BGG-resolution for a-stratified modules over
simply-laced finite-dimensional Lie algebras

V. Futorny and V. Mazorchuk

Abstract

We construct the strong BGG-resolution for irreducible a-stratified modules over
finite-dimensional simple Lie algebras with simply-laced diagrams.

1 Introduction

This paper is a sequel of [6] where the submodule structure of a-stratified (i.e. torsion
free with respect to the subalgebra corresponding to a root «) generalized Verma modules
was studied. The results obtained there generalize the classical theorem of Bernstein-
Gelfand-Gelfand on Verma modules inclusions. The crucial role in the study is played by
the generalized Weyl group W, that acts on the space of parameters of generalized Verma
modules.

Let & be a simple finite-dimensional Lie algebra over the complex with a simply-laced
Coxeter-Dynkin diagram (i.e. there is no multiple arrows). In the present paper for any
such algebra we construct a strong BGG-resolution for a-stratified irreducible modules in
the spirit of [1,10].

The structure of the paper is the following. In the section 2 we collect the notation
and preliminary results. A weak generalized BGG-resolution is costructed in section 3.
Here we follow closely [1]. Section 4 contains an extension lemma for a-stratified modules
which generalizes a well-known result of Rocha-Caridi for Verma modules [10]. Our proof
is analogous to the one of Humphreys for Verma modules [8]. In section 5 we study the
maximal submodule of the generalized Verma module and construct a strong generalized
BGG-resolution for a-stratified irreducible modules in section 6. Finally, in section 7 we
give a character formulae for certain a-stratified irreducible modules.

2 Notation and preliminary results
Let C denotes the complex numbers, Z denotes all integers, N denotes all positive integers
and Z+ =NU {0}

Let 7 be a basis of A containing «, AL = A4 (7) be the set of positive (negative) roots
with respect to m. For any S C 7 let AL(S) be a closed subset in Ay generated by S.
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1
Alsolet p= 2} 7. For A, p € 5 we will say that A > pif A—p =) kg, ks € Zy.
yEAL pemn
Further (-,-) will denote the standard form on $*. If 3 € A, then sz € W will denote a

20,8)

(8,8)
Fix a basis {Hg, f € m} of $ normalized by the condition #(Hg) = 2 and a non-zero

element X, in each subspace &, v € A such that [Xg, X_g] = Hg, 3 € 7.
Denote 91, = Z Gy, NG = Z &1y, H* ={h € Hla(h) =0}. Then we have

YEAL 7€AL\{a}

G=N_6HeN, =6 6N @ H* & N?

corresponding reflection in $*: sg(A) = A —

Where &2 is generated by &.,. Also let $, = &* N H and thus &* =B, S H, DB _,.

For m € Z, denote by U(®)(™ the subspace in U(®) spanned by the elements of
degree m (with respect to the fixed PBW-basis above).

For a Lie algebra 2 we will denote by U(2() the universal enveloping algebra of 2 and
by Z(2() the centre of U(2).

Consider a linear space 2 = $* x C. For (), p) and (y, ¢) in Q we say that (\,p) > (i, q)
ifA—p= Y mngB ng€Zyand A#p.

per\{a}
Let »r € C. Consider a linear space B, = Z CB + ra with a fixed point ra, a
pem\{a}

Z-module B, = B, ® Zo and let Q, = B, x C, Q, = B, x C.

In [6] we introduced the generalized Weyl group W, acting on the space €2, in the
following way.

Consider a partition of m: 7 = m Umy where my = {y € mla+7v € A, },my ={7y €
mla+ v ¢ A}. For (A,p) € Q and § € m denote

75 (0 p) = 5 (\(Ha +2Hy) % p)

and define (Ag, pg) € 2, where Ag = A —ng(A,p)B, ps = ng()\,p).
For each 8 € 7 consider g € GL(2) such that

()‘a _p)’ ﬂ =«
Eﬂ(/\p) = (Sﬁ)‘ap)a ﬂ € T2 \ {a} (*)
(As,ps), B e€m.

Then W, =< {g,B €7 >.

It is easy to see that W, is isomorphic to the Weyl group W. Moreover, there exists
a root system A,, in €, with respect to which W, is the Weyl group [6]. We denote
by oz the reflection in €2, corresponding to a root # € A,,. Also let (-,-), denotes a
corresponding non-degenerated form on 2, and ( = (., : A = A, be a natural bijection.

Let pr;, 2 = 1,2 be a natural projection on the i-th component of €2,.
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For a ®-module V with a Jordan-Hoélder series let JH (V) denotes the set of all irre-
ducible subquotients of V. A &-module V is called weight if

V= D Vi
AE

where V), = {v € V|hv = A(h)v for all h € H}. If V), # 0 then X is called a weight of
V. Denote by supp V' the set of all weights of V. A weight )\ is called highest weight if
Vigg = 0 for all B € A;. A weight &-module V' is called o-stratified if X, and X_, act
injectively on V.

Let V' be a weight &-module. A non-zero element v € V is called a-primitive (with
respect to ®) if v € V), for some A € $H* and NGv = 0.

It is known that ¢ = (H,+1)?>+4X_, X, generates Z(®%). Let a,b € C. Any such pair
defines a unique indecomposable weight &*-module N(a,b) on which X_, acts injectively
and where «a is an eigenvalue of H, and b is an eigenvalue of ¢. The module N(a,b) has a
Z-basis {v;} such that X_,v; = v;_1, Hyv; = (a+ 2i)v; and X,v; = %(b— (@a+2i+1)H)vi, .

One can easily check (see [6, Lemma 2.2]) that the module N(a, b) is torsion free if and
only if b # (a+ 20+ 1)% for all £ € Z.

Set 2F = {(\,p) € Qlp # £(A\(Hy) +2¢) for all £ € Z}, Q° = Q, N Q%, Q° = Q, N Q°.
Hence, if (A, p) € Q° then N((A — p)(H,), p?) is irreducible and torsion free.

Since $H = H, D H*, any element A € H* can be written uniquely as A = A\, + A* where
Ao € H, and A\* € (9%)*. Let a,b € Cand A € H* such that (A—p)(Ha) = (Aa—p)(Ha) = a.
Define a $-module structure on N(a,b) by letting hv = A*(h)v for any h € $H* and any
v € N(a,b). Thus N(a,b) becomes a H* + H-module. Moreover, we can consider N(a,b)
as D= 9+ &* + N¢-module with a trivial action of N¢.

The generalized Verma module associated with a;, A, b is defined as follows:

Mo (X, 0) = U(®) Q) N(a,b).
U(D)

Set M (A, b) = My(\,b).
It will be more convenient to use a slightly different parametrization of generalized
Verma modules replacing M (), b) by M (), p) where p?> = b. Thus we always have M (), p) =

M\, —p).

Note that module M (), p) has a unique maximal submodule and it is a-stratified if and
only if (A, p) € Q°.

It follows from [3, Corollary 1.11] that module M (A,p) admits a central character
Oop) € Z*(®), ie. zv =00 p)(2)v for any 2z € Z(&) and v € M (A, p).

Denote by L(\, p) the unique irreducible quotient of M (A, p).

Lemma 1. L(\,p) ~ L(A + ka,p) for all k € Z.
The following order on €2, was introduced in [6]: Let (X, p), (i, q) € Q, and § € A,,.
We will write (A, p)2(u, ) if (11,q) = 05(\,p) and (B, (\,p)), € N for § # C(a). Then
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(,q) < (A, p) will describe the fact that there exists a sequence (i, fa,..., B in Ay,

By B B
such that (,LL, Q)_> 0 (:ua Q)_> o OB 0p (,LL, Q)A()‘vp)'
The main result of [6, Theorem 7.6] is the following theorem which describes the struc-

ture of a-stratified generalized Verma module with respect to the order on €2,.
Theorem 1. Let (\,p) and (u,q) € Q2. The following statements are equivalent:
1. M(p,q) C M(A,p);
2. L(p,q) € TH(M (X, p));
3. There ezists k € Z such that (1 + ko, q) < (A, p).
Let
Pt ={(\,p) € O |w(\,p) < (\p) for all w € W,}.

For 8 € m denote by Agz a root subsystem of rank 2 generated by o and £.
In this paper we discuss the construction of analogues of the weak and the strong
BGG-resolutions for irreducible modules L(A, p) with (\,p) € P+,

3 Cohomological part of the weak BGG-resolution
Let P = A (7 \ {a}) and let P be a subalgebra of & generated by all root subspaces
&_5,8€P.
An element (A, p) will be called minimal if

prl((/\vp) - Oﬁ(/\vp)) =p

holds for every g € 7\ {a}. In this section we fix a minimal element (), p).
Consider the subalgebra B as a module over a subalgebra a = 917 + § under the
following action:

h-a=[h,a] + A(h)(a)
for any h € $ and a € B, and

b-a= {[b,a]’ [b,a] € P;
0,  [b,a] ¢

for all b € M* and a € P. Clearly, this action can be naturally extended to the action on

k
the external powers /\ P for all £ e N.



Let € be a unique eigenvalue on M (A, p) of a quadratic Casimir operator

C=H+ > X_.X,,

ac A+

where H is a certain fixed element in §). Note that this eigenvalue is determined uniquely
by (A, p) via generalized Harish-Chandra homomorphism [5].
Define U, = U(®)/(C — ¢) and consider the following &-modules:

k
Dy =U.Q A%
U(a)

where kK € Z,..
Following [1], for £ € N define the homomorphisms dj, : Dy, — Dj_; as follows

(X X1 NANXoAN---NXy) =
k
D -D)TXX; @ X A AXG A A Xy +
=1
Y (D)X QX XIAX A AKX N AXGA - AKX

1<i<j<k

Since di o di1 = 0 we immediately obtain that the sequence

0 Do/Imd; & Dy & D, & Dy &
is a complex. Here 7 is a natural projection. We will denote this complex by V, (A, ).
Theorem 2. The complezx V, (), ¢€) is ezact.

Proof. The algebra U, inherites the natural gradation on U(®) by the degree of the mono-

mials. Using that we can define a gradation on Dy. For [ > k let D,(cl) be a subspace

spanned by the elements z ® y where z is an element in U, of degree less or equal | — k

k
and y € /\‘B. It is clear that dy(D{") c DV and thus dj, induces a homomorphism
! D)/ (-1 ! -1
dl(c) : Dl(c)/Dl(c ) DI(CZI/DI(C—I)'

Also set M) = D(()l) /Im dgl) and let ¥ be a corresponding induced homomorphism.
It is sufficient to show for every [ the exactness of the complex

o . O oo 0
0 MO pY L p Ve pPe (1)

with DY = /D",



By the PBW theorem for every k € Z, one can write:

Dy = (U(fﬂ) ®/k\m) D (Z XyUm*) Q@ /k\m>

m>1

and hence

PO ~ (U(m_)(lk> ®/k\‘l¥> D (§ XpU (e )them ®/k\q3> :

We will denote by s,9_ a subalgebra generated by M2 and X,. Let M* (5,9 resp.)
be a subalgebra generated by X_g, € Ay, B & Ap(m\{a}) (B € suA4, B & saAi(m\{})
resp.) and let S;(B) be a set of all homogeneous elements of degree j in the symmetric
algebra of 8. Then

o = (e osm@AR) @ (L v s m@\»).

j=0 7=0

For any homogeneous element u € U(M¥) (u € U(s,MN*) resp.) of degree | — j — k we
have that dg) (uS;(P) @ A*PB) € uS;11(P) ® A¥ "B. Therefore the element u generates
a complex which is in fact the Koszul complex [2] and hence is exact. Using the PBW
theorem we conclude that the complex (1) decomposes into a direct sum of exact complexes
and therefore is exact. The theorem is proved. O

For a weight &-module V' consider a formal character

chV =) (dimV,)e"

HEN*

Corollary 1.

ch Do/Imd; = Y (~1)"' ch D;.

i>1

4 Extension lemma

In this section we prove an analogue of the Extension lemma ([8,10]) for a-stratified gen-
eralized Verma modules.

Recall that a-stratified generalized Verma modules are the important objects in the
category O% wich was studied in [3,7]. This category has properties similar to those of the
classical category O. It was shown, in particular, that O“ has enough projective objects.
Let P(A,p) be the projective cover of L(A, p).



Theorem 3. Let (\,p), (1, q) € Q5. If

EXtO"‘ (M(:U’a Q): M()\,p)) 7é 0
then (u,q) < (A, p)-

Proof. The proof is based on the properties of the category O% [7] and is analogous to the
proof of the extension lemma in [8]. O

Consider a subgroup W C W, generated by all lg, § € 7\ {a}. Since W[ is a
reflection group we have a well-defined notion of the length I(w) for any w € W,.

Corollary 2. For (\,p) € Pt and wy, ws € W with l(wy) = [(wy) holds

Exton (M (w1 (A, p)), M (ws(), p))) = 0.

5 The structure of the maximal submodule of M (), p)

The main result of this section is the following
Theorem 4. The module Dy/Imd; is irreducible.

Corollary 3. If (\,p) € P*" and N is the mazimal submodule of M (), p) then

N= 3 Mloy(\p)).

vem\{a}
Proof. Follows immediately from theorem 2 and theorem 4. O

To prove the theorem 4 we will need several lemmas.
Let K = A_(m) \ P and K(®) be a subalgebra generated by X, § € K.

Lemma 2. Let (u,q) € Q2. If B € K and (8, ) # 0 then Xg acts injectively on L(u,q).

Proof. Suppose that there exists a non-zero v € L(p, ¢) such that Xgv = 0. Since («, ) # 0
then either o + 3 & A or o — 8 ¢ A. Thus, either X3 X,v =0 or XgX_,v = 0. Viewing
a-stratified module L(u,q) as a module over Lie algebra < Xz, X_5 >~ sl(2,C) and
using the fact that L(u,q) is X_g-finite we obtain that L(u,q) contains irreducible finite-
dimensional s{(2, C)-submodules of the same dimension and with different highest weights
which is impossible. Lemma is proved. O

Lemma 3. Let (p,q) € 2 and 0 # v € M(u,q)u—p. Then for f € K and k > 1 an
element ng 18 not a-primitive.



Proof. If (c, B) # 0 then the statement follows from lemma 2.

Suppose now that (a, 3) = 0 and consider the maximal (with respect to the height of
roots) v € A, such that vy # a, v+ 3 € K and (8 + 7, a) # 0. The existence of such 7 is
obvious.

Let £ be the minimal positive integer for which X gv is a-primitive. Then

0=X,X50=0aXp, X§ v+...
with a # 0. It follows from PBW theorem that X, X gv = 0 which contradicts lemma 2. [

Let M be a &-module. A non-zero weight element v € M will be called quasi-primitive
if there exists a submodule N C M such that v becomes a-primitive in the quotient M/N.

Lemma 4. Let (1,q) € ), N C M(p,q), 0# v € M(u,9)u—p and K(&)vNN #0. Then
K(g)v contains a quasi-primitive element.

Proof. Since module N is a-stratified and finitely generated one can choose a set of gen-
erators w, ..., w; (which are not necessary a-primitive) of N such that w; € U(OM_)v for
all 7. Let 0 # v' € K(&)v N N. There exists k > 0 for which

Xk ' e Z UM )w;.

We obtain a contradiction now from the PBW theorem since v' € K(®)v. This completes
the proof of lemma. O

Lemma 5. Let (p,q) € 22 and 0 # v € M(i1,q)y—p- Then K(B)v has no quasi-primitive
elements except CX* v, k > 0.

Proof. Tt follows from theorem 1 that if 0 # v' € M (u, q),, v < g — p is a-primitive for all
g then v' ¢ K(&)v. On the other hand, a direct calculation shows that for any 7 € $* the
existence of a non-zero a-primitive element in K(&)v of weight p — 7 is equivalent to the
system of linear equations on y. This implies that the only a-primitive elements in K (&)v
are CX* v, k > 0.

Now suppose that v' € (K(®)v), is quasi-primitive and (K (®)v)e has no quasi-
primitive elements if £ > 7. Consider the minimal generating system G in A, \ {a}
containing v € 7 \ {a}. Then obviously X,v' = 0 for all v € 7 \ {a}. If y € G\ 7 then
(7,a) # 0. Let b ~ si(2,C) be a subalgebra generated by Xi, and N be a b-module
generated by v'.

Suppose that X,v' # 0. Since v’ is quasi-primitive it implies that v' ¢ X_,N and thus
N has a finite-dimensional subfactor. Using the fact that our module is a-stratified and
the fact that (y,a) # 0 we easily obtain a contradiction from si(2)-theory. Hence v’ is
a-primitive and thus belongs to CX* v for some k > 0. O

Lemma 6. Let V be a quotient of M(u,q), 0 # v € M(u,q)u—p, and v € $H* be a weight
of V. Then dimV, > dim(K(&)v), where (K(&)v), = K(&)v N M(u,q),. Moreover, if
dimV, = dim(K(&)v), for infinitely many weights v; of V, where v; — v; & Za for all
1 # j, then module V' is irreducible.



Proof. Follows immediately from lemmas above. O

of theorem 4. Let 0 # v € M(\,p)a—,. It follows from corollary 1 that dim(Dy/Imd,), =
dim(K(®)v) N M(A,p), for infinitely many weights v € $* satisfying the conditions of
lemma 6. Using lemma 6 we conclude that Dy/Imd; is irreducible which completes the
proof. O

6 Strong BGG-resolution

In this section we follow [1,10] to construct the strong BGG-resolution for irreducible a-
stratified module L(A, p) with (\,p) € P*™.
Let (A\,p) € P**. For k > 0 denote

WhHE ={w e W] |l(w) =k}
and set

Ce= Y, Muwp)).

we(Wgh)k
Define a map D; : C; — Cj_; using the matrix (d.,,,,), w1 € (W), w, € (Wi)~!
where d, . = s(wi,ws) if wy > wy (with respect to Bruhat order) and zero otherwise.

Here the numbers s(wy, ws,) are defined as in [1, Lemma 10.4]. Set m = |A (7 \ {a})|-
Theorem 5. Let nn: M(\,p) — L(\, p) be a natural projection. Then the sequence

0 « Lhp & ¢ & ¢ 2 = C, « 0

18 ezxact.

Proof. Tt follows from the construction that this sequence is a complex.
To show the exactness in each term we will follow the proof of [10, Corollary 10.6].
Let IC be a category of all weight &-modules having central character. Clearly every
module V' € K has a decomposition

V= V(x),

XEZ*(®)

where V' (x) is a component with central character x. Let € Z*(®) be a central character
of M()\,p) and let Fp : K — K be a functor such that Fp(V) = V(0) for all V € K.
Obviously, there exists a minimal element (u,¢) € P*T and a finite-dimensional &-
module U such that Y = Fy(L(u, q¢) @ U) contains an a-primitive element with parameters
(A, p). Moreover, the dimension of Y,_, equals 1.
We will show that in fact Y ~ L()\, p). Suppose that Y is not irreducible and N is some
non-trivial submodule of Y. Then it follows from lemma 6 that the dimension growth of
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Y/N is strictly less then the dimension growth of any irreducible module L(X,p’) in K.
The obtained contradiction implies that Y ~ L(A, p).

Let € be an eigenvalue of C on L(y,q). Consider an exact complex V,(u, ). Applying
the functor Fy(-® U) to V,(u,€) we obtain the following exact complex:

0—LAp) LB &EB EBE .

where B; = Fyp(D; ® U), i > 0.
Using [1, Proposition 9.6] and theorem 3 we conclude that

B, ~ C;,i > 0.

Following [10, Lemmas 10.2,10.5] there exists a sequence of isomorphisms v* : B; — C;
which makes the following diagram commutative:

- 4l .| )
C—— O\ p) 25 Ci(\p) 2 Co(\,p) —— L(\,p) —— 0.

This completes the proof of the theorem. O

7 Character formulae

In this section we use the strong BGG-resolution to obtain a character formulae for a
&-module L(\, p) with (A, p) € PT*.
For v € $H* let

Ho=v+ Y LB
per\{a)

Set for any v € supp V'

ch® (V)= (dimV})e".

HENY

Lemma 7. Let V be an a-stratified &-module and v € supp V' then

ch(V) = ( > em> ch®” (V).

1=—00

Proof. Follows from the fact that X, act injectively on V. U
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Let ¢ : $§* — $, be a natural projection along the root a. Set A" = {p(8) | € A,}.
It is easy to see (see for example [9]) that for any (u,q) € Q

P (M(,q) = e [] (1 - ¢ ?)

BeA’
and thus
+00 '
ch(M(u,q)) =e** J[ (1—e? ( > 6“’)
BeA\{a} i=—00
by lemma 7.
1
Set pl = 5 Z/B

BepP

Theorem 6. Let (\,p) € P™*. Then there exists an element a(\, p) € H* such that

ch(L(A,p)) = (f em> H (1—eP) 1| x
- feK\{a}

x [ 37 (—1yi@entratartsi-at) | [ $ (_qym)euts)

weEWS wewt

Proof. 1t follows from theorem 5, that the character ch L(\, p) satisfies the following alter-
nating formulae:

ch L(\,p) =Y (-1)' Y ch M(w()p)).

i20 we(WH)®

Thus using the character formulae for M (u, q) above we obtain

+oo
ch L(\ p) = (Z eia> H (1—e?) 1] x
i=—00 pe—K\{a}
> Z(_l)i Z ePri(wdp))—p H(1 _ eﬂ)fl.
20 we(WahH)® BeP

Since the group W is an affine reflection group in every €, the result follows from the
classical Weyl character formulae for finite-dimensional modules [4, Theorem 7.5.9]. O

Note that the element a(),p) in theorem 6 is determined uniquely by the element in
Q, with respect to which the group W is linear.
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