrightarrow \bullet$ (with n-1 vertices), the defining representation of \mathscr{G}_{Γ} decategorifies to the (linearization of the) defining representation of \mathcal{C}_n .

𝒞 — finitary 2-category

Definition. For $i \in C$ the corresponding principal 2-representation \mathbb{P}_i of C is defined as the 2-functor $C(i, _)$.

We have:

▶
$$\mathbf{j} \mapsto \mathscr{C}(\mathbf{i}, \mathbf{j});$$

▶ $\mathbf{F} : \mathbf{j} \to \mathbf{k} \quad \mapsto \quad \mathbf{F} \circ _ : \mathscr{C}(\mathbf{i}, \mathbf{j}) \to \mathscr{C}(\mathbf{i}, \mathbf{k});$
▶ $\alpha : \mathbf{F} \to \mathbf{G} \quad \mapsto \quad \alpha \circ_0 \operatorname{id}_- : \mathbf{F} \circ _ \to \mathbf{G} \circ _.$

𝒞-afmod — 2-category of additive finitary 2-representations of 𝒞 (morphisms − additive strong transformations)

Fact. \mathbb{P}_i is projective in \mathscr{C} -afmod in the sense that it preserves all small colimits.

Sac

\mathscr{C} — finitary 2-category

Definition. For $i \in C$ the corresponding principal 2-representation \mathbb{P}_i of C is defined as the 2-functor $C(i, _)$.

We have:

▶
$$\mathbf{j} \mapsto \mathscr{C}(\mathbf{i}, \mathbf{j});$$

▶ $\mathbf{F} : \mathbf{j} \to \mathbf{k} \quad \mapsto \quad \mathbf{F} \circ_{-} : \mathscr{C}(\mathbf{i}, \mathbf{j}) \to \mathscr{C}(\mathbf{i}, \mathbf{k});$
▶ $\alpha : \mathbf{F} \to \mathbf{G} \quad \mapsto \quad \alpha \circ_0 \operatorname{id}_{-} : \mathbf{F} \circ_{-} \to \mathbf{G} \circ_{-}.$

𝒞-afmod — 2-category of additive finitary 2-representations of 𝒞 (morphisms − additive strong transformations)

Fact. \mathbb{P}_i is projective in \mathscr{C} -afmod in the sense that it preserves all small colimits.

Sac

 \mathscr{C} — finitary 2-category

Definition. For $i \in \mathscr{C}$ the corresponding principal 2-representation \mathbb{P}_i of \mathscr{C} is defined as the 2-functor $\mathscr{C}(i, _)$.

We have:

▶
$$\mathbf{j} \mapsto \mathscr{C}(\mathbf{i}, \mathbf{j});$$

▶ $\mathbf{F} : \mathbf{j} \to \mathbf{k} \quad \mapsto \quad \mathbf{F} \circ_{-} : \mathscr{C}(\mathbf{i}, \mathbf{j}) \to \mathscr{C}(\mathbf{i}, \mathbf{k});$
▶ $\alpha : \mathbf{F} \to \mathbf{G} \quad \mapsto \quad \alpha \circ_0 \operatorname{id}_{-} : \mathbf{F} \circ_{-} \to \mathbf{G} \circ_{-}.$

𝒞-afmod — 2-category of additive finitary 2-representations of 𝒞 (morphisms − additive strong transformations)

Fact. \mathbb{P}_i is projective in \mathscr{C} -afmod in the sense that it preserves all small colimits.

 \mathscr{C} — finitary 2-category

Definition. For $i \in \mathscr{C}$ the corresponding principal 2-representation \mathbb{P}_i of \mathscr{C} is defined as the 2-functor $\mathscr{C}(i, _)$.

We have:

𝒞-afmod — 2-category of additive finitary 2-representations of 𝒞 (morphisms − additive strong transformations)

Fact. \mathbb{P}_i is projective in \mathscr{C} -afmod in the sense that it preserves all small colimits.

 \mathscr{C} — finitary 2-category

Definition. For $i \in \mathscr{C}$ the corresponding principal 2-representation \mathbb{P}_i of \mathscr{C} is defined as the 2-functor $\mathscr{C}(i, _)$.

We have:

𝒞-afmod — 2-category of additive finitary 2-representations of 𝒞 (morphisms − additive strong transformations)

Fact. \mathbb{P}_i is projective in \mathscr{C} -afmod in the sense that it preserves all small colimits.

 \mathscr{C} — finitary 2-category

Definition. For $i \in \mathscr{C}$ the corresponding principal 2-representation \mathbb{P}_i of \mathscr{C} is defined as the 2-functor $\mathscr{C}(i, _)$.

We have:

 $\blacktriangleright \ \alpha: \mathcal{F} \to \mathcal{G} \quad \mapsto \quad \alpha \circ_{\mathbf{0}} \mathrm{id}_{-}: \mathcal{F} \circ_{-} \to \mathcal{G} \circ_{-}.$

𝒞-afmod — 2-category of additive finitary 2-representations of 𝒞 (morphisms − additive strong transformations)

Fact. \mathbb{P}_i is projective in \mathscr{C} -afmod in the sense that it preserves all small colimits.

 \mathscr{C} — finitary 2-category

Definition. For $i \in \mathscr{C}$ the corresponding principal 2-representation \mathbb{P}_i of \mathscr{C} is defined as the 2-functor $\mathscr{C}(i, _)$.

We have:

▶
$$j \mapsto \mathscr{C}(i, j);$$

- $\blacktriangleright \ \mathrm{F}: \mathtt{j} \to \mathtt{k} \quad \mapsto \quad \mathrm{F} \circ_{-}: \mathscr{C}(\mathtt{i}, \mathtt{j}) \to \mathscr{C}(\mathtt{i}, \mathtt{k});$
- $\blacktriangleright \ \alpha: \mathcal{F} \to \mathcal{G} \quad \mapsto \quad \alpha \circ_{\mathbf{0}} \mathrm{id}_{-}: \mathcal{F} \circ_{-} \to \mathcal{G} \circ_{-}.$

𝒞-afmod — 2-category of additive finitary 2-representations of 𝒞 (morphisms − additive strong transformations)

Fact. \mathbb{P}_i is projective in $\mathscr{C}\text{-afmod}$ in the sense that it preserves all small colimits.

 \mathscr{C} — finitary 2-category

Definition. For $i \in \mathscr{C}$ the corresponding principal 2-representation \mathbb{P}_i of \mathscr{C} is defined as the 2-functor $\mathscr{C}(i, _)$.

We have:

- ▶ $j \mapsto \mathscr{C}(i, j);$
- $\blacktriangleright \ \mathrm{F}: \mathtt{j} \to \mathtt{k} \quad \mapsto \quad \mathrm{F} \circ_{-}: \mathscr{C}(\mathtt{i}, \mathtt{j}) \to \mathscr{C}(\mathtt{i}, \mathtt{k});$
- $\blacktriangleright \ \alpha: \mathcal{F} \to \mathcal{G} \quad \mapsto \quad \alpha \circ_{\mathbf{0}} \mathrm{id}_{-}: \mathcal{F} \circ_{-} \to \mathcal{G} \circ_{-}.$

 \mathscr{C} -afmod — 2-category of additive finitary 2-representations of \mathscr{C} (morphisms – additive strong transformations)

Fact. \mathbb{P}_i is projective in \mathscr{C} -afmod in the sense that it preserves all small colimits.

 \mathscr{C} — finitary 2-category

Definition. For $i \in \mathscr{C}$ the corresponding principal 2-representation \mathbb{P}_i of \mathscr{C} is defined as the 2-functor $\mathscr{C}(i, _)$.

We have:

- ▶ $j \mapsto \mathscr{C}(i, j);$
- $\blacktriangleright \ \mathrm{F}: \mathtt{j} \to \mathtt{k} \quad \mapsto \quad \mathrm{F} \circ_{-}: \mathscr{C}(\mathtt{i}, \mathtt{j}) \to \mathscr{C}(\mathtt{i}, \mathtt{k});$
- $\blacktriangleright \ \alpha: \mathcal{F} \to \mathcal{G} \quad \mapsto \quad \alpha \circ_{\mathbf{0}} \mathrm{id}_{-}: \mathcal{F} \circ_{-} \to \mathcal{G} \circ_{-}.$

 \mathscr{C} -afmod — 2-category of additive finitary 2-representations of \mathscr{C} (morphisms – additive strong transformations)

Fact. \mathbb{P}_i is projective in $\mathscr{C}\text{-}\mathrm{afmod}$ in the sense that it preserves all small colimits.

 \mathscr{C} — finitary 2-category

Definition. For $i \in \mathscr{C}$ the corresponding principal 2-representation \mathbb{P}_i of \mathscr{C} is defined as the 2-functor $\mathscr{C}(i, _)$.

We have:

- ▶ $j \mapsto \mathscr{C}(i, j);$
- $\blacktriangleright \ \mathrm{F}: \mathtt{j} \to \mathtt{k} \quad \mapsto \quad \mathrm{F} \circ_{-}: \mathscr{C}(\mathtt{i}, \mathtt{j}) \to \mathscr{C}(\mathtt{i}, \mathtt{k});$
- $\blacktriangleright \ \alpha: \mathcal{F} \to \mathcal{G} \quad \mapsto \quad \alpha \circ_{\mathbf{0}} \mathrm{id}_{-}: \mathcal{F} \circ_{-} \to \mathcal{G} \circ_{-}.$

 \mathscr{C} -afmod — 2-category of additive finitary 2-representations of \mathscr{C} (morphisms – additive strong transformations)

Fact. \mathbb{P}_i is projective in $\mathscr{C}\text{-}\mathrm{afmod}$ in the sense that it preserves all small colimits.

𝒞 — finitary 2-category

 ${\mathscr C}\operatorname{-proj}$ — 2-category of projective 2-representations of ${\mathscr C}$

Definition. A progenerator is a projective 2-representation P of \mathscr{C} such that any other projective 2-representation is a retract of some 2-representation from $\operatorname{add}(P)$.

Example. $\bigoplus_{i \in \mathscr{C}} \mathbb{P}_i$ is a progenerator.

Theorem: [M.-Miemietz] *A*, *C* — finitary 2-categories. Then TFAE:

- ► *A*-afmod and *C*-afmod are biequivalent.
- ▶ A-proj and C-proj are biequivalent.
- ► There is a progenerator P ∈ %-proj such that the endomorphism 2-category of P is biequivalent to A^{op}.

\mathscr{C} — finitary 2-category

 ${\mathscr C}\operatorname{-proj}$ — 2-category of projective 2-representations of ${\mathscr C}$

Definition. A progenerator is a projective 2-representation P of \mathscr{C} such that any other projective 2-representation is a retract of some 2-representation from $\operatorname{add}(\mathbf{P})$.

Example. $\bigoplus_{i \in \mathscr{C}} \mathbb{P}_i$ is a progenerator.

Theorem: [M.-Miemietz] *A*, *C* — finitary 2-categories. Then TFAE:

- ► *A*-afmod and *C*-afmod are biequivalent.
- ▶ A-proj and C-proj are biequivalent.
- ► There is a progenerator P ∈ %-proj such that the endomorphism 2-category of P is biequivalent to A^{op}.

\mathscr{C} — finitary 2-category

${\mathscr C}\operatorname{\operatorname{-proj}}$ — 2-category of projective 2-representations of ${\mathscr C}$

Definition. A progenerator is a projective 2-representation P of \mathscr{C} such that any other projective 2-representation is a retract of some 2-representation from $\operatorname{add}(\mathbf{P})$.

Example. $\bigoplus_{i \in \mathscr{C}} \mathbb{P}_i$ is a progenerator.

Theorem: [M.-Miemietz] *A*, *C* — finitary 2-categories. Then TFAE:

- ► *A*-afmod and *C*-afmod are biequivalent.
- ▶ A-proj and C-proj are biequivalent.
- ► There is a progenerator P ∈ %-proj such that the endomorphism 2-category of P is biequivalent to A^{op}.

 \mathscr{C} — finitary 2-category

 ${\mathscr C}\operatorname{\operatorname{-proj}}$ — 2-category of projective 2-representations of ${\mathscr C}$

Definition. A progenerator is a projective 2-representation **P** of \mathscr{C} such that any other projective 2-representation is a retract of some 2-representation from $\operatorname{add}(\mathbf{P})$.

Example. $\bigoplus_{i \in \mathscr{C}} \mathbb{P}_i$ is a progenerator.

Theorem: [M.-Miemietz] *A*, *C* — finitary 2-categories. Then TFAE:

- ► *A*-afmod and *C*-afmod are biequivalent.
- ▶ A-proj and C-proj are biequivalent.
- ► There is a progenerator P ∈ %-proj such that the endomorphism 2-category of P is biequivalent to A^{op}.

 \mathscr{C} — finitary 2-category

 ${\mathscr C}\operatorname{\operatorname{-proj}}$ — 2-category of projective 2-representations of ${\mathscr C}$

Definition. A progenerator is a projective 2-representation **P** of \mathscr{C} such that any other projective 2-representation is a retract of some 2-representation from $\operatorname{add}(\mathbf{P})$.

Example. $\bigoplus_{i \in \mathscr{C}} \mathbb{P}_i$ is a progenerator.

Theorem: [M.-Miemietz] \mathscr{A}, \mathscr{C} — finitary 2-categories. Then TFAE:

- ▶ *A*-afmod and *C*-afmod are biequivalent.
- ▶ A-proj and C-proj are biequivalent.
- ► There is a progenerator P ∈ %-proj such that the endomorphism 2-category of P is biequivalent to A^{op}.

 \mathscr{C} — finitary 2-category

 ${\mathscr C}\operatorname{\operatorname{-proj}}$ — 2-category of projective 2-representations of ${\mathscr C}$

Definition. A progenerator is a projective 2-representation **P** of \mathscr{C} such that any other projective 2-representation is a retract of some 2-representation from $\operatorname{add}(\mathbf{P})$.

Example. $\bigoplus_{i \in \mathscr{C}} \mathbb{P}_i$ is a progenerator.

Theorem: [M.-Miemietz] A, C — finitary 2-categories. Then TFAE:

- ▶ *A*-afmod and *C*-afmod are biequivalent.
- ▶ A-proj and C-proj are biequivalent.
- ► There is a progenerator P ∈ %-proj such that the endomorphism 2-category of P is biequivalent to A^{op}.

 \mathscr{C} — finitary 2-category

 ${\mathscr C}\operatorname{\operatorname{-proj}}$ — 2-category of projective 2-representations of ${\mathscr C}$

Definition. A progenerator is a projective 2-representation **P** of \mathscr{C} such that any other projective 2-representation is a retract of some 2-representation from $\operatorname{add}(\mathbf{P})$.

Example. $\bigoplus_{i \in \mathscr{C}} \mathbb{P}_i$ is a progenerator.

Theorem: [M.-Miemietz] *A*, *C* — finitary 2-categories. Then TFAE:

- \blacktriangleright $\mathscr{A}\operatorname{-afmod}$ and $\mathscr{C}\operatorname{-afmod}$ are biequivalent.
- ▶ A-proj and C-proj are biequivalent.
- ► There is a progenerator P ∈ C-proj such that the endomorphism 2-category of P is biequivalent to A^{op}.

 \mathscr{C} — finitary 2-category

 ${\mathscr C}\operatorname{\operatorname{-proj}}$ — 2-category of projective 2-representations of ${\mathscr C}$

Definition. A progenerator is a projective 2-representation **P** of \mathscr{C} such that any other projective 2-representation is a retract of some 2-representation from $\operatorname{add}(\mathbf{P})$.

Example. $\bigoplus_{i \in \mathscr{C}} \mathbb{P}_i$ is a progenerator.

Theorem: [M.-Miemietz] *A*, *C* — finitary 2-categories. Then TFAE:

- \blacktriangleright $\mathscr{A}\operatorname{-afmod}$ and $\mathscr{C}\operatorname{-afmod}$ are biequivalent.
- ► A-proj and C-proj are biequivalent.
- ► There is a progenerator P ∈ C-proj such that the endomorphism 2-category of P is biequivalent to A^{op}.

 \mathscr{C} — finitary 2-category

 ${\mathscr C}\operatorname{\operatorname{-proj}}$ — 2-category of projective 2-representations of ${\mathscr C}$

Definition. A progenerator is a projective 2-representation **P** of \mathscr{C} such that any other projective 2-representation is a retract of some 2-representation from $\operatorname{add}(\mathbf{P})$.

Example. $\bigoplus_{i \in \mathscr{C}} \mathbb{P}_i$ is a progenerator.

Theorem: [M.-Miemietz] \mathscr{A}, \mathscr{C} — finitary 2-categories. Then TFAE:

- \blacktriangleright $\mathscr{A}\operatorname{-afmod}$ and $\mathscr{C}\operatorname{-afmod}$ are biequivalent.
- ► A-proj and C-proj are biequivalent.
- ► There is a progenerator P ∈ C-proj such that the endomorphism 2-category of P is biequivalent to A^{op}.

 \mathscr{C} — finitary 2-category

 ${\mathscr C}\operatorname{\operatorname{-proj}}$ — 2-category of projective 2-representations of ${\mathscr C}$

Definition. A progenerator is a projective 2-representation **P** of \mathscr{C} such that any other projective 2-representation is a retract of some 2-representation from $\operatorname{add}(\mathbf{P})$.

Example. $\bigoplus_{i \in \mathscr{C}} \mathbb{P}_i$ is a progenerator.

Theorem: [M.-Miemietz] \mathscr{A}, \mathscr{C} — finitary 2-categories. Then TFAE:

- \blacktriangleright $\mathscr{A}\operatorname{-afmod}$ and $\mathscr{C}\operatorname{-afmod}$ are biequivalent.
- ► A-proj and C-proj are biequivalent.
- ► There is a progenerator P ∈ C-proj such that the endomorphism 2-category of P is biequivalent to A^{op}.

F, G are composable indecomposable 1-morphisms in \mathcal{C} , then

$$F \circ G \cong \sum_{H \text{ indec.}} H^{\oplus m_{F,G}^{H}}$$

𝒞 — finitary 2-category

Definition. The multisemigroup $(S(\mathscr{C}), \diamond)$ of \mathscr{C} is defined as follows: $S(\mathscr{C})$ is the set of isomorphism classes of 1-morphisms in \mathscr{C} (including 0),

$$[F] \diamond [G] = \begin{cases} \{[H] : m_{F,G}^H \neq 0\}, & F \circ G \text{ defined and } \neq 0; \\ 0, & \text{else.} \end{cases}$$

Sometimes $S(\mathscr{C})' := S(\mathscr{C}) \setminus \{0\}$ is closed with respect to \diamond .

San

F, G are composable indecomposable 1-morphisms in \mathcal{C} , then

$$F \circ G \cong \sum_{H \text{ indec.}} H^{\oplus m_{F,G}^{H}}$$

\mathscr{C} — finitary 2-category

Definition. The multisemigroup $(S(\mathscr{C}), \diamond)$ of \mathscr{C} is defined as follows: $S(\mathscr{C})$ is the set of isomorphism classes of 1-morphisms in \mathscr{C} (including 0),

$$[F] \diamond [G] = \begin{cases} \{[H] : m_{F,G}^H \neq 0\}, & F \circ G \text{ defined and } \neq 0; \\ 0, & \text{else.} \end{cases}$$

Sometimes $S(\mathscr{C})' := S(\mathscr{C}) \setminus \{0\}$ is closed with respect to \diamond .

San

F, G are composable indecomposable 1-morphisms in \mathcal{C} , then

$$F \circ G \cong \sum_{H \text{ indec.}} H^{\oplus m_{F}^{H}, g}$$

 \mathscr{C} — finitary 2-category

Definition. The multisemigroup $(S(\mathcal{C}), \diamond)$ of \mathcal{C} is defined as follows: $S(\mathcal{C})$ is the set of isomorphism classes of 1-morphisms in \mathcal{C} (including 0),

$$[F] \diamond [G] = \begin{cases} \{[H] : m_{F,G}^H \neq 0\}, & F \circ G \text{ defined and } \neq 0\\ 0, & \text{else.} \end{cases}$$

Sometimes $S(\mathscr{C})' := S(\mathscr{C}) \setminus \{0\}$ is closed with respect to \diamond .

 ${\it F}, {\it G}$ are composable indecomposable 1-morphisms in ${\mathscr C},$ then

$$F \circ G \cong \sum_{H \text{ indec.}} H^{\oplus m_{F,G}^{H}}$$

 \mathscr{C} — finitary 2-category

Definition. The multisemigroup $(S(\mathcal{C}), \diamond)$ of \mathcal{C} is defined as follows: $S(\mathcal{C})$ is the set of isomorphism classes of 1-morphisms in \mathcal{C} (including 0),

$$[F] \diamond [G] = \begin{cases} \{[H] : m_{F,G}^H \neq 0\}, & F \circ G \text{ defined and } \neq 0; \\ 0, & \text{else.} \end{cases}$$

Sometimes $S(\mathscr{C})' := S(\mathscr{C}) \setminus \{0\}$ is closed with respect to \diamond .

 ${\it F}, {\it G}$ are composable indecomposable 1-morphisms in ${\mathscr C},$ then

$$F \circ G \cong \sum_{H \text{ indec.}} H^{\oplus m_{F,G}^{H}}$$

 \mathscr{C} — finitary 2-category

Definition. The multisemigroup $(S(\mathcal{C}), \diamond)$ of \mathcal{C} is defined as follows: $S(\mathcal{C})$ is the set of isomorphism classes of 1-morphisms in \mathcal{C} (including 0),

$$[F] \diamond [G] = \begin{cases} \{[H] : m_{F,G}^H \neq 0\}, & F \circ G \text{ defined and } \neq 0; \\ 0, & \text{else.} \end{cases}$$

Sometimes $S(\mathscr{C})' := S(\mathscr{C}) \setminus \{0\}$ is closed with respect to \diamond .

 $(S(\mathscr{C}),\diamond)$ — the multisemigroup of \mathscr{C}

Definition. $[F] \sim_L [G]$ if $S(\mathscr{C}) \diamond [F] = S(\mathscr{C}) \diamond [G]$

Definition. Equivalence classes of \sim_L are called left cells.

Similarly: \sim_R (right cells) and \sim_J (two-sided cells)

Examples:

If (S(C), ◊) is a semigroup, we get Green's relations
 for S(W,S) we get Kazhdan-Lusztig cells
$(S(\mathscr{C}),\diamond)$ — the multisemigroup of \mathscr{C}

Definition. $[F] \sim_L [G]$ if $S(\mathscr{C}) \diamond [F] = S(\mathscr{C}) \diamond [G]$

Definition. Equivalence classes of \sim_L are called left cells.

Similarly: \sim_R (right cells) and \sim_J (two-sided cells)

Examples:

If (S(C), ◊) is a semigroup, we get Green's relations
for S(W,S) we get Kazhdan-Lusztig cells

Sac

 $(S(\mathscr{C}),\diamond)$ — the multisemigroup of \mathscr{C}

Definition. $[F] \sim_L [G]$ if $S(\mathscr{C}) \diamond [F] = S(\mathscr{C}) \diamond [G]$

Definition. Equivalence classes of \sim_L are called left cells.

Similarly: \sim_R (right cells) and \sim_J (two-sided cells)

Examples:

if (S(C), ◊) is a semigroup, we get Green's relations
for S(W,S) we get Kazhdan-Lusztig cells

Sac

 $(S(\mathscr{C}),\diamond)$ — the multisemigroup of \mathscr{C}

Definition. $[F] \sim_L [G]$ if $S(\mathscr{C}) \diamond [F] = S(\mathscr{C}) \diamond [G]$

Definition. Equivalence classes of \sim_L are called left cells.

Similarly: \sim_R (right cells) and \sim_J (two-sided cells)

Examples:

If (S(C), ◊) is a semigroup, we get Green's relations
for S(W,S) we get Kazhdan-Lusztig cells

 $(S(\mathscr{C}),\diamond)$ — the multisemigroup of \mathscr{C}

Definition. $[F] \sim_L [G]$ if $S(\mathscr{C}) \diamond [F] = S(\mathscr{C}) \diamond [G]$

Definition. Equivalence classes of \sim_L are called left cells.

Similarly: \sim_R (right cells) and \sim_J (two-sided cells)

Examples:

if (S(C), ◊) is a semigroup, we get Green's relations
for S(W,S) we get Kazhdan-Lusztig cells

-

 $(S(\mathscr{C}),\diamond)$ — the multisemigroup of \mathscr{C}

Definition. $[F] \sim_L [G]$ if $S(\mathscr{C}) \diamond [F] = S(\mathscr{C}) \diamond [G]$

Definition. Equivalence classes of \sim_L are called left cells.

Similarly: \sim_R (right cells) and \sim_J (two-sided cells)

Examples:

if (S(C), ◊) is a semigroup, we get Green's relations
for S(W,S) we get Kazhdan-Lusztig cells

4 3 b

 $(S(\mathscr{C}),\diamond)$ — the multisemigroup of \mathscr{C}

Definition. $[F] \sim_L [G]$ if $S(\mathscr{C}) \diamond [F] = S(\mathscr{C}) \diamond [G]$

Definition. Equivalence classes of \sim_L are called left cells.

Similarly: \sim_R (right cells) and \sim_J (two-sided cells)

Examples:

if (S(C), ◊) is a semigroup, we get Green's relations
for S(W,S) we get Kazhdan-Lusztig cells

(3)

200

 $(S(\mathscr{C}),\diamond)$ — the multisemigroup of \mathscr{C}

Definition. $[F] \sim_L [G]$ if $S(\mathscr{C}) \diamond [F] = S(\mathscr{C}) \diamond [G]$

Definition. Equivalence classes of \sim_L are called left cells.

Similarly: \sim_R (right cells) and \sim_J (two-sided cells)

Examples:

- if $(S(\mathscr{C}), \diamond)$ is a semigroup, we get Green's relations
- for $\mathscr{S}_{(W,S)}$ we get Kazhdan-Lusztig cells

(3)

200

 $(S(\mathscr{C}),\diamond)$ — the multisemigroup of \mathscr{C}

Definition. $[F] \sim_L [G]$ if $S(\mathscr{C}) \diamond [F] = S(\mathscr{C}) \diamond [G]$

Definition. Equivalence classes of \sim_L are called left cells.

Similarly: \sim_R (right cells) and \sim_J (two-sided cells)

Examples:

- if $(S(\mathscr{C}), \diamond)$ is a semigroup, we get Green's relations
- for $\mathscr{S}_{(W,S)}$ we get Kazhdan-Lusztig cells

(3)

200

Definition. The abelianization 2-functor - is defined as follows:

given $M\in {\mathscr C}{\operatorname{-afmod}}$ and $\mathtt{i}\in {\mathscr C}$ the category $\overline{\mathsf M}(\mathtt{i})$ has objects

 $X \xrightarrow{\alpha} Y$, $X, Y \in \mathsf{M}(\mathtt{i}), \quad \alpha: X \to Y;$

and morphisms

the 2-action of C is defined component-wise extends to a 2-functor component-wise

Definition. The abelianization 2-functor $\overline{\cdot}$ is defined as follows: given $M \in \mathscr{C}$ -afmod and $i \in \mathscr{C}$ the category $\overline{M}(i)$ has objects

 $X \xrightarrow{\alpha} Y$, $X, Y \in \mathsf{M}(\mathtt{i}), \quad \alpha: X \to Y;$

and morphisms

the 2-action of \mathscr{C} is defined component-wise

Definition. The abelianization 2-functor $\overline{\cdot}$ is defined as follows: given $M \in \mathscr{C}$ -afmod and $i \in \mathscr{C}$ the category $\overline{M}(i)$ has objects

$$X \xrightarrow{\alpha} Y$$
, $X, Y \in \mathbf{M}(i), \quad \alpha: X \to Y;$

and morphisms

the 2-action of ${\mathscr C}$ is defined component-wise

extends to a 2-functor component-wise

Definition. The abelianization 2-functor $\overline{\cdot}$ is defined as follows: given $M \in \mathscr{C}$ -afmod and $i \in \mathscr{C}$ the category $\overline{M}(i)$ has objects

$$X \xrightarrow{\alpha} Y$$
, $X, Y \in \mathbf{M}(i), \alpha : X \to Y;$

and morphisms

the 2-action of *C* is defined component-wise

extends to a 2-functor component-wise

Definition. The abelianization 2-functor $\overline{\cdot}$ is defined as follows: given $M \in \mathscr{C}$ -afmod and $i \in \mathscr{C}$ the category $\overline{M}(i)$ has objects

$$X \xrightarrow{\alpha} Y$$
, $X, Y \in \mathbf{M}(i), \alpha : X \to Y;$

and morphisms

the 2-action of ${\mathscr C}$ is defined component-wise

extends to a 2-functor component-wise

Definition. The abelianization 2-functor $\overline{\cdot}$ is defined as follows: given $M \in \mathscr{C}$ -afmod and $i \in \mathscr{C}$ the category $\overline{M}(i)$ has objects

$$X \xrightarrow{\alpha} Y$$
, $X, Y \in \mathbf{M}(\mathtt{i}), \quad \alpha: X \to Y;$

and morphisms

the 2-action of $\ensuremath{\mathscr{C}}$ is defined component-wise

extends to a 2-functor component-wise

𝒞 — finitary 2-category

Definition. \mathscr{C} is fiat (finitary - involution - adjunction - two category) provided that it has

- a weak object preserving involution *;
- adjunction morphisms $F \circ F^* \to \mathbb{1}_i$ and $\mathbb{1}_j \to F^* \circ F$.

Examples.

- $\mathscr{S}_{(W,S)}$ is fiat;
- \mathcal{P}_A is fiat iff A is self-injective and weakly symmetric;
- ▶ \mathscr{G}_{Γ} is not fiat.

Fact. If \mathscr{C} is fiat, then each left cell of \mathscr{C} has a unique Duflo involution

Sac

\mathscr{C} — finitary 2-category

Definition. \mathscr{C} is fiat (finitary - involution - adjunction - two category) provided that it has

- a weak object preserving involution *;
- adjunction morphisms $F \circ F^* \to \mathbb{1}_i$ and $\mathbb{1}_j \to F^* \circ F$.

Examples.

- $\mathscr{S}_{(W,S)}$ is fiat;
- \mathcal{P}_A is fiat iff A is self-injective and weakly symmetric;
- ► *G*_Γ is not fiat.

Fact. If \mathscr{C} is fiat, then each left cell of \mathscr{C} has a unique Duflo involution

Sac

 \mathscr{C} — finitary 2-category

Definition. $\mathscr C$ is fiat (finitary - involution - adjunction - two category) provided that it has

a weak object preserving involution *;

• adjunction morphisms $F \circ F^* \to \mathbb{1}_i$ and $\mathbb{1}_j \to F^* \circ F$.

Examples.

- $\mathscr{S}_{(W,S)}$ is fiat;
- \$\mathcal{P}_A\$ is fiat iff A is self-injective and weakly symmetric;
- ▶ \mathscr{G}_{Γ} is not fiat.

Fact. If \mathscr{C} is fiat, then each left cell of \mathscr{C} has a unique Duflo involution

Ξ

 \mathscr{C} — finitary 2-category

Definition. \mathscr{C} is fiat (finitary - involution - adjunction - two category) provided that it has

► a weak object preserving involution *;

• adjunction morphisms $F \circ F^* \to \mathbb{1}_i$ and $\mathbb{1}_j \to F^* \circ F$.

Examples.

- $\mathscr{S}_{(W,S)}$ is fiat;
- \$\mathcal{P}_A\$ is fiat iff A is self-injective and weakly symmetric;

Fact. If \mathscr{C} is fiat, then each left cell of \mathscr{C} has a unique Duflo involution

Ξ

Definition. \mathscr{C} is fiat (finitary - involution - adjunction - two category) provided that it has

- ► a weak object preserving involution *;
- ▶ adjunction morphisms $F \circ F^* \to \mathbb{1}_i$ and $\mathbb{1}_j \to F^* \circ F$.

Examples.

- $\mathscr{S}_{(W,S)}$ is fiat;
- \$\mathcal{P}_A\$ is fiat iff A is self-injective and weakly symmetric;

Fact. If \mathscr{C} is fiat, then each left cell of \mathscr{C} has a unique Duflo involution

-

Definition. \mathscr{C} is fiat (finitary - involution - adjunction - two category) provided that it has

- ► a weak object preserving involution *;
- ▶ adjunction morphisms $F \circ F^* \to \mathbb{1}_i$ and $\mathbb{1}_j \to F^* \circ F$.

Examples.

- $\mathscr{S}_{(W,S)}$ is fiat;
- \mathcal{P}_A is fiat iff A is self-injective and weakly symmetric;

Fact. If $\mathscr C$ is fiat, then each left cell of $\mathscr C$ has a unique Duflo involution

1

Definition. \mathscr{C} is fiat (finitary - involution - adjunction - two category) provided that it has

- ► a weak object preserving involution *;
- ▶ adjunction morphisms $F \circ F^* \to \mathbb{1}_i$ and $\mathbb{1}_j \to F^* \circ F$.

Examples.

- $\mathscr{S}_{(W,S)}$ is fiat;
- \mathcal{P}_A is fiat iff A is self-injective and weakly symmetric;
- ▶ \mathscr{G}_{Γ} is not fiat.

Fact. If \mathscr{C} is fiat, then each left cell of \mathscr{C} has a unique Duflo involution

1

Definition. \mathscr{C} is fiat (finitary - involution - adjunction - two category) provided that it has

- ► a weak object preserving involution *;
- ▶ adjunction morphisms $F \circ F^* \to \mathbb{1}_i$ and $\mathbb{1}_j \to F^* \circ F$.

Examples.

- $\mathscr{S}_{(W,S)}$ is fiat;
- \mathcal{P}_A is fiat iff A is self-injective and weakly symmetric;

▶ \mathscr{G}_{Γ} is not fiat.

Fact. If \mathscr{C} is fiat, then each left cell of \mathscr{C} has a unique Duflo involution

-

Definition. \mathscr{C} is fiat (finitary - involution - adjunction - two category) provided that it has

- ► a weak object preserving involution *;
- ▶ adjunction morphisms $F \circ F^* \to \mathbb{1}_i$ and $\mathbb{1}_j \to F^* \circ F$.

Examples.

- $\mathscr{S}_{(W,S)}$ is fiat;
- \mathcal{P}_A is fiat iff A is self-injective and weakly symmetric;
- ▶ \mathscr{G}_{Γ} is not fiat.

Fact. If $\mathscr C$ is fiat, then each left cell of $\mathscr C$ has a unique Duflo involution

-

Definition. \mathscr{C} is fiat (finitary - involution - adjunction - two category) provided that it has

- ► a weak object preserving involution *;
- ▶ adjunction morphisms $F \circ F^* \to \mathbb{1}_i$ and $\mathbb{1}_j \to F^* \circ F$.

Examples.

- $\mathscr{S}_{(W,S)}$ is fiat;
- \mathcal{P}_A is fiat iff A is self-injective and weakly symmetric;
- ▶ \mathscr{G}_{Γ} is not fiat.

Fact. If ${\mathscr C}$ is fiat, then each left cell of ${\mathscr C}$ has a unique Duflo involution

Definition. \mathscr{C} is fiat (finitary - involution - adjunction - two category) provided that it has

- ► a weak object preserving involution *;
- ▶ adjunction morphisms $F \circ F^* \to \mathbb{1}_i$ and $\mathbb{1}_j \to F^* \circ F$.

Examples.

- $\mathscr{S}_{(W,S)}$ is fiat;
- \mathcal{P}_A is fiat iff A is self-injective and weakly symmetric;
- ▶ \mathscr{G}_{Γ} is not fiat.

Fact. If ${\mathscr C}$ is fiat, then each left cell of ${\mathscr C}$ has a unique Duflo involution

\mathscr{C} — fiat category;

 \mathcal{L} — left cell of \mathscr{C} ;

 $i \in \mathscr{C}$ — the source object for 1-morphisms in \mathcal{L} ;

- \mathbb{P}_i principal 2-representation
- $\overline{\mathbb{P}}_{i}$ its abelianization
- $G_{\mathcal{L}}$ Duflo involution

 $L_{G_{\mathcal{L}}}$ – the corresponding simple module in $\overline{\mathbb{P}}_{i}(i)$

Theorem. $\mathcal{X} := \operatorname{add} \{ F L_{G_{\mathcal{L}}} : F \in \mathcal{L} \}$ is closed under the action of \mathscr{C}

Definition. The cell 2-representation $C_{\mathcal{L}}$ of \mathscr{C} corresponding to \mathcal{L} is the finitary 2-representation obtained by restricting the action of \mathscr{C} to \mathcal{X} .

San

- \mathscr{C} fiat category;
- \mathcal{L} left cell of \mathscr{C} ;
- $\mathtt{i} \in \mathscr{C}$ the source object for 1-morphisms in \mathcal{L} ;
- \mathbb{P}_i principal 2-representation
- $\overline{\mathbb{P}}_{i}$ its abelianization
- $G_{\mathcal{L}}$ Duflo involution
- $L_{G_{\mathcal{L}}}$ the corresponding simple module in $\overline{\mathbb{P}}_{i}(i)$

Theorem. $\mathcal{X} := \operatorname{add} \{ F L_{G_{\mathcal{L}}} : F \in \mathcal{L} \}$ is closed under the action of \mathscr{C}

Definition. The cell 2-representation $C_{\mathcal{L}}$ of \mathscr{C} corresponding to \mathcal{L} is the finitary 2-representation obtained by restricting the action of \mathscr{C} to \mathcal{X} .

San

- \mathscr{C} fiat category;
- \mathcal{L} left cell of \mathscr{C} ;
- $\mathtt{i} \in \mathscr{C} \mathtt{the \ source \ object \ for \ 1-morphisms \ in \ } \mathcal{L};$
- \mathbb{P}_i principal 2-representation
- $\overline{\mathbb{P}}_{i}$ its abelianization
- $G_{\mathcal{L}}$ Duflo involution
- $L_{G_{\mathcal{L}}}$ the corresponding simple module in $\overline{\mathbb{P}}_{i}(i)$

Theorem. $\mathcal{X} := \operatorname{add} \{ F L_{G_{\mathcal{L}}} : F \in \mathcal{L} \}$ is closed under the action of \mathscr{C}

- \mathscr{C} fiat category;
- \mathcal{L} left cell of \mathscr{C} ;
- $\mathtt{i} \in \mathscr{C} \mathtt{the \ source \ object \ for \ 1-morphisms \ in \ } \mathcal{L};$
- $\mathbb{P}_{\mathtt{i}}$ principal 2-representation
- $\overline{\mathbb{P}}_{i}$ its abelianization
- $G_{\mathcal{L}}$ Duflo involution
- $L_{\mathcal{G}_{\mathcal{L}}}$ the corresponding simple module in $\overline{\mathbb{P}}_{i}(i)$

Theorem. $\mathcal{X} := \operatorname{add} \{ F L_{G_{\mathcal{L}}} : F \in \mathcal{L} \}$ is closed under the action of \mathscr{C}

- \mathscr{C} fiat category;
- \mathcal{L} left cell of \mathscr{C} ;
- $\mathtt{i} \in \mathscr{C}$ the source object for 1-morphisms in \mathcal{L} ;
- $\mathbb{P}_{\mathtt{i}}$ principal 2-representation
- $\overline{\mathbb{P}}_{\mathtt{i}}$ its abelianization
- $G_{\mathcal{L}}$ Duflo involution
- $L_{G_{\mathcal{L}}}$ the corresponding simple module in $\overline{\mathbb{P}}_{i}(i)$

Theorem. $\mathcal{X} := \operatorname{add} \{ F L_{G_{\mathcal{L}}} : F \in \mathcal{L} \}$ is closed under the action of \mathscr{C}

- \mathscr{C} fiat category;
- \mathcal{L} left cell of \mathscr{C} ;
- $\mathtt{i} \in \mathscr{C}$ the source object for 1-morphisms in \mathcal{L} ;
- $\mathbb{P}_{\mathtt{i}}$ principal 2-representation
- $\overline{\mathbb{P}}_i$ its abelianization
- ${\it G_{L}}$ Duflo involution

 $L_{G_{\mathcal{L}}}$ – the corresponding simple module in $\overline{\mathbb{P}}_{i}(i)$

Theorem. $\mathcal{X} := \operatorname{add} \{ F L_{G_{\mathcal{L}}} : F \in \mathcal{L} \}$ is closed under the action of \mathscr{C}

- \mathscr{C} fiat category;
- \mathcal{L} left cell of \mathscr{C} ;
- $\mathtt{i} \in \mathscr{C}$ the source object for 1-morphisms in \mathcal{L} ;
- $\mathbb{P}_{\mathtt{i}}$ principal 2-representation
- $\overline{\mathbb{P}}_i$ its abelianization
- ${\it G_{L}}$ Duflo involution
- $L_{G_{\mathcal{L}}}$ the corresponding simple module in $\overline{\mathbb{P}}_{i}(i)$

Theorem. $\mathcal{X} := \operatorname{add} \{ F L_{G_{\mathcal{L}}} : F \in \mathcal{L} \}$ is closed under the action of \mathscr{C}

- \mathscr{C} fiat category;
- \mathcal{L} left cell of \mathscr{C} ;
- $\mathtt{i} \in \mathscr{C}$ the source object for 1-morphisms in \mathcal{L} ;
- $\mathbb{P}_{\mathtt{i}}$ principal 2-representation
- $\overline{\mathbb{P}}_{\mathtt{i}}$ its abelianization
- $G_{\mathcal{L}}$ Duflo involution
- $L_{G_{\mathcal{L}}}$ the corresponding simple module in $\overline{\mathbb{P}}_{i}(i)$

Theorem. $\mathcal{X} := \operatorname{add} \{ F L_{G_{\mathcal{L}}} : F \in \mathcal{L} \}$ is closed under the action of \mathscr{C}

- \mathscr{C} fiat category;
- \mathcal{L} left cell of \mathscr{C} ;
- $\mathtt{i} \in \mathscr{C}$ the source object for 1-morphisms in \mathcal{L} ;
- $\mathbb{P}_{\mathtt{i}}$ principal 2-representation
- $\overline{\mathbb{P}}_{\mathtt{i}}$ its abelianization
- $G_{\mathcal{L}}$ Duflo involution

 $L_{G_{\mathcal{L}}}$ – the corresponding simple module in $\overline{\mathbb{P}}_{i}(i)$

Theorem. $\mathcal{X} := \operatorname{add} \{ F L_{G_{\mathcal{L}}} : F \in \mathcal{L} \}$ is closed under the action of \mathscr{C}

- \mathscr{C} fiat category;
- \mathcal{L} left cell of \mathscr{C} ;
- $\mathtt{i} \in \mathscr{C}$ the source object for 1-morphisms in \mathcal{L} ;
- $\mathbb{P}_{\mathtt{i}}$ principal 2-representation
- $\overline{\mathbb{P}}_{\mathtt{i}}$ its abelianization
- $G_{\mathcal{L}}$ Duflo involution

 $L_{G_{\mathcal{L}}}$ – the corresponding simple module in $\overline{\mathbb{P}}_{i}(i)$

Theorem. $\mathcal{X} := \operatorname{add} \{ F L_{G_{\mathcal{L}}} : F \in \mathcal{L} \}$ is closed under the action of \mathscr{C}

Properties of cell 2-representation

Assume:

- \mathcal{J} be a 2-sided cell of \mathscr{C} ;
- \blacktriangleright different left cells inside ${\cal J}$ are not comparable w.r.t. the left order;
- for any $\mathcal{L}, \mathcal{R} \subset \mathcal{J}$ we have $|\mathcal{L} \cap \mathcal{R}| = 1$;
- ▶ the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J} .

Theorem. [M.-Miemietz]

- ▶ For any two left cells \mathcal{L} and \mathcal{L}' of \mathcal{J} the corresponding cell 2-representations $C_{\mathcal{L}}$ and $C_{\mathcal{L}'}$ are equivalent.
- ▶ End_{\mathscr{C}}C_{\mathcal{L}} \cong **k**-mod.
- If *C* admits a positive grading, then the last technical assumption is redundant.

Sac
Assume:

- \mathcal{J} be a 2-sided cell of \mathscr{C} ;
- \blacktriangleright different left cells inside ${\cal J}$ are not comparable w.r.t. the left order;
- for any $\mathcal{L}, \mathcal{R} \subset \mathcal{J}$ we have $|\mathcal{L} \cap \mathcal{R}| = 1$;
- ▶ the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J} .
- Theorem. [M.-Miemietz]
 - ▶ For any two left cells \mathcal{L} and \mathcal{L}' of \mathcal{J} the corresponding cell 2-representations $C_{\mathcal{L}}$ and $C_{\mathcal{L}'}$ are equivalent.
 - ▶ End_{\mathscr{C}}C_{\mathcal{L}} \cong **k**-mod.
 - If *C* admits a positive grading, then the last technical assumption is redundant.

Assume:

- \mathcal{J} be a 2-sided cell of \mathscr{C} ;
- \blacktriangleright different left cells inside ${\cal J}$ are not comparable w.r.t. the left order;
- for any $\mathcal{L}, \mathcal{R} \subset \mathcal{J}$ we have $|\mathcal{L} \cap \mathcal{R}| = 1$;
- ▶ the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J} .
- Theorem. [M.-Miemietz]
 - ▶ For any two left cells \mathcal{L} and \mathcal{L}' of \mathcal{J} the corresponding cell 2-representations $C_{\mathcal{L}}$ and $C_{\mathcal{L}'}$ are equivalent.
 - ▶ $End_{\mathscr{C}}C_{\mathcal{L}} \cong k-mod.$
 - ▶ If *C* admits a positive grading, then the last technical assumption is redundant.

Assume:

• \mathcal{J} be a 2-sided cell of \mathscr{C} ;

 \blacktriangleright different left cells inside ${\cal J}$ are not comparable w.r.t. the left order;

- for any $\mathcal{L}, \mathcal{R} \subset \mathcal{J}$ we have $|\mathcal{L} \cap \mathcal{R}| = 1$;
- ▶ the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J} .

Theorem. [M.-Miemietz]

▶ For any two left cells \mathcal{L} and \mathcal{L}' of \mathcal{J} the corresponding cell 2-representations $C_{\mathcal{L}}$ and $C_{\mathcal{L}'}$ are equivalent.

- ▶ $End_{\mathscr{C}}C_{\mathcal{L}} \cong k-mod.$
- ▶ If *C* admits a positive grading, then the last technical assumption is redundant.

Assume:

- \mathcal{J} be a 2-sided cell of \mathscr{C} ;
- \blacktriangleright different left cells inside ${\cal J}$ are not comparable w.r.t. the left order;
- $\blacktriangleright \ \text{ for any } \mathcal{L}, \mathcal{R} \subset \mathcal{J} \text{ we have } |\mathcal{L} \cap \mathcal{R}| = 1;$
- ▶ the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J} .

Theorem. [M.-Miemietz]

- ▶ For any two left cells \mathcal{L} and \mathcal{L}' of \mathcal{J} the corresponding cell 2-representations $C_{\mathcal{L}}$ and $C_{\mathcal{L}'}$ are equivalent.
- ▶ $End_{\mathscr{C}}C_{\mathcal{L}} \cong k-mod.$
- ▶ If *C* admits a positive grading, then the last technical assumption is redundant.

Assume:

- \mathcal{J} be a 2-sided cell of \mathscr{C} ;
- \blacktriangleright different left cells inside ${\cal J}$ are not comparable w.r.t. the left order;
- $\blacktriangleright \ \text{ for any } \mathcal{L}, \mathcal{R} \subset \mathcal{J} \text{ we have } |\mathcal{L} \cap \mathcal{R}| = 1;$
- ▶ the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J} .

Theorem. [M.-Miemietz]

▶ For any two left cells \mathcal{L} and \mathcal{L}' of \mathcal{J} the corresponding cell 2-representations $C_{\mathcal{L}}$ and $C_{\mathcal{L}'}$ are equivalent.

- ▶ $End_{\mathscr{C}}C_{\mathcal{L}} \cong \mathbf{k}\text{-mod}.$
- ► If *C* admits a positive grading, then the last technical assumption is redundant.

Assume:

- \mathcal{J} be a 2-sided cell of \mathscr{C} ;
- \blacktriangleright different left cells inside ${\cal J}$ are not comparable w.r.t. the left order;
- $\blacktriangleright \ \text{ for any } \mathcal{L}, \mathcal{R} \subset \mathcal{J} \text{ we have } |\mathcal{L} \cap \mathcal{R}| = 1;$
- ▶ the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J} .

Theorem. [M.-Miemietz]

- ▶ For any two left cells \mathcal{L} and \mathcal{L}' of \mathcal{J} the corresponding cell 2-representations $C_{\mathcal{L}}$ and $C_{\mathcal{L}'}$ are equivalent.
- ▶ $End_{\mathscr{C}}C_{\mathcal{L}} \cong \Bbbk-mod.$
- ▶ If *C* admits a positive grading, then the last technical assumption is redundant.

Assume:

- \mathcal{J} be a 2-sided cell of \mathscr{C} ;
- \blacktriangleright different left cells inside ${\cal J}$ are not comparable w.r.t. the left order;
- $\blacktriangleright \ \text{ for any } \mathcal{L}, \mathcal{R} \subset \mathcal{J} \text{ we have } |\mathcal{L} \cap \mathcal{R}| = 1;$
- ▶ the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J} .

Theorem. [M.-Miemietz]

► For any two left cells \mathcal{L} and \mathcal{L}' of \mathcal{J} the corresponding cell 2-representations $C_{\mathcal{L}}$ and $C_{\mathcal{L}'}$ are equivalent.

$\blacktriangleright \operatorname{End}_{\mathscr{C}} C_{\mathcal{L}} \cong \Bbbk\operatorname{-mod}.$

▶ If *C* admits a positive grading, then the last technical assumption is redundant.

Assume:

- \mathcal{J} be a 2-sided cell of \mathscr{C} ;
- \blacktriangleright different left cells inside ${\cal J}$ are not comparable w.r.t. the left order;
- $\blacktriangleright \ \text{ for any } \mathcal{L}, \mathcal{R} \subset \mathcal{J} \text{ we have } |\mathcal{L} \cap \mathcal{R}| = 1;$
- ▶ the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J} .

Theorem. [M.-Miemietz]

- ► For any two left cells L and L' of J the corresponding cell 2-representations C_L and C_{L'} are equivalent.
- ▶ $End_{\mathscr{C}}C_{\mathcal{L}} \cong \Bbbk$ -mod.
- ▶ If *C* admits a positive grading, then the last technical assumption is redundant.

Assume:

- \mathcal{J} be a 2-sided cell of \mathscr{C} ;
- \blacktriangleright different left cells inside ${\cal J}$ are not comparable w.r.t. the left order;
- $\blacktriangleright \ \text{ for any } \mathcal{L}, \mathcal{R} \subset \mathcal{J} \text{ we have } |\mathcal{L} \cap \mathcal{R}| = 1;$
- ▶ the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J} .

Theorem. [M.-Miemietz]

- ► For any two left cells L and L' of J the corresponding cell 2-representations C_L and C_{L'} are equivalent.
- ▶ $End_{\mathscr{C}}C_{\mathcal{L}} \cong \Bbbk$ -mod.
- ► If *C* admits a positive grading, then the last technical assumption is redundant.

Assume:

- \mathcal{J} be a 2-sided cell of \mathscr{C} ;
- \blacktriangleright different left cells inside ${\cal J}$ are not comparable w.r.t. the left order;
- $\blacktriangleright \ \text{ for any } \mathcal{L}, \mathcal{R} \subset \mathcal{J} \text{ we have } |\mathcal{L} \cap \mathcal{R}| = 1;$
- ▶ the function $F \mapsto m_F$, where $F^* \circ F = m_F H$ is constant on right cells of \mathcal{J} .

Theorem. [M.-Miemietz]

- ► For any two left cells L and L' of J the corresponding cell 2-representations C_L and C_{L'} are equivalent.
- ▶ $End_{\mathscr{C}}C_{\mathcal{L}} \cong \Bbbk$ -mod.
- ► If *C* admits a positive grading, then the last technical assumption is redundant.

- find most suitable setup;
- what are simple 2-representations?
- any Jordan-Hölder theory?
- Morita theory for abelian representations;
- general categorification algorithms;
- any homological methods for 2-representations?
- understand combinatorics of available examples;
- many more...

nac

find most suitable setup;

- what are simple 2-representations?
- any Jordan-Hölder theory?
- Morita theory for abelian representations;
- general categorification algorithms;
- any homological methods for 2-representations?
- understand combinatorics of available examples;
- ▶ many more...

- find most suitable setup;
- what are simple 2-representations?
- any Jordan-Hölder theory?
- Morita theory for abelian representations;
- general categorification algorithms;
- any homological methods for 2-representations?
- understand combinatorics of available examples;
- ▶ many more...

- find most suitable setup;
- what are simple 2-representations?
- ► any Jordan-Hölder theory?
- Morita theory for abelian representations;
- general categorification algorithms;
- any homological methods for 2-representations?
- understand combinatorics of available examples;
- ▶ many more...

- find most suitable setup;
- what are simple 2-representations?
- ► any Jordan-Hölder theory?
- Morita theory for abelian representations;
- general categorification algorithms;
- any homological methods for 2-representations?
- understand combinatorics of available examples;
- many more...

- find most suitable setup;
- what are simple 2-representations?
- ► any Jordan-Hölder theory?
- Morita theory for abelian representations;
- general categorification algorithms;
- any homological methods for 2-representations?
- understand combinatorics of available examples;
- ▶ many more...

- find most suitable setup;
- what are simple 2-representations?
- ► any Jordan-Hölder theory?
- Morita theory for abelian representations;
- general categorification algorithms;
- any homological methods for 2-representations?
- understand combinatorics of available examples;
- ▶ many more...

- find most suitable setup;
- what are simple 2-representations?
- ► any Jordan-Hölder theory?
- Morita theory for abelian representations;
- general categorification algorithms;
- ▶ any homological methods for 2-representations?
- understand combinatorics of available examples;

many more...

- find most suitable setup;
- what are simple 2-representations?
- ► any Jordan-Hölder theory?
- Morita theory for abelian representations;
- general categorification algorithms;
- ▶ any homological methods for 2-representations?
- understand combinatorics of available examples;
- ▶ many more...

- find most suitable setup;
- what are simple 2-representations?
- ► any Jordan-Hölder theory?
- Morita theory for abelian representations;
- general categorification algorithms;
- ▶ any homological methods for 2-representations?
- understand combinatorics of available examples;
- ▶ many more...

THANK YOU!!!

< ∃ ▶

3 N

E DQC