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1 Introduction

Description of Green’s relations on the semigroup B(X) of all binary relations on a finite
set X forms a classical part of the semigroup theory. This description was obtained and
studied by several authors (see for example [PW, Z] and references therein). Recently, an
approximative subsemigroup FP*(S,) in B(X) for X = {1,2,...,n} was introduced in
[GM1] in a natural way. It was shown that this subsemigroup has a lot of nice proper-
ties ([GM2, GM3, M]), for example it inherits the property of B(X) to have only inner
automorphisms. In this paper we study Green’s relations on FP*(S,).

The paper is organized as follows: In Section 2 we collect all necessary preliminaries.
In Section 3 we prove several technical lemmas necessary for the proof of our main result
presented in Section 4. Finally in Section 5 we describe a lattice of a natural family of
ideals in FP(S,).

2 Preliminaries

For a fixed positive integer n let X denote an n-element set {1,2,...,n}. Let S, be the
symmetric group on X. Consider the Boolean 8, of S, as a semigroup under natural
operation induced from S,, and define an equivalence relation ~ on B,, as follows: for A;
and A, from B, we set A; ~ A, if and only if for any z € X the sets {o(z) : 0 € A1}
and {o(z) : 0 € Ay} coincide. It is straightforward that ~ is a well-defined congruence
on B,,. The corresponding quotient semigroup B, /. is called the factorpower of S, and
denoted by FP(S,). The last semigroup has an empty set class as an outher zero element.
Throwing this element away one obtains a semigroup FP*(S,) which we will also call the
factorpower of S,,. In what follows we will consider the semigroup FP*(S,,) only.

Let B(X) denote the semigroup of all binary relations on X. FP*(S,) can be identified
with a subsemigroup of B(X) in a natural way. To each A € FP*(S,) we associate a binary
relation on X which consists of all pairs (z,o(z)) where x runs throug X and o runs throug
A. One can show that this is in fact a monomorphism of semigroups. Thus, the elements
of FP*(S,) can be written down as usual permutations:

1 2 ... 0n
A_<A1 As ... An>



where A € FP*1(S,) and A, = {o(x)|o € A} for all zx € X. Using these notations the
elements of FP*(S,) can be multiplied also as permutations. Namely, for A and B in
FP*(S,) one has

1 9 n 1 9 n 1 2 ... )

TEB1 TEB> TEB,
Consider a set @ consisting of all vectors (I1, ls, . . ., l,) with positive integer coefficients.
For an element [ € © and for 1 <i <n by {; (or (I);) we will denote the i-th coefficient of
. There are two natural partial preorders on ®. For [ and m from © we will write [ < m
if I; < m,; for all 7 and we will write [ < m if there exist a permutation o € S,, such that
li < me( for all i. Clearly, < is a partial preorder on ® and < is a (reflexive) partial order

on 2. One also has that [ < m implies [ < m.

For an element A € FP*1(S,) by its signature Sgn(A4) we will mean an element
(|A1], [Ag], ..., |An]) €D.

3 Some technical lemmas

Lemma 1. Let A € FPT(S,) and Y C X be a non-empty subset. Then
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Proof. Let Z denote the union of all Ay, where y runs through Y. By the definition
of FP*(S,), A is an equivalence class in B, which differs from empty set. Take any
representative in A and choose a permutation o € S, in it. Clearly, Z contains as a subset
the set Z(0) = {o(y) : y € Y}. Since o is a permutation, one has |Z(o)| = |Y|. Hence
|Z| > |Y] as required. O

Lemma 2. Suppose that A, B,C € FP*(S,) such that AB = C. Then Sgn(B) < Sgn(C).
Proof. Fix x € X. By definition of the multiplication in FP*(S,) we have
C.=J 4,
YEBy
From Lemma 1 it follows that |C,| > |B;| and thus Sgn(B) < Sgn(C) as required. O
Lemma 3. Suppose that A, B,C € FP*(S,) such that AB = C. Then Sgn(A) < Sgn(C).

> Y.

Proof. Fix a representative of B in %8, and choose a permutation o in it. Fix x € X. Since
C.= J 4,
y€Bs

and o(r) € B, it follows immediately that [Cy| > |A,«)|. Hence Sgn(A) < Sgn(C) as
required. [



Corollary 1. Suppose that A, B,C € FP*(S,) such that AB = C. Then Sgn(A) <
Sgn(C) and Sgn(B) < Sgn(C).

4 Green’s relations on FP*(S,)

Theorem 1. Let A, B € FP"(S,). Then
1. ALB if and only if A = oB for some o € S,,;

2. ARB if and only if A = Bo for some o € S,,;

3. AHB if and only if A= 0B = Bt for some 0,7 € S,;
4. ADB if and only if A = oBT for some o,7 € Sp;

5 J=0D.

Proof. Clearly, it is sufficient to prove only two first statements.

Suppose that A = 0B (A = Bo) for some o € S,,. Clearly, this implies ACB (ARB).
So, now suppose that ALB. This means that A = XB and B = Y A for some X,Y €
FP*(S,). In particular, this implies B < A and A < B, or, in other words, for any
1 <1 < n we have

Hz : Al =3} = Haz & [Bs| = i},

Our goual is to show that one can choose X € §,,.

We have A = XB for some X € FP"(S,). Choose a representative for X, say
{o1,...,04} C S, and consider the elements A(j) = {o1,...,0;} - B for 1 < j < k. One
has A(k) = A. From Corollary 1 we have Sgn(B) < Sgn(A(j)) for all j. Since

AG+ 1) = 4G U | {ora (D,
f€B:
it follows that Sgn(A(j)) < Sgn(A(j + 1)) for all j. But we recall that Sgn(A) < Sgn(B),
which implies that, in fact, Sgn(A(j)) = Sgn(A(j + 1)) for all j, hence A(j) = A(j +1) for
all j and thus A = A(1) = o1 - B. This completes the proof for the £ relation.

Now suppose that ARB. This means that A = BX and B = AY for some X,Y €
FP*(S,). In particular, this implies B < A and A < B. Again we will show that one can
choose X € §,,.

We have A = BX for some X € FP"(S,). Choose a representative for X, say
{o1,...,04} C S, and consider the elements A(j) = B - {o1,...,0,} for 1 < j < k. One
has A(k) = A. From Corollary 1 we have Sgn(B) < Sgn(A(j)) for all j. Since

A(j + 1) = A(j): U Boyo0,

it follows that Sgn(A(j)) < Sgn(A(j+ 1)) for all j. At the same way as above we conclude
that Sgn(A(j)) = Sgn(A(j + 1)) for all j, hence A(j) = A(j + 1) for all j and thus
A = A(1) = B - 0y. This completes the proof of the theorem. O



5 Signature ideals in FP*(S,)

The problem to describe the ideal structure of FP*(S,) is still open. Nevertheless, thech-
nical lemmas presented in Section 3 enables one to describe a natural family of ideals
defined by using the notion of signature.

Set a = (1,1,...,1) € ® and b = (n,n,...,n) € D. Consider an interval D{a,b} =
[a, b] with respect to the preoder <. Let ©(a, b) denote a subset of ©{a, b} which consists
of all those (I, 1, ..,l,) such that

%%’%li <n-—H{z: =1}

Let ©D(a,b) denote the poset associated with ®(a,b) in which the induced relation <
becames a partial order. Let © be a subset of D consisting of all those vectors, whose
coefficients do not decrease. Then D is a poset with respect to <. One can easily show
that the interval [a, B] in ® is isomorphic to D(a, b).

For [ € @ let I(I) denote the set of all elements A € FP*(S,) such that [ < Sgn(A).
Clearly, I(l) is not empty if and only if [ < b (I < b). We will call I(l) the signature ideal
corresponding to /. To proceed we need the following lemma:

Lemma 4. For | € ® there exist an element A € FP1(S,) such that Sgn(A) = 1 if and
only if | € D(a,b).

Proof. First we prove that Sgn(A) € D(a,b) for all A € FP*(S,). Fix A € FPT(S,).
Clearly, Sgn(A) € ®{a,b}. Let 1 < z; < 23 < --- < xx < n be all indexes such that
|Ag;| = 1. It follows immediately, that

U Ay:X\(UAI]).

yeX\{Z'l,.Z'z,---,$k} 1<5<k

Clearly, A;, # Ag; if i # j. Hence |[Ay| < n—k for any y € X \ {x1,7,...,24}. This
implies that Sgn(A) € D(a, b).
Now we prove that for any [ € D(a,b) there exists an element A € FPT(S,) such

that Sgn(A) = [. Clearly, we can assume that 1rén<n l; > 2, otherwise one can reduce the
<i<n

statement to the case of smaller n. Set
i ( 1 2 3 ... n-1 n
Clearly, A € FP*(S,). Now it is enough to prove that for any
1 2 ... n
B_(Bl By ... Bn)
such that A; C B; for 1 < i < n the element B belongs to FP*(S,). Fix r € X and
y # x,z + 1 (here we set n + 1 = 1). Clearly, it is enough to show that there exists a
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permutation o € S, such that o(z) = y and o(i) € A; = {i,i + 1} for i # z. We have
o) =y. Set o(y) =y+1,0(y+1) =y+2andsoontill o(z —1) = z. Also set
oly—1)=y—1,0(y—2) =y —2and so on till o(x + 1) = z + 1. Obviously, o is a
permutation. This completes the proof. O

Theorem 2. 1. I(l) is a two-sided ideal of FP*(S,).
2. Signature ideals form a lattice which is isomorphic to @(a, b).

Proof. The first statement follows immediately form Corollary 1.

By virtue of Lemma 4, to prove the rest we first note that ©(a, b) is in fact a lattice.
Indeed, let I,m € D(a,b). Using the isomorphism mentioned above we can assume that
the coefficients of [ and m do not decrease. Obviously, in this case

min(l, m) = (min(ly, my), min(ly, ms), . .., min(l,, my,))
and
max(l, m) = (max(ly, my), max(ly, ms), ..., max(l,, my,)).
This observation and Corollary 1 imply the second statement of our theorem. O
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