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Abstract

We study a certain class of categories of Lie algebra modules which includes the
well-known categories O and Og. We show that all these categories are highest weight
categories.

1 Introduction

Let £ be a complex simple finite-dimensional Lie algebra. It is well-known that the blocks of
the Bernstein-Gelfand-Gelfand category O ([1]) of £-modules are highest weight categories
[2]. This means that they are equivalent to the categories of modules for some finite-
dimensional algebras which belong to the class of so-called quasi-hereditary algebras. The
other known example of such a category whose blocks correspond to some quasi-hereditary
algebras is a category Og which was introduced in [10]. Both categories O and Ogs consist
of highest weight £-modules and their extensions.

A category O% of £-modules, which are torsion free for sl(2)-subalgebra correspond-
ing to a simple root «, was studied in [3] and [6]. Clearly, the modules in O%* have no
highest weight. It was shown that there is a block decomposition of O% with each block
corresponding to a quasi-hereditary algebra.

All categories mentioned above have the BGG duality between the indecomposable
projectives, standard modules and the simples.

The main objective of this paper is to provide a general scheme for constructing cat-
egories of £-modules that lead to some quasi-hereditary algebras. We introduce a class
of £-module categories and show that they are highest weight categories under a certain
condition. The examples of such categories include the categories O, Og, a subcategory of
the category O%, a certain category of Harish-Chandra modules ([12]) and a subcategory
of Gelfand-Zetlin modules ([9]).

The structure of the paper is the following. In chapter 3 we discuss the admissible
categories of modules for semisimple finite-dimensional Lie algebras. For a parabolic sub-
algebra P of £ and an admissible category A of modules for a semisimple part of the Levi
factor of P we construct our main category O(P, A) of £-modules. In chapter 4 we prove
that O(P, A) has enough projective objects. The main result of the paper is Theorem 3
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which shows that if O(P, A) has a block decomposition with finitely many simples in each
block then those blocks are highest weight categories. The developed technique is applied
to different examples in chapter 5.

2 Preliminaries

For a Lie algebra 2 we will denote by U(2) the universal enveloping algebra of 2 and by
Z () the centre of U(2).

Let B be an abelian subalgebra of £. An £-module V is called a weight module (with
respect to B) if

V = ®xen Vi

where V) = {v € V| hv = A(h)v for all h € B}. Denote by suppg V' the set of all A € B*
such that V) # 0.

Let 9 be a Cartan subalgebra of £ and let P be a parabolic subalgebra of £ with the
Levi decomposition P = (A & Hg) ® M where A is a semisimple Lie algebra, Hy C 9,
2L, H%] = 0 and N is nilpotent.

Let A be the root system of £, £=9H® > ., £a be the root decomposition of £ and
N=> ¢ A La be the root decomposition of 9. Denote by @ (respectively Q%) a free

abelian group (respectively monoid) generated by A(M) and let Q (respectively Q%) be
the restriction of @ (respectively Q%) on g Set M_ =" A La-

Let 2p denote the set of representatives of the isomorphism classes of simple A & $Hg-
modules. Since §)g is abelian it act on any simple V' € Qp viasome A € )}, i.e. hv = A(h)v
for allv € V and h € $)y. We define a partial order on Qp as follows. Let V; € Qp and $y
acts on V; via \; € 9%, 1 = 1,2. We say that Vi < V5 if Ay = Ay — ¢ for some ¢ € Q% \ {0}.

Let V € Qp. Then we can consider V' as a P-module with a trivial action of 91 and
construct an £-module

Mp(V) = U(S) Quer) V

which is called a generalized Verma module.
The main properties of generalized Verma modules are collected in the following propo-
sition.

Proposition 1. Let P = (A @ Hy) &N be a parabolic subalgebra of £ and V € Qp.
1. Mp is a free U(M_)-module isomorphic to UMM_) ® V' as a vector space;

2. Mp(V) is a weight module with respect to $y and Mp(V)y =~V where suppg, V =

{A}

3. Mp(V') has a unique mazimal submodule;



4. Let W be an £-module generated by a simple P-submodule V' on which N acts triv-
ially. Then W is a homomorphic image of Mp(V').

Proof. Follows from the construction of the module Mp(V) and the universal properties
of the tensor product. O

We will denote by Lp(V') a unique irreducible quotient of Mp (V).

For a fixed basis S of the root system of 2 one can consider the S-homomorphism
¢s, which Harish-Chandra defined in [5]. Since, in fact, ¢g does not depend on the
choice of S (it depends on the triple £, £, %), we will call it a generalized Harish-Chandra
homomorphism.

Let S($%) denote the symmetric algebra of g and K = Z(A) ® S(Hy). Let i :
Z(£) — K be the restriction of the generalized Harish-Chandra homomorphism on to
Z(£). It induces a natural map ¢* : K* — Z(£)* and the cardinal |(:*) (6] is finite for
any 0 € Z*(£).

A category A of Lie algebra modules is said to have a block decomposition if

is a direct sum of full subcategories A;, each of which has only finitely many simple modules.

For a category A we denote by Irr(A) the set of isomorphism classes of simple objects
in A.

Definition 1. A £-module V' is said to have a standard filtration if there exists a sequence
with V;/V;_1 ~ Mp(W;) for some simple P-module W;.

Let D be a finite-dimensional algebra, Mod (D) the category of all finite-dimensional
right D-modules and let S be a finite poset in bijective correspondence with the elements
of Irr(Mod(D)). For each s € S, denote by L(s) a simple module from the isomorphism
class, corresponding to s. For V' € Mod(D), (V : L(s)) denotes the multiplicity of L(s) in
a composition series of V.

Definition 2 ([7]). 1. A choice of Verma modules for Mod(D) is a collection of mod-
ules M(s), s € S such that M(s)/rad M(s) ~ L(s), (M(s) : L(s)) = 1 and
(M(s) : L(t)) = 0 unless t < s.

2. A Verma flag of a module V' with respect to a given choice of Verma modules {M(s) :
s € S} is a filtration

Oz%C‘/lC"'CVr:V

such that V;/V; 1 ~ M(s;) for some s; € S, 1=1,2,...,T.



Let [V : M(s)] be the number of subquotients in a Verma flag of V' which are isomorphic
to M(s).

Definition 3. A category Mod(D) is called a highest weight category if

1. There is a choice of Verma modules {M(s)|s € S} for Mod(D) such that each
projective indecomposable module has a Verma flag with respect to this choice.

2. Any module V with V/radV ~ L(s) and with other composition subquotients of the
form L(t), t < s, is a homomorphic image of M(s).

Definition 4. Let A be a Lie algebra and C(A) be a category of A-modules. A module
M € C(2) is called generic if M ® F is completely reducible in C(A) for any finite-

dimensional A-module F.

Note that, for example, any module in the category of finite-dimensional modules for
a semisimple complex Lie algebra is generic (by the Weyl theorem).

Lemma 1. If M s a generic A-module and F' is a finite-dimensional A-module then any
submodule of M ® F is generic.

Proof. Follows from the associativity of the tensor product. O

Theorem 1 ([8]). Let V' be a simple A-module with infinitesimal character x = xx, A €
$* and let F be a finite-dimensional A-module. Then for any z € Z(A) andv € V

H (z = xatu(2))v = 0.

puEsuppg V/

Remark 1. Suppose that for any simple X, Y € C(2), a non-trivial extension of X by Y
has no infinitesimal character. Then any module from C(2) in general position is generic.
Indeed, it follows from Theorem 1 that for any V € C(2A) in general position and any finite-
dimensional A-module F, Z() is diagonalizable on V ® F. Hence V ® F is completely
reducible by our assumption.

3 Admissible categories of Lie algebra modules

Let 2 be a semisimple complex finite-dimensional Lie algebra and let A be a category of
2A-modules.

Definition 5. A category A is called admissible if the following conditions are satisfied:
1. Exty(X,Y) =0 for all non-isomorphic simple modules X andY in A.
2. Any simple module X € A is generic in A.

Example 1.



If A consists of all finite-dimensional 2-modules then A is admissible (by the Weyl
theorem).

Example 2.

Let 2 = sl(2,C) with a standard basis {e, f, h} and let ¢ = (h+1)? +4fe be a Casimir
element. Let A be a category of all the weight (with respect to Ch), torsion-free (i.e. e and
f act injectively), A-modules. It is well-known that such simple modules are parametrized
by pairs (A, y) where A € C/2Z is the set of all eigenvalues of h, v is the unique eigenvalue
of cand y # (A+1)? for all A € A,

Let X; and X, be simple modules in A parametrized by (5\1, v1) and (:\2, 72) respectively.
Suppose that Ext'(X;, X,) # 0. Since ¢ belongs to the centre of U(2) we immediately
obtain that v, = 75. Also note that if V' is an indecomposable weight 2A-module then
supp V' C [ for some i € C/2Z implying that A = X\ and X; ~ X,. Also, there is no
non-trivial self-extensions of a simple module in A having an infinitesimal character.

It is easy to see now that a simple torsion free %-module V' parametrized by (},7) is
generic if and only if its infinitesimal character does not appear among the infinitesimal
characters of finite-dimensional 2-modules, i.e. v # k? for k € Z.

A finitely generated module in A will be called generic if all its simple subquotients are
generic.

Let A be a full subcategory of A consisting of all the generic modules. The discussion
above immediately implies that A is an admissible category.

Example 3.

Let A = sl(2,C), K = SO(2) € SL(2,R). Let A be a category of Harish-Chandra
(A, K)-modules. Choose the following basis in 2:

== () emsl(o B+ (0]
=5 )= ()

and consider a Cartan subalgebra $ = Ch. Let A be ‘the full subcategory of A consisting
of torsion-free (with respect to the action of € and f) modules. It is known ([12]) that
A coincides with the category of finitely-generated weight N(With respect to §)) torsion-free

modules with integer weights. If V' is a simple module in A and 7 is an eigenvalue of ¢ on
V then v # k? for k € Z implying that V is generic. Hence A is an admissible category.

Let P = (A & $Hy) @ T be a parabolic subalgebra of £ with the Levi factor 2 & g
where 2l is semisimple.

Let A be an admissible category of A-modules. Denote by O(P, A) the full subcategory
of the category of £-modules consisting of modules that are

1. finitely generated;



2. weight with respect to g
3. completely reducible 2-modules with simple submodules in A;

4. N-finite.

Proposition 2. 1. O(P,A) is closed under the operations of taking submodules, quo-
tients and finite direct sums.

2. Modules Mp(W) and Lp(W) are the objects of O(P,A) for any simple W € A.

3. If V is a simple module in O(P,A) then V =~ Lp(W) for some simple W € A.

Proof. Statement (1) is obvious. To prove (2) it is enough to show that Mp(W) is a
completely reducible A-module with simple A-submodules in A. This follows from the fact
that Mp(W) >~ U(9_) ® W as a vector space by Proposition 1 and U(91_) is a direct
sum of finite-dimensional 2-modules with respect to the adjoint action. We conclude that
Mp(W) € O(P,A) and also Lp(W) € O(P, A).

Let V' be a simple module in O(P, A). Since V is M-finite and Hy-diagonalizable there
exists a non-zero element v € V such that 9w = 0 and hv = A(h)v for all h € Hy and some
A € 9. Then Vy, = U(A)v and Nw = 0 for any w € V) implying that V) is irreducible
2A-module and V' ~ Lp(V,) by Proposition 1. This completes the proof. O]

Proposition 3. If O(P,A) has a block decomposition

then every module in O(P, A) has finite length.

Proof. Let V€ O(P,A), A € H. Since V is finitely generated any A-module V), has finite
length. We can assume that V € ;. Since O; has only finitely many simple objects we
immediately conclude that V' has finite length. O

Proposition 4. O(P,A) = ®gpecz-(5)O(P, A)g, where a full subcategory O(P,A)g consists
of modules with a generalized infinitesimal character 6.

Proof. Follows from the fact that any module in O(P,A) is finitely generated and 91-
finite. O

4 Projective objects in O(P,A)
i From now on we will assume that the category O(P, A) has a block decomposition
O(P,A) =P 0;.
jeJ

Consider a category A° of A @ Hy-modules which are $y-diagonalizable and belong to
A as A-modules.



Proposition 5. For any simple V € A° there erists a £-module P = Py € O(P, A) such
that for every M € O(P,A) there is a canonical isomorphism between Homg(Py, M) and
Homﬁ@ﬁm (‘/a M)

Proof. Since V is simple, $g acts on V by means of some A € $}. Also note that V € A°
defines uniquely a simple module L € O(P,A) and hence a corresponding block O, in
O(P, A) with finitely many simples. For a positive integer m denote by U(91)(™) a subspace
in U(N) spanned by all the monomials of length > m. Thus there is a non-negative integer
k, depending only on V, such that for any W € O; and any w € Wy, U(9)®w = 0. Set

Py =U2) Q) (UMUM@ V).
U(P)

Using the same arguments as in Proposition 2,(2) one can easily show that P € O(P, A).
The rest of the proof follows the general lines of the proof of Proposition 1 in [11]. O

Proposition 5 immediately implies:
Corollary 1. For any simple V € A°, Py is a projective object of O(P, ).
Theorem 2. 1. Every object in O(P,A) is a quotient of a projective in O(P, A).
2. Every projective in O(P, ) has a standard filtration.

3. There is a one-to-one correspondence between the simple objects in O(P,A) and the
indecomposable projectives in O(P, A).

Proof. The proof is analogous to the proofs of Corollary 3, Corollary 10 and Corollary 13
in [11]. O

We will denote by I(V') the projective cover of a simple object V € O(P,A). Set

P = Z I(V) and R; = Homo(p a) (P}, P;).
Velrr(0y)

It is well-known that there is a canonical equivalence between O; and Mod(R;).
For j € J denote by €, a subset in Qp consisting of all those V that parametrize the
simples in O;. The order on Qp induces the structure of a poset on 2.

Proposition 6. {Mp(V) : V € QL} is a choice of Verma modules for Mod(R;).
Proof. Follows from the construction of M (V). O

Remark 2. 1. One can see that {Lp(V) : V € QL} is another choice of Verma mod-
ules for Mod(R;).

2. A standard filtration for an indecomposable projective module Py, W € Q;, s a
Verma flag with respect to {Mp(V') : V € Q3 }.



Theorem 3. Let P C £ be a parabolic subalgebra, A a semisimple subalgebra of P and A
an admissible category of A-modules. Suppose that

O(P,A) = @jeJOj
is a block decomposition. Then O; is a highest weight category for any j € J.

Proof. Tt follows from Proposition 6, Proposition 2,2 and Remark 2 that {Mp(V) : V €
.} is a choice of Verma modules for O; and each projective indecomposable module has
a Verma flag with respect to this choice.

Let W € O; be such that W/radW ~ Lp(V) and if Lp(V’) is a composition sub-
quotient of W then V' < V. Since W is completely reducible as an 2-module, it has an
2A & Hy-submodule V isomorphic to V. Suppose that $y acts on V via \ € Hy- Since W
has a unique maximal submodule, it follows that W = U(£)W), and W), = V. Hence W is
a homomorphic image of Mp (V') by proposition 1.

We conclude that O; is a highest weight category. O

Corollary 2. If O(P,A) is self-dual, i.e. if there is a contravariant, exact involutive
functor on O(P,A) which preserves the simple objects, then the BGG-duality holds in
O(P,A):

[Py : M(W)] = (M(W) : L(V))
for any simple modules V and W in A°.

5 Examples

5.1 Category O

fA=0then P =HPMNand V ~ C for any V € Qp. In this case V = V), for some ) € H*
and Mp(V) is a Verma module of a highest weight A. The category O(P, ) coincides with
a well-known category O which has a block decomposition

O = Bpez+()0p

where each block Oy has no more non-isomorphic simple modules than the order of the
Weyl group of £. We conclude, by Theorem 3, that Oy is a highest weight category for all
0 e Z*(L).

5.2 Category Og

Let P = (A ® Hy) ® M be a parabolic subalgebra of £. Suppose that 2 # 0 and consider
a category A of finite-dimensional 2-modules. It follows from the Weyl theorem that A is
admissible.

The category O(P,A), in this case, coincides with the category Os ([10]) and is a
subcategory of the category (0. Hence it has a block decomposition with blocks being
highest weight categories by Theorem 3.



5.3 Category O“

Let @« € A, and let A ~ si(2) be a subalgebra of £ generated by £., and let P =
(A ® Hy) © N be a parabolic subalgebra of L.

_ Let A be an admissible category of 2l-modules from Example 2. Consider a category
O* = O(P,A). It follows from Proposition 4 that

@a = 69062*(2)@3-

Note that all modules in O are weight (with respect to ) modules. Fix A € $*/@Q and
consider a full subcategory (’3;“ 5 In @3‘ consisting of modules V' such that suppg V' C A
Applying the generalized Harish-Chandra homomorphism and using the description of
simple modules in A in Example 3, we obtain that

0% =@0;5,0 € Z°(£), A € 9°/Q

is a block decomposition. Hence each block (5;” 5 1s a highest weight category.

Remark 3. Note that the category O% is a full subcategory of O* ([6]).

5.4 Category of Harish-Chandra modules

Let GG be a linear reductive real Lie group and let K be a maximal compact subgroup in
G. Denote by 2, the corresponding Lie algebra of G' and by 2 its complexification.

Definition 6. 1. Aninfinitesimal character x = x(\) € Z*, where X is a highest weight
of Verma module, is called singular if X+ py lies on the wall of a Weyl chamber (here
pa denotes a half-sum of positive roots of ).

2. An infinitesimal character x = x(\) € Z*, where X\ is a highest weight of Verma
module M (M), is called strongly non-singular if infinitesimal characters of all simple
subquotients of M(\) ® F' are non-singular for any finite-dimensional A-module F'.

Clearly, for any Harish-Chandra (2, K)-module in general position with infinitesimal
character y, x is strongly non-singular. Moreover, for any two non-isomorphic such simples
X and Y we have Exty(X,Y) = 0. A Harish-Chandra module will be called strongly non-
singular if all its simple subquotients have strongly non-singular infinitesimal characters.
Since by [12, Lemma 9.5.2] there is no non-trivial extensions of a simple module X by
itself having a non-singular infinitesimal character, we conclude, by Remark 1, that any
Harish-Chandra strongly non-singular (2, K)-module in general position is generic.

Let A be an admissible category of all generic Harish-Chandra (2, K)-modules such
that Exty(X,Y) = 0 for all non-isomorphic simple modules X and Y in A.

Remark 4. In the case when 2 = sl(2), an admissible category constructed in Example 3
is a subcategory of A.



Let P = (A D Hy) & N be a parabolic subalgebra of £ with Levi factor 2A & Hg.
The category O(P, A) has a decomposition O(P, A) = Bgez-()O(P, A)s by Proposi-
tion 4. Fix ) € $5/Q and consider a full subcategory O(P, A)y 5 of O(P, A)y consisting of

modules V' such that suppg, V' C A

Applying the generalized Harish-Chandra homomorphism and using the fact that there
exist only finitely many non-isomorphic simple modules in A with a given infinitesimal
character ([12]), we conclude that |Irr(O(P, A),5)| < oo for all § € Z*(£) and )€ 95/Q.
Hence

O(P,A) = ®O(P,A)y 5,0 € Z*(£), A € Hy/Q

is a block decomposition and each block is a highest weight category by Theorem 3.

5.5 Category of Gelfand-Zetlin modules

Let A = gl(n,C). Form =1,...,nlet A = gl(m,C). Let U, be the universal enveloping
algebra of 2/ and let Z,,, be the centre of U,,. We identify 2(/ , for m =1,...,n, with the
Lie subalgebra of 2’ generated by the matrix units {e;;; 4,7 = 1,...,m}. Thus we have
the inclusions

A AL A =W
and
U1CU2C...Un:U(QU).

Let I be a subalgebra of U (') generated by {Z,,; m = 1,...,n}. This subalgebra is called
the Gelfand-Zetlin subalgebra of U (") ([9]).

An '-module V is called a Gelfand-Zetlin module provided it is a direct sum of finite-
dimensional I'-modules.

Let % = sl(n,C) C A, A = si(k,C) C Ay, k =1,...,n. We define Gelfand-Zetlin
2A-modules as the restriction on 2l of the Gelfand-Zetlin 2/’-modules.

In [9] a category A of strongly generic Gelfand-Zetlin modules was introduced. The
basis of a strongly generic Gelfand-Zetlin module is given by the tuples [I;;] € CHn+1)/2
1=1,2,...,n, 7 =1,2,...,4 that satisfy the following conditions:

1. Lj—lx g Zforalli e {1,2,...,n} and j,k € {1,2,...,i};
2. lij—limik g Zforallie {1,2,...,n—1},j€{1,2,...,i} and k € {1,2,...,i+ 1}.
For any two such non-isomorphic simple modules X and Y it follows that
Exty(X,Y) = 0.

In fact, A has a block decomposition with a single simple module in each block.

10



Every simple module X is completely reducible as an 2;-module. Moreover any of
its simple submodules is a strongly generic Gelfand-Zetlin 2Az-module. It follows from
Theorem 1 that the centre Zj is diagonalizable on X ® F' for any finite-dimensional 2;-
module F'. This implies that X ® F' is a Gelfand-Zetlin module and thus is completely
reducible. We obtain that any of our X is generic and so A is admissible.

Let P be a parabolic subalgebra of £ and P = (U @ Hg) & 91 where A & Hy is the
Levi factor. Applying the generalized Harish-Chandra homomorphism and using similar
arguments as in Sections 5.3 and 5.4 one can show that O(P, A) has a block decomposition.
It follows from Theorem 3 that any block of such a decomposition is a highest weight
category.

Proposition 7. O(P,A) is self-dual.

Proof. The proof goes along the lines of the proof of the corresponding result for weight
modules in [6]. Let V' € O(P,A) and consider V* which has the canonical structure
of a £module. Then V* contains a unique maximal Gelfand-Zetlin submodule V* and
the correspondence V' <+ V* gives an exact contravariant functor from O(P,A) to itself
preserving the simples. O

It follows immediately from Proposition 7 and Corollary 2 that the BGG duality holds
in the constructed categories of Gelfand-Zetlin modules.

Remark 5. When n = 2 the category O(P,A) coincides with the category from Section
5.8.
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