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Abstract

We show that every torsion free weight module with finite dimen-
sional weight spaces over a symplectic complex Lie algebra, which is
different from sp(2,C), is completely reducible.

1 Introduction and the main result

Let g be a simple complex finite dimensional Lie algebra and h be a fixed
Cartan subalgebra of g. A g-module, V, is called a weight-module provided
that the action of h on V is diagonalizable. Alternatively, if for A € h* one
defines V) = {v € V : h(v) = A(h)v for all h € b}, then V is a weight
module if and only if V' = @y¢p-Vi. A weight g-module, V, is said to be
torsion free provided that the action of any non-zero element in g\ b is
bijective. Throughout this paper g = sp(2n,C) for some n > 1. The main
result of the present paper is the following theorem.

Theorem 1. Assume that g = sp(2n,C), n > 1, is a symplectic Lie alge-
bra and V 1is a weight torsion free g-module with finite dimensional weight
spaces. Then V is completely reducible. Fquivalently, for n > 1 the cat-
egory T (sp(2n, C)) of all weight torsion free sp(2n, C)-modules with finite
dimensional weight spaces is semi-simple.

Theorem 1 was conjectured in 1994 by the first and third authors in
presentations at conferences in Banff and Detroit. Good evidence for this
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conjecture was obtained in [BL3|, where it was shown that the tensor prod-
uct of arbitrary simple torsion free sp(2n, C)-modules with finite dimensional
weight spaces and any finite dimensional sp(2n, C)-module is completely re-
ducible.

We remark that the classification of the simple objects in the category
T (sp(2n,C)) is known [M]. The algebra sp(2n,C) is the Lie algebra of type
C,,, which explains the title of the paper. And finally, the condition n > 1 is
necessary. For n = 1 the algebra sp(2, C) is of type A; and is isomorphic to
s[(2,C). Tt is well-known that in this case weight torsion free modules with
finite dimensional weight spaces can have self-extensions. Actually, it can be
easily derived from the results of [DFO] that the indecomposable blocks of
the category of weight torsion free sl(2, C)-module with finite dimensional
weight spaces are equivalent to the category of nilpotent representations of
the polynomial algebra C[z]. An explicit example of a non-split self-extension
of a simple torsion free A;-module is provided in [BL2]. We further remark
that the statement of Theorem 1 is, in general, false for torsion free sl(n, C)-
modules, n > 1, on the other hand, the result trivially extends to any direct
sum of symplectic algebras. For simple algebras, which are not of type A,, or
C,, simple weight torsion-free modules with finite-dimensional weight spaces
do not exist, see [F].

Our approach to the proof of Theorem 1 can be split into three steps.
In the first step we use an equivalence of certain categories from [BG] to
reduce the question to the case of the so-called completely pointed modules,
i.e. those weight modules V' for which dim(V,) < 1 for all A € h*. In
the second step we use Mathieu’s twisting functor, [M], and some specific
features of the root system of g to reduce the study of self-extensions of
completely pointed sp(2n, C)-modules to the study of completely pointed
sp(4, C)-modules. These two steps form Section 2. In section 3 we use a
direct computational approach to show that completely pointed torsion free
sp(4, C)-modules do not have self-extensions, and we continue this approach
in Section 4 to obtain an alternative computational proof of Theorem 1.
In the last section we derive a corollary of Theorem 1 for some parabolic
generalizations of the category O.



2 Proof of Theorem 1

Our proof of Theorem 1, which we present in this section will use the following
lemma which will be proven in Section 3.

Lemma 1. Assume that g = sp(4,C), and V is a simple, torsion free, com-
pletely pointed weight g-module. Then Ext)l,v(g)(V, V) = 0, where W(g) de-
notes the category of all weight g-modules. In particular, the action of an ar-
bitrary element from the centralizer Uy(g) of the Cartan subalgebra of sp(4, C)
on any weight space of an arbitrary extension of completely pointed torsion
free simple modules is a multiple of the identity.

Since every module V' € T, = T (sp(2n,C)) has finite dimensional weight
spaces, the action of the center Z(g) of the universal enveloping algebra U(g)
on V is locally finite. Hence, we have the decomposition 7, = ®ycz(g)* Tn(X),
where 7,(x) is the full subcategory of 7,, which consists of all modules M
such that there exists £ € N with (z — x(2))*M = 0 for all z € Z(g). We
can further decompose the categories 7,(x) as follows: for A € h* we denote
by T.(x,A) the full subcategory of T, (), consisting of all M, whose support
supp(M) ={p € b* : M, # (0)} C A+ ZA, where A is the root system of g
with respect to h. It is obvious that 7,(x, ) is a direct summand of 7, (x).
We remark that 7,(x, A\) = Tn(x, i) if and only if yp € A+ ZA. According to
Mathieu’s classification and using [M, Section 9] one gets that every 7,(x, A)
is either zero or contains exactly one simple module.

Lemma 2. Let x,x' € Z(g)* and \,\' € b* be such that both T,(x,\) and
To(X', X) are non-zero. Then T,(x, ) and T,(x', ') are equivalent.

Proof. If x = X', then, according to [M, Section 9], the simple modules
L from T,(x,A) and L' from 7,(x, ") belong to the same coherent family.
Hence, these modules are related by the so-called Mathieu’s twisting functor
briefly described as follows. Let X1, ..., X, be the set of pairwise commuting
root elements of g, which correspond to linearly independent roots. Denote
by U’ the localization of U(g) with respect to the Ore multiplicative subset,
generated by X7,..., X,,. Then the algebra U’ has an n-parameter family of
automorphisms O, _,y such that Oy, ., (r) = X[ ... XbrX . X0
provided that all ¢;’s are integers and the map (ti,...,%,) = O,,..1,)(7)
is polynomial in (ti,...,t,) for every r € U’. This polynomial nature of
O1,...t,) allows one to extend the class of automorphisms so that ©,
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defined for all (¢1,...,t,) € C". Denote by ﬁ(tly---,tn) the composition of the
following functors: U’ ®yyq) —, twisting by O, ,...+,), and restriction to U(g).
Clearly, this is an endofunctor on the category of all g-modules on which the
X;’s act injectively. According to [M, Section 9], there exist ¢y,...,t, € C
such that ]:"(tl,___,tn)(L) = L'. Then it is obvious that the functors ﬁ(tl,___,tn) :
To(x, A) = Ta(x, A') and ﬁ(—tl,...,—tn) s TG A) = Ta(x, A) are mutually
inverse equivalences of categories.

To complete the proof it is now enough to show that the statement of
the lemma is true when A = M. In this case we again can use the classifi-
cation in [M] and state that there exists a finite dimensional g-module, F
such that tensoring with F' and projecting on 7 (x') defines an exact func-
tor from 7, (x, A) to T,(x', A). In fact, this functor is a translation functor.
Since, according to [M, Lemma 9.1], the highest weight p of every simple
highest weight g-module with uniformly bounded dimensions of the weight
spaces satisfies either (u, ) > 0 or (u,«) € % + Z for every simple root,
this translation does not cross the walls. Hence, by [BG, Theorem 4.1] or
[BeGi, Proposition 3.1], it is an equivalence of T (x) and 7 (x'). As tensoring
with finite dimensional modules preserves cosets with respect to the weight
lattice, we conclude that the categories T, (x, A) and T,(x, \) are equivalent
as well. This completes the proof. O

By Lemma 2, in order to prove Theorem 1, it is now enough to show that
completely pointed torsion free g-modules do not have self-extensions. Now
we are going to simplify the situation even more, reducing all the questions to
the algebra sp(4, C) (alternatively, one can also use computational arguments
given in the end of Section 3).

Lemma 3. Assume that we have chosen a basis, w, of A. Let V be a com-
pletely pointed simple highest weight (with respect to w) g-module. If o € A
s simple and short then every element from g, acts locally nilpotent on V.
If « € A is long and negative then every non-zero element from g, acts
injectively on V.

Proof. This is an immediate consequence of [M, Lemma 9.1]. O

Corollary 1. Let V' be as in Lemma 8 and let B1,...,05, be the list of all
positive long roots. Then there exists A € h* such that the support of V
belongs to the set {\ =Y ¢ a;if; : a; € R }.



Proof. Let m = {ay, ..., } where «, is the long simple root. Let p be the
highest weight of V. Then, according to Lemma 3, the set A = supp(V)N{p—
Z;:ll a;c; : a; € Z, } is finite since all roots o, i = 1,...,n—1, are short. It
follows now from the PBW Theorem that supp(V) C Uyea{v — > | @i :
a; € Ry }. Since this is a finite union of cones, we can find a weight \ € b*,
which generates the cone, containing all these cones. This completes the
proof. O

Proposition 1. Let V be as in Lemma 3. Denote by U' Mathieu’s localiza-
tion of U(g) with respect to the negative long root vectors. Then the following
statements hold:

1. The module V' = U’ ®u(q) V has length 2.

2. Every simple subquotient of this module is a simple completely pointed
highest weight module with respect to some choice of a basis in A.

3. There exists X € b* such that for every simple subquotient W of V' there
exist &; € {£1}, i =1,...,n, such that supp(W) C {A = " a:f; -
a; € R—F}

Proof. Clearly every simple subquotient of V' is a completely pointed highest
weight module for some choice of the basis in A.

Let B, be the ball of radius r in R” and b,, denote the number of integer
points in By N Z™. It is well-known that b, has a polynomial growth, more-
over, this growth is exactly n. Let C' be the leading coefficient of the growth
polynomial. According to Lemma 3 all negative long root vectors act injec-
tively on V' and the same (for the corresponding negative long root vectors)
can be stated for all simple subquotients of V’. Hence, the growth of the sup-
port of every simple subquotient of V' equals n and the leading coefficient of
the corresponding polynomial is not less than C27". Since the support of V'
can be identified with Z", it has growth n and leading coefficient C'. Hence
the length of V' does not exceed 2".

Take a positive long root, 4, and denote by U” the Mathieu’s localization
with respect to g_g. By the same arguments as above one can see that
the support of the module V" = U" Qg V has growth n and the leading
coefficient C2 ™!, By the arguments above its length is at most 2. However,
it can not be 1 since V' is a submodule, and the growth of supp(V) is strictly
smaller than the growth of supp(V"). This means that V" has length exactly
2. Denote by V the second simple subquotient of V”. From this construction
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and using Corollary 1 one easily gets that there exists A € h* such that
supp(V) € {A =37, aif; : a; € Ry} and, taking A the minimal possible
with respect to the natural order on b*, we get supp(V) C {\—= 7", g;a:6: :
a; € R, }, where ¢; = —1 if and only if §; = £.

Now let D C {—p41,...,—0,} be a subset of long negative roots. Ap-
plying the previous construction to all roots from D we construct simple
subquotients of V', whose support is included into the set {A —>"" | ;a;53; :
a; € R, }, where ¢; = —1 if and only if —3; € D. In particular, this gives us
2" non-isomorphic simple subquotients of V'. This means that the length of
V' is exactly 2" and the modules constructed above are all simple subquo-
tients of V'. The statement about the supports now follows directly from the
construction. O

For V as above and for¢; € {£1},i=1,...,n, we denote by V(&1,...,&n)
the simple subquotient of V', whose support is contained in the set {\ —
Yo €ia;f; - a; € Ry} (here V' and A as in Proposition 1). We remark that
V=V(1,1,...,1).

Lemma 4. Let ¢; € {£1}, i = 1,...,n. Then the following statements are
equivalent:

1. Extyy o (V,V(er,...,en)) #0.
2. Ethl/v(g) (V(Efl, e ,gn), V) 7é 0.
3. FEzactly one of €;, 1 =1,...,n, equals —1.

Proof. The equivalence of the first two statements follows by the standard
duality arguments, using the Chevalley anti involution on g, see for example
[FM, Section 5.5].

The fact that V' does not have self-extensions is obvious. The existence of
a non-split extension of V' by V(ey,...,&,), where exactly one ¢; equals —1
follows from the construction of the module V" in the proof of Proposition 1
(that V" is indecomposable follows from the fact that non-zero elements from
g_p act, by construction, bijectively on V"). Hence we have only to prove
that for example Extll,v(g)(V(al, ..,€n), V) = 0 provided that at least two of
g; are equal to —1. Assume that W is a non-split extension with submodule
V' and subquotient V(eq,...,&y).

By Proposition 1 we have that supp(V) C S; = {A =Y a;f; : a; €
R;} and supp(V(e1,...,en)) C So = {A =" &aifi : a; € Ry} Since
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at least two g; are equal to —1, the intersection of the cones S; and S,
has codimension at least 2 (considering the n-dimensional cube it is easy
to see that this codimension is just the number of ¢;, which are equal to
—1). Let —f3 be some long negative root (with respect to ), which acts
locally nilpotent on V(e1,...,&,). Since the intersection of S; and Sy has
codimension at least 2 and the set of all v € supp(V(e1,...,&,)), such that
v— 3 & supp(V(e1,-..,&,)) has codimension 1, we can find some weight
v € supp(W) such that g_gW, = 0, moreover, this v certainly belongs to
supp(V'(g1,...,€,))- But the module W is of course generated by W, since
W is indecomposable and W, = V (¢4, ..., &,),, the latter being in the top of
W. This implies that g_g must act locally nilpotent on W since W = U(g)W,,
and g_g acts locally nilpotent on U(g) and W,. But this contradicts the fact
that g_p acts injectively on V' by Lemma 3. 0

Now we are ready to prove our main result.

Proof of Theorem 1. From Lemma 1 it suffices to prove the statement for
completely pointed modules. For n = 2 the result is given by Lemma 1. Now
assume that n > 2 and let M be an arbitrary completely pointed torsion
free sp(2n, C)-module. Assume that M’ is a non-split self-extension of M.
Choose some basis 7 C A and consider Mathieu’s localization U’ of U(g)
with respect to the set of all negative long roots. Choose ti,...,%, such
that M = Ot,..t.)(M") contains a simple highest weight submodule, say
V' (existence is given by Mathieu’s classification of coherent families, [M]).
Since Mathieu’s twisting is invertible, the module M will be a non-split self-
extension of the module M = Oty tn) (M).

Now consider the centralizer U of b in U(g). Since M is a non-split
self-extension of M, we immediately get that every weight subspace of M is
an indecomposable module over U. The quotient M / M is isomorphic to M
and hence contains V' in the socle. Consider the minimal submodule N of
M such that [N : V] = 2. This module N will then contain one copy of V in
the socle (this one comes from the socle of M ) and one copy of V' in the top.
Since N is minimal, V' will be the simple top of N. From the construction of
M one easily gets that V is the simple socle of M and thus N has V as the
simple socle as well. The radical of N belongs to M. By Proposition 1, the
module M has length 2" and all its simple subquotients are V(ey,...,en),
g; € {£1},i=1,...,n. From Lemma 4 it follows that the second socle of
M can contain only those V(eq,...,&,) for which exactly one g; equals —1.



Denote V; that V(ey,...,&,), for which ¢; = —1 and ¢; = 1, j # i. Moreover,
since all g_g, where 3 is a positive long root, act bijectively on M we get
that the second socle of M contains all such V;. In particular, these modules
do not have self-extensions again by Lemma 4. Using Lemma 4 once more,
we see that the top copy of V' can extend only some of the modules from
the second radical of M. Recall that the module M does not depend on
our choice of m but rather on the choice of the long positive roots. Hence it
will not change if we choose a different set of simple roots = which preserves
the set of long positive roots. Hence similar arguments imply that the top
copy of V must extend all modules V;, which are in the second socle. This
implies that the module NV has Loewy length exactly 3 and the quotients of
its (unique) Loewy filtration, which coincides with the radical filtration, are
the following:

v

VieVeod...8V, .
V

Now consider an arbitrary monomial, u € Uy, which is written such that
all positive roots are collected to the right hand side. And let u be the
highest weight of V. Applying u to an arbitrary element from N, we either
immediately go to 0 or arrive to some subquotient V; and further can proceed
only to the socle copy of V. Hence the calculation of the action of u on
N, takes place in the part of the module N, consisting of the top copy
of V, the module V; and the socle copy of V. Now consider all possible
u, which go “through” the module V,, (we recall that «,, is the only long
basis root). Now let us determine for which positive roots « it is possible
that u + a € supp(Vy). Certainly it is possible for & = ;. Recall that
supp(Vn) C {p — 2?2—11 a;3; + anfBn ¢ a; € Ry }. Hence, if « is a positive
root such that u + a € supp(V,) it must be possible to write « in the
form — Z?:_ll a;}; + anfBh, where a; € R,. Clearly the only positive root «,
satisfying u + a € supp(V,) is actually «,. Hence, the only element u € U,
that we need to consider is the element X_, X, , where X1, € giq,-

Let a = sp(4, C) denote the subalgebra of g generated by g1,, and g+q,,_,-
The restriction of N to a decomposes into a direct sum of completely pointed
modules and their extensions. Moreover, applying the inverse of O, ..;,) we
can make the picture torsion free. Now Lemma 1 implies that the action
of the centralizer of the Cartan subalgebra of a on NNV is diagonalizable. In
particular, the action of X_,, X,, on N, and hence on NV, is diagonalizable.



Since this is the only generating monomial of Uy, “connecting” V with V,
(that is for all other generating monomials of Uy, which have X, on the
right, their action on V), is trivial since they send V), outside the support of
the module N), we conclude that the submodule, generated by V' does not
contain V,;, hence N does not contain V,,. This contradiction completes the
proof. O

We remark, that in the proof of Theorem 1 we really need to treat the
case g = sp(4,C) separately. Analogous reduction arguments do not work
for the algebra sp(4, C) since in this case one would be forced to go down to
the algebra of type A, for which the statement of Theorem 1, as we have
already mentioned in the introduction, is not true.

3 Proof of Lemma 1

In this section we prove Lemma 1 as well as provide an alternate computa-
tional approach to proving that completely pointed torsion free C,-modules
do not admit non-split self-extensions. The authors acknowledge that some
of the computational results relating to the algebra Cy appeared in [C].

Proof of Lemma 1. For computational purposes we fix a Chevalley basis of
5p(4, (C) = 023

H, = FEiy—FEyp—FEx+Ey Hg = FE33—FEp
Xa = Epp— Eg Yo = Ey—E3y
Xﬁ = E31 Yﬂ = E13

Xotpg = —(Es2+ Ey) Yoig = —(FEa+ Eu)
X2a—|—,3 = 2Egp Yv2a—|—ﬂ = 2Ey.

We also recall from [BL1] that the centralizer Uy of the Cartan subalgebra
b in the universal enveloping algebra is generated by the following elements

H, Hpg

D, =Y, X, D, =Y3Xg

D3 = Ya+ﬂXa+6 Dy = Y2a+ﬂX2a+ﬂ

D5 =Y,15X5X, Ds =Y, YXq48

Dr = }/éa+ﬂXaXa+ﬁ Dg = Ya+6YaX2a+ﬂ
Dy = Yoo 15 XX, Dio = Y Y5 Xoa+p
Dy, = Y2a+ﬁYﬂX2+ﬂ Dyy = Ya2+ﬂXﬁX2a+ﬂ-



By direct computation we obtain the following identities in U

[D1,Dy] = Dg— Ds (3.1)
[Dy,D,] = 2D;—2Ds (3.2)
[D1,Ds] = D3D; —2D1Dy+2Dg— Dy — D7 + Dy — DsH,  (3.3)
[D1,Ds] = —D3Dy+2D,Dy —2D5 + Dyg+ D7 — Dy + DgH, (3.4)
[D1,Dy] = —2D3D; + DyD; + 2Dy + 4D;7 — 2D, — ADs
—D;H, + C4H, — 2Dy (3.5)
[Dy,Ds] = DDy — D3Hy — D3Dy + Ds — D — DsHg (3.6)
[Dy,D;] = —Dy—2D;+ Dy— Dy (3.7)
[Dy, Dg] = Dyy+ Dyg+2Ds — D, (3.8)
[Dy, D11] = —4D¢D, — 4D4Ds + 8D; + 8Dg + 4D, D, + 8Dy,

—8D, +4D;1(H, + Hp) + 8Dy (3.9)

Assume now that V' is a completely pointed torsion free Cy-module and
W is a self-extension of V. Fix a weight A of W and select a basis B = {v, v}
of Wy such that v; generates a submodule W; of W where W; and W/W;
are isomorphic to V. We claim that W is a completely reducible Cs-module
provided W, is a completely reducible Uy-module. Assume to the contrary
that W, ~ Uyvy @ Uyvy as Uy-modules and there exists a nonzero vector
v € Uv; NUwvy. Without loss of generality, we may assume that v is a weight
vector of weight p and v = uyv; = usve Where uy, us € U. Since W is torsion
free we can select an element v € U such that u acts injectively on W and
uuy, uug € Up. Then 0 # uv = uujvy = wuguy € Upvy N Upvy = (0). This
contradiction implies that W ~ Uwv; @ Uws.

For convenience we denote the matrix representations of H, | Wy, Hg |
Wy and D; | Wy with respect to the basis B by A,, Ag and Z; respectively.
Clearly A, = A(Ha)Ilo, Ay = M(Hp)IL> and the Z;’s are each 2 x 2 upper
triangular matrices with equal diagonal entries.

Since W is torsion free we have that By = { X401, Xoipv2} and By =
{XpXav1, XgX,v2} are bases for the weight space Wy 445. Let K denote
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the change of coordinate matrix, i.e. formally we have
(Xa—l—ﬂvla Xa_|_g’l)2)K = (XﬁXa’Ul, XﬂXaUQ)

Multiplying this equation by Y4, Yo Y5, Youi5X4 and Yo, 5Y3X 44 respec-
tively we obtain the following equations

Zs = Z,K (3.10)

ZsK + Zg = 717, (3.11)
Zy = Z;K — Zr + 7,4 (3.12)

InWK = Z;Zy— 24Ty — Zg— 2707+ Zo — 7y (3.13)

Equation 3.10 implies that K is a 2 X 2 upper triangular matrix with
equal diagonal entries. Therefore we have that the matrices Ay, Ag, Z;(i =
1,...,12) and K are pairwise commuting matrices.

The strategy is to use the identities 3.1 through 3.9 applied to W), and
equations 3.10 through 3.13 to express each Z; in terms of A,, Ag and K and
then to show that K is a diagonal matrix which would complete the proof of
Lemma 1.

To begin we observe that Eqn 3.1 implies that Zg = Z5, Eqn 3.2 implies
that Zg = Z7, Eqn 3.3+Eqn 3.4 implies that Z1y = Zy, and Eqn 3.7+Eqn 3.8
implies that Z19 = Z14.

Substituting Z1Z; = Zg(K + 1) = ZsK(K + I) and Z5 = Z3K from
Eqns 3.11 and 3.10 into Eqn 3.6 yields

0=Z5]K(K +1)— Zy — (K + I)Ag|.
Since Z3 is invertible we conclude that
Zy = (K +1)(K — Ap) (3.14)

In particular, we observe that K 4+ I and K — Ag are invertible.
Substituting Zg = Z;(K — I) + Z, from Eqn 3.12 into Eqn 3.7 yields

Multiply by —K and substitute 211K = Z;Zy — Z4Z5 from Eqn 3.13 and
Zy = (K + I)(K — Ag) from Eqn 3.14 yields

(K +1)Z:(2K — Ag) = (K + 1) Zy(K — Ag).
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Since K + 1,27, Z, and K — Ag are invertible we conclude that 2K — Ag is

invertible and
Z7 == Z4(K - Aﬂ)(?K - Aﬁ)_l.

Substituting Eqn 3.16 into Eqn 3.15 yields
Zy = —Zy(K + I)(K — Ag)(2K — Ag)~".
Substituting Eqn 3.16 into Eqn 3.12 yields
Zy=Z,K(K — Ag +1)(2K — Ag) ™.

Substitute Z6 = Z5 = ZgK from Eqn 310, Zg = Z7, Z10
Zy = =277+ Zy — Z1; from Eqn 3.7 into Eqn 3.9 yields

—4Z7y — ZyZy + AZ4 7y + 4711 (Mg + Ag) = 0.

Therefore
Z6 = —Z3 + Z2 + Z4_1Z11(Aa + Aﬁ)

Since Zg = Zy = Z3K and Zy = (K + I)(K — Ag) we have
Zy = (K — Ag)((2K — 2A5 — Ay) (2K — Ag) ™"
and hence from Eqn 3.10 we have
Zs = K(K — Ag)((2K — 2A5 — A) (2K — Ag) .
Substituting for Zg and Z, in Eqn 3.11 we obtain
7y = K(2K — 2A5 — A,) (2K — Ag) .
Substituting for Z;, Z, Zs and Z7 into Eqn 3.5 yields

Zy= (2K — 205 — Ay) (2K — A, + 2I)

At this stage we have expressed all Z; in terms of K, Ay, Ag.

substitute for all Z; in Eqn 3.9 and simplify we obtain

(2K + Ag)(4K — 2A5 — I) = 0.

(3.16)

(3.17)

(3.18)

= Zg and

(3.19)

(3.20)

(3.21)

(3.22)

If we now

(3.23)

Finally we claim that 2K + A, is invertible. Suppose to the contrary that
2K + A, is not invertible and take a nonzero vector x such that (2K +A,)z =
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0. It follows that (2K — Ag)r = —(Ay + Ag)z. Since 2K — Ag is invertible
so is Ay + Ag. Using this we have that

Zix = K(2K —2A5—A,) (2K —Ag)'v = K((2K —Ag) — (Au+Ap))x = 2Kz

Let v € W), have B coordinates x then the B coordinates of X,Y,v = (H, +
Dq)v are given by
(Aa+Z1)z =AMz + 2Kz =0

This contradicts the assumption that W is torsion free and hence X,Y, acts
injectively on Wj. It follows then that K = A, — 17 and hence K as well
as all Z; are diagonal matrices thus completing the proof of Lemma 1. [

Now that we have proven that there are no non-split self-extensions of
simple, completely pointed, torsion free Co-modules we can apply induction
to provide a computational proof that the same result is true for C),-modules.
This approach has the advantage that it deals directly with torsion free mod-
ules and avoids the use of Mathieu’s coherent family construction. This result
together with Lemma 2 provides an alternate proof of Theorem 1.

4 An alternative proof of Theorem 1

Once again from Lemma 2 it suffices to prove the theorem for completely
pointed modules. Assume that W is a self-extension of a completely pointed,
torsion free sp(2n, C)-module V' and let W, denote a submodule of W equiv-
alent to V. For a fixed weight A of W we let v; denote a basis of Wi,
and extend to a basis B = {v1,v2} of Wy. As in the Cy case, it suffices to
prove that there exists a weight space W, which is a completely reducible
Up(Cy)-module.

Recall that if {e;,...,¢€,} is a standard basis of R* then we can realize
the root system A of C,, as

A={t(e—¢) :1<i<j<niU{E(e+e) 1<i<j<n}
and a base of simple roots is given by
m={€ —€y...,€n_1 — €, 26, }.

Fix a Chevalley basis of C, given by {H, : a € 7} U{X, : p € A}. With
this notation, Uy(C),) is generated by {H, : a € 7} together with all basic
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cycles —i.e. all elements X, --- X, € U(C,) where p; € A, Zle u; = 0 and
no proper subsum is zero. Let S denote the set of all sequences {ay, ..., ax}
such that the a; € £{1,...,n}, a; # a; for i # j and there does not exist a
subsequence 1 < 7; < 49 < i3 < #4 < n with a;, = —a;; and a;, = —a;,. In
[BL1], it is shown that for each sequence {ay,...,ax} € S the element

X

€ap_1 " €an“ €an —€ay

C(al, ceey ak) = X€a1,602 .
is a basic cycle and further that Uy(C,) is generated by {H, : a € 7}
together with {C(ay,...,ax) : (ai,...,ax) € S}. In order to prove that W
is completely reducible it suffices to show that for each (ay,...,ax) € S the
matrix representation Z(aq,...,ax) of the action of C(ay,...,ax) restricted
to W, with respect to the basis B is diagonal.

Observe that every basic cycle C(a1, as) is a basic cycle of a regular sub-
algebra of C), which is isomorphic to C5 and hence by Lemma 1 its matrix
representation Z(ai, a) is diagonal. We also note that if (aq,a9,a3) € S
where a; = —ay or a; = —ag or as = —ag then the basic cycle C(ay, as, az) is
a basic cycle of a regular subalgebra of (), which is isomorphic to Cy hence
again Z (a1, ag,a3) is diagonal by Lemma 1.

There exists one other type of basic cycle of length 3, namely C/(a1, az, as)
where a1 # —ay and a; # —as and ay # —as. In this case, we have the
following identity in Uy(C,,)

[C’(al, ao, (1,3), C(al, a3)] = (H€a1—€a3 + D)C’(al, ag, (1,3)
+AC(01, az)C(al, CL3) + BC(ag, CLQ)C(CLl, CL3)

where A, B, D are constants determined by structure constants of the fixed
Chevalley basis for each choice of (a1, as,a3) € S. Applying this identity to
Wy and taking the matrix representations we have

0= (\H

60’3_60‘1

)+D)Z(a1, ag, Cl3)+AZ(CL1, CLQ)Z(U,l, CLg)+BZ(0,3, az)Z(al, 0,3).

Since S is a finite set, only finitely many constants can occur in such equa-
tions. Clearly then we can select a weight A of W such that A\(H,, ., ) — D
is nonzero for all choices of (a1, as,a3) € S and hence all such matrices are
diagonal.

We now have that all basic cycle of length less than or equal to 3 have
diagonal matrix representations. To complete the result we proceed by in-
duction assuming that k& > 4 and Z(ay,...,q,) is diagonal for all p < k.
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Consider the basic cycle C'(ay, - . ., a;) where —a; # ap # —ag_1. In this case
we have

C(al, ceey ak)C(ak_l, al) = C’(al, ceey ak_l)C’(ak_l, ag, al).
Applying this identity to W, we obtain
Z(al, PPN ak)Z(ak_l, al) = Z(al, PN ak_1)Z(ak_1, ag, al).

Since Z(ay_1,a1) is diagonal and invertible, the induction hypothesis implies
that the matrix Z(ay,...,a;) is diagonal.

For any cyclic permutation o = (1,..., k) of the indices it is clear that
C(ag(1ys - - - Ao(k)) is equal to C(ai,...,ax) plus a sum of cycles of length
less than k. It follows that the argument above handles all basic cycles
except those of the form C(ai, —a1, as, —ao,. .., as, —ag) where |ai|, ..., |a
are distinct elements from the set {1,...,n} and ¢ > 2. In this case we
observe that

Clay, —a, ..., ap, —ag)Clag,a1) = Cla,—ay,...,—ap_1,a,)C(ag, —ag,aq)
+AC(ay,—a1)C(—ay,aq,...,as —ayg)

where A is a constant dependent on the sequence {a;, —a1, ..., a;, —as}. Ap-
plying this identity to W, we obtain

Z(ay,—a1, ... a0 —ap)Z(ag,a1) = Z(ay, —ay,...,ap-1,00)7Z(ae, —ap-1,01)
+AZ (a1, —a1)Z(—a1, as, ..., ap, —ag)

Since Z(ag,a1) is diagonal and invertible, the inductive hypothesis implies
that the matrix Z(ay, —ay,...,as, —ay) is diagonal. Therefore Z(ay, ..., ax)
is diagonal for all (aq,...,a5) € S, and hence there exists a weight A such
that W), is a completely reducible Uy(C,,)-module. This establishes that W
is a completely reducible C},-module as claimed.

5 An application
Let a be a semi-simple complex Lie algebra with a fixed Cartan subalgebra
he and p D b, be a parabolic subalgebra of a. Let p = n® o’ @ h* be the Levi

decomposition of p, where n is nilpotent, o’ @ h* reductive, a’ semi-simple
and h* is the abelian center of a’ ® h%. Assume that o’ ~ g = sp(2n, C) for
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n > 1 and consider the category O(p, 7 (g)), which is a full subcategory in
the category of all a-modules, consisting of all a-modules M, that satisfy the
following conditions

1. finitely generated;
2. h¥-diagonalizable;
3. locally U(n)-finite (i.e. dim(U(n)v) < oo for all v € V);

4. decompose into a (possibly infinite) direct sum of modules from 7 (g),
when viewed as g-modules.

Theorem 2. The category O(p, T (g)) is a highest weight category. Equiva-
lently, the category O(p, T (g)) decomposes into a direct sum of full subcate-
gories, each of which is equivalent to the module category of a finite dimen-
stonal complex quasi-hereditary associative algebra.

Proof. The category T (g) is semi-simple and obviously closed under tensor-
ing with finite dimensional g-modules. Moreover, every object in 7 (g) has
finite length (see e.g. [M, Lemma 3.3]). The standard arguments, as for
example in [FKM, Section 4] show that with respect to the action of the cen-
ter of U(a), the category O(p, 7 (g)) decomposes into blocks, each of which
has only finitely many simple modules. The result then follows from [FM,
Theorem 3|. O
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