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Abstract

With each generalized Verma module induced from a “well-embedded” parabolic
subalgebra of a Lie algebra with triangular decomposition we associate a Verma
module over the same algebra in a natural way. In the case, when the semi-simple
part of the Levi factor of the parabolic subalgebra is isomorphic to si(2,C) and the
generalized Verma module is induced from an infinite-dimensional simple module,
we prove that the associated Verma module is simple if and only if the original
generalized Verma module is simple.

1 Introduction and Setup

Let g be a semi-simple complex finite-dimensional Lie algebra with a fixed triangular
decomposition g = n_ @ h P n, and p DO h & n, a parabolic subalgebra of g with the
Levi decomposition p = (a @ h,) @ n, where n is nilpotent, a' = a @ b, is reductive, a is
semi-simple and h, C b is abelian and central in a’. A Generalized Verma module (GVM)
is a module of the form

My(V) =U(g) QV, (1)

where V' is a simple a’-module and nV = 0. In the case of a non-simple module V', the
module M,(V) in (1) will be called induced module. The structure of GVMs is a popular
subject and has been studied by several authors (see, for example, [Ba, CF, DFO, FKM1,
FKM2, FM, KM1, MO, Mcl, Mc2, MS1, MS2, R| and references therein). In particular,
it has been shown that these modules play important role in several generalizations of the
celebrated category O ([R, Ba, MS1, FKM1]) and that they are related to the classification
of all simple weight modules with finite-dimensional weight spaces ([F, M]).
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One of the main questions about GVMs is their structure, i.e. reducibility, submodules
etc. For example, two natural questions are: under which conditions a GVM is simple?
and under which conditions one GVM is a submodule of another one? The corresponding
classical result for Verma modules ([BGG, D]) provides a criterion for inclusion of Verma
modules in terms of the Weyl group action on the space h*, which parameterizes highest
weights of Verma modules. This result was extended to certain classes of GVMs in [R, FM,
Mc2, MS1, Ba, KM1, MO)] (see also references therein). But only rather particular classes
of GVMs were covered. They correspond to families of “well-behaved” simple modules V/,
e.g. finite-dimensional, weight, Whittaker, or Gelfand-Zetlin modules. Simplicity criteria
follow immediately from the mentioned results. But the problem to say something in a
general case, i.e. for arbitrary simple module V', remains open.

In [KM2] with each GVM the authors associate a Verma module in a natural way. Let
M,(V) be a GVM. As V is a simple a’-module, it possesses a central character. Let M ()
be a Verma module over o’ with the same central character as V. Assume that A belongs to
the closure of the anti-dominant Weyl chamber and consider the GVM M, (M ())). In fact,
the last one is a Verma module, say M (u), over g. It was conjectured in [KM2] that the
simplicity of M () implies the simplicity of M,(V'). Recently we have been informed by
Wolfgang Soergel that [KM2, Theorem 1] is already sufficient to prove this conjecture using
the classical BGG-criterion for simplicity of Verma modules and some standard properties
of the Weyl group (see for example [J, Section 2.5]).

The original aim of this paper was to investigate the conjecture above in the case, when
a is isomorphic to sl(2, C), in particular, to extend the conjecture to a criterion of simplicity
for GVMs. There are two strong motivations to study this case. First of all this is the
simplest case different from classical Verma modules, hence one should definitely start with
it. Second, this is the only case, for which all simple a-modules are known ([Bl, B]), hence,
theoretically, arbitrary GVM can be physically constructed. Several partial results in this
case were already known. Namely, if V' is a simple weight sl(2, C)-module or a Whittaker
module, then the structure of M, (V) is relatively well understood ([FM, KM1, FKM2],
resp. [Ba, Mcl, Mc2, MS1, MS2]). In particular, in the first case Mathieu’s localization
functor allows one to relate such M,(V') with Verma modules in a very natural way (see
properties of the functor E in [FKM2]). In the present paper we will use this knowledge
to study the structure of M,(V) for arbitrary, not necessarily weight, module V. Our
approach will be based on description of (semi)primitive elements in GVMs. It is quite
surprizing, but we will see that assuming V' to be infinite-dimensional and simple, the
statement in the conjecture above turns into a simplicity criterion for M, (V). In fact, our
result will be much stronger than just a simplicity criterion, we will completely describe
generalized highest weights of possible submodules in M, (V). Note that the case of finite-
dimensional V' is very well known (see [R]). We also remark that our result is really much
more general than all known ones since “almost all” simple s/(2, C)-modules are not weight
or Whittaker modules (see [Bl]).

One more generalization of the previous picture is that our arguments remain valid for
arbitrary, not necessarily finite-dimensional, Lie algebra having a triangular decomposition
(in the sense of [MP]), so we will work in the following general setup. We let g be a fixed Lie
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algebra with a fixed triangular decomposition, (n;, b, Ay, o) ([MP]), where h is a Cartan
subalgebra, n, is a positive part, A, is the set of roots of n, and o is an antiinvolution. We
set n_ =o(ny), A = —A, and fix a root basis {X3}, {Hg} (where each root is counted
with the corresponding multiplicity) in g. We also fix a simple root, a, of multiplicity 1
in A, such that the corresponding subalgebra a =< X,, X , > is isomorphic to sl(2, C),
and assume that g is an integrable a-module under the adjoint action. Then we choose
p = a+ b+ n, and decompose it as p = (a D b,) ® n, where h, C b is central in
@ =a+h, =adh, = a+bh and nis generated by all Xz, 3 € A, \ {a} (again all roots are
taken with multiplicities) and is quasi-nilpotent. Set n~ = o(n) and h(a) = hNa = (H,).
In what follows we will often refer to [FKM2], where the case of finite-dimensional g is
considered. However, it is clear that all results have natural analogs for Lie algebras with
triangular decomposition, e.g. the reader can consult [FKM3].

The paper is organized as follows: in Section 2 we introduce our main technical tool —
a universal GVM. In Section 3 we use a description of (semi)primitive elements in a GVM
to get a new proof for the conjecture from [KM2] in the case a ~ si(2,C) (modulo the
so-called lifting property — Proposition 2, which will be proved in Section 4). Finally, in
Section 5 we analyze our previous proofs and show that for infinite-dimensional V' our
results extend to a simplicity criterion. We also formulate two conjectures about some
sufficient conditions and one conjecture about a simplicity criterion for M,(V') in the case
of arbitrary a.

2 Universal GVM and its properties

Our main idea is to consider a big enough induced module, which surjects on arbitrary
GVM with given central character. We will call this module a universal GVM and will
construct it as follows. Let x : Z(a’) — C be a central character of a’ and I, = Ker(x)
be the corresponding maximal ideal of Z(a’). Set U2 = U(a')/(U(a') L) (see also [B] for
more information about the structure of UY as a generalized Weyl algebra), which we can
consider as a left a’-module in an obvious way. Quillen’s lemma guarantees that for any
simple a’-module V' there exists y such that V' is a homomorphic image of Uy. Applying
the exactness of the induction functor (from p to g), we get that A, (V') is a homomorphic
image of M,(U?). In this Section we will study the universal GVM M,(Uy) in more detail.

Lemma 1. M,(U?) is locally Z(a)-finite, i.e. Z(a)v is finite-dimensional for any v €
Mp(U)‘g‘).

Proof. First, the a-submodule My = 1® U2 of M, (Uy) is locally Z(a)-finite by definition.
Recall that g is an integrable a-module by our assumptions. Then, as an a-module, Mp(U)‘j)
can be decomposed into a direct sum of modules of the form Mrp ~ M, ® F, where
F is a finite-dimensional a-module (see, for example [FKM1, Proposition 2]). Now, by
[BG, Section 2.6] or [K, Theorem 5.1], each My is locally Z(a)-finite and the statement
follows. O



By the construction, M,(UZ) ~ U(g) ®u(y) Uy and hence it has obvious left U(g)- and
right U(a)- module structures. The next Lemma describes the structure of M,(Uy) as a
left and as a right U(h(a))-module.

Lemma 2. M,(UY) is free as a left and as a right U(h(a))-module.

Proof. First, the a-bimodule M, = 1®UY is isomorphic to Uy as a left and a right a-module.
Consider the associative algebra U?. It is a generalized Weyl algebra ([B, Section 1.2.(3)])
and hence, U? is a free U(h(a))-module from any side by [B, Section 1.1]. We also have
that M, (Uy) is U(n~)-free ([FKM1, Proposition 1]). Let {v;} (resp. {v;}) be any basis of
My as a left (resp. right) U(h(a))-module and {u;} be a weight PBW-basis of U(n™). We
immediately obtain that {u;v;} (resp. {u;vj}) is a basis of M,(UY) as a left (resp. right)
U(h(a))-module. O

An immediate corollary of this Lemma is the following.

Corollary 1. Let v =1® 1 be the canonical generator of Mp(U;). Fiz a total order, <,
on the set A_\ {—a}. Then the set Bv, where

B={XpXp Xp*XT |61 < B < ... < B},
is a basis of My(UZ) as a left and as a right U(h(a))-module.

In principal, the module M,(Uy) is too big, so we will need certain quotients of this
module. For a € C let M* denote the a’-submodule of UY generated by H, — a. Set

N(a,x) = Ug/M".

Again, using the exactness of the induction, M, (N (a, x)) is isomorphic to M, (UZ)/M,(M*).
Moreover, the classical sl(2, C)-theory makes it possible to describe M, (N (a, x)) much bet-
ter, in fact, to show that the structure of this module is very well known. Indeed, by the
arguments from general nonsense (see, for example [FKM1, Section 10]), N(a,x), as an
a-module, can be characterized as the unique a-module, satisfying the following conditions
(compare, for example, with [KM1, Section 2]):

(i) for c= (Ho+1)? +4X _,X, € Z(a) C Z(a'), x(c) is the eigenvalue of ¢ on N(a, X);
(ii) supp N(a,x) = a + 2Z and all the weight spaces are one-dimensional;
(iii) N(a,x) is generated by N(a, X)q-

Lemma 3. The canonical projection ¢ : My(UY) — My(N(a,x)) sends Bv to a C-basis
of My(N(a, X)) coordinated with the h-weight structure of My(N(a,X)), i.e. the set of
elements sent to a fived weight subspace of My(N(a, x)) forms there a basis.

Proof. Follows from Corollary 1. O



Each M,(N(a,x)) is h-diagonalizable (because the module N(a, x) is weight). But, in
general, M, (V) is not h-diagonalizable and is only h,-diagonalizable. For an bh,-diagonali-
zable module, M, and p € b; we will denote by M, the corresponding b,-weight space.

Further we will also need modules, which differ a little bit from the modules N(a, X)
above. Denote by V (a, x) the unique a’-module which has the same simple subquotients as
N(a, x) and on which the element X _,, acts bijectively (see [FM, Section 2]). We emphasize
that, by definition, V' (a, x) ~ N(a, x) if one of them is simple. Recall that an element, v,
of a weight g-module, V, is called p-primitive provided nv = 0. The motivation to study
p-primitive elements is the following standard fact ([MO, Proposition 1]):

Lemma 4. Assume that V is simple. Then the module M,(V') is simple if and only if any
p-primitive element of M,(V') has the form 1 @ v, v € V.

Now we show that the structures of M,(N(a,x)) and M,(V (a, x)) are closely related.

Lemma 5. For any A € b* there is a natural bijection between p-primitive elements in
M,(N(a, X))r—ka and My(V (a, x))r—ka for all k big enough.

Proof. From the definition of V' (a, x) and N(a, x) it follows that there is a homomorphism
¢ : N(a,x) = V(a, x) whose kernel (resp. cokernel) is either zero (for example this is the
case provided V' (a, x) ~ N(a, x)) or is a lowest weight (resp. weight dual to a lowest weight)
module. This map naturally extends to a homomorphism ¢ : M,(N(a, x)) = My(V(a, X)),
which is a vector-space isomorphism, restricted to all M, (N (a, X)) —ka With k& big enough.
As ¢ sends p-primitive elements to p-primitive elements, our statement follows for all such
My(N(a, X)) r-ka- O

From the PBW-Theorem it follows that for any Verma module V' (over a’), the corre-
sponding induced module M, (V) is again a Verma module (over g). For x € Z(a') let MX
denote the Verma module (over a’) with the central character y, whose highest weight lies
in the closure of the antidominant Weyl chamber.

Proposition 1. Assume that M,(N(a,Xx))r—ka contains a non-zero p-primitive element
for all k big enough. Then there exists x € C such that My(MX)x_zq contains a non-trivial
p-primitive element.

Proof. Using Lemma 5, we get a non-trivial p-primitive element in M,(V (a, X))r—kq for all
k big enough, and hence there is a non-trivial p-primitive element in M, (V (@', X))r—k(a')a
for all @’ € C and all k(a’) big enough ([FKM2, Theorem 1], resp. [FKM3, Theorem 4]).
Now the statement follows from [FKM2, Lemma 4] (resp. [FKM3, Lemma 7]). O

3 Sufficient condition for simplicity of M,(V)

In this Section we develop a new approach to [KM2, Cojecture 1], which then will be used
to derive a simplicity criterion for GVMs. Recall that we are working in the setup fixed in
the end of Section 1.



Theorem 1. Let M,(V') be a generalized Verma module and M (u) be the Verma module
over g associated with M,(V') as in Section 1. Assume that M (p) is simple. Then M,(V')
15 also simple.

In fact, we are going to prove that the reducibility of M,(V') implies the reducibility
of M(u). First we note that, in the case of a weight a-module V, the statement is quite
clear. Indeed, if V' is a highest or a lowest weight module (this includes the case when V
is finite-dimensional), this follows directly from the BGG criterion ([D, Theorem 7.6.23]).
Otherwise V is isomorphic to some simple V(a, x) (see e.g. [FKM1, Section 10]) and, by
Lemma 4, M,(V') has a non-zero p-primitive element, say w, different from 1 ® v, v € V.
Assume that this element is a weight element of weight A € h*. As V is simple, X_,
acts bijectively on M,(V'), and we get that there is a non-zero p-primitive element in all
My(V)r—ka, k € Z. Applying now Lemma 5 and Proposition 1 we obtain that there is a
non-zero p-primitive element in M, (MX)_q for all £ big enough. By the construction, we
have M,(MX) = M(p). The inequality w # 1 @ v, v € V, gives us that A + ka is not the
highest weight of M (i) for any k& € Z. Now, as M (u)_ga contains a non-zero p-primitive
element and M (u) is X,-locally finite, M (1) contains a non-zero primitive element of the
weight A + ka for some k£ € Z. This element can not coincide with the generator of
M (1), because it has another weight, and hence M (u) contains a proper highest weight
submodule.

The observation above allows us to assume from now on that V' is not a weight a-
module. The main ingredient of our proof is the following lifting property, which we will
prove in the next Section.

Proposition 2. Assume that V is not weight and v € My(V') is a non-zero p-primitive
element of by-weight \. Let x be the central character of V. Then M,,(U;(l) has a non-zero
p-primitive element of ha-weight .

Using the lifting property one completes the proof of Theorem 1 as follows.

Proof of Theorem 1. We have only to consider the case, when the module V' is not weight.
Assume that M,(V') is not simple. Then, by Lemma 4, it has a non-zero p-primitive
element of, say, h,-weight A\, which is not of the form 1 ®v, v € V. By the lifting property,
the corresponding universal GVM M, (U¢) has a non-zero p-primitive element, w, of the
same hg-weight A. Using Corollary 1, write w = ), bhy, where hy € U(h(a)) and only
finite number of them are non-zero. Choose a € C such that hy(a) # 0 for all non-zero
hy. Then the image of w in M,(N(a,x)) equals ), ,bhy(a) and hence is non-zero by
Lemma 3. This means that M,(N(a, X)) contains a non-zero p-primitive element of the
weight A. Applying Proposition 1 and the argument as above we get that M (u) contains
a proper highest weight submodule and hence is not simple. O

4 Proof of the lifting property

Conceptually, this is the main part of the paper and the main ingredient in the proof of
Theorem 1. The argument used above are relatively standard and mostly based on the
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results already known from [D, MP, CF, FM, FKM2]. The content of this Section is quite
different, mainly, since it considers the general situation, which has not been studied yet.

To prove the lifting property we need several Lemmas and some notation. Write U}’ =
®jezUY®), where UUY = {v € UZ|[Hqa,v] = ja(Ha)v}. As the centralizer of U(h(a))
in U(a) coincides with C[H,, ], one has U®) ~ U(H,) from the definition of UZ. Any
element f € UU® will be called graded of degree deg(f) = j. Denote by Z the kernel
of a (fixed) projection UY — V' and by T ~ M,(Z) the kernel of the induced projection
M, (Ug) = My(V). Recall that we assume V' to be a simple non-weight a-module.

Lemma 6. Let w (resp. f) be a non-zero element (resp. non-zero graded element) from
Uy. Then fw # 0, moreover fw € T if and only if w € T.

Proof. The first statement follows easily from [B] in a bigger generality since Uy is a
generalized Weyl algebra which does not have zero divisors. But we present here another
proof, which then will be used to prove the second statement.

First assume that f € U, from which we have f = F(H,) for some F € C[t] and the
statement follows from the proof of Lemma 2. If f € U (42) then, according to Corollary 1,
f= Xﬂxf’ for some f' € U and hence it is enough to show that X,,w # 0. Consider
X, (the case of X_, can be handled analogously). From X,w = 0 and (¢ — x(c))w = 0 we
get ((Hg +1)? — x(¢))w = 0, which is impossible as (H, + 1)*> — x(¢) is a non-zero element
of grade 0.

For the second statement we have only to prove that fw € Z implies w € Z. And,
by induction, it is enough to prove this for f = F(H,), F' € C[t], and for f = X4,. If
w ¢ T such that fw € Z, then, projecting on V', we get a non-zero element w € V such
that fw = 0. If f = F(H,) we decompose F' into a product of linear polynomials and find
a non-zero element of V' which will be annihilated by some H, — ¢. This means that V'
contains a weight element. As V' is simple, it is generated by any non-zero element, and
hence should be a weight a-module. This contradicts our assumptions. If, say f = X,
by the same argument as above we get ((H, + 1)> — x(c))® = 0 and again the module V/
should be weight. The case f = X , can be treated in the same way. This completes the
proof. O

We recall that M,(V') contains a non-zero p-primitive element, v, of hs-weight A. Let
A be the h-highest weight of My(V'). Let By (resp. Bj) denote the set of all [[; Xgﬂ
having the hs-weight A — X' (resp. having the h,-weight greater than A — X'), where
the product is taken over all negative roots  # —a counted with multiplicities. Again,
from the assumption that g is an integrable a-module it follows that both B, and B
are finite and we can order their elements in an arbitrary way, say By = {B;|i € [},
B, = {Bj|j € J}. By PBW-Theorem, any element w € M,(U)x can be written as
w =), Bia} for some uniquely determined ay” € U?. We set [w] = (a}’)ics. Analogously,
for My(Uy) > w =}, ; Bjay, af € Uy, we set [w] = (af);e;. Remark that w € 7 if and
only if [w] € Z" (resp. ZV7!), and for z € U2 and w € M,(UZ), the equality [zw] = z[w]
is not true in general.



For all g € A, \ {a} we have
XpB; =) BjGi;s modU(n)n,
jeJ
for some G ;5 € Uy

Lemma 7. G, ;g are graded for all 1,3, 3. Moreover, the equality

deg(Gi;j5) — deg(Gi j,5) = deg(Gijry) — deg(Gu jr )
holds for alli,i' € I, j,5' € J and B,y € Ay \ {a}.

Proof. G jp is graded since all X, B; and Bj are H,-diagonalizable with respect to the
adjoint action. Now the common value in the equality above is /2 = z/a(H,, where z is
the difference between H,-eigenvalues of B; and By under the adjoint action. O

For a positive 8 # o define a matrix, A® by Afz = G, jp- Thisis a |J| x |I|-matrix
with entries being graded elements from U}. By the construction, it represents the action
of Xz on By (by multiplication from the left) with the result written in the (right) U2-basis
B). Define

Aﬂl
AB2
A = . ,
A'ﬂk
where (i,..., 0 is a finite generating system in A, \ {«a}, each root counted with the

corresponding multiplicity, whose elements are written in some order. The existence of
such system follows directly from our assumption on g to be an integrable a-module. We
will call a set of rows independent if it is linearly independent with left coefficients being
graded elements from U}, and dependent otherwise. Directly from the construction we
have that w € (M(Uy))x is p-primitive if and only if A'[w] = 0. In particular, from this
we get that the set of p-primitive elements in M,(UY) is a right U(a)-submodule. Let,
{lx| k € K} be a maximal set of independent rows of A’ indexed by a finite set K. Choose
any non-zero graded fi, £ € K, such that the degree of the first component of fily is 0
(such elements obviously exist) and denote by A the matrix with |K| rows fil;. Clearly,
K| < 1]

Lemma 8. For any w € (M(Ug))x we have A'lw] = 0 if and only if Alw] = 0. In
particular, w € (M(Uy))x is p-primitive if and only if Afw] = 0.

Proof. If A'[w] = 0 then [;[w] = 0 for any j and hence filx[w] = 0. Conversely, if A[w] =0
then fili[w] = 0 and hence [x[w] = 0 by Lemma 6. As {l;} is a maximal set of independent
elements, for any j there exist graded f and f;, k € K, such that fl; =", _ filr. Hence
flj[w] =0 and again /;[w] = 0 by Lemma 6 since f is graded. O
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Any entry of A is graded, thus there are g;; € C[H,], k € K, i € I, such that

A=

3

9k, szeg(A o) deg(Ax,;) =0
G X g deg(Agy) <0

Moreover, from Lemma 7 it follows that deg(Ay ;) = deg(Ay ;) for all k, k' € K and i € 1.
Define a |K| x |I]-matrix, H, via Hy; = gi,. It is important that the components of this
matrix are polynomialsin H,. As the rows of A are independent and deg(Ay;) = deg(Ax ;)
for all k, k' € K and i € I, one easily gets that the rows of H are also independent.

First we consider the case [K| = |I|. Since the rows of H are independent, we have
that det(H) is a non-zero polynomial in C[H,], in particular, there exists H ¢ C[H,] such
that HH = det(H)1. Thus we obtain that HA is diagonal and equals

det(H) diag(1, X 23e8(A22) Xideg(Alll |1|))

We have A[v] € TV, hence HA[v] € ZI"l. Ifv = 3, B;a?, this means det(H H) XA go ¢
Z. Thus, by Lemma 6, we get a € Z and v = 0 in M,(V).

Now we assume |K| < |I|. Our goal is to show that the system A[z] = 0 has a non-
zero solution in Z, since any such solution will give us a non-zero p-primitive element
of My(Ug)x. Without loss of generality we can assume that first |K| columns of H are
independent and, as in the previous paragraph, there exists a |K| x |K|-matrix H with
entries in C[H,| such that HA = (C;|Cs), where C; = G(H,)D, with a non-zero G(H,) €
C[H,] and a diagonal |K| x |K|-matrix

D= dlag(l X:i:deg(Az 2) Xi:;eg(AIKI,\Kl))

Y

and Cj is a matrix with entries from Ug. Consider now the system HA[z] = 0. As det(H)
is non-zero and graded, by Lemma 6, A[z] = 0 if and only if HA[z] = 0. Multiply our
system by

D' = diag(1, xEdeA22)  yE st

and by the same arguments we obtain a new system, (C}|C%)[z] = 0, where

Ci = diag(Fy(Ha), Fo(Hy), - - -, Fx|(Ha)),
and all F; are non-zero polynomials. In particular, we have (C1{,C})[z] = 0 if and only if
Afz] =0.

Lemma 9. Let F' € Clz|. Then for any m x n-matriz A with coefficients from Uy there

exists F4 € Clz] satisfying the followmg condition: for any [x] € (UZ)" there e:msts ly] €
(Ug)™ such that F(Ho)[y] = A(F*(Ha)[z]).

Proof. Let z € U, z =Y., 21, where z € UM, Set F*(z) = [Ticz 220 F'(x + 21). Then
for all x € U2 we have zF*(H,)x = F(H,)y for some y. Now the lemma will follow if we
choose F4 = H i FA. O



Set F' =[], F; and [z]; = F®2(H,), j > |K|. By Lemma 9, for any i € K there exists
yi € Uy such that >, (C3)i[z]; = F(Hq)y;. Now we can set

[z]i = — H Fe(Ho) | yi, 1< K]
1<k<| K| kst

and obtain that [z] is a non-zero solution of our system. This means that the element
>_; Bi[z]i is a non-zero p-primitive element of M,(U?) and completes the proof of the
lifting property and hence of Theorem 1.

5 Deriving a criterion

Let us now analyze, where in Section 4 we used the fact that the module V' is not weight.
This was used only in the proof of the second part of Lemma 6 (recall that the first part
of this Lemma follows from [B] in a general case). Clearly, the statement of Proposition 2
is not true for arbitrary V' because of problems arising in the case of finite-dimensional V'
(see [R]). But we may observe one more nice property of sl(2,C)-case: if V is a simple
infinite-dimensional weight module then either M,(V) =~ M (p) or for all A € b M(u)a
contains a non-zero p-primitive element if and only if M, (V) does (this follows from [M,
Lemma A.1]). This tempt us to try to prove the following advanced lifting property.

Proposition 3. Let V be an infinite-dimensional simple a'-module. If for some \ € b

there is a non-zero p-primitive element in My(V),, then there is a non-zero p-primitive
element in My (UZ)x

Proof. Because of the known lifting property we have only to consider the case, when V is
an infinite-dimensional simple weight module. We look at Section 4. As we have already
mentioned, the only place where we used the fact that V was not weight is the proof of
the second statement in Lemma 6. The last was used later only when the case |K| = |I|
was considered. Hence, in the case |K| < |I| we have our statement for free. Now we are
going to show that under our assumptions the case |K| = |I| is not possible.

Indeed, in this case the system I:IA[:U] = 0 can have only trivial solution by the first
part of Lemma 6. Now, we recall that M,(V), is a weight module and contains a non-
zero p-primitive element. And we know that V' is either highest or lowest weight module
or coincides with some N(a',x). Using [FKM2, Theorem 1], we get that there exists
a non-zero p-primitive element in M,(N(a, x))» for all @ € C. Return to the proof of
the lifting property in the case |K| = |I| (with V = N(a, x) for some a and v being a

non-zero p-primitive element of M,(N(a, x))r). We have det(H)Xideg(A“)af € 7 and
we want to deduce that a! € Z obtaining a contradiction. Rewrite det(H)X, £ dog(Ais)

as Xideg(A“)Gz(Ha), where G;(H,) € C[H,| and choose a such that the following two
conditions are satisfied:

1. Gi(a+j) #0 for all ¢ and all j € Z.
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2. N(a,x) is simple.

This is clearly possible. But in this case both X, act bijectively on M,(N(a, X)) (see
Section 2), hence on U;‘/I, in particular, this means that X,z € Z if and only if
x € I. Thus we obtain that G;(Hy)a? € Z. Again, by the choice of a, the image of
Gi(Ha)ai = 3 ;c7(a7);Gi(Ha £ 25) (here we use the graded decomposition of af) in Uy'/T
equals ., 7;Gi(a=£27) and is non-zero if any only if af ¢ 7. From this we finally get that
all @Y € Z which means that M,(N(a, x)) can not have any non-zero p-primitive elements.

This contradiction completes the proof. O

Now we can easily extend Theorem 1 to a criterion for M, (V') to be simple, under the
condition that V' is infinite-dimensional.

Theorem 2. Under the notation of Theorem 1, for a simple infinite-dimensional a’'-module
V, the module M,(V') is simple if and only if M(u) is simple. Moreover, for any \ € b,
there is a non-zero p-primitive element in M(u)y if and only if there is a non-zero p-
primitive element in My(V) .

Proof. First we assume that V is a highest (or lowest) weight module. Then either
M,(V) ~ M (u) and our result is a tautology or the statement follows from [M, Lemma A.1]
mentioned above.

If V' is weight but do not have any highest (lowest) weights, then V' ~ N(a, x) for some
a and x and the result follows from [FKM2, Theorem 1,Lemma 4].

Finally, we again have only to consider the case, when V is not weight. In this case
the “if” part is just Theorem 1 together with the lifting property. Let us prove the “only
if” part. Assume that M (p) is not simple. As y is chosen to be a-antidominant, we have
that M (u) has a non trivial primitive (and hence p-primitive) element of some h,-weight
A, which is different from the highest bh,-weight of M (u). Moreover, by construction,
M (p) ~ M,(V') for some simple highest weight infinite-dimensional a’-module V. Using
the advanced lifting property we get that M,(Uy)x contains a non-zero p-primitive element,
say x. Moreover, from the proof of the advanced lifting property it follows that this element
can be chosen, for example, as one constructed in the last paragraph of Section 4. From
this construction we get that several entries of [z] are non-zero polynomials in H,. Now,
if V' is not weight, C[H,]| NZ = 0 by Lemma 6 and we obtain that the image of ). B;[z],
in M, (V) is non-zero, and, of course, p-primitive. Thus M,(V) is not simple, moreover, it
contains necessary p-primitive element. O

Theorem 2 completely answers the question about simplicity of arbitrary GVM in our
setup, reducing it to the known situation of Verma module. The final result really seems
to be quite surprizing. In particular, it shows that simplicity of M,(V') depends only on
the central character x of V' and does not depend on V itself (of course assuming that V' is
infinite-dimensional). We would like to add the following remark to the Theorem 2: from
the proof one can easily derive that the statement about p-primitive elements can be read
even as follows: for any A € h? and for any c € C, there is a non-zero p-primitive element,
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v, in M (u)y such that cv = cv if and only if there is a non-zero p-primitive element, w, in
M,(V'), such that cw = cw.

Theorem 1 and Theorem 2 encourage us to formulate the following two conjectures
about sufficient conditions for a GVM to be reducible in the case of arbitrary a.

Conjecture 1. Assume that g is as above, p is a parabolic subalgebra of g associated with
a standard triangular decomposition and o is reductive finite-dimensional such that g is
an integrable o' -module under adjoint action. Let M,(V') be a GVM over g and L be the
simple quotient of the Verma module M(X) (over a' ) with dominant \, which has the same
central character as V. If My(L) is reducible then My(V') is also reducible.

The following is just a stronger version of Conjecture 1.

Conjecture 2. Under the notation of Conjecture 1, if for A\ € b there is a non-zero
p-primitive element in My (L) then there is a non-zero p-primitive element in My(V'),.

First, we note that the GVM M, (L) used in the conjectures above is, in fact, a high-
est weight module, hence its study should be much easier than that of M,(V). Second,
if g is infinite-dimensional, e.g. affine Kac-Moody Lie algebra, there are several non-
equivalent classes of parabolic subalgebras in g (see [Fu]). Our conjectures are formulated
in the simplest case (parabolic subalgebra of type I in [Fu]), associated with a standard
triangular decomposition, which means, in particular, that in the case of weight L with
finite-dimensional weight spaces, M, (L) will also have finite-dimensional weight spaces (or,
using the notation from the paper, the sets By and B} are finite for any A). In other cases
the last statement is no longer true, and there may arise several strange effects which will
make the picture much more complicated, see [Fu] for details and examples with classical
Verma modules.

We finish with the following conjecture about simplicity criterion for a GVM in the
case of arbitrary a.

Conjecture 3. Assume that g, p, &' and M,(V) are as in Conjecture 1. Then there exists
a simple highest weight a'-module L having the same central character as V' such that for
any A € bk the following holds: My(V)x contains a non-zero p-primitive element if and
only if My(L)x does.

According to Theorem 2, all the conjectures are true in the case a =~ sl(2, C).
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