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Abstract

We classify all x-representations of generalized Weyl algebras by bounded opera-
tors with respect to * preserving the principal grading.
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1 Introduction and preliminaries

Fix a positive integer, n, and set N, = {1,2,...,n}. Let R be a commutative unital
complex algebra, o;, © € N,, a set of pairwise commuting automorphisms of R and 0 #
ti € R, i € Ny, such that 0,(t;) = t;, i # j € N,. The generalized Weyl algebra A =
A(R,{o:},{t;}) is defined as an R-algebra, generated over R by elements X;, Y;, i € N,,
subject to the following relations ([1]):

e X;r=0;(r)X;, 1 € Ny, 7 € R;

e 1Y, =Y0i(r), i € Np, 7 € R;

o Y X; =1, X;Y; = 0i(l;), i € Ny;

o XV, =Y;X;, XiX; = X;X;, VY, = Y;Y;, i # j € N,.

We will call these relations the defining relations.

Let Z™ be a free abelian group of rank n with canonical generators e;, i € V,. Then A
has a natural Z"-grading, which we will call principal, by assigning deg(R) = 0, deg(X;) =
ei, deg(Y;) = —e;, i € N,,. It is well known that many classical algebras can be realized as
generalized Weyl algebras (e.g. see examples in [1]). Representations of generalized Weyl
algebras have been studied intensively (see e.g. [1, 2] and references therein), in particular,
it has been shown that the corresponding classification problem is usually wild.

A natural problem for generalized Weyl algebras is to study involutions over them and
x-representations of the corresponding *-algebras. We remark that by an involution on
A we mean a C-skewlinear map, *, from A to A satisfying (ab)* = b*a*, a,b € A, and



(a*)* = a, a € A. For the involutions satisfying (X;)* = £V, the corresponding problem
was solved in [3] for a much wider class of algebras. In the present paper we will be
interested in involutions preserving the principal grading on A, i.e. (4,)* = A, for any
g € Z". We give a complete answer to the classification problem, listing all irreducible
x-representations up to unitary equivalence.

In Section 2 we introduce the involutions on A, which we will be interested in and show
that these involutions exhaust all involutions preserving the principal grading provided R
is a domain. In Section 3 we deal with the case n = 1 and in Section 4 we consider the
general situation. The main result is a classification of all x-representations of A up to
unitary equivalence. Our answer for the general case uses the classification obtained for
n=1.

2 Involutions

If % is an involution on A preserving the principal grading then (4o = R)* = Ay = R and
hence it induces an involution on the algebra R. It is well known ([1]) that the elements
Zigzk 7k 7, = X; or Z; = Y;, form a basis of A as a free left (or right) R-module.
Clearly, this basis is graded, hence all graded components of A are free R-modules of rank
1. In particular, if % preserves the principal grading, then (X;)* = r;X; and (V;)* = s;Y;,
1 € N, for some r;, s; € R.

Theorem 2.1. Let x be an involution on R and r;,s; € R, © € N,. If the following
conditions are satisfied:

1. o7 (r*) = oy(r)* for alli € N,, r € R;
=1 and s;07(s}) =1, i € N,.
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1r;0;(1i) = 1:0:(1), 1, € Np;
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Si) = Siai_l(sj)i 7”.7 € Nn;

6. s;0; " (r;) =107 (s4), i # j € Ny.

then setting (X;)* = r; X, (Y3)* = s;Yi, @ € Ny, defines an involution on A. Moreover,
if R is a domain and x is an involution on A then the restriction of x to R satisfies all
conditions which are listed above.

*

Proof. First we note that r;0;(r}) =1 and s;07'(s}) = 1, i € N,,, is equivalent to (a*)* = a
for all a € A.

Assume that * is an involution on R satisfying the conditions of the theorem. We have to
show that the defining relations are stable under the  defined by (X;)* = r;X;, (Y;)* = s;Y;,
i € N,. We will check the relation X;r = o;(r)X;. Applying * we get r*r; X; = r; X;04(r)*



which can be rewritten as r*r; X; = r;0;(0;(r)*)X;. The last is true because of the first
condition of the theorem. All other relations can be checked by analogous arguments.
Conversely, we assume that R is a domain. Then, if % is an involution on A such that
(Xi)* = riXs, (V)" = s;Y;, i € N, the arguments above imply 71, X; = r;0:(0;(r)*) X.
As A is a free R module and R does not have zero divisors, this equality is equivalent to
r* = 0;(0;(r)*), which is the first condition of the theorem. Analogous arguments applied
to other relations will give us the rest. This completes the proof. O

We have to remark that such involutions really exist. For example, taking s; = r; = 1,
i € N,, we reduce the list of conditions of our theorem to the following: o; ' (r*) = o;(r)*,
r € R, and oy(t;) = tf, i € N,. One can easily construct a plenty of examples of such
involutions. Below we present some classical examples as well as some new ones.

Example 1. Let n=1, R=C[H,T|, t4, =T,0:(H)=H-1,0/(T)=T+ H, H* = H,
T* =T + H. Then all the conditions of Theorem 2.1 are satisfied and X* =X, Y* =Y
defines an involution on A. In this case A ~ U(sl(2,C)) and (A, %) corresponds to the real
form s((2, R).

Example 2. Let n = 1, ¢ € R (resp. ¢ € C, |q| = 1), R = C[T,k, k7], t, = T,

k2 _ k72 k2 _ k72
Ul(k') = q_lka UI(T) = T+ m, k* = k_l (I'GSp. k* = ), T = T—+— —_— - Then

— g1
setting X* = X, Y* = Y defines an involution on A. In this case A ~ U,(s[(2,C)) and
(A, *) corresponds to the real form s[,(2, R).
Example 3. Let n = 1, ¢ € R (resp. ¢ € C, |q| = 1), R = C[T,k, k'], t;, = T,
k—k! k—k!
o1(k) =q %k, 01(T) =T+ ———, k* =k" (resp. k* =k), T* =T+ —-
p— q p—

X*=¢q 'kX,Y* = qVk™', we get an involution on A. In this case A ~ U/ (sl(2,C)) and
(A, *) corresponds to the real form 5[;(2, R). We remark that the corresponding quantum
algebra is slightly different from the one, considered in the previous example.

If we put

Example 4. Letn=1, R=C[H|, 01(H) = H+1, H* = —H, t, = f(H?*—H), where [ is
a fixed polynomial with real coefficients. Then it follows from Theorem 2.1 that X* = X,
Y* =Y defines an involution on A.

As an example of higher rank one can take, say, a tensor product of some rank one
examples. In the rest of the paper we will assume that the conditions of Theorem 2.1 are
satisfied.

3 Rank one case

In this section we will deal with the casen =1andsetc =01, t =%, X =X;andY =Y,
r=ry, s=s. Let m: A — B(H) be a *-representation of A by bounded linear operators
on a separable Hilbert space, H. To simplify the notation we will denote the operators
7(a), a € A, simply by a and hence all equalities below will be operator equalities in B(H).
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Lemma 3.1. The elements X? and Y? commute with all a € A.

Proof. We will prove the statement for X2, the case of Y2 is analogous. We start with
elements from R. As R is commutative any h € R is normal. Write h = h; 4 ihy, where
hi = (h+ h*)/2, hy = (h — h*)/(2i). Then the operators hy, hy are self-adjoint. For
i = 1,2 we have Xh; = o(h;)X. Applying the Fuglede-Putnam-Rosenblum Theorem ([4,
Theorem 12.16]) we get Xh? = Xh; = o(h;)*X. Hence o(h;)X = o(h;)*X. Using o(h;)* =
o~ (h}) = o7 (h;) we get (o(h;) — o' (h;))X = 0, which implies (o(h) — o7 (h))X = 0
for any h € R. Substituting h with o(h) we get (0?(h) — h)X = 0 and (o?(h) — h) X% = 0.
The last is equivalent to hX? = X 2h.

For ¢ = X the statement is clear. The only case left is @ = Y. Using the equality
(02(h) — h)X = 0 obtained above, we have X?Y = Xo(t) = o?(t)X =tX = Y X% O

Lemma 3.2. For any h € R the elements ho(h) and h + o(h) commute with all a € A.

Proof. Using (0?(h) — h)X = 0 we have that Xo(h)h = o*(h)o(h)X = ho(h)X and
analogously ho(h)Y = Yho(h), (h+0o(h))X = X(h+o(h)) and (h+0(h))Y =Y (h+0o(h)),
completing the proof. O

Lemma 3.3. Assume that w is irreducible. Then the spectrum of all elements h € R is
discrete, in particular, there erists a non-zero common (for R) eigenvector v € H.

Proof. Assume that 7 is irreducible. Fix h € R. As ho(h) and h+ o(h) commute with the
action of A and 7 is irreducible these operators act as scalars, ¢; and ¢y correspondingly,
on H. Hence h? — coh + ¢; = 0, which implies our statement. O

Lemma 3.4. If X? # 0 then H coincides with the linear span of v and Xv. Otherwise, H
coincides with the linear span of v and Yv. In particular, H is at most two-dimensional.

Proof. As X? is central, X? = cI, where I is the identity operator. First assume ¢ # 0.
Then the linear span L of v and Xwv is invariant with respect to R and X. We have
Y(av + bXv) = ¢'YX?%(av + bXv) = ¢ 'tX(av + bXv) € L. This proves the first
statement.

If ¢ = 0 we have X? = 0, in particular, X*X = rX? = 0 which implies X = 0. Now
if Y2 = 0 then Y = 0 by the same arguments and the statement is clear. Otherwise, the
second statement follows by the similar arguments as the first one. O

To state our main classification result in the rank one case we introduce two sets of
parameters, ['; and ['s. Let R denote the set of all characters of R. Put

Iy = {x € R|x(h) = x(c?(h)) for all h € R, x(h) # x(c(h)) for some h};
Ty = {x € R|x(h) = x(o(h)) for all h € R}.

Theorem 3.1. Any irreducible representation of A is one or two-dimensional and unitar-
ily equivalent to one of the following representations:



lc| +]d| #0, x(r)c= ¢, x(s)d = d,
3. m(x,d):
_ _ 0 d/x(s) Y. , _ ([ x(h) 0
=0 Y_<\/dx(8) 0 ) h_< 0 X(O(h))>’

where x € I'1, d € C such that x(t) = x(o(t)) =0, x(s)d > 0.

4. m3(x,c):

X:( co \/W); Y — 0. h:<x(h) 0 )

x() 0

where x € I'y, ¢ € C such that x(t) = x(o(t)) =0, x(r)c > 0.

5. ma(x, ¢, d):
(0 DY, o 0 NORVGRY
X‘( X0 )’Y‘(mw»xmm 0 »

= (9 ot )

where x € 'y, ¢,d € C, such that x(r)c > 0, x(s)d > 0, x(to(t)) = cd.

The representations m;(X1,c1,d1) and mi(x2,c2,ds) (the presence of ¢; and d; depends on
i,7) are unitarily equivalent if and only one of the following holds:

1. i=j5=1and x1 = x2;
2.1=7=2,c = ¢y dy =dy and x1 = X2;
1=j=3,cp=0Cyand X1 = X2 O X1 = X200,

1=j3=4,d =dy and x1 = X2 0T X1 = X200,

1=7=05,c =cy, dy=dy and x1 = X2 0T X1 = X2°00.

Proof. Let w be an irreducible x-representation of A. From Lemmas 3.1-3.4 we know that

7 is at most two-dimensional and X2, Y2 act as scalars, say ¢ and d respectively, on H.
First we assume ¢ = d = 0. From the proof of Lemma 3.4 we have X =Y = 0 and

hence m(A) is commutative. Therefore 7 is one-dimensional and is completely determined

A

by x € R. From X =Y = 0 we also have t = ¢(t) = 0 and = is equivalent to 7.



Now let |c|+]|d| # 0 and v be a normed common eigenvector for R, given by Lemma 3.3.
This means hv = x(h)v, h € R, for some x € R. As |c| + |d| # 0 either X2 or Y is non-
zero. Assume X2 # 0. Then from X?h = 0?(h)X? we get h = o(h) for any h € R (for Y2
the arguments are similar). Now we consider two cases: x € I'y or x € I'y. If x € Iy then
7(A) is commutative and therefore 7 is one-dimensional. We have X =¢, Y =d', XY =t
implies ¢d’ = x(t), X* = rX (resp. Y* = sY) implies ¢ = x(r)c’ (resp. d’' = x(s)d') and
7 is equivalent to .

If x € I'; then we consider three cases: ¢ =0,d=0,c# 0and d # 0. If c =0 then v
and Yv generate H and they are orthogonal as eigenvectors of a normal operator (h € R
such that x(h) # x(o(h))) with different eigenvalues. Writing our representation in the
orthonormal basis v, Yv/||Yv|| (||Yv|| = v/dx(s)) we get the representation m,. Since
X*X =rX? and Y*Y = sY? we have x(r)c > 0 and x(s)d > 0. Analogously, if d = 0 one
gets that 7 is equivalent to 73 by the similar arguments (for the basis v, Xv). If ¢ # 0 and
d # 0 then we get m ~ 74, using the basis v, Xwv.

The statement about unitary equivalence is obvious. O

4 Case of arbitrary rank

We fix an irreducible representation, 7, of A by bounded operators on a separable Hilbert
space, H, and denote by a the image of a under 7 for all a € A.

Lemma 4.1. The elements X? and Y2, i € N,,, commute with all a € A,

Proof. Follows from Lemma 3.1 and the defining relations. O

Set G = [l en, 7" (n copies of Z,). For h € R and g = (e1,...,e,) € G set g(h) =
ot o---o0tr(h). Write G = {g1,92,-..,92n}. For h € R and a symmetric polynomial, f,
in 2" variables put u(f, h) = f(g1(h), g2(h), ..., gon(h)).

Lemma 4.2. The elements u(f,h) commute with all a € A. In particular, all h € R have
a discrete spectrum and there erists a non-zero common (for R) eigenvector, v € H.

Proof. Clearly, u(f,h) commute with R. From the proof of Lemma 3.1 it follows that
(02(h) — h)X; = 0. This implies X;u(f,h) = u(f,0:(h))X; = u(f,h)X;. The arguments
for Y; are similar completing the proof of the first statement.

From the first statement it follows that all u(f, h) are scalar operators on H. Let
fi,--., fon be elementary symmetric polynomials. Then each u(f;, h) is a scalar, say ; =

7i(h), and we have h%" — 41 h?" 71 4+ - .- + ~5» = 0. This implies the second statement. [J

Let X? (resp. Y;?) act with the scalar ¢; (resp. d;) on H. Set N(7) = {i : |c;i|+]|d;| # 0}
and for each i € N(7) fix Z; = X; if ¢; # 0 and Z; = Y; otherwise.

Lemma 4.3. The set B = {[[;cn(n Zi'v}, € € {0,1}, generates H. In particular, we
have dim(H) < 2Nl < 2m,



Proof. The invariance of the linear span of B under A follows from Lemma 3.4 and the
relations X; X; = X, X;, V;Y; =Y,V and X;Y; =Y, X;, 7 # 7, in A. O

Now we can start the classification. Our representations will be indexed by vectors
v = (7;)ien, , Where each 7; is an irreducible representation of the generalized Weyl algebra
A; = Ai(R, 04, 1;), i € N,, associated with a common character, y € R. Let H; denote the
Hilbert space of the representation 7;. Let N be the set of all 4 such that dim(H;) = 2.
For ¢ ¢ N fix a normed element, v € H;. For ¢ € N fix an orthonormal basis v?, v} in H;
provided by Theorem 3.1. Set H(v) = H; ® Hy ® --- ® H,. Then dim(H (v)) = 2V and
{1,y =01 @ ®@ui" |e; =0for i ¢ Nande; = 0,1 fori € N} is an orthonormal
basis of H(bv). Set

hv(sl ..... En) — X(Uil 6---0 Uf{" (h))v(sl ..... €n)s h € H(U);
XiV(er,en) =01 @+ @1 @Ti(Xi)v]" @ Uil @ -+~ @ Ui; 1 € Ny;
Yiter,en) =07 @ - @07 @ (Vi)v] @ ot @ - @i 1 € N,.

We will denote this representation by 7(bv).

Lemma 4.4. 7(v) is a x-representation of A.

A

Proof. Recall that 7; are representations of A; which correspond to the same xy € R.
The relations X;Y; = Y;X;, X;X;, = X;X; and Y;Y; = Y;Y; are obvious. Now consider
Xih = 0;(h)X; and apply this equality to v = v, ... If X; = Y; = 0, the relation
is obvious. If ¢; = 1 the relation follows directly from the definition of the action of R.
Otherwise we have x(cZ(h)) = x(h) by Theorem 3.1 and also X;hv = x(0f'0- - -00t"(h)) X;v
and o;(h)X;v = x(07' 0 --- 0 0 (0?(h)))X;v which is the same. One can use similar
arguments to get hY; = Yjo;(h). Using o;(t;) = t;, ¢ # j, the relations Y;X; = ¢; and
X,Y; = 0;(t;) can be easily reduced to the same relations between 7;(X;) and 7;(Y;). This

completes the proof. O

Assume that 7(b) does exist and x is the corresponding character of R. Set N = {i €
Nyn|x(h) # x(o;(h)) for some h € R} N {i € N,|X; # 0orY; # 0} C N,. Denote by
G =1lien Zg) the corresponding subgroup of G' and by W () the subgroup of G consisting
of all g € G such that x(g(h)) = x(h) for all h € R. Clearly, |W (v)| = 2* for some k.

Lemma 4.5. 7(v) decomposes into |W(v)| pairwise unitarily non-equivalent irreducible
representations. In particular, m(v) is irreducible if and only if W (b) is trivial.

Proof. For each w € W (v) we define a monomial, X (w) € A, as follows: let w = (&;)ien;
for each i € N, g; = 1, we set Z; = X; if X, is not zero on H(v) otherwise Z; = Y;; set
X(w) = [],cn Zi- We claim that the elements X (w), w € W (v), commute with the action
of A on H(v). Indeed, fix X(w), w = (&;)iey € W(v). That X (w) commutes with R
follows from x(w(h)) = x(h), w € W(v). Fix i € N,. If X(w) contains X; (resp. Y;)
then X (w)X; = X;X(w) (resp. X(w)Y; = ¥;X(w)). If X(w) contains neither X; nor ¥;
then clearly X (w)X; = X;X(w) and X (w)Y; = ¥; X (w). Now assume that X (w) contains
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X; (for Y; the arguments are similar). Decompose w = 0; o w', where w' does not contain
o;. Then x(o; o w'(t;)) = x(t;) and hence x(o;(¢;)) = x(#;). This implies X;Y; = Y, X;
and therefore X (w)Y; = Y; X (w), proving our claim. In particular, all X (w) are normal
operators.

By the definition of 7(v), each (X (w))? is a scalar operator with some scalar \(w) #
0. Hence the spectrum of X (w) is a subset of {£y/A(w)}. As v(,. ) is orthogonal to
X (w)v(,...0) we get that spectrum of X (w) coincides with {+1/A(w)}. Let {w1,..., wi}
be a minimal set of generators of W (v). Decomposing 7(v) with respect to the common
spectrum of X (wy), ..., X(wg) we get |W(v)| non-zero subrepresentations of 7(v). From
the definition of W (v) it follows that each of these subrepresentations has a basis, whose
elements are separated by the action of R (i.e. correspond to pairwise distinct characters
of R). Moreover, as 7(v) is cyclic, each subrepresentation of it is also cyclic. Altogether
this implies that all our subrepresentations are irreducible. The statement that they are
pairwise unitarily non-equivalent is obvious. O

Denote by W the group, generated by all o;, 7 € N,,. W acts on the set of representa-
tions of A; in a natural way.

Lemma 4.6. 1. w((7(1);)) and 7((7(2);)) are unitarily equivalent if and only if 7(1);
and 7(2); belong to the same orbit of the action of W for all i € N,.

2. If representations w((7(1);)) and w((7(2);)) are unitarily non-equivalent then any ir-
reducible component of w((7(1);)) is unitarily non-equivalent to any irreducible com-

ponent of w((7(2);)).
Proof. Obvious. U

Theorem 4.1. Any irreducible *-representation of A is unitarily equivalent to an irre-
ducible subrepresentation of some m(v).

Proof. Let 7w be an irreducible representation of A on a Hilbert space H. We claim that it is
equivalent to an irreducible subrepresentation of 7(v) for a suitable v. From X,;X; = X, X},
X;Y, =Y.X;, V;X; =Y, X, V;Y;, =Y, X, it follows that 7|4, decomposes into a direct sum
of irreducible representations of A; which belong to the same orbit of W-action. For
each 7 € N, fix one representation from the corresponding orbit, say 7;. As above, set
N = {i € N, |x(h) # x(oi(h)) for some h € R} N{i € N, | X; # 0 orY; # 0}. Consider
W (r) and X (w) associated with 7 and w € W (), as defined in the proof of Lemma 4.5.
By the same arguments as there we get that X (w) commute with all @ € A and hence
are scalar operators on H with scalars +1/A(w) (the choice of signs is coordinated by the
group structure on W (r)). Consider the quotient group G(7) = ([[,cn 7)) /W () and fix
some representatives A = {wy, ..., w|G(W)|} in the corresponding cosets. For w € A define
X (w) as above. Let v be a common eigenvector for R in H. Then the linear span of X (w)v,
w € A, is an orthogonal basis of H. Indeed, first we show that this linear span is invariant
under A. This is clear for R. If 7(X;) = 0, the statement is obvious for such X;. Otherwise,
using the fact that X?, X (w), w € W (), are scalars on H, we have X;X (w) = cX (w')
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for some uniquely defined ¢ € C and w' € A. The same argument works for Y; and
we get the necessary invariance. By the construction, all X (w)v, w € A, are common
eigenvectors for R. Now the orthogonality follows from the fact, that the corresponding
common eigenvalues are distinct (definition of W (7)) and all operators h € R are normal.

In particular, we get that the irreducible representation with parameters 7;, 1 € N,
and ++/A(w), w € W (), is unique up to a unitary equivalence. Therefore it is unitarily
equivalent to an irreducible subrepresentation of 7((7;)icn,,)- O

Corollary 4.1. The dimension of any irreducible x-representation of A equals 2% for some
keZs.
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