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Abstract

We study the structure of generalized Verma modules over a semi-simple com-
plex finite-dimensional Lie algebra, which are induced from simple modules over a
parabolic subalgebra. We consider the case when the annihilator of the starting
simple module is a minimal primitive ideal if we restrict this module to the Levi fac-
tor of the parabolic subalgebra. We show that these modules correspond to proper
standard modules in some parabolic generalization of the Bernstein-Gelfand-Gelfand
category O and prove that the blocks of this parabolic category are equivalent to
certain blocks of the category of Harish-Chandra bimodules. From this we derive, in
particular, an irreducibility criterion for generalized Verma modules. We also com-
pute the composition multiplicities of those simple subquotients, which correspond to
the induction from simple modules whose annihilators are minimal primitive ideals.

1 Introduction

Let g be a semi-simple complex finite-dimensional Lie algebra with a fixed Cartan subalge-
bra h and p be a parabolic subalgebra of g containing h. With every p-module V one can
associate the parabolically induced module M, (V') = U(g)®up) (V). If V is simple, the mod-
ule M, (V) is called a generalized Verma module (GVM in the sequel). Every generalized
Verma module M, (V') has the unique simple quotient, denoted by L,(V"). The usual Verma
modules are obtained in the case when p is a Borel subalgebra of g. Generalized Verma mod-
ules can be applied for example to study the structure of usual Verma modules for different
algebras arising in theoretical physics, [Se]. The structure of various classes of generalized
Verma modules was investigated by many authors. In particular, Verma submodules of
Verma modules and simple subquotients of Verma modules were described by Bernstein,
[.Gelfand and S.Gelfand in [BGG], the multiplicity problem in this case (Kazhdan-Lusztig
conjecture) was solved by Brylinski-Kashiwara, [BK], and Beilinson-Bernstein, [BB|, for
integral case, and this result was extended to the general case by Soergel in [S1]. The gen-
eralized Verma modules induced from finite-dimensional modules were studied by Jantzen



in [J1] nd by Rocha-Caridi in [R]. The generalized Verma modules induced from infinite-
dimensional weight modules, in particular from Gelfand-Zetlin modules, were studied by
Futorny, Khomenko, Mazorchuk and Ovsienko in [FM, KM1, KM2, KM3, MO)] (see also
references therein). The generalized Verma modules induced from Whittaker modules were
studied by McDowell in [Mc1, Mc2], by Mili¢i¢ and Soergel in [MS1, MS2] and by Backelin
in [Bal. For these special cases of simple modules the structure of the corresponding GVMs
is now relatively well-understood. Although these families of modules are rather big, “al-
most all” simple g-modules are not of this type. Unfortunately, for general V' the only
known result is the simplicity criterion for GVMs associated with s{(2, C)-induction (the
case when the semi-simple part of the Levi factor of p is isomorphic to si(2,C)) obtained
in [KM3].

If one compares all the classes of simple modules studied in the papers listed above
(with the exception of finite-dimensional modules), then it is not difficult to see that all
these modules have one thing in common: their annihilators are smallest possible, which
means that they are minimal primitive ideals of the universal enveloping algebra for the
semi-simple part a in the Levi factor a of p (we also denote by b, the center of a). In [MS1]
the authors proved that the GVMs they consider belong to some category of g-modules,
which is equivalent to a certain category of Harish-Chandra bimodules in the sense of
[BG]. An analogous result for GVMs induced from generic Gelfand-Zetlin modules was
proved in [FKM2, KoM1, KoM2]. The similarity of these results was a good motivation
to try to find a general approach to this problem, which will be free from the necessity
to restrict consideration to special simple modules. We hope to do this in the present
paper by extending the arguments of Mili¢i¢ and Soergel from [MS1]. We will see that
these arguments work smoothly only under assumption that the simple module we start
with has a minimal possible annihilator. In particular, these arguments do not work for
finite-dimensional modules, however, this case is already handled. Moreover, there is a
price to pay for the ambitions to work with arbitrary simple module (even with a fixed
minimal annihilator). It happens that the structure of the corresponding GVM can be
studied only “roughly”, that is up to subquotients induced from simple modules with
bigger annihilators. After the example, constructed by Stafford in [St], it is theoretically
possible that some GVMs have infinite length. However, this phenomena is not visible on
our “rough” level.

Associated with M,(V') are two full subcategories in the category of g-modules: the
first one consists of all subquotients of modules F'® M,(V), dim(F) < oo, and the second
one consists of those modules, which has a presentation by certain projective modules
from the first one. The second category carries information about the “rough” structure
of modules. We construct a right exact functor, €, from the first category to the second
one, which preserves the “rough” structure of a module. The restriction of this functor to
O is the twist of the (global) Enright’s completion functor, see [KoM1], by duality. Using
this construction we prove:

Theorem 1. Let V' be a simple p-module with a minimal possible annihilator (over a).
Then there exists a simple p-module, V', such that the module €(My(V')) is a proper standard



module in the parabolic category of modules, presentable by modules of the form FQM,(V),
dim(F) < oo. This category has a block decomposition with blocks equivalent to certain
blocks of the category of Harish-Chandra bimodules.

In particular, all GVMs have finite length in the blocks given by the above theorem,
moreover, one can get complete information about simple subquotients of GVMs corre-
sponding to modules induced from simples with minimal annihilators. Nevertheless, this
information is enough to derive an irreducibility criterion for GVMs, which is free from all
this “rough” business. In fact, having V', we can consider a simple Verma module, M (}),
over a with the same annihilator. In a natural way M (\) extends to a p-module with the
trivial action of the nilpotent radical n of p. In the sequel we will often use this construction
to get GVMs from simple a-modules. Our main result is the following statement:

Theorem 2. Let V' be a simple module with a minimal possible annihilator. Then M,(V)
is simple if and only if My(M (X)) is simple.

Moreover, we even can compute some composition multiplicities of M,(V'). Although
M, (V') might have an infinite lengths, it is easy to see that these composition multiplicities
of “rough” simple subquotients are well-defined and finite.

Theorem 3. Let V;, i = 1,2, be simple modules with minimal possible annihilators. Let
M,(M(N;)) be corresponding Verma modules described above. Assume that the inequality
[M,(V1) : Ly(Va)] > 0 holds. Then

[My (V1) : Ly(V2)] = [My(M (A1), Ly (M (A2))]-

We also provide an analogue of the classical BGG-criterion for [M,(V;) : L,(V3)] to
be positive reducing it to the corresponding question in the category . This covers and
generalizes the result of Mili¢i¢ and Soergel on Whittaker modules ([MS1]), the result of
Ko6nig and Mazorchuk on GVMs, induced from generic Gelfand-Zetlin modules ([KoM1,
KoM2]), and the result of the authors on modules induced from dense si(2) modules
([KM5]).

In the case of sl(2,C)-induction our results are most general. Indeed, in this case any
simple module is either finite-dimensional or has a minimal possible annihilator. So, the
combination of our results with those of Rocha-Caridi gives a “rough” classification of the
categories of parabolically induced modules, generated by a simple module. We have to
note that in this case all GVMs always have finite length as g-modules. This follows from
the fact that all simple s/(2, C)-modules are holonomic as well as all their tensor products
with finite-dimensional modules.

The “rough” and precise structures of GVMs we consider coincide provided that the
simple module V' we started with satisfies the following condition: the length of the module
F®V is equal to dim(F') for every finite-dimensional module F'. This is the case for instance
for Whittaker or Gelfand-Zetlin modules. However, this is not true in general, and as an
example one can take simple Verma modules with regular integral weights.



The paper is organized as follows: in Section 2 we adjust the arguments of Mili¢i¢
and Soergel (which are modifications of the arguments due to Bernstein and Gelfand, see
[BG]) to our situation. In Section 3 we apply them to study the categories of a-modules,
which are obtained if one tensors a given simple module having a minimal annihilator with
finite-dimensional modules. Section 4 is devoted to the study of the categories of modules,
obtained via parabolic induction from the categories studied in Section 3. We prove that
these categories have a block decomposition with blocks being equivalent to the module
categories of finite-dimensional algebras, moreover, they are also equivalent to suitably
chosen categories of Harish-Chandra bimodules. In Section 5 we derive some corollaries of
our results which we apply to study GVMs. In Section 6 we give a “rough” classification
of categories of modules, which can be obtained from si(2, C) via parabolic induction. We
complete the paper discussing the case of other annihilators in Section 7, in particular,
we present some examples which show that the structure of the categories appearing in
this case differs from that in previous cases. For example, we show that these categories
of induced modules are no longer described neither by quasi-hereditary nor by properly
stratified algebras (here we refer the reader to [CPS, DI] for details on these classes of
associative algebras). In fact the following is true:

Proposition 1. Let V' be arbitrary simple a-module, which is projective in the full subcat-
egory of g-modules consisting of all subquotients of modules F @ V, dim(F) < oo. Then
the category of modules, presentable by FF @ V, F' finite dimensional, has a block decom-
position with blocks equivalent to the module categories of finite-dimensional associative
self-injective algebras.

In general, the algebras given by the above theorem are neither semi-simple nor local and
hence the blocks of the corresponding categories of induced modules can not be equivalent
to the blocks of Harish-Chandra bimodules. However, using [GM] one still can get some
information about these categories, for example derive an analogue of the BGG-reciprocity.
The further study of these cases seems to be an interesting and challenging problem.

Finally, we would like to compare our results with those obtained in [KM3] in the
case a = sl(2,C). In the present paper we extend those results, for instance, by partial
description the multiplicities of simple subquotients in a GVM. However, the settings
in the present paper are much more restrictive: we work only with semi-simple finite-
dimensional Lie algebras, whereas in [KM3] the case of arbitrary contragradient Lie algebra
was considered.

2 Equivalence of coker-categories and Harish-Chandra
bimodules

In this section we heavily rely on [MS1, BG| and mostly rewrite some results from these
two papers, adjusting them to our situation. We try to keep the notation from [MS1]. If
nothing is mentioned, all homomorphisms and tensor products are taken over C.



For a Lie algebra, £, we denote by Fg the category of all finite-dimensional £-modules.
For an £-module, V, we denote by (F¢ ® V) and coker(Fg ® V') the full subcategory
of the category of £-modules consisting of all subquotients of modules FF @ V, ' € Fg,
and all g-modules N which admit a two-step resolution, FE® V — F®V — N — 0,
E F € Fg, respectively. If the algebra £ is semi-simple with a fixed Cartan subalgebra
and the corresponding root system A, we decompose Fg into a direct sum of two full
subcategories, F2 and Fg, where the first one consists of all finite dimensional modules,
whose weights belong to ZA, and the second one consists of all finite dimensional modules,
whose supports do not intersect ZA. We define (F4 ® V') and coker(Fa® V), i = 0,1, in
the obvious way as above.

For an arbitrary U(£)-bimodule, B, we denote by B the £-module, obtained by
considering the adjoint action ub—bu, b € B, u € U(£), of U(£) on B. We denote by By
the subset of all elements b € B such that the adjoint action of U(£) on b is finite. For an
£-module, V', we consider the algebra End (V) of all C-endomorphisms of V', which is an
U(£)-bimodule under the action uj fus(v) = ug - f(ug - v), v € V, ug,us € U(L).

Define the category H = Hg as the category of all finitely generated U(£)-bimodules B
satisfying B = Bgg. If £ is semi-simple, then the category H in a natural way decomposes
into a direct sum of two full subcategories H° and H!, where H’, i = 0,1, consists of all
B € H such that B* is a direct sum of modules from Fj. For a two-sided ideal, I € U()),
we let H(I), H'(I), i = 0,1, be the full subcategories of H, H!, i = 0,1, respectively,
consisting of all B such that BI = 0.

Theorem 4. Let £ be semi-simple, I C U(L) be a two-sided ideal and V be an £-module
such that IV = 0. Assume that

1. For every F € F the multiplication U (L) — End(V) induces an isomorphism

Homg(F, (U(£)/IU(£))*) ~ Homg(F, (End(V))*%).

2. 'V is projective in (FQQ V).
Then the functor _Qug)V : U(L)-mod-U(L) — £-mod induces an equivalence of categories
HO(I) and coker(FA® V).

Proof. Mutatis mutandis [MS1, Theorem 3.1] with the substitution of F in [MS1] with F°
and H with H°. O

3 Admissible category A(V)

Until Section 6 we fix a simple a-module, V, whose annihilator in U(a) is a minimal
primitive ideal. According to [FKM1, FKM2] the first step in the study of categories of
parabolically induced modules is constructing of certain admissible categories for the Levi
factor of the parabolic subalgebra. In this section we show that, for the module V' as above,



there exists a simple object, V, in (F,® V'), such that the category coker(F, ® V) qualifies
for these purposes.

For an a-module, M, we define the rough length RL(M) of M as the number (possibly
infinite) of simple subquotients of M whose annihilators are minimal primitive ideals. The
same notion can be defined for g-modules and we will use RLy(A/) in this case. It happens
that this invariant behaves well under tensoring with finite-dimensional modules.

Lemma 1. Assume that M is an a-module of finite rough length. Then for very finite-
dimensional a-module F' we have RL(F ® M) = dim(F) RL(M).

Proof. Using exactness of the tensor product with F' we first reduce the statement to the
case RL(M) = 1, hence we can assume that M is a simple module with minimal annihi-
lator. Further it is enough to study the behavior of the rough length under translation
functors (we refer to [J2, GJ] for the definition and properties of these functors). Be-
cause of the minimality of the annihilator of M, this does not depend on M. Indeed, the
standard properties of the translation functors show that the regular translations (those
described in [BG, Theorem 4.1]) and translations to walls send simples to simples ([BeGi,
Proposition 3.1], here we also use the minimality of the annihilator of M) and thus does
not change the rough length. Having this we can translate from the wall and then back
to the wall without crossing other walls, which will be a direct sum of some copies of the
identity functor. Hence the rough length of the result does not depend on M. This means
that we can check our statement for example on simple Verma modules, for which it is
obvious. O

Theorem 5. There exists an a-module V' of rough length 1, which surjects on V, such
that

1. The category coker(F, @ V') decomposes into a direct sum of full subcategories each
of which is equivalent to the module category of a finite-dimensional associative local
self-injective algebra.

2. There exists a natural abelian structure on coker(F,@V") such that the tensor product
with finite-dimensional a-modules is an exact functor with respect to this structure.

Proof. We construct V' and prove all the statements using an auxiliary module V', men-
tioned in the beginning of this section, which is defined in the following way. Let 6 be the
central character of V' (which exists by Quillens lemma) and Wy be the integral Weyl group
of # (see e.g. [J2, 2.5]). We define V to be the translation of V to the most degenerate
central character with respect to Wy. Then we use Lemma 1 to get that V is a simple
a-module of rough length 1. Moreover, because of the choice of the central character for
V, this module is projective in (F, @ V).

Let us first consider the category (F?® V). Denote by I the annihilator of V in U(a).

Lemma 2. For every F' € FO the multiplication U(a) — End(V) induces an isomorphism

Homg(F, (U(a)/1)%) ~ Hom,(F, (End(V))*).



Proof. The injectivity of this map follows from [J2, 6.8]. By Kostants Theorem and
Lemma 1, we have for F' € F? the equality dim (Homg(F, (U(a)/1)*?)) = dim(F), where
F, is the zero weight space of F'. On the other hand, by [J2, 6.8] we also have:

dim (Homu(F, (End(f/))“d)) — dim (Homu(f/, F*® f/)) .

The latter is equal to dim(Fp) since the projection of (F¢ ® V) on the block containing 1%
is a semi-simple category by the choice of the central character for V. O

Applying Theorem 4 we get that coker(F? ® ‘7) is equivalent to the corresponding
category H(I) of Harish-Chandra bimodules. So, this category has a block decomposition,
with each block being the module category for a finite-dimensional associative algebra.
Moreover, these algebras are local since in our case each block clearly has only one simple
object. That they are self-injective follows from the fact that the projection of (F?® \7) on
the block containing V is semi-simple, hence self-dual, and every finite-dimensional module
is self-dual with respect to the duality on O.

To complete the proof we have to deal with coker(F! ® V). Let M € (F! ® V) be a
simple module of rough length 1. From Homy(N;, F ® N2) = Homy(F* ® Ny, N,) for every
F ¢ F, and N;, N, € g-mod we get that either M is isomorphic to some module from
(FO® V) or Homg(M, M") = 0 for every M’ € (F° ® V). The latter means, in particular,
that coker(F?® M) is a direct summand of coker(F,® V). Using a regular translation with
respect to some finite-dimensional module from F;} we get that the indecomposable block
of coker(F! ® V) containing M is equivalent to some direct summand of coker(F° ® V).

We remark that, using the equivalence established during the proof above, we get a
natural abelian structure on coker(F, ® V), induced from the one on H(1).

Consider the block in coker(F, ® V) corresponding to 6. It is non-zero since we can
translate V to this block. Using our equivalence, this block is the module category over
some finite-dimensional associative local algebra, hence we will get a simple object, V', in
this block. Clearly, RL(V’) = 1 and V"’ surjects onto V. This completes the proof of the
first statement.

The second statement now follows from the first one and the corresponding result for
the category H(I). O

In the sequel we will use modules V' and V constructed in Theorem 5. From [S1,
Endomorphismensatz] we immediately get.

Corollary 1. The finite-dimensional associative algebra describing a block of coker (F? ®‘~/)
1s either the coinvariant algebra or the algebra of invariants in the coinvariant algebra.

4 The category O(p,A)

After describing the category A = A(V) = coker(F, ® V) in the previous section, we
can apply procedure from [FKM1]| to construct the corresponding parabolic generalization
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O(p,A). First, we extend this category to the category A of d-modules consisting of
modules from A with diagonal action of h,. We define O(p,A) as the full subcategory
of the category of all finitely generated g-modules, consisting of all those M, which are
n-finite and decompose into a direct sum of objects from A, when viewed as @-modules.
Our main result in this section is the following theorem.

Theorem 6. Let V be a simple a-module with a minimal annihilator and V' be as in
Section 3. Then the category coker(Fy; ® My(V')) decomposes into a direct sum of full
subcategories each of which is equivalent to an appropriate block of H(I), where I is a
minimal primitive ideal in U(g).

To prove this theorem we will need some auxiliary lemmas.

Lemma 3. Let F be a finite-dimensional g-module. Then the module FF @ M,(V') admits

a filtration,
0=MyCM C---C Mdim(F) :F®Mp(V),

such that M;/M;_y ~ M,(V;), where V; is an a-module of rough length 1.

Proof. Follows by standard arguments from Lemma 1 and the fact that M,(V) is free over
o(n), where o denotes the Chevalley involution. O

Lemma 4. The annihilator of My(V') is generated by the annihilating ideal of the central
character of M,(V).

Proof. From Lemma 3 we get the existence of a simple subquotient of M,(V'), which is
not annihilated by translations through all walls. Hence the annihilator of this simple
subquotient is generated by the annihilating ideal of its central character. Now the lemma
follows from the fact that M, (V') has a central character by [DFO, Theorem 1]. O

Now we have to find a projective “substitution” for M,(V). For this we define an
d-module structure on V as follows. We only have to construct the action of h,. Con-
sider the S-homomorphism of Harish-Chandra ([DFO]), corresponding to the subalgebra
p. Application of this homomorphism provides a finite number of linear h,-actions, which
give rise to the central character of M,(V). Among these actions we choose the maximal
one with respect to the standard partial order, see [DFO, Section 1]. In a trivial way we
then extend V to a p-module and consider the corresponding GVM M, (V). The standard
highest weight arguments immediately imply that M, (V) is projective in the category
coker(F @ M,(V)).

Lemma 5. Let V be as above. Then for every F € .7:'3 the multiplication U(g) —

End(M,(V)) induces an isomorphism

Homy(F, (U (g) /1)) ~ Homy(F, (End (Mj(7)))*).



Proof. The injectivity of this map still follows from Lemma 4 and [J2, 6.8]. For F' € F? we
again have dim (Hom,(F, (U(a)/1)*%)) = dim(Fp), where Fp is the dimension of the zero
weight space of F. On the other hand, from [J2, 6.8] we obtain:

dim (Homq (F, (End(My(V)))) ) = dim (Homq(M,(V), F* & My(V))) .

Using the projectivity of M,(V) we deduce

dim (Homa(Mp(V), F*® M,,(f/))) = [F*® M,(V)) : L,(V)].

The latter is equal to dim(F}) because of Lemma 3 and the definition of V. O
Proof of Theorem 6. Using Lemmas 4 and 5 the proof is similar to that of Theorem 5. [

Corollary 2. The finite-dimensional associative algebra describing an indecomposable
block of coker(FY ® M,,(‘N/)) is either the quasi-hereditary algebra describing a block of
O or the properly stratified algebra describing a block of a subcategory of Enright-complete
modules in O, see [KoM1].

5 Application to the study of generalized Verma mod-
ules

In this section we are going to apply the above results to the study of properties of gen-
eralized Verma modules M, (V) in the case when the module V' has a minimal annihilator
as an a-module. The last is assumed throughout this section. We will also use modules V'
and V from the previous sections.

Let M be a g module and X € h%. Set M\ = {m € M : h(m) = A(h)m for all h € b,}.
If M = @)cp: My, we define the rough a-character of M as the function chl’ : b2 — ZU{oc}
such that chy(\) = RL(M,). We note that ch™*()(\) < oo for all A € b;.

We start with the following two results generalizing the corresponding classical prop-
erties of Verma modules ([D, Proposition 7.6.3, Theorem 7.6.6]).

Proposition 2. M, (V) has a simple socle.

Proof. Under the assumption that V' has a minimal annihilator, one can adopt the classical
growth arguments. By standard arguments it follows from Lemma 1 that the growth
of ch (V) is polynomial and that all GVMs of the form M,(Y), where Y is a simple
subquotient with rough length 1 of some FF'@ V', F' € F;, have the same rough a-character
up to a shift.

Further we note that the socle of every F'® V' as above contains only simples of rough
length 1. Indeed, this is trivial for translations through the walls and then this extends to
every F' ® _. It follows that each submodule of M, (V') contains in its turn a submodule,
isomorphic to some M,(Y') with Y as above. Since the leading coefficient of the growth
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polynomial for the rough a-character of M, (V') behaves additively with respect to the direct
sums, we get that the socle of M,(V) can contain only one copy of M,(Y) and hence is
simple. O

Proposition 3. Let V;, i = 1, 2, be two simple a-modules with minimal annihilators. Then
the dimension of Homg(M,(V1), My(V5)) is at most one and every non-zero element of this
space 1s injective.

Proof. Mutatis mutandis [D, Theorem 7.6.6], using Proposition 2. O
From Theorem 6 and [KM4] one also derives the following:

Proposition 4. The module M,(V') is rigid as object of coker(Fy @ My(V)).

Now we would like to associate a Verma module to the GVM M, (V). For this we
denote by f(V) the Verma module M(\) over a such that it has the same central character

as V and A belongs to the closure of the antidominant Weyl chamber. Clearly, this one is
uniquely defined. Then the module M, (M (X)) = M,(f(V')) is a Verma module over g.

Theorem 7. Let V;, i = 1,2, be two simple a-modules with minimal annihilators. Then
the following conditions are equivalent:

1. dim (Homg (M, (V1), My(V2))) = 1.

2. [Mp(V2), Ly(V1)] > 0.

9. Vi € (F® V3) and dim (Homg(M,((VA)), My((V2))) = 1.
To prove this theorem we will need the following result.

Proposition 5. Let V;, 1 = 1,2, be two simple a-modules with minimal annihilators. Then
dim (Homg(M,(V4), My(V5))) = dim (Homg (M, (VY), My(V3))), where Vi are as constructed
in Theorem 5.

We prove Proposition 5 in two steps.

Lemma 6. There is a natural injection from the space Homg (M, (VY), My(V5)) to the space
Homg(M;(V1), My(V2))-

Proof. We start with two exact sequences:

0— Ny — M,(V/) = M,(V1) — 0, (1)
0— Ny — M,(Vy) = M,(V2) — 0, (2)

where ch)" = ch)” = 0. Applying Homg(_, M,(V3)) to (1) we get

0 — Homg (M, (V1), My (V2)) — Homg(My (V7), Mp(V2)) — Homg (N1, Mp(V2)).

10



Here Homg(Ny, M, (V3)) = 0 since chl* = 0 while the socle of M, (V3) consists only of mod-
ules of rough length 1 (as a-modules). Hence we get the equality Homgy(M,(V1), M,(V3)) =
Homgy(M,(VY), My(V2)). Now we apply Homgy(M,(V7), ) to (2) and get

0 — Homg(My (VY), Na) — Homg (M,(VY), My (V3)) — Homg (M, (V)), Mp(V2)),

Where Homg(M,(V{), N3) = 0 by the same arguments as above applied to the top of
M,(V{). Combining these two results we get an injection from Homgy(M,(V}), M,(V3)) to
Homg (M, (V1), My(V2)). O

To get an estimate in the opposite direction we now construct a completion functor,
¢, from the category (F, ® M,(V)) to the category coker (.7:9 ® Mp(f/)). For M € (F; ®

M,(V)) we denote by M the trace of all projective modules from coker (.7-'g ® Mp(V)> in

M. These are direct summands of the modules ' ® M,(V), FF € F;. Now denote by

f: Py — M a projective cover of M. Define €(M) as Py /ker(f). It is easy to see that
(M) does not depend on the choice of Pys. If ¢ : M; — My is a homomorphism, it can
be restricted to M1 and obviously (p(Ml) C MQ. By standard arguments ¢ canonically
extends to a unique homomorphism, €(p) : €(M;) — &€(Ms,). It is easy to see that €

indeed defines a covariant functor from (F; ® M,(V')) to coker (.7-"g ® Mp(V)>. We refer

the reader to [KoM1, Section 2| for abstract description of analogous functors.
Lemma 7. 1. € is right exact.

2. € preserves the rough a-character.

8. Let ¢ : My — My be such that o|y; # 0 then €(p) # 0.

4 €4(V)) = My(V).

Proof. The first and the third statements follow immediately from the construction of
€. The second statement follows from the fact that all simple a-submodules of rough

length 1 in the modules from (F; @ M,(V)) can be covered by projective module from

coker (.7-'9®Mp(V)>. Since M, (V") surjects onto M,(V) with kernel being a module

of rough length zero, the last statement follows from the second one and the equality
C(M,(V')) = My(V'), which is clear from the construction of M,(V’). O

Proof of Proposition 5. Lemma 6 gives an injection between the spaces of homomorphisms
in one direction and the functor € together with Lemma 7 gives an injection in another
direction. O

Proof of Theorem 7. By Proposition 5 the condition dim (Homg(M,(V1), M,(V2))) =1 is
equivalent to the condition dim (Homgy(M,(V}), M,(V;))) = 1. By Theorem 6 this is equiv-
alent to the existence of homomorphisms between corresponding proper standard modules
in the category #([). The equivalence of categories established in Theorem 6 sends, by
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construction, M,(V;) and M,(f(V;)) to the same modules. Hence the first and the third
statements of our theorem are equivalent.
Clearly the first statement implies the second one. The inverse implication can be

proved as follows. Since the projective cover P of M,(V/) is projective both in (F;@ M,(V))

and coker (.7-'9 ® M,,(V)), we have that the condition [My(V2) : Ly(V1)] > 0 is equiva-

lent to Homgy(P, My(V3)) # 0. The functor € transfers this to Homg (P, M,(V;)) # 0,
which is equivalent to the condition [M,(Vy), S] > 0, where S is the simple top of P in

coker (.7-"9 ® M,,(f/)). By Theorem 6 and the classical BGG-Theorem [D, Theorem 7.6.23]

the latter is equivalent to My(V{) C M,(V;) and this implies My(Vi) C My(V2) by Propo-
sition 5 and Proposition 3. O

Now we are ready to prove our main result, which is Theorem 2 from Introduction.
Theorem 8. The module M, (V') is simple if and only if M,(§(V)) is simple.

Proof. From Proposition 2 and Theorem 7 it follows that M,(V) is simple if and only if
M, (V") is a simple object in coker(F,®M,(V')). The same arguments show that M, (f(V)) is
simple if and only if its completion €(M,(§(V'))) is simple as an object of the corresponding
coker-subcategory in O (there is an alternative description in terms of S-subcategories in
O in [FKM2|, where completion € is substituted with a-Enright’s completion). Applying
Theorem 6 twice we get an exact equivalence of categories sending M, (V") to €(M,(f(V))),

which completes the proof. O

Theorem 9. Let Vi and Vs be as in Theorem 7 and V; € (F° @ V,). Then

[M,(V1) = Lp(V2)] = [My(§(V1)) = Ly (§(V2))]-

Proof. Let P be a projective cover of M, (V) in (Fy; ® My(V')). We start with [M,(V;) :
Ly (V3)] = dim(Homg (P, M,(V1))). Applying € and Lemma 7 we get the following inequal-
ity: dim(Homgy(P, My(V1))) < dim(Homg(P, M,(V7))). The inverse inequality is obtained
by applying Homgy(P, _) to the exact sequence 0 — N — M,(V{) — M,(V;) — 0 and notic-
ing that Homy(P, N) = 0. Hence dim(Homy(P, M,(V;))) = dim(Homy (P, M,(VY))). The
latter number is equal to [M,(V}) : S], where S is the simple top of P in coker(F,® M, (V).
The equivalence from Theorem 6 implies that [M,(V]) : S] = [M,(f(V1)) : Ly(f(V2))], which
completes the proof. O

We have to remark that Theorem 8 does not give the complete information about the
subquotients of M,(V;). It describes only the multiplicities of simple subquotients with
non-zero rough a-character. However, if the length of the a-module £ ® V is equal to
its length as an object of the category coker(F, ® ‘7) for all finite dimensional modules
E, then the categories (F, ® V) and coker(F, ® V) coincide. In particular, the Verma
module M, (V) has finite length and Theorem 9 describes all composition multiplicities of
this module.
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6 Case of induction from si/(2,C)

In this section we consider the case when a ~ si(2,C). It happens that our results now
imply a “rough” classification of categories of g-modules parabolically induced from simple
a-modules in this case.

We start with an arbitrary simple a-module V' and consider the corresponding category
(F. ® V). This extends to the category A of d-modules with a diagonal action of b,. Pick
an arbitrary projective V in the category A and consider the category A = coker(F, ® V)

Theorem 10. The parabolic category O(p, A) decomposes into a direct sum of full subcat-
egories each of which is equivalent to the module category of one of the following finite-
dimensional associative algebras:

1. The quasi-hereditary algebra associated with a block of the parabolic category Og of
Rocha-Caridi, [R] , where S consists of the simple root of a.

2. The quasi-hereditary algebra associated with a block of the category O for g.

3. The properly stratified algebra associated with as block of the parabolic S-subcategory
in O, associated with p, as in [FKM2].

Proof. If V is finite-dimensional we immediately arrive in the situation, considered by
Rocha-Caridi. Otherwise we will have RL(V) = 1 since a ~ si(2,C) and the statement
follows from Corollary 2. O

We would like to list one more peculiar feature of this case.

Proposition 6. Let V' be a simple a-module. Then the module M,(V') has finite length as
a g-module.

Proof. If V is finite-dimensional the statement follows from [R]. Otherwise we decompose
M,(V) = ®xrep: My (V) x. As an a-module, the module M, (V) equals FQV for some finite-
dimensional V' and hence is holonomic. Thus it has finite length. Now the proof can be
completed similarly to [D, Proposition 7.6.1] using the S-Harish-Chandra homomorphism,
[DFO]. O

It would be very interesting to compute the multiplicities of all simple subquotients
in M,(V). By Proposition 6 they are finite, but Theorem 9 gives an answer only for
simple subquotients of the form L,(V;), where V; is infinite-dimensional (in our case this
is equivalent to the condition that the rough a-character is non-zero).

7 Case of simple modules with bigger annihilators

After discussions above it is a natural question to consider the category (F, ® V) in the
case of arbitrary a and arbitrary simple a-module V. There are two extreme cases. The
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first one is when V is finite-dimensional. This was studied in [R] and we can say that
this case is more or less known. In the present paper we have studied the second extreme
case when the module V' has a minimal annihilator. What will happen if V' is neither
finite-dimensional nor with minimal annihilator? This question seems to be non-trivial. In
this section we establish some basic results for this case, try to underline where, from our
point of view, the difficulties arise and present an example, which shows that the categories
of induced modules, arising in the general case, go beyond quasi-hereditary and properly
stratified algebras. We start with the following routine observation.

Proposition 7. Let V be an arbitrary simple a-module, which is projective in (F, @ V).
Then coker(F,®V') has a block decomposition with blocks equivalent to the module categories
of finite-dimensional associative self-injective algebras.

Proof. The functor F' ® _ is exact and has two-sided adjoint F* ® _. Hence it sends
projectives to projectives. This gives us enough projectives in coker(F, ® V). The latter
implies that the decomposition with respect to the action of the center provides a block
decomposition with blocks being equivalent to the module categories of finite-dimensional
associative algebras.

Since V' is simple and projective, it generates a semi-simple block and hence V is
injective as well. The functor F' ® _ sends injectives to injectives and thus all projective
modules in coker(F, ® V) are injective, completing the proof. O

Now we are going to present an example, from which it will follow, that the alge-
bras, appearing in Proposition 7 are not necessarily local, in contrast to what we had in
Theorem 5.

We consider the principal block of the category O for a = si(3, C). There are six simple
modules in this block denoted by 1, 2, 3, 4, 5, 6. We choose the enumeration so that the
corresponding Verma modules M (i), i € {1,2,3,4,5,6}, have the following Loewy series
(written as radical series):

23 45 45 6 6
45 6 6
6

We can choose simple roots o and ( so that the action of the coherent translation
functors 6, and 63 through the corresponding walls on simple modules is as follows (all
modules are given by their Loewy series):

14



3 4 6

0,(1) =0, 6,(2)=0, 6,(3)= 51, 0,(4)= 2, 6,05)=0, 6,6)= 5 ;
3 4 6
2 ) 6

05(1) =0, 65(2)= 41, 03(3)=0, 05(4)=0, 05(5)= 3, 65(6)= 4.
2 5 6

Let V' denote the translation of 5 to the 3-wall. This module is the only X, s-finite
simple module in the corresponding block of O and hence it is projective in (F,® V). Now,
what are the projective modules in the intersection of (F, ® V') with the principal block?
The first one is the translation of V' back to the principal block, which coincides with 65(5).
Now we can apply 0, to 03(5) to get 6,(3). The modules 3 and 5 are the only infinite-
dimensional X g-finite simple modules in the principal block, hence the projectives we got
are all indecomposable projectives. Therefore the projective generator of the corresponding
block of coker(F, ® V') is 3(5) @ 6,(3). This module has the following Loewy series:

) 3
P=3 & 51.
3 3

Obviously Endy(P) is connected and not local. Actually it is the algebra of the following
quiver with relations:

X
) <:> ) g;yx:ymy:(]
Yy

We would like to finish the paper with underlining the main problems, which, from
our point of view, prevent the generalization of our arguments to simple modules with
arbitrary annihilators. The first step in our arguments was a construction of the projective
module V starting from a simple a-module V. For this we have translated V into the most
degenerate central character (the intersection of all walls). For this central character the
following is true: tensor product with an arbitrary finite dimensional module, followed by
the projection on this central character, is a direct sum of several identity functors. This
property implies projectivity of V. Now consider a simple module, V, with an intermediate
annihilator. This module is annihilated under translation to the most degenerate central
character. However, we can consider the set of all possible translations and find there
“the most degenerate one”, V', which is still non-zero. We remark that the module V is
not uniquely defined in general. Although it is tempting to claim that the module V is
projective in (F, ® V'), but we do not know how to prove this. The above arguments with
translation functors do not work any more, at least in the obvious way.

One more problem appears when one tries to generalize Lemma 2. Although the state-
ment might be true, the arguments are not transferable to the case of smaller annihilators.
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The third point is the study of corresponding GVM even in the category O that is the
case, when V is a simple highest weight module. What are the composition multiplicities
of the corresponding M, (V')? When this module is simple? Are there any analogues of the
BGG-Theorem?

Finally, we would like to mention that Proposition 7 shows the connection between the
categories coker(F, ® M,(V)) and the finite-dimensional algebras, studied in [GM]. The
main result of [GM] gives a BGG-type reciprocity for these categories, showing that some

analogues of the classical results still can be obtained for the general case.
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