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Abstract. We propose a very general construction of simple Vi-
rasoro modules generalizing and including both highest weight and
Whittaker modules. This reduces the problem of classification of
simple Virasoro modules which are locally finite over a positive part
to classification of simple modules over a family of finite dimen-
sional solvable Lie algebras. For one of these algebras all simple
modules are classified by R. Block and we extend this classification
to the next member of the family. As a result we recover many
known but also construct a lot of new simple Virasoro modules.
We also propose a revision of the setup for study of Whittaker
modules.

1. Introduction and formulation of the results

We denote by N the set of positive integers and by Z+ the set of
all non-negative integers. For a Lie algebra a we denote by U(a) the
universal enveloping algebra of a.

Let V denote the complex Virasoro algebra, that is the Lie algebra
with basis {c, li : i ∈ Z} and the Lie bracket defined (for i, j ∈ Z) as
follows:

[li, lj] = (j − i)li+j + δi,−j
i3 − i

12
c; [li, c] = 0.

The algebra V is a very important object both in mathematics and in
mathematical physics, see for example [KR, IK] and references therein.
There are two classical families of simple V-modules: highest weight
modules (completely described in [FF]) and the so-called intermediate
series modules. In [Mt] it is shown that these two families exhaust all
simple weight Harish-Chandra modules, that is weight modules with
finite dimensional weight spaces with respect to the Cartan subalge-
bra spanned by l0 and c. In [MZ1] it is even shown that the above
modules exhaust all simple weight modules admitting a nonzero finite
dimensional weight space.

Various other families of simple V-modules were studied in [Zh,
OW1, LGZ, FJK, Ya, GLZ, OW2]. These include some simple weight
modules with infinite dimensional weight spaces, various versions of
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Whittaker modules and some other modules constructed using differ-
ent tricks. Observe that simple highest weight modules and (all versions
of) Whittaker module have something in common: in both classes the
action of a Lie subalgebra of V generated by all elements li, where i
is big enough, is locally nilpotent. The class X of simple V-modules
described by the latter property is the principal object of study in the
present paper. Now we briefly describe the main results.

Denote by V+ the Lie subalgebra of V spanned by all li with i > 0.
Given N ∈ V+-mod and θ ∈ C, consider the corresponding induced
module Ind(N) := U(V)⊗U(V+)N and denote by Indθ(N) the module
Ind(N)/(c− θ)Ind(N). The key result of this paper is:

Theorem 1. Assume that N ∈ V+-mod is simple and such that there
exists k ∈ N satisfying the following two conditions:

(a) lk acts injectively on N ;
(b) liN = 0 for all i > k.

Then for any θ ∈ C the V-module Indθ(N) is simple.

Theorem 1 is proved in Section 2. It gives a very general recipe for
construction of simple modules in X . But we go even further. In The-
orem 2 below we show that every simple module in X is either a simple
highest weight module or is obtained using the recipe from Theorem 1.
To formulate Theorem 2 we need to recall some terminology.

Recall that a module V over a Lie algebra a is called locally finite
provided that any v ∈ V belongs to a finite dimensional a-submodule.
The module is called locally nilpotent provided that for any v ∈ V there
exists an n ∈ N such that a1a2 · · · an(v) = 0 for all a1, a2, . . . , an ∈ a.

For n ∈ Z+, denote by V
(n)
+ the Lie subalgebra of V generated by all

li, i > n.

Theorem 2. Let L be a simple V-module. Then the following condi-
tions are equivalent:

(a) There exists k ∈ N such that L is a locally finite V
(k)
+ -module.

(b) There exists n ∈ N such that L is a locally nilpotent V
(n)
+ -module.

(c) L is a highest weight module or there exists θ ∈ C, k ∈ N and
a simple N ∈ V+-mod such that both conditions (a) and (b) of
Theorem 1 are satisfied and L ∼= Indθ(N).

Theorem 2 is proved in Section 3. We also prove (in Subsection 3.5)
that the condition Theorem 2(a) is equivalent to the condition that li
acts on L locally finitely for all sufficiently large i. In Section 4 we list
many examples to which Theorems 1 and 2 apply. These include all ver-
sions of Whittaker modules over V constructed in [OW1, LGZ, FJK].
We also construct several new families of simple V-modules. For n ∈
Z+ denote by an the finite dimensional Lie algebra V+/V

(n)
+ . Theo-

rem 2 reduces classification of simple modules in X to classification
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of simple modules over finite dimensional Lie algebras an (for all n).
For n = 0 the algebra a0 is commutative and its simple modules are
one dimensional, which leads exactly to simple highest weight modules.
For n = 1, all simple a1-modules are constructed in [Bl]. These can be
used both to recover some classes of Whittaker modules over V and
to construct many new simple modules. We use the n = 1 case to
classify (see Proposition 10) all simple a2-modules. This again recovers
some classes of Whittaker modules over V (in particular, all modules
constructed in [OW1]) and produces many new simple modules. As far
as we know, for n > 2 the classification problem for simple an-modules
is still open.

We finish the paper with a revision of the general Whittaker setup
from [BM] in Section 5.
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2. Proof of Theorem 1

2.1. An indexing set for a basis. Denote by M the set of all (infi-
nite) vectors of the form i := (. . . , i2, i1) with coefficients in Z+, sat-
isfying the condition that the number of nonzero coefficients is finite.
Let 0 denote the element (. . . , 0, 0) ∈ M and for i ∈ N let εi denote
the element (. . . , 0, 0, 1, 0, 0, . . . , 0) ∈ M, where 1 is in the i’th position
from the right. For i ∈ M denote by d(i) the degree of i defined as∑

s>1 is (note that the sum is finite). Denote also by w(i) the weight
of i defined as

∑
s>1 s · is (which is again finite).

For i ∈ M denote by li the element . . . li3−3l
i2
−2l

i1
−1 ∈ U(V) (note that

the product is, in fact, finite because of the definition of M). By the
PBW Theorem, every element of Indθ(N) can be uniquely written in
the form

(2.1)
∑
i∈M

livi,

where all vi ∈ N and only finitely many of the vi’s are nonzero. For
v ∈ Indθ(N) written in the form (2.1), we denote by supp(v) the set of
all i ∈ M such that vi 6= 0.

2.2. Reverse lexicographic and principal orders. Denote by <
the reverse lexicographic total order on M, defined recursively (with
respect to the degree) as follows: 0 is the minimum element; and for
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different nonzero i, j ∈ M we have i < j if and only if one of the
following conditions is satisfied:

• min{s : is 6= 0} > min{s : js 6= 0};
• min{s : is 6= 0} = min{s : js 6= 0} = k and i− εk < j− εk.

Define the principal total order ≺ on M as follows: for different
i, j ∈ M set i ≺ j if and only if one of the following conditions is
satisfied:

• w(i) < w(j);
• w(i) = w(j) and d(i) < d(j);
• w(i) = w(j) and d(i) = d(j), but i < j.

2.3. The argument. For a nonzero v ∈ Indθ(N) let l(v) denote the
maximal (with respect to≺) element of supp(v), called the leading term
of v. Let M be a nonzero submodule of Indθ(N). Denote by m the
minimal non-negative integer for which there exist a nonzero v ∈ M
such that w(l(v)) = m. If m = 0, then v belongs to the canonical
copy 1 ⊗ N of N in Indθ(N), which implies M = Indθ(N) since N is
simple and generates Indθ(N). Our aim is to show that m > 0 leads
to a contradiction.

Assume that m > 0 and let v ∈ M be a nonzero element such that
w(l(v)) = m. We assume that v is in the form (2.1). Let j := l(v) and
set p := min{s : js 6= 0} > 0. Then the element lk+pv belongs to M .
To write lk+pv in the form (2.1) we have to move lk+p all the way to the
right using the commutation relations. Let us for the moment assume
that lk+pv 6= 0 (we will prove it later). By Theorem 1(b), we have
lk+pvi = 0 for all i ∈ supp(v), which means that every i′ ∈ supp(lk+pv)
is in the support of [lk+p, l

i]v for some i ∈ supp(v). In particular,
w(i′) < w(i) and thus w(l(lk+pv)) < w(l(v)) = m, which contradicts
our choice of m.

It remains to show that lk+pv 6= 0. To prove this, it is enough to show
that j′ := j − εp ∈ supp(lk+pv). By Theorem 1(a), we have lkvj 6= 0.
This implies that j′ ∈ supp([lk+p, l

j]vj) (to get j′ we simply commute
lk+p with one of the l−p’s appearing in lj). In fact, it is easy to see that
j′ = l([lk+p, l

j]vj). So, it remains to show that j′ 6∈ supp([lk+p, l
i]vi)

for any i ∈ supp(v) \ {j}.
Assume first that w(i) < w(j). From Theorem 1(b) it then follows

that for any k ∈ supp([lk+p, l
i]vi) we have

w(k) 6 w(i)− p < w(j)− p = w(j′),

which means that k 6= j′.
Assume now that w(i) = w(j) but d(i) < d(j). If the element

k ∈ supp([lk+p, l
i]vi) is such that d(k) < d(i), then

d(k) < d(i) 6 d(j)− 1 = d(j′),
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which means that k 6= j′. If k ∈ supp([lk+p, l
i]vi) is such that d(k) =

d(i), then such k can only be obtained by commuting lk+p with some
l−s, where s > k + p. Therefore

w(k) = w(i)− k − p < w(i)− p = w(j)− p = w(j′)

(note that here we used k > 0), which again means that k 6= j′.
Finally, consider the case w(i) = w(j) and d(i) = w(j). Then i < j.

Let q := min{s : is 6= 0} > 0. We have either q > p or q = p. First
consider the case q > p. In this case the same argument as in the
previous paragraph shows that for any k ∈ supp([lk+p, l

i]vi) we have
w(k) < w(j′). In the remaining case q = p we get l([lk+p, l

i]vi) =
i− εq = i− εp. From the recursive definition of the lexicographic order
we also have i− εp < j− εp = j′ and the claim follows.

3. Proof of Theorem 2

3.1. (b)⇒(a). Similarly to [MZ2, Subsection 2.3] one shows that L

contains a non-zero v satisfying V
(n)
+ v = 0. As L is generated by v and

has a central character, the PBW Theorem implies that L is spanned
by all elements of the form

liv := · · · lin−2

n−2 l
in−1

n−1 l
in
n v

(where only finitely many factors are different from 1). Hence it is
enough to show that each of these vectors generates a finite dimensional

V
(n)
+ -submodule of V (and then we can take k = n). Let I denote

the annihilator of liv in U(V
(n)
+ ). Set m :=

∑
s6n |s|is < ∞. Then I

contains all li for which i > m+n and any product of lj, n < j 6 m+n,
with at least m + 1 factors. It follows that the codimension of I in
U(V

(n)
+ ) if finite, which implies the claim.

3.2. (c)⇒(b). Both highest weight modules and modules Indθ(N) are

generated by elements annihilated by some V
(k)
+ . Then the argument

from the previous subsection shows that thisV
(k)
+ acts on these modules

both locally finitely and locally nilpotently.

3.3. (a)⇒(b). Let V be a finite-dimensional V
(k)
+ -module and i ⊂ V

(k)
+

be the kernel of the representation map. Then i is an ideal of V
(k)
+ of

finite codimension. First we claim that i contains li for some i. If not,
then there exists a minimal m ∈ N such that i contains an element of
the form asls+as+1ls+1+ · · ·+as+mls+m for some s ∈ N and complex
numbers as, as+1, . . . , as+m satisfying as, as+m 6= 0. Then i contains

[ls, asls + as+1ls+1 + · · ·+ as+mls+m] =

= as+1l2s+1 + 2as+2l2s+2 + · · ·+mas+ml2s+m 6= 0,

which contradicts our choice of m.
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Next observe that [V
(k)
+ , li] contains V

(2i+1)
+ and thus V

(2i+1)
+ ⊂ i.

This implies that L contains a nonzero v such that V
(2i+1)
+ v = 0. Then

the argument from Subsection 3.1 shows that V
(2i+1)
+ acts on L locally

nilpotently.

3.4. (b)⇒(c). Let k ∈ Z+ be minimal such that the action of all li,
i > k, on L is locally nilpotent. Similarly to [MZ2, Subsection 2.3] one
shows that there exists a nonzero v ∈ L annihilated by all li, i > k.
If k = 0, then L is a highest weight module by [MZ2, Theorem 1(c)].
Assume k > 0. Consider the vector space

N := {v ∈ L : liv = 0 for all i > k}.

We have N 6= 0 by the above agrument. As V
(k)
+ is an ideal of V+, the

space N is stable under the action of V+. The central element c acts
on any simple module as a scalar ([Di, Proposition 2.6.8]), let θ be the
corresponding scalar for L. As L is simple, it is generated by N and
hence the canonical map Indθ(N) → L sending 1 ⊗ x to x for every
x ∈ N is surjective.

Lemma 3. The canonical map Indθ(N) → L is an isomorphism.

Proof. Assume that this is not the case and let K 6= 0 be the kernel
of the canonical map. Choose nonzero v ∈ K, written in the form
(2.1), such that w(l(v)) = m is minimal possible. Note that m > 0
as the canonical map is bijective for v satisfying w(l(v)) = 0. Since
K is a submodule, we have lk+pv ∈ K for all p ∈ N. Choosing p as
in Subsection 2.3 and using the proof from there (which starts in the
second paragraph and does not use simplicity of N), we get that the
element lk+pv from K is nonzero and its leading coefficient has strictly
smaller weight, a contradiction. �

Let us now show that N is simple. Assume that this is not the case
and let N ′ ⊂ N be a proper submodule. Then Indθ(N

′) is a proper
submodule of Indθ(N) by the PBW theorem, a contradiction.

To complete the proof of Theorem 2 it remains to show that lk acts
injectively on N . Assume that this is not the case. Then there is a
nonzero v ∈ N such that lkv = 0. As all li, i > k, act on L locally
nilpotently and L is simple, it follows easily that the action of lk on
L is locally nilpotent as well. This contradicts our choice of k and
completes the proof.

3.5. Reformulation of condition (a). As mentioned in the previous
subsection, condition (b) of Theorem 2 is equivalent to the condition
that there exist k ∈ N such that for every i > k the action of li on
L is locally nilpotent (confer [MZ2, Theorem 1.1(c)]). The aim of this
subsection is to prove the following similar reformulation for condition
Theorem 2(a):
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Proposition 4. Condition (a) of Theorem 2 is equivalent to:

(3.1) ∃k ∈ N such that ∀i > k the action of li on L is locally finite.

That Theorem 2(a) implies (3.1) is obvious so we only have to es-
tablish the reverse inclusion. To do this we will need several lemmata.

Lemma 5. Let k ∈ N and V be a simple V-module containing a non-

zero finite dimensional V
(k)
+ -submodule X. Then V is a locally finite

V
(k)
+ -module.

Proof. This is [BM, Theorem 6]. �

Lemma 6. Let k ∈ N. Assume that V is a V
(k)
+ -module on which lk+1

acts locally finitely. Let further v ∈ V and λ ∈ C be such that v 6= 0

and lk+1v = λv. Then dimC V
(k)
+ v <∞.

Proof. As the action of lk+1 on V is locally finite, for any i from the
set {k + 2, k + 3, . . . , 2k + 2} there is some mi ∈ N such that the
elements liv, (lk+1 − λ)liv, (lk+1 − λ)2liv,. . . , (lk+1 − λ)miliv are
linearly dependent. By induction on s one shows that (lk+1 − λ)sliv
equals li+s(k+1)v up to a scalar, which implies existence of a relation of
the form

mi∑
s=0

αi,sli+s(k+1)v = 0,

where αi,s ∈ C and not all of them are zero. Taking the commutator
with lk+1 − λ gives

mi+1∑
s=1

α
(1)
i,s li+s(k+1)v = 0,

where α
(1)
i,s ∈ C and not all of them are zero. This can be continued

inductively. Letm := max{mi : i ∈ {k+2, k+3, . . . , 2k+2}}. It follows
that V

(k)
+ v coincides with the linear span of ljv, j 6 (m+3)(k+1). �

Proof of Proposition 4. As the action of lk+1 on L is locally finite, there
is λ ∈ C and a non-zero element v ∈ L such that lk+1v = λv. By

Lemma 6, there is m ∈ N such that Vk+1 := V
(k)
+ v is spanned by v,

lk+2v, lk+3v,. . . , lmv. For i ∈ {k+2, k+3, . . . ,m} define now the finite
dimensional space Vi and a positive integer di inductively as follows: if
Vi−1 is defined, then di is the degree of some nonzero polynomial fi(li)
which annihilates Vi−1 (this is well-defined as Vi−1 is finite dimensional
and li acts on L locally finitely); if Vi−1 and di are defined, then Vi
is the linear span of Vi−1, liVi−1, l

2
iVi−1,. . . , l

di
i Vi−1, which is finite

dimensional.
By Lemma 5, to prove Proposition 4 it is enough to show that L

contains a nonzero finite dimensional V
(k)
+ -submodule. For this it is

enough to show that the finite dimensional vector space Vm defined in
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the previous paragraph is, in fact, a V
(k)
+ -submodule. This vector space

is spanned over C by elements of the form

liv := limm l
im−1

m−1 · · · l
ik+2

k+2 v, 0 6 is 6 ds for all s ∈ {k+2, k+3, . . . ,m}.

We will show, by induction on the weight and the degree of i, that for
any ls, s > k, we have lsl

iv ∈ Vm. The basis of the induction (i = 0)
follows from definitions and Lemma 6.

To prove the induction step we have to move ls in lsl
iv all the way

to the right using the commutation relations. Consider first the case
s > m. In this case any new element lp which appears as the result
of commutation satisfies p > m and any commutation decreases the
degree of the monomial. When such lp is moved all the way to the
right and applied to v, we use Lemma 6 which expresses lpv as a linear
combination of lqv with q < p. The keeps the degree but decreases the
weight. Therefore in both cases we may apply the inductive assump-
tion.

If s 6 m, then two types of new elements lp may appear. Those for
which p > m are dealt with as described in the previous paragraph.
Those for which p 6 m should be commuted to their natural place in
the monomial. If this results in the fact that the corresponding degree
of lp will exceed dp, then we use that fp(lp) annihilates Vp−1 which
allows us to write this element as a linear combination of elements
both of smaller weight and degree. This justifies the induction and
completes the proof. �

4. Old and new simple Virasoro modules

4.1. Highest weight modules. Let h be the Cartan subalgebra of
V, spanned by l0 and c. For λ ∈ h∗ we have the Verma module
M(λ) := U(V)⊗U(h+V+) Cλ, where liCλ = 0 for i > 0, while l0 and c

act on Cλ via scalars λ(l0) and λ(c), respectively. The module M(λ)
has the unique simple top L(λ), the unique (up to isomorphism) simple
highest weight module with highest weight λ. In general,M(λ) 6' L(λ),
see e.g. [IK] for details. These modules correspond to the case k = 0
in Theorem 2.

4.2. Whittaker modules of Ondrus and Wiesner. Consider a
nonzero λ := (λ1, λ2) ∈ C2. Denote by Nλ the V+-module U(V+)/I,
where I is the left ideal generated by l1 − λ1, l2 − λ2, l3, l4,. . . . By
the PBW Theorem, Nλ

∼= C[l0] as a C[l0]-module, liNλ = 0 for i > 2,
and for i = 1, 2 we have lif(l0) = f(l0− i)λi, f(l0) ∈ C[l0]. As λ 6= 0,
taking linear combinations of f(l0) and f(l0 − i)λi over C one can al-
ways reduce the degree, which implies that Nλ is simple. The module
Nλ obviously satisfies the conditions of Theorem 1 (with k ∈ {1, 2}).
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Hence, by Theorem 1, we obtain the corresponding simple induced V-
module Indθ(Nλ). These are exactly the Whittaker modules over V
constructed in [OW1].

4.3. Whittaker modules of Lü, Guo and Zhao. Consider some
k ∈ N and set r := dk

2
e − 1. Choose λ = (λr+1, λr+2, . . . , λk) ∈ Ck−r

such that λk 6= 0. Denote by Kλ the V+-module U(V+)/I, where I is
the left ideal generated by

lr+1 − λr+1, lr+2 − λr+2, . . . , lk − λk, lk+1, lk+2, . . . .

Lemma 7. The V+-module Kλ is simple.

Proof. By the PBW Theorem, a basis of Kλ is given by the images
of li00 l

i1
1 . . . l

ir
r =: li, where i := (i0, i1, . . . , ir) ∈ Zr+1

+ . Let < be the
lexicographic order on Zr+1

+ , that is 0 = (0, 0, . . . , 0) is the minimum
element and i < j provided that

• min{s : is 6= 0} > min{s : js 6= 0} or
• min{s : is 6= 0} = min{s : js 6= 0} = m and i− εm < j− εm.

Let v ∈ Kλ be a nonzero linear combination of basis elements and i be
the highest term in supp(v) with respect to <. Set p := min{s : is 6= 0}.
Similarly to Subsection 2.3 one shows that (lk−p − λk−p)v is nonzero
with highest term i − εp. Repeating this process inductively (with
respect to the degree of i) we get that the submodule inKλ generated by
v contains an element with support {0}. Any such element is the image
of a nonzero constant and hence generates Kλ. The claim follows. �

The module Kλ obviously satisfies the conditions of Theorem 1 (with
the same k). Hence, by Theorem 1, we obtain the corresponding simple
inducedV-module Indθ(Kλ). These are exactly the Whittaker modules
over V constructed in [LGZ, Theorem 6].

4.4. Whittaker modules of Felinska, Jaskolski and Kosztolow-
icz. Consider some k ∈ N, k > 1, and choose λ = (λ1, λk) ∈ C2 such
that λk 6= 0. Denote by Gλ the V+-module U(V+)/I, where I is the
left ideal generated by l1 − λ1, lk − λk, lk+1, lk+2,. . . .

Lemma 8. The V+-module Gλ is simple.

Proof. By the PBW Theorem, a basis of Gλ is given by the images of
li00 l

i2
2 . . . l

ik−1

k−1 =: li, where i := (i0, i2, . . . , ik−1) ∈ Zk−1
+ . Let < be the

lexicographic order on Zk
+ defined as in the proof of Lemma 7. Let

v ∈ Gλ be a nonzero linear combination of basis elements and i be the
highest term in supp(v) with respect to <. Set

p := min{s > 0 : is 6= 0}.
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Similarly to Subsection 2.3 one shows that (l1 − λ1)v is nonzero with
highest term {

i− εp + εp+1, p 6= k − 1;

i− εk−1, otherwise.

Repeating this process inductively (with respect to both the degree
and the weight of i) we get that the submodule in Gλ generated by v
contains an element with support {mε0} for some m ∈ Z+. The linear
span of such elements is a simple module over the subalgebra generated
by l0 and lk (as λk 6= 0), see Subsection 4.2. Moreover, it contains
the image of a nonzero constant and hence generates Gλ. The claim
follows. �

The module Gλ obviously satisfies the conditions of Theorem 1 (with
the same k). Hence, by Theorem 1, we obtain the corresponding simple
induced V-module Indθ(Gλ). These are exactly the Whittaker modules
over V constructed in [FJK, Section III].

4.5. Other Whittaker modules. Fix k ∈ N. Choose a pair (S, λ),
where S ⊂ {1, 2, . . . , k} and λ = (λi)i∈S ∈ C|S|, such that the following
conditions are satisfied:

(I) k ∈ S and λk 6= 0;
(II) for all distinct i, j ∈ S such that i+ j ∈ S we have λi+j = 0;
(III) for all j ∈ {1, 2, . . . , k} \ S there exists i ∈ S such that either

i+ j ∈ {1, 2, . . . , k} \ S or i+ j ∈ S and λi+j 6= 0.

One example is S = {1, k} and any λ with λk 6= 0 (confer Subsec-
tion 4.4), another example is S = {dk

2
e, dk

2
e+1, . . . , k} and any λ with

λk 6= 0 (confer Subsection 4.3). Yet another example is S = {2, 4, 5}
for k = 5 and any λ with λ5 6= 0. Our final example is S = {3, 4, 6, 7, 8}
for k = 8 and any λ with λ8 6= 0 and λ7 = 0 (note that here we have
3+4 ∈ S). Denote by Qλ the V+-module U(V+)/I, where I is the left
ideal generated by li − λi, i ∈ S, and lk+1, lk+2,. . . . Condition (II)
guarantees that the module Qλ is nonzero.

Lemma 9. The V+-module Qλ is simple.

Proof. Let {0, 1, . . . , k} \ S = {p1, p2, . . . , pm}, p1 < p2 < · · · < pm (we
have p1 = 0). By the PBW Theorem, a basis of Qλ is given by the
images of li1p1l

i2
p2
. . . limpm =: li, where i := (i1, i2, . . . , im) ∈ Zm

+ . Let <
be the lexicographic order on Zm

+ defined as above. Let v ∈ Qλ be a
nonzero linear combination of basis elements and i be the highest term
in supp(v) with respect to <. Set

q := min{s > 0 : is 6= 0}.
Let S ′ be the set of all j ∈ S such that q+j 6 k. We claim that S ′ 6= ∅.
In fact, S ′ contains the minimal element s of S, for if q + s > k, then
q + i > k for any i ∈ S by minimality of s. This, however, violates



SIMPLE VIRASORO MODULES 11

condition (III). Another application of condition (III) implies that
there is a minimal t ∈ S ′ such that either q + t 6∈ S or λq+t 6= 0.

Now, similarly to Subsection 2.3 one shows that (lt−λt)v is nonzero
with highest term {

i− εq + εq+t, q + t 6∈ S;

i− εq, otherwise.

Repeating this process inductively (with respect to both the degree
and the weight of i) we get that the submodule in Qλ generated by v
contains an element with support {mε1} for some m ∈ Z+. The linear
span of such elements is a simple module over the subalgebra generated
by l0 and lk (as λk 6= 0 by condition (I)), see Subsection 4.2. Moreover,
it contains the image of a nonzero constant and hence generates Qλ.
The claim follows. �

The module Qλ obviously satisfies the conditions of Theorem 1 (with
the same k because of condition (I)). Hence, by Theorem 1, we obtain
the corresponding simple induced V-module Indθ(Qλ). As far as we
can judge, if S is not of the form {1, k} or S = {dk

2
e, dk

2
e + 1, . . . , k},

then the simple V-module Indθ(Qλ) is new.

4.6. Block modules. Denote by b the two-dimensional Lie algebra

V+/V
(1)
+ . Let N be a simple infinite dimensional b-module. Then

N has the induced structure of a simple V+-module, which obviously
satisfies the conditions of Theorem 1 (with k = 1). Hence, by Theo-
rem 1, we obtain the corresponding simple induced V-module Indθ(N).
A classification of simple b-modules is obtained by Block in [Bl, Sec-
tion 6] (this includes a very explicit family of simple modules proposed
by Arnal and Pinczon in [AP, Section 5]). As far as we can judge,
if we leave out weight and Whittaker modules (a “negligible” set in
Block’s classification), all other simple V-modules obtained in this way
are new.

4.7. Block modules for k = 2. Denote by c the three-dimensional Lie

algebra V+/V
(2)
+ . Note that the algebra b from the previous subsection

is a subalgebra of c. Abusing notation, we identify li, i = 0, 1, 2, with
their images in both b and c. For any λ ∈ C, mapping

l0 → l0, l1 → l1, l2 → λl21

extends to an epimorphism ϕλ : U(c) � U(b). Let

ϕλ : b-mod → c-mod

denote the induced pullback functor. As ϕ is an epimorphism, ϕλ

maps simple modules to simple modules. Let L be a simple b-module
(from [Bl, Section 6]) and N = ϕλ(L), where λ 6= 0 (it is easy to
see that different λ give non-isomorphism modules). Then N has the
induced structure of a simple V+-module, which obviously satisfies the
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conditions of Theorem 1 (with k = 2). Hence, by Theorem 1, we obtain
the corresponding simple induced V-module Indθ(N). As far as we can
judge, most of these simple V-modules are new.

Let ψ : c → b be the unique Lie algebra epimorphism which sends

l0 →
1

2
l0, l1 → 0, l2 → l1.

Let ψ : b-mod → c-mod be the induced pullback functor, which again
sends simple modules to simple modules. Similarly to the previous
paragraph, for any simple b-module L and any θ ∈ C we get the simple
module Indθ(ψ(L)). Moreover, we have the following:

Proposition 10. Every simple c-module N is isomorphic either to
ϕλ(L) for some λ ∈ C and some simple b-module L or to ψ(L) for
some simple b-module L.

Proof. First we assume that N contains a nonzero v such that l2v = 0.
Then every element in N can be written in the form

∑
i,j>0 αi,jl

i
0l

j
1v

where αi,j ∈ C and we have

l2

(∑
i,j>0

αi,jl
i
0l

j
1v

)
=
∑
i,j>0

αi,j(l0 − 2)ilj1l2v = 0,

which means that l2N = 0. It follows that the restriction L of N to b
is simple and N ∼= ϕ0(L).

Assume now that N contains a nonzero v such that l1v = 0. The
same arguments as in the previous paragraph show that l1N = 0,
which implies that N ∼= ψ(L) for some simple b-module L.

Finally, assume that both l2 and l1 act injectively on N . Let A
denote the localization of U(c) with respect to powers of l2. The el-
ement l21l

−1
2 belongs to the center of A and is nonzero. If N is a

simple c-module on which l2 acts injectively, then N localizes to a sim-
ple A-module N ′. As A is finitely generated (it is generated by l0,
l1, l2 and l−1

2 ), the central element l21l
−1
2 must act as some scalar, say

λ ∈ C\{0}, on N ′ (confer the proof of [Mz, Theorem 4.7]). This means
that l21 − λl2 annihilates N . Again, it follows that the restriction L of
N to b is simple and N ∼= ϕµ(L), where µ = λ−1. �

5. Revision of the Whittaker setup

In this section we would like to take the opportunity to extend and
correct the Whittaker setup proposed in [BM].

5.1. Whittaker pairs and Whittaker modules. Let n be a Lie
algebra. Set n0 := n and define recursively ni := [ni−1, n], i ∈ N.
We will call the algebra n quasi-nilpotent provided that the descending
chain n0 ⊃ n1 ⊃ . . . of ideal has zero intersection and each ni has finite
codimension in n (confer [BM, 3.1] where the last condition is missing).
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Denote by Fn the category of all finite dimensional n-modules and by
Wn the full subcategory of Fn consisting of all modules V for which
there is i ∈ N such that niV = 0. In [BM, Proposition 3] it is claimed
that every simple finite dimensional n-module belongs to Wn. This is
wrong as shown by the following example:

Example 11. Let a be any simple finite dimensional Lie algebra and
A := tC[t] be the associative algebra of polynomials without constant
term. Then the Lie algebra n := A ⊗ a with the Lie bracket given by
[f ⊗ a, g ⊗ b] := fg ⊗ [a, b] is quasi-nilpotent with ni = ti+1C[t] ⊗ a.
Any simple a-module V becomes a simple n-module via the evaluation
map sending t to 1.

This suggests the following revision of the Whittaker setup from
[BM]: Let g be a Lie algebra and n a Lie subalgebra of g. Denote by
Wg

n the full subcategory of the category of g-modules which consists
of all modules V for which any v ∈ V belongs to some n-submodule
X ⊂ V such that X ∈ Wn. We will say that (g, n) is a Whittaker
pair provided that n is quasi-nilpotent and g/n ∈ Wg

n. Objects in the
categoryWg

n are calledWhittaker modules for the Whittaker pair (g, n).
All general results of [BM] are true if the definition of the category Wg

n

is adjusted in this way (in [BM] this notation is used for the category
defined in the next paragraph).

It is also natural to consider the full subcategory Fg
n of the category

of g-modules which consists of all modules V for which any v ∈ V
belongs to some n-submodule X ⊂ V such that X ∈ Fn. Objects
in the category Fg

n are called generalized Whittaker modules for the
Whittaker pair (g, n).

There are many quasi-nilpotent algebras n for which Fn = Wn. For
example, this is the case if n is finite dimensional (and hence nilpotent).
Two other important examples are described below in Subsection 5.2
and 5.3. The most important example of n for which Fn 6= Wn is when
n is the positive part of the standard triangular decomposition of an
affine Lie algebra g. Generalized Whittaker modules in this case are
studied in [CGZ].

5.2. Whittaker setup for the Virasoro algebra. In the case of the
Virasoro algebra V we have:

Proposition 12. Let n be a Lie subalgebra of V
(0)
+ such that n ⊃ V

(k)
+

for some k ∈ Z+. Then:

(a) Fn = Wn.
(b) (V, n) is Whittaker pair.

Proof. Claim (a) follows from the first paragraph of Subsection 3.3.
Claim (b) follows from definitions. �
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From Proposition 12(a) it follows that for any n as in Proposition 12
any simple module in Wg

n is contained in the list provided by Theo-
rem 2.

5.3. Whittaker setup for the Witt algebras. For n ∈ N denote
by wn the Lie algebra of all derivations of the polynomial algebra
C[x1, x2, . . . , xn] (the classical Witt algebra). Set N := {1, 2, . . . , n}
and for i ∈ N let ∂i denote the derivation ∂

∂xi
. For i ∈ N and

m = (m1,m2, . . . ,mn) ∈ Zn
+ the elements Di(m) = xm1

1 xm2
2 · · ·xmn

n ∂i
form the standard basis of wn. The linear span of xi∂i, i ∈ N, is
the standard Cartan subalgebra h of wn and the linear span a of xi∂j,
i, j ∈ N, is a copy of gln. Let

a = na− ⊕ h⊕ na+

be some triangular decomposition of a. Denote by n+ the linear span
of na+ and ∂i, i ∈ N. Denote by n the linear span of na− and all the
elements Di(m) which are contained in neither a nor n+. Then we have
a decomposition

wn = n− ⊕ h⊕ n+

into a direct sum of subalgebras and both (wn, n−) and (wn, n+) are
Whittaker pairs (see [BM, 5.1]). The algebra n+ is nilpotent finite
dimensional, while n− is neither nor (but it is quasi-nilpotent).

Proposition 13. For n = n− we have Fn = Wn.

Proof. Note that the claim of Proposition 12 in the case of the algebra

V
(0)
+ is the claim of Proposition 13 in the case of the algebra w1. Hence

we are left to consider the case n > 1.
Let V be a finite dimensional n-module and i ⊂ n be the kernel of

the representation map. To prove our proposition it is enough to show
that i contains all but finitely many elements of the standard basis. For
a fixed i ∈ N, the elements xsi∂i, s > 0, form a copy of V+ inside wn.
Hence Proposition 12 implies that all but finitely many such elements
are in i. Commuting these elements with x2i∂j, where j 6= i, we get
that i contains all but finitely many elements of the form xsj∂i. Hence
there is N ∈ N such that i contains all xsj∂i where s > N .

Now we claim that for any i ∈ N and any m such that mj > N
for some j we have Di(m) ∈ i. Write m = m′ + m′′, where m′

j =
mj while m′

s = 0 for all s 6= j. Assume first that i = j. Then we
have Di(m

′ + εi) ∈ i by the previous paragraph and the commutator
[Di(m

′ + εi), Di(m
′′)] equals Di(m) up to a nonzero scalar. In the

case i 6= j we have Dj(m
′) ∈ i by the previous paragraph and the

commutator [Dj(m
′), Di(m

′′+εj)] equalsDi(m) up to a nonzero scalar.
The claim of the proposition follows. �
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