Highest weight categories of Lie algebra modules

V. Futorny*and V. Mazorchuk

Abstract

We study a certain class of categories of Lie algebra modules which includes the well-known categories \mathcal{O} and \mathcal{O}_S . We show that all these categories are highest weight categories.

1 Introduction

Let \mathfrak{L} be a complex simple finite-dimensional Lie algebra. It is well-known that the blocks of the Bernstein-Gelfand-Gelfand category \mathcal{O} ([1]) of \mathfrak{L} -modules are highest weight categories [2]. This means that they are equivalent to the categories of modules for some finite-dimensional algebras which belong to the class of so-called quasi-hereditary algebras. The other known example of such a category whose blocks correspond to some quasi-hereditary algebras is a category \mathcal{O}_S which was introduced in [10]. Both categories \mathcal{O} and \mathcal{O}_S consist of highest weight \mathfrak{L} -modules and their extensions.

A category \mathcal{O}^{α} of \mathfrak{L} -modules, which are torsion free for sl(2)-subalgebra corresponding to a simple root α , was studied in [3] and [6]. Clearly, the modules in \mathcal{O}^{α} have no highest weight. It was shown that there is a block decomposition of \mathcal{O}^{α} with each block corresponding to a quasi-hereditary algebra.

All categories mentioned above have the BGG duality between the indecomposable projectives, standard modules and the simples.

The main objective of this paper is to provide a general scheme for constructing categories of \mathfrak{L} -modules that lead to some quasi-hereditary algebras. We introduce a class of \mathfrak{L} -module categories and show that they are highest weight categories under a certain condition. The examples of such categories include the categories \mathcal{O} , \mathcal{O}_S , a subcategory of the category \mathcal{O}^{α} , a certain category of Harish-Chandra modules ([12]) and a subcategory of Gelfand-Zetlin modules ([9]).

The structure of the paper is the following. In chapter 3 we discuss the admissible categories of modules for semisimple finite-dimensional Lie algebras. For a parabolic subalgebra \mathcal{P} of \mathfrak{L} and an admissible category Λ of modules for a semisimple part of the Levi factor of \mathcal{P} we construct our main category $\mathcal{O}(\mathcal{P},\Lambda)$ of \mathfrak{L} -modules. In chapter 4 we prove that $\mathcal{O}(\mathcal{P},\Lambda)$ has enough projective objects. The main result of the paper is Theorem 3

^{*}Regular Associate of the ICTP

which shows that if $\mathcal{O}(\mathcal{P}, \Lambda)$ has a block decomposition with finitely many simples in each block then those blocks are highest weight categories. The developed technique is applied to different examples in chapter 5.

2 Preliminaries

For a Lie algebra \mathfrak{A} we will denote by $U(\mathfrak{A})$ the universal enveloping algebra of \mathfrak{A} and by $Z(\mathfrak{A})$ the centre of $U(\mathfrak{A})$.

Let B be an abelian subalgebra of \mathfrak{L} . An \mathfrak{L} -module V is called a weight module (with respect to B) if

$$V = \bigoplus_{\lambda \in B^*} V_{\lambda}$$

where $V_{\lambda} = \{v \in V \mid hv = \lambda(h)v \text{ for all } h \in B\}$. Denote by $\sup_{B} V$ the set of all $\lambda \in B^*$ such that $V_{\lambda} \neq 0$.

Let \mathfrak{H} be a Cartan subalgebra of \mathfrak{L} and let \mathcal{P} be a parabolic subalgebra of \mathfrak{L} with the Levi decomposition $\mathcal{P} = (\mathfrak{A} \oplus \mathfrak{H}_{\mathfrak{A}}) \oplus \mathfrak{N}$ where \mathfrak{A} is a semisimple Lie algebra, $\mathfrak{H}_{\mathfrak{A}} \subset \mathfrak{H}$, $[\mathfrak{A}, \mathfrak{H}_{\mathfrak{A}}] = 0$ and \mathfrak{N} is nilpotent.

Let Δ be the root system of \mathfrak{L} , $\mathfrak{L} = \mathfrak{H} \oplus \sum_{\alpha \in \Delta} \mathfrak{L}_{\alpha}$ be the root decomposition of \mathfrak{L} and $\mathfrak{N} = \sum_{\alpha \in \Delta(\mathfrak{N})} \mathfrak{L}_{\alpha}$ be the root decomposition of \mathfrak{N} . Denote by Q (respectively $Q_{+}^{\mathfrak{A}}$) a free abelian group (respectively monoid) generated by $\Delta(\mathfrak{N})$ and let \tilde{Q} (respectively $\tilde{Q}_{+}^{\mathfrak{A}}$) be the restriction of Q (respectively $Q_{+}^{\mathfrak{A}}$) on $\mathfrak{H}_{\mathfrak{A}}$. Set $\mathfrak{N}_{-} = \sum_{\alpha \in -\Delta(\mathfrak{N})} \mathfrak{L}_{\alpha}$.

Let $\Omega_{\mathcal{P}}$ denote the set of representatives of the isomorphism classes of simple $\mathfrak{A} \oplus \mathfrak{H}_{\mathfrak{A}}$ modules. Since $\mathfrak{H}_{\mathfrak{A}}$ is abelian it act on any simple $V \in \Omega_{\mathcal{P}}$ via some $\lambda \in \mathfrak{H}_{\mathfrak{A}}^*$, i.e. $hv = \lambda(h)v$ for all $v \in V$ and $h \in \mathfrak{H}_{\mathfrak{A}}$. We define a partial order on $\Omega_{\mathcal{P}}$ as follows. Let $V_i \in \Omega_{\mathcal{P}}$ and $\mathfrak{H}_{\mathfrak{A}}$ acts on V_i via $\lambda_i \in \mathfrak{H}_{\mathfrak{A}}^*$, i = 1, 2. We say that $V_1 < V_2$ if $\lambda_1 = \lambda_2 - \varphi$ for some $\varphi \in \tilde{Q}_+^{\mathfrak{A}} \setminus \{0\}$.

Let $V \in \Omega_{\mathcal{P}}$. Then we can consider V as a \mathcal{P} -module with a trivial action of \mathfrak{N} and construct an \mathfrak{L} -module

$$M_{\mathcal{P}}(V) = U(\mathfrak{L}) \otimes_{U(\mathcal{P})} V$$

which is called a generalized Verma module.

The main properties of generalized Verma modules are collected in the following proposition.

Proposition 1. Let $\mathcal{P} = (\mathfrak{A} \oplus \mathfrak{H}_{\mathfrak{A}}) \oplus \mathfrak{N}$ be a parabolic subalgebra of \mathfrak{L} and $V \in \Omega_{\mathcal{P}}$.

- 1. $M_{\mathcal{P}}$ is a free $U(\mathfrak{N}_{-})$ -module isomorphic to $U(\mathfrak{N}_{-}) \otimes V$ as a vector space;
- 2. $M_{\mathcal{P}}(V)$ is a weight module with respect to $\mathfrak{H}_{\mathfrak{A}}$ and $M_{\mathcal{P}}(V)_{\lambda} \simeq V$ where $\sup_{\mathfrak{H}_{\mathfrak{A}}} V = \{\lambda\};$
- 3. $M_{\mathcal{P}}(V)$ has a unique maximal submodule;

4. Let W be an \mathfrak{L} -module generated by a simple \mathcal{P} -submodule V on which \mathfrak{N} acts trivially. Then W is a homomorphic image of $M_{\mathcal{P}}(V)$.

Proof. Follows from the construction of the module $M_{\mathcal{P}}(V)$ and the universal properties of the tensor product.

We will denote by $L_{\mathcal{P}}(V)$ a unique irreducible quotient of $M_{\mathcal{P}}(V)$.

For a fixed basis S of the root system of \mathfrak{A} one can consider the S-homomorphism φ_S , which Harish-Chandra defined in [5]. Since, in fact, φ_S does not depend on the choice of S (it depends on the triple $\mathfrak{L}, \mathfrak{H}, \mathfrak{A}$), we will call it a generalized Harish-Chandra homomorphism.

Let $S(\mathfrak{H}_{\mathfrak{A}})$ denote the symmetric algebra of $\mathfrak{H}_{\mathfrak{A}}$ and $K = Z(\mathfrak{A}) \otimes S(\mathfrak{H}_{\mathfrak{A}})$. Let $i : Z(\mathfrak{L}) \to K$ be the restriction of the generalized Harish-Chandra homomorphism on to $Z(\mathfrak{L})$. It induces a natural map $i^* : K^* \to Z(\mathfrak{L})^*$ and the cardinal $|(i^*)^{-1}(\theta)|$ is finite for any $\theta \in Z^*(\mathfrak{L})$.

A category Λ of Lie algebra modules is said to have a block decomposition if

$$\Lambda = \bigoplus_i \Lambda_i$$

is a direct sum of full subcategories Λ_i , each of which has only finitely many simple modules. For a category Λ we denote by $Irr(\Lambda)$ the set of isomorphism classes of simple objects in Λ .

Definition 1. A \mathfrak{L} -module V is said to have a standard filtration if there exists a sequence

$$0 = V_0 \subset V_1 \subset \cdots \subset V_s = V$$

with $V_i/V_{i-1} \simeq M_{\mathcal{P}}(W_i)$ for some simple \mathcal{P} -module W_i .

Let D be a finite-dimensional algebra, $\operatorname{Mod}(D)$ the category of all finite-dimensional right D-modules and let S be a finite poset in bijective correspondence with the elements of $\operatorname{Irr}(\operatorname{Mod}(D))$. For each $s \in S$, denote by L(s) a simple module from the isomorphism class, corresponding to s. For $V \in \operatorname{Mod}(D)$, (V : L(s)) denotes the multiplicity of L(s) in a composition series of V.

- **Definition 2 ([7]).** 1. A choice of Verma modules for Mod(D) is a collection of modules M(s), $s \in S$ such that $M(s)/\operatorname{rad} M(s) \simeq L(s)$, M(s) : L(s) = 1 and M(s) : L(t) = 0 unless $t \leq s$.
 - 2. A Verma flag of a module V with respect to a given choice of Verma modules $\{M(s): s \in S\}$ is a filtration

$$0 = V_0 \subset V_1 \subset \cdots \subset V_{\tau} = V$$

such that $V_i/V_{i-1} \simeq M(s_i)$ for some $s_i \in S$, $i = 1, 2, ..., \tau$.

Let [V:M(s)] be the number of subquotients in a Verma flag of V which are isomorphic to M(s).

Definition 3. A category Mod(D) is called a highest weight category if

- 1. There is a choice of Verma modules $\{M(s) | s \in S\}$ for Mod(D) such that each projective indecomposable module has a Verma flag with respect to this choice.
- 2. Any module V with $V/\operatorname{rad} V \simeq L(s)$ and with other composition subquotients of the form L(t), $t \leq s$, is a homomorphic image of M(s).

Definition 4. Let \mathfrak{A} be a Lie algebra and $C(\mathfrak{A})$ be a category of \mathfrak{A} -modules. A module $M \in C(\mathfrak{A})$ is called generic if $M \otimes F$ is completely reducible in $C(\mathfrak{A})$ for any finite-dimensional \mathfrak{A} -module F.

Note that, for example, any module in the category of finite-dimensional modules for a semisimple complex Lie algebra is generic (by the Weyl theorem).

Lemma 1. If M is a generic \mathfrak{A} -module and F is a finite-dimensional \mathfrak{A} -module then any submodule of $M \otimes F$ is generic.

Proof. Follows from the associativity of the tensor product.

Theorem 1 ([8]). Let V be a simple \mathfrak{A} -module with infinitesimal character $\chi = \chi_{\lambda}$, $\lambda \in \mathfrak{H}^*$ and let F be a finite-dimensional \mathfrak{A} -module. Then for any $z \in Z(\mathfrak{A})$ and $v \in V$

$$\prod_{\mu \in \text{supp}_{\mathfrak{H}} V} (z - \chi_{\lambda + \mu}(z))v = 0.$$

Remark 1. Suppose that for any simple $X, Y \in C(\mathfrak{A})$, a non-trivial extension of X by Y has no infinitesimal character. Then any module from $C(\mathfrak{A})$ in general position is generic. Indeed, it follows from Theorem 1 that for any $V \in C(\mathfrak{A})$ in general position and any finite-dimensional \mathfrak{A} -module F, $Z(\mathfrak{A})$ is diagonalizable on $V \otimes F$. Hence $V \otimes F$ is completely reducible by our assumption.

3 Admissible categories of Lie algebra modules

Let $\mathfrak A$ be a semisimple complex finite-dimensional Lie algebra and let Λ be a category of $\mathfrak A$ -modules.

Definition 5. A category Λ is called admissible if the following conditions are satisfied:

- 1. $\operatorname{Ext}_{\mathfrak{A}}^{1}(X,Y)=0$ for all non-isomorphic simple modules X and Y in Λ .
- 2. Any simple module $X \in \Lambda$ is generic in Λ .

Example 1.

If Λ consists of all finite-dimensional \mathfrak{A} -modules then Λ is admissible (by the Weyl theorem).

Example 2.

Let $\mathfrak{A} = sl(2,\mathbb{C})$ with a standard basis $\{e, f, h\}$ and let $c = (h+1)^2 + 4fe$ be a Casimir element. Let Λ be a category of all the weight (with respect to $\mathbb{C}h$), torsion-free (i.e. e and f act injectively), \mathbb{A} -modules. It is well-known that such simple modules are parametrized by pairs $(\tilde{\lambda}, \gamma)$ where $\tilde{\lambda} \in \mathbb{C}/2\mathbb{Z}$ is the set of all eigenvalues of h, γ is the unique eigenvalue of c and $\gamma \neq (\lambda + 1)^2$ for all $\lambda \in \tilde{\lambda}$.

Let X_1 and X_2 be simple modules in Λ parametrized by $(\tilde{\lambda}_1, \gamma_1)$ and $(\tilde{\lambda}_2, \gamma_2)$ respectively. Suppose that $\operatorname{Ext}^1(X_1, X_2) \neq 0$. Since c belongs to the centre of $U(\mathfrak{A})$ we immediately obtain that $\gamma_1 = \gamma_2$. Also note that if V is an indecomposable weight \mathfrak{A} -module then $\sup V \subset \tilde{\mu}$ for some $\tilde{\mu} \in \mathbb{C}/2\mathbb{Z}$ implying that $\tilde{\lambda}_1 = \tilde{\lambda}_2$ and $X_1 \simeq X_2$. Also, there is no non-trivial self-extensions of a simple module in Λ having an infinitesimal character.

It is easy to see now that a simple torsion free \mathfrak{A} -module V parametrized by $(\tilde{\lambda}, \gamma)$ is generic if and only if its infinitesimal character does not appear among the infinitesimal characters of finite-dimensional \mathfrak{A} -modules, i.e. $\gamma \neq k^2$ for $k \in \mathbb{Z}$.

A finitely generated module in Λ will be called generic if all its simple subquotients are generic.

Let $\tilde{\Lambda}$ be a full subcategory of Λ consisting of all the generic modules. The discussion above immediately implies that $\tilde{\Lambda}$ is an admissible category.

Example 3.

Let $\mathfrak{A} = sl(2,\mathbb{C})$, $K = SO(2) \subset SL(2,\mathbb{R})$. Let Λ be a category of Harish-Chandra (\mathfrak{A},K) -modules. Choose the following basis in \mathfrak{A} :

$$\tilde{h} = -i \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \tilde{e} = \frac{1}{2} \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} + i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{bmatrix},$$

$$\tilde{f} = \frac{1}{2} \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} - i \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \end{bmatrix}$$

and consider a Cartan subalgebra $\tilde{\mathfrak{H}} = \mathbb{C}\tilde{h}$. Let $\tilde{\Lambda}$ be the full subcategory of Λ consisting of torsion-free (with respect to the action of \tilde{e} and \tilde{f}) modules. It is known ([12]) that $\tilde{\Lambda}$ coincides with the category of finitely-generated weight (with respect to $\tilde{\mathfrak{H}}$) torsion-free modules with integer weights. If V is a simple module in $\tilde{\Lambda}$ and γ is an eigenvalue of c on V then $\gamma \neq k^2$ for $k \in \mathbb{Z}$ implying that V is generic. Hence $\tilde{\Lambda}$ is an admissible category.

Let $\mathcal{P} = (\mathfrak{A} \oplus \mathfrak{H}_{\mathfrak{A}}) \oplus \mathfrak{N}$ be a parabolic subalgebra of \mathfrak{L} with the Levi factor $\mathfrak{A} \oplus \mathfrak{H}_{\mathfrak{A}}$ where \mathfrak{A} is semisimple.

Let Λ be an admissible category of \mathfrak{A} -modules. Denote by $\mathcal{O}(\mathcal{P}, \Lambda)$ the full subcategory of the category of \mathfrak{L} -modules consisting of modules that are

1. finitely generated;

- 2. weight with respect to $\mathfrak{H}_{\mathfrak{A}}$;
- 3. completely reducible \mathfrak{A} -modules with simple submodules in Λ ;
- 4. \mathfrak{N} -finite.

Proposition 2. 1. $\mathcal{O}(\mathcal{P}, \Lambda)$ is closed under the operations of taking submodules, quotients and finite direct sums.

- 2. Modules $M_{\mathcal{P}}(W)$ and $L_{\mathcal{P}}(W)$ are the objects of $\mathcal{O}(\mathcal{P},\Lambda)$ for any simple $W \in \Lambda$.
- 3. If V is a simple module in $\mathcal{O}(\mathcal{P}, \Lambda)$ then $V \simeq L_{\mathcal{P}}(W)$ for some simple $W \in \Lambda$.

Proof. Statement (1) is obvious. To prove (2) it is enough to show that $M_{\mathcal{P}}(W)$ is a completely reducible \mathfrak{A} -module with simple \mathfrak{A} -submodules in Λ . This follows from the fact that $M_{\mathcal{P}}(W) \simeq U(\mathfrak{N}_{-}) \otimes W$ as a vector space by Proposition 1 and $U(\mathfrak{N}_{-})$ is a direct sum of finite-dimensional \mathfrak{A} -modules with respect to the adjoint action. We conclude that $M_{\mathcal{P}}(W) \in \mathcal{O}(\mathcal{P}, \Lambda)$ and also $L_{\mathcal{P}}(W) \in \mathcal{O}(\mathcal{P}, \Lambda)$.

Let V be a simple module in $\mathcal{O}(\mathcal{P}, \Lambda)$. Since V is \mathfrak{N} -finite and $\mathfrak{H}_{\mathfrak{A}}$ -diagonalizable there exists a non-zero element $v \in V$ such that $\mathfrak{N}v = 0$ and $hv = \lambda(h)v$ for all $h \in \mathfrak{H}_{\mathfrak{A}}$ and some $\lambda \in \mathfrak{H}_{\mathfrak{A}}^*$. Then $V_{\lambda} = U(\mathfrak{A})v$ and $\mathfrak{N}w = 0$ for any $w \in V_{\lambda}$ implying that V_{λ} is irreducible \mathfrak{A} -module and $V \simeq L_{\mathcal{P}}(V_{\lambda})$ by Proposition 1. This completes the proof.

Proposition 3. If $\mathcal{O}(\mathcal{P}, \Lambda)$ has a block decomposition

$$\mathcal{O}(\mathcal{P},\Lambda) = \bigoplus_i \mathcal{O}_i$$

then every module in $\mathcal{O}(\mathcal{P}, \Lambda)$ has finite length.

Proof. Let $V \in \mathcal{O}(\mathcal{P}, \Lambda)$, $\lambda \in \mathfrak{H}_{\mathfrak{A}}^*$. Since V is finitely generated any \mathfrak{A} -module V_{λ} has finite length. We can assume that $V \in \mathcal{O}_i$. Since \mathcal{O}_i has only finitely many simple objects we immediately conclude that V has finite length.

Proposition 4. $\mathcal{O}(\mathcal{P}, \Lambda) = \bigoplus_{\theta \in Z^*(\mathfrak{L})} \mathcal{O}(\mathcal{P}, \Lambda)_{\theta}$, where a full subcategory $\mathcal{O}(\mathcal{P}, \Lambda)_{\theta}$ consists of modules with a generalized infinitesimal character θ .

Proof. Follows from the fact that any module in $\mathcal{O}(\mathcal{P}, \Lambda)$ is finitely generated and \mathfrak{N} -finite.

4 Projective objects in $\mathcal{O}(\mathcal{P}, \Lambda)$

From now on we will assume that the category $\mathcal{O}(\mathcal{P},\Lambda)$ has a block decomposition

$$\mathcal{O}(\mathcal{P}, \Lambda) = \bigoplus_{j \in J} \mathcal{O}_j.$$

Consider a category Λ^0 of $\mathfrak{A} \oplus \mathfrak{H}_{\mathfrak{A}}$ -modules which are $\mathfrak{H}_{\mathfrak{A}}$ -diagonalizable and belong to Λ as \mathfrak{A} -modules.

Proposition 5. For any simple $V \in \Lambda^0$ there exists a \mathfrak{L} -module $P = P_V \in \mathcal{O}(\mathcal{P}, \Lambda)$ such that for every $M \in \mathcal{O}(\mathcal{P}, \Lambda)$ there is a canonical isomorphism between $\operatorname{Hom}_{\mathfrak{L}(\mathcal{P}_V, M)}$ and $\operatorname{Hom}_{\mathfrak{A} \oplus \mathfrak{H}_{\mathfrak{A}}}(V, M)$.

Proof. Since V is simple, $\mathfrak{H}_{\mathfrak{A}}$ acts on V by means of some $\lambda \in \mathfrak{H}_{\mathfrak{A}}^*$. Also note that $V \in \Lambda^0$ defines uniquely a simple module $L \in \mathcal{O}(\mathcal{P}, \Lambda)$ and hence a corresponding block \mathcal{O}_j in $\mathcal{O}(\mathcal{P}, \Lambda)$ with finitely many simples. For a positive integer m denote by $U(\mathfrak{N})^{(m)}$ a subspace in $U(\mathfrak{N})$ spanned by all the monomials of length $\geq m$. Thus there is a non-negative integer k, depending only on V, such that for any $W \in \mathcal{O}_j$ and any $w \in W_{\lambda}$, $U(\mathfrak{N})^{(k)}w = 0$. Set

$$P_V = U(\mathfrak{L}) \bigotimes_{U(\mathcal{P})} \left((U(\mathfrak{N})/U(\mathfrak{N})^{(k)}) \otimes V \right).$$

Using the same arguments as in Proposition 2,(2) one can easily show that $P \in \mathcal{O}(\mathcal{P}, \Lambda)$. The rest of the proof follows the general lines of the proof of Proposition 1 in [11]. \square Proposition 5 immediately implies:

Corollary 1. For any simple $V \in \Lambda^0$, P_V is a projective object of $\mathcal{O}(\mathcal{P}, \Lambda)$.

Theorem 2. 1. Every object in $\mathcal{O}(\mathcal{P}, \Lambda)$ is a quotient of a projective in $\mathcal{O}(\mathcal{P}, \Lambda)$.

- 2. Every projective in $\mathcal{O}(\mathcal{P}, \Lambda)$ has a standard filtration.
- 3. There is a one-to-one correspondence between the simple objects in $\mathcal{O}(\mathcal{P}, \Lambda)$ and the indecomposable projectives in $\mathcal{O}(\mathcal{P}, \Lambda)$.

Proof. The proof is analogous to the proofs of Corollary 3, Corollary 10 and Corollary 13 in [11].

We will denote by I(V) the projective cover of a simple object $V \in \mathcal{O}(\mathcal{P}, \Lambda)$. Set

$$P_j = \sum_{V \in \operatorname{Irr}(\mathcal{O}_j)} I(V) \text{ and } R_j = \operatorname{Hom}_{\mathcal{O}(\mathcal{P}, \Lambda)}(P_j, P_j).$$

It is well-known that there is a canonical equivalence between \mathcal{O}_j and $\operatorname{Mod}(R_j)$.

For $j \in J$ denote by $\Omega^{\mathcal{I}}_{\mathcal{P}}$ a subset in $\Omega_{\mathcal{P}}$ consisting of all those V that parametrize the simples in \mathcal{O}_j . The order on $\Omega_{\mathcal{P}}$ induces the structure of a poset on $\Omega^j_{\mathcal{P}}$.

Proposition 6. $\{M_{\mathcal{P}}(V): V \in \Omega_{\mathcal{P}}^j\}$ is a choice of Verma modules for $\operatorname{Mod}(R_j)$.

Proof. Follows from the construction of M(V).

- **Remark 2.** 1. One can see that $\{L_{\mathcal{P}}(V) : V \in \Omega_{\mathcal{P}}^j\}$ is another choice of Verma modules for $\operatorname{Mod}(R_j)$.
 - 2. A standard filtration for an indecomposable projective module P_W , $W \in \Omega^j_{\mathcal{P}}$ is a Verma flag with respect to $\{M_{\mathcal{P}}(V) : V \in \Omega^j_{\mathcal{P}}\}$.

Theorem 3. Let $\mathcal{P} \subset \mathfrak{L}$ be a parabolic subalgebra, \mathfrak{A} a semisimple subalgebra of \mathcal{P} and Λ an admissible category of \mathfrak{A} -modules. Suppose that

$$\mathcal{O}(\mathcal{P}, \Lambda) = \bigoplus_{i \in J} \mathcal{O}_i$$

is a block decomposition. Then \mathcal{O}_j is a highest weight category for any $j \in J$.

Proof. It follows from Proposition 6, Proposition 2,2 and Remark 2 that $\{M_{\mathcal{P}}(V) : V \in \Omega_{\mathcal{P}}^j\}$ is a choice of Verma modules for \mathcal{O}_j and each projective indecomposable module has a Verma flag with respect to this choice.

Let $W \in \mathcal{O}_j$ be such that $W/\operatorname{rad} W \simeq L_{\mathcal{P}}(V)$ and if $L_{\mathcal{P}}(V')$ is a composition subquotient of W then $V' \leq V$. Since W is completely reducible as an \mathfrak{A} -module, it has an $\mathfrak{A} \oplus \mathfrak{H}_{\mathfrak{A}}$ -submodule \tilde{V} isomorphic to V. Suppose that $\mathfrak{H}_{\mathfrak{A}}$ acts on \tilde{V} via $\lambda \in \mathfrak{H}_{\mathfrak{A}}^*$. Since W has a unique maximal submodule, it follows that $W = U(\mathfrak{L})W_{\lambda}$ and $W_{\lambda} = \tilde{V}$. Hence W is a homomorphic image of $M_{\mathcal{P}}(V)$ by proposition 1.

We conclude that \mathcal{O}_i is a highest weight category.

Corollary 2. If $\mathcal{O}(\mathcal{P}, \Lambda)$ is self-dual, i.e. if there is a contravariant, exact involutive functor on $\mathcal{O}(\mathcal{P}, \Lambda)$ which preserves the simple objects, then the BGG-duality holds in $\mathcal{O}(\mathcal{P}, \Lambda)$:

$$[P_V : M(W)] = (M(W) : L(V))$$

for any simple modules V and W in Λ^0 .

5 Examples

5.1 Category \mathcal{O}

If $\mathfrak{A} = 0$ then $\mathcal{P} = \mathfrak{H} \oplus \mathfrak{N}$ and $V \simeq \mathbb{C}$ for any $V \in \Omega_{\mathcal{P}}$. In this case $V = V_{\lambda}$ for some $\lambda \in \mathfrak{H}^*$ and $M_{\mathcal{P}}(V)$ is a Verma module of a highest weight λ . The category $\mathcal{O}(\mathcal{P}, \emptyset)$ coincides with a well-known category \mathcal{O} which has a block decomposition

$$\mathcal{O} = \bigoplus_{\theta \in Z^*(\mathfrak{L})} \mathcal{O}_{\theta}$$

where each block \mathcal{O}_{θ} has no more non-isomorphic simple modules than the order of the Weyl group of \mathfrak{L} . We conclude, by Theorem 3, that \mathcal{O}_{θ} is a highest weight category for all $\theta \in Z^*(\mathfrak{L})$.

5.2 Category \mathcal{O}_S

Let $\mathcal{P} = (\mathfrak{A} \oplus \mathfrak{H}_{\mathfrak{A}}) \oplus \mathfrak{N}$ be a parabolic subalgebra of \mathfrak{L} . Suppose that $\mathfrak{A} \neq 0$ and consider a category Λ of finite-dimensional \mathfrak{A} -modules. It follows from the Weyl theorem that Λ is admissible.

The category $\mathcal{O}(\mathcal{P}, \Lambda)$, in this case, coincides with the category \mathcal{O}_S ([10]) and is a subcategory of the category \mathcal{O} . Hence it has a block decomposition with blocks being highest weight categories by Theorem 3.

5.3 Category $\tilde{\mathcal{O}}^{\alpha}$

Let $\alpha \in \Delta$, and let $\mathfrak{A} \simeq sl(2)$ be a subalgebra of \mathfrak{L} generated by $\mathfrak{L}_{\pm \alpha}$ and let $\mathcal{P} = (\mathfrak{A} \oplus \mathfrak{H}_{\mathfrak{A}}) \oplus \mathfrak{N}$ be a parabolic subalgebra of \mathfrak{L} .

Let $\tilde{\Lambda}$ be an admissible category of \mathfrak{A} -modules from Example 2. Consider a category $\tilde{\mathcal{O}}^{\alpha} = \mathcal{O}(\mathcal{P}, \Lambda)$. It follows from Proposition 4 that

$$ilde{\mathcal{O}}^{lpha}=\oplus_{ heta\in Z^*(\mathfrak{L})} ilde{\mathcal{O}}^{lpha}_{ heta}.$$

Note that all modules in $\tilde{\mathcal{O}}^{\alpha}$ are weight (with respect to \mathfrak{H}) modules. Fix $\tilde{\lambda} \in \mathfrak{H}^*/Q$ and consider a full subcategory $\tilde{\mathcal{O}}^{\alpha}_{\theta,\tilde{\lambda}}$ in $\tilde{\mathcal{O}}^{\alpha}_{\theta}$ consisting of modules V such that $\operatorname{supp}_{\mathfrak{H}}V \subset \tilde{\lambda}$. Applying the generalized Harish-Chandra homomorphism and using the description of simple modules in $\tilde{\Lambda}$ in Example 3, we obtain that

$$\tilde{\mathcal{O}}^{\alpha} = \oplus \tilde{\mathcal{O}}^{\alpha}_{\theta \ \tilde{\lambda}}, \theta \in Z^*(\mathfrak{L}), \tilde{\lambda} \in \mathfrak{H}^*/Q$$

is a block decomposition. Hence each block $\tilde{\mathcal{O}}_{\theta,\tilde{\lambda}}^{\alpha}$ is a highest weight category.

Remark 3. Note that the category $\tilde{\mathcal{O}}^{\alpha}$ is a full subcategory of \mathcal{O}^{α} ([6]).

5.4 Category of Harish-Chandra modules

Let G be a linear reductive real Lie group and let K be a maximal compact subgroup in G. Denote by \mathfrak{A}_0 the corresponding Lie algebra of G and by \mathfrak{A} its complexification.

- **Definition 6.** 1. An infinitesimal character $\chi = \chi(\lambda) \in Z^*$, where λ is a highest weight of Verma module, is called singular if $\lambda + \rho_{\mathfrak{A}}$ lies on the wall of a Weyl chamber (here $\rho_{\mathfrak{A}}$ denotes a half-sum of positive roots of \mathfrak{A}).
 - 2. An infinitesimal character $\chi = \chi(\lambda) \in Z^*$, where λ is a highest weight of Verma module $M(\lambda)$, is called strongly non-singular if infinitesimal characters of all simple subquotients of $M(\lambda) \otimes F$ are non-singular for any finite-dimensional \mathfrak{A} -module F.

Clearly, for any Harish-Chandra (\mathfrak{A}, K) -module in general position with infinitesimal character χ , χ is strongly non-singular. Moreover, for any two non-isomorphic such simples X and Y we have $\operatorname{Ext}^1_{\mathfrak{A}}(X,Y)=0$. A Harish-Chandra module will be called strongly non-singular if all its simple subquotients have strongly non-singular infinitesimal characters. Since by [12, Lemma 9.5.2] there is no non-trivial extensions of a simple module X by itself having a non-singular infinitesimal character, we conclude, by Remark 1, that any Harish-Chandra strongly non-singular (\mathfrak{A}, K) -module in general position is generic.

Let Λ be an admissible category of all generic Harish-Chandra (\mathfrak{A}, K) -modules such that $\operatorname{Ext}_{\mathfrak{A}}^{1}(X, Y) = 0$ for all non-isomorphic simple modules X and Y in Λ .

Remark 4. In the case when $\mathfrak{A} = sl(2)$, an admissible category constructed in Example 3 is a subcategory of Λ .

Let $\mathcal{P} = (\mathfrak{A} \oplus \mathfrak{H}_{\mathfrak{A}}) \oplus \mathfrak{N}$ be a parabolic subalgebra of \mathfrak{L} with Levi factor $\mathfrak{A} \oplus \mathfrak{H}_{\mathfrak{A}}$.

The category $\mathcal{O}(\mathcal{P}, \Lambda)$ has a decomposition $\mathcal{O}(\mathcal{P}, \Lambda) = \bigoplus_{\theta \in Z^*(\mathfrak{L})} \mathcal{O}(\mathcal{P}, \Lambda)_{\theta}$ by Proposition 4. Fix $\tilde{\lambda} \in \mathfrak{H}^*_{\mathfrak{A}}/\tilde{Q}$ and consider a full subcategory $\mathcal{O}(\mathcal{P}, \Lambda)_{\theta, \tilde{\lambda}}$ of $\mathcal{O}(\mathcal{P}, \Lambda)_{\theta}$ consisting of modules V such that $\operatorname{supp}_{\mathfrak{H}_{\mathfrak{A}}} V \subset \tilde{\lambda}$.

Applying the generalized Harish-Chandra homomorphism and using the fact that there exist only finitely many non-isomorphic simple modules in Λ with a given infinitesimal character ([12]), we conclude that $|\operatorname{Irr}(\mathcal{O}(\mathcal{P},\Lambda)_{\theta,\tilde{\lambda}})| < \infty$ for all $\theta \in Z^*(\mathfrak{L})$ and $\tilde{\lambda} \in \mathfrak{H}^*_{\mathfrak{A}}/\tilde{Q}$. Hence

$$\mathcal{O}(\mathcal{P}, \Lambda) = \oplus \mathcal{O}(\mathcal{P}, \Lambda)_{\theta, \tilde{\lambda}}, \theta \in Z^*(\mathfrak{L}), \tilde{\lambda} \in \mathfrak{H}_{\mathfrak{A}}^*/\tilde{Q}$$

is a block decomposition and each block is a highest weight category by Theorem 3.

5.5 Category of Gelfand-Zetlin modules

Let $\mathfrak{A}' = gl(n, \mathbb{C})$. For m = 1, ..., n let $\mathfrak{A}'_m = gl(m, \mathbb{C})$. Let U_m be the universal enveloping algebra of \mathfrak{A}'_m and let Z_m be the centre of U_m . We identify \mathfrak{A}'_m , for m = 1, ..., n, with the Lie subalgebra of \mathfrak{A}' generated by the matrix units $\{e_{ij}; i, j = 1, ..., m\}$. Thus we have the inclusions

$$\mathfrak{A}'_1 \subset \mathfrak{A}'_2 \subset \ldots \mathfrak{A}'_n = \mathfrak{A}'$$

and

$$U_1 \subset U_2 \subset \dots U_n = U(\mathfrak{A}').$$

Let Γ be a subalgebra of $U(\mathfrak{A}')$ generated by $\{Z_m; m = 1, ..., n\}$. This subalgebra is called the Gelfand-Zetlin subalgebra of $U(\mathfrak{A}')$ ([9]).

An \mathfrak{A}' -module V is called a Gelfand-Zetlin module provided it is a direct sum of finite-dimensional Γ -modules.

Let $\mathfrak{A} = sl(n,\mathbb{C}) \subset \mathfrak{A}'$, $\mathfrak{A}_k = sl(k,\mathbb{C}) \subset \mathfrak{A}'_k$, $k = 1,\ldots,n$. We define Gelfand-Zetlin \mathfrak{A} -modules as the restriction on \mathfrak{A} of the Gelfand-Zetlin \mathfrak{A}' -modules.

In [9] a category Λ of strongly generic Gelfand-Zetlin modules was introduced. The basis of a strongly generic Gelfand-Zetlin module is given by the tuples $[l_{ij}] \in \mathbb{C}^{n(n+1)/2}$, $i = 1, 2, \ldots, n, j = 1, 2, \ldots, i$ that satisfy the following conditions:

- 1. $l_{ij} l_{ik} \notin \mathbb{Z}$ for all $i \in \{1, 2, ..., n\}$ and $j, k \in \{1, 2, ..., i\}$;
- 2. $l_{ij} l_{i+1 k} \notin \mathbb{Z}$ for all $i \in \{1, 2, \dots, n-1\}, j \in \{1, 2, \dots, i\}$ and $k \in \{1, 2, \dots, i+1\}$.

For any two such non-isomorphic simple modules X and Y it follows that

$$\operatorname{Ext}_{\mathfrak{A}}^{1}(X,Y)=0.$$

In fact, Λ has a block decomposition with a single simple module in each block.

Every simple module X is completely reducible as an \mathfrak{A}_k -module. Moreover any of its simple submodules is a strongly generic Gelfand-Zetlin \mathfrak{A}_k -module. It follows from Theorem 1 that the centre Z_k is diagonalizable on $X \otimes F$ for any finite-dimensional \mathfrak{A}_k -module F. This implies that $X \otimes F$ is a Gelfand-Zetlin module and thus is completely reducible. We obtain that any of our X is generic and so Λ is admissible.

Let \mathcal{P} be a parabolic subalgebra of \mathfrak{L} and $\mathcal{P} = (\mathfrak{A}' \oplus \mathfrak{H}_{\mathfrak{A}}) \oplus \mathfrak{N}$ where $\mathfrak{A} \oplus \mathfrak{H}_{\mathfrak{A}}$ is the Levi factor. Applying the generalized Harish-Chandra homomorphism and using similar arguments as in Sections 5.3 and 5.4 one can show that $\mathcal{O}(\mathcal{P}, \Lambda)$ has a block decomposition. It follows from Theorem 3 that any block of such a decomposition is a highest weight category.

Proposition 7. $\mathcal{O}(\mathcal{P}, \Lambda)$ is self-dual.

Proof. The proof goes along the lines of the proof of the corresponding result for weight modules in [6]. Let $V \in \mathcal{O}(\mathcal{P}, \Lambda)$ and consider V^* which has the canonical structure of a \mathfrak{L} -module. Then V^* contains a unique maximal Gelfand-Zetlin submodule \tilde{V}^* and the correspondence $V \leftrightarrow \tilde{V}^*$ gives an exact contravariant functor from $\mathcal{O}(\mathcal{P}, \Lambda)$ to itself preserving the simples.

It follows immediately from Proposition 7 and Corollary 2 that the BGG duality holds in the constructed categories of Gelfand-Zetlin modules.

Remark 5. When n=2 the category $\mathcal{O}(\mathcal{P},\Lambda)$ coincides with the category from Section 5.3.

6 Acknowledgment

The first author whould like to thank the International Center for Theoretical Phisics in Trieste for the support during his visit in June – July 1996 and to Professor D.Milicic for helpful discussions on Harish-Chandra modules.

References

- [1] I.N.Bernstein, I.M.Gelfand, S.I.Gelfand, On certain category of \(\mathcal{L}\)-modules, Funkt. anal. i ego prilozh., 10 (1976), 1-8
- [2] E. Cline, B. Parshall, L. Scott, Finite dimensional algebras and highest weight categories, J. Reine Angew Math. 391 (1988), 85-99
- [3] A.J. Coleman, V. Futorny, Stratified L-modules, Journal of Algebra 163 (1994), 219-234.
- [4] J. Dixmier, Algebres Enveloppantes, Paris, 1974

- [5] Yu. A. Drozd, V.M. Futorny, S.A. Ovsienko, S-homomorphism of Harish-Chandra and \mathcal{L}-modules generated by semiprimitive elements, Ukrainian Math. J. 42 (1990), 1032-1037.
- [6] V. Futorny, D. Pollack, A new category of Lie algebra modules satisfying the BGG-reciprocity principle, Comm. in Algebra, 22(1), 1994, 213-227
- [7] R. Irving, BGG algebras and the BGG reciprocity principle, J. Algebra 135 (1990), 363-380
- [8] Kostant B. On the tensor product of a finite and infinite dimensional representations, Journal of Func. Analysis. 20 (1975), 257-285
- [9] V. Mazorchuk, S. Ovsienko, The structure of generalized Verma modules induced from generic Gelfand-Zetlin Modules, preprint 97-007, Bielefeld University
- [10] A.Rocha-Caridi, Splitting criteria for \mathfrak{L} -modules induced from a parabolic and a Bernstein Gelfand Gelfand resolution of a finite-dimensional, irreducible \mathfrak{L} -module. Trans. Amer. Math. Soc., 262, 1980, 335-366
- [11] A. Rocha-Caridi, N. Wallach, Projective modules over graded Lie algebras, Math. Z., 180 (1982), 151-177
- [12] D. Vogan, Representations of linear reductive groups, Birkhauser, Boston, 1981

Department of Mathematics, Kiev University, 64, Vladimirskaya St., Kiev, 252033, UKRAINE e-mails: futorny@uni-alg.kiev.ua mazorchuk@uni-alg.kiev.ua