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Abstract

We generalize the machinery of exact Borel subalgebras of quasi-hereditary alge-
bras on properly stratified algebras.

1 Introduction

The representation theories of a block of category O, [BGG], and of the degree r poly-
nomial representations of the algebraic groups correspond to representation theories of
quasi-hereditary algebras, as defined in [CPS1]. In these cases the so-called standard mod-
ules (Verma, resp. Weyl modules) arise via induction from Borel subalgebras. A natural
question is whether this induction works at the finite-dimensional algebra level; that is,
can we find a subalgebra of the quasi-hereditary algebra such that tensor induction of one-
dimensional representations gives the standard modules. Such considerations led S. Konig
to study ezact Borel subalgebras in quasi-hereditary algebras ([K1, K2, K3]).

In recent years, the study of representations of complex Lie algebras has extended
to the study of representations induced from simple (not necessarily finite-dimensional)
modules over parabolic subalgebras (see, for example [Fu, FM1]| and references therein)
and the corresponding parabolic generalizations O(P, A) of O (see, for example [FKM1]
and references therein). In particular, some of these categories are closely related to the
recent Mathieu’s classification of simple dense modules over simple finite-dimensional Lie
algebras, [M]|. The connection is especially transparent in the case of parabolic induction
from an si(2, C)-subalgebra, in which all objects of O(P, A) are weight modules with finite-
dimensional weight spaces. The corresponding example is considered in Section 7.

Similar to what occurs in category O, there is a block decomposition and the represen-
tation theory of each block corresponds to the representation theory of a finite-dimensional
algebra. Here the algebras, in general, are no longer quasi-hereditary, but are often so-called
standardly stratified algebras in the sense of [CPS2] (this was obtained in [FKM1, FKM2,
FKM3]) or even fully standardly stratified or properly stratified, as defined in [ADL1, D2].
Such algebras have been intensively studied in [ADL1, ADL2, ADL3, AHLU, D1, D2]; see
also the bibliographies therein. Being so closely related to the quasi-hereditary algebras,
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the properly stratified algebras presumably have many of the properties. We explore some
of these in the current paper.

Our goal in this paper is to generalize the results of Konig on triangular decomposition
(or Cartan decomposition) in quasi-hereditary algebras ([K1, K2, K3]). Central to the
study of such decomposition of quasi-hereditary algebras is a semisimple algebra contained
in the exact Borel and A-subalgebras. In the current case, this must be replaced by a
so-called quasi-local algebra which is a direct sum of local algebras; that is, of algebras
with a unique simple module. After presenting some preliminaries in Section 2, we study
in Section 3 quasi-directed algebras (algebras whose simple modules can be ordered so
that Ext(L;, L;) # 0 implies L; > L;) which are projective as left and right modules over
their maximal quasi-local algebras. It turns out that this is a convenient condition for
the exact Borel and A-subalgebras. The next section establishes that the notions of exact
Borel and A-subalgebras are dual to each other. Section 6 proves the fact that parabolic
decomposition, that is, the existence of an exact Borel subalgebra B and a A-subalgebra C
such that A ~ C'®g B as C' — B bimodule and S is the maximal quasi-local subalgebra in
both B and C, is necessarily properly stratified and gives a partial converse. In Section 7,
we give a method for constructing new properly stratified algebras from old ones. We
finish, in Section 7, with an example from parabolic induction in complex Lie algebras.

2 Preliminaries

We let A be a finite dimensional algebra over k, an algebraically closed field. When we
want to make clear over which algebra we are taking a module we will give an indication via
subscripts. Let J = AeA be a two-sided ideal in A, generated by a primitive idempotent
e. J is called left properly (resp. properly) stratifying if it is a projective left (resp.
left and right) A-module. If we can order the equivalence classes ey, ..., e, of primitive
idempotents of A such that for each [ the idempotent e; generates a left properly stratifying
(resp. properly stratifying) ideal in the quotient algebra A/ < en,..., €11 >, then A is
called left properly stratified (resp. properly stratified) (compare with [FKM1, Section 5)).
We will indicate the (left) properly stratified structure on an algebra A by the pair (4, <)
with < the above order on the idempotents. Left properly stratified algebras are stratified
algebras in the sense of Cline, Parshall and Scott ([CPS2]) and have been studied by many
authors, e.g. [CPS2, ADL1, ADL2, ADL3, AHLU, D1, D2]. Properly stratified algebras
have been introduced and studied by V. Dlab in [D2]. The paper [D2]| appeared after
the first draft of the present paper was completed and we decided to change the original
notation to avoid multiple names for the same objects (in the first draft the algebras above
were called projectively stratified). Our definition is different from that given in [D2], but
it is a direct corollary of the main theorem in [D2] that these two definitions are equivalent.

Remark 1. The referee noted the following interesting feature of the definition above:
if in the definition of properly stratifying ideal we ask J instead to be projective as (A, A)-
bimodule, it will automatically give us that .J is a heredity ideal, i.e. a two-sided idempotent
ideal, which is projective as a right A-module and satisfies JNJ = 0, where N is the



Jacobson radical of A. His arguments go as follows: If J is projective as (A, A)-bimodule,
then the surjection Ae ®x eA — J, defined by (ae, ea’) — aea’ is split as a map of (A, A)-
bimodules. Let ¢ : J — Ae ® eA be a splitting and observe that the image of ede C J
under ¢ is contained in e(Ae ® eA)e = eAe ® eAe (since ¢ is a map of (A, A)-bimodules).
Thus the multiplication map eAe ® eAe — eAe is split as a map of bimodules and eAe
is separable. In particular it is semi-simple. Now JNJ = AeNeA, and since eNe is a
nilpotent ideal in eAe it follows that JNJ = 0 and J is a heredity ideal.

In particular, this clarifies the connection between the left properly stratified algebras
and quasi-hereditary algebras. The change from two-sided modules to bimodules, while
apparently small, is what distinguishes between the two types of algebras.

Two lemmas follow immediately from this definition.

Lemma 1. Let (A, <) be a properly stratified algebra. Then (A%, <) is properly stratified
(with the same order on the isoclasses of primitive idempotents).

Lemma 2. Let A be an algebra with an order < on the isomorphism classes of primitive
idempotents. Then (A, <) is properly stratified if and only if both (A, <) and (A%, <) are
left properly stratified.

It is easy to see that the classes of left properly stratified algebras and properly stratified
algebras are different. As an example of a left properly stratified algebra which is not
properly stratified, consider the algebra of the quiver T' with two vertices {a,b}, three
arrows {a:a — b, 3:b— a, v : a — a} and relations v = 0, ya = 0, By = 0, and
BapB = 0.

We also note that a left properly stratified algebra is a stratifying endomorphism algebra
in the sense of Cline, Parshall and Scott [CPS2] and all quasi-hereditary algebras are
properly stratified. Also a left properly stratified algebra is quasi-hereditary if and only if
it has finite global dimension [ADL1, ADL2, AHLU, CPS2].

Remark 2. The referee also noted a confusion in the comparison of the definition of
left properly stratified algebras and that of standardly stratified algebras given in [CPS2],
which seems to persist throughout many of the references, in particular, in [ADL1, AHLU,
FKM1, FKM2, FKM3|. The confusion consists in the assumption that, in the definition
given in [CPS2], one can always use a complete set of representatives of all isoclasses of
primitive idempotents in A. This is not possible in the general case of the definition in
[CPS2], because this one uses the notion of quasi-partial order and not that of partial
order on the set of representatives of idempotents. For example, in the sense of [CPS2],
any finite dimensional algebra A has a standard stratification of length 1 with A = J; as
the stratifying ideal. On the other hand, left properly stratified algebras are standardly
stratified.

Let (A, <) be a (left) properly stratified algebra. In what follows we will denote by
L()) the simple A-module which corresponds to ey, and will call A a weight. We will also
denote by P(A) (resp. I())) the corresponding projective cover (resp. injective envelope).



Following [CPS2], for a simple A-module L corresponding to the idempotent e, we define
the standard module A(A) as A/, . e\, ex and costandard module V(A) as the largest
submodule of I(\) having factors L(p) with 4 < A. We note that each projective has a
standard flag, i.e. a filtration whose quotients are standard modules.

Let (B, <) be a finite-dimensional algebra with < a partial order on the set of equiva-
lence classes of simple modules. (B, <) is called quasi-directed if Ext% (L, L) # 0 for some
k implies L' < L. By a quasi-local algebra we will mean a direct sum of local algebras.

For a quasi-directed algebra B call an indecomposable module M local if all its simple
composition factors are isomorphic. Call it projectively local if it is projective over the
maximal quasi-local subalgebra of B (whose existence will be proved in Section 3). If M is
a projectively local module, then the weight of M is the weight of its unique composition
factor.

Let S be a quasi-local subalgebra of an algebra B. We say B is S-diagonalizable if B
is projective as left and right S-module. A quasi-directed algebra diagonalizable over its
maximal quasi-local subalgebra will be called pyramidal.

Definition 1. Let (A, <) be a properly stratified algebra and B and C subalgebras of A.
1. We will call B an exact Borel subalgebra of A if

e there is a one-to-one correspondence between the simples of B and the simples
of A;

e (B, ») is pyramidal with the opposite order induced from the simples of A;

e the tensor induction functor A Qp _ is eract;

e A®p _ sends the projectively local B-module V' to the standard A-module of the
same weight;

2. We will call C' a A-subalgebra of A if
e there is a one-to-one correspondence between the simples of C' and the simples
of A;
e (C, =) is pyramidal with the order induced from the simples of A;

e for each weight i the indecomposable projective Ae; occurs exactly once in the
decomposition of the projective A-module A @¢c Ce;;

o fizing epimorphisms k(i) : A Q¢ Ce; — A(i), one has isomorphisms k(i)|ce;
1@ Ce; = A(i).

The importance of the last condition on exact Borel subalgebras can be seen from the
example A = k[z]/(z*) and B = k[z?]/(z*) C A. In this example the unique standard
objects are the algebras and induction clearly doubles the length of modules.

In the remainder of the paper, set ¢« < j if and only if ¢ < j. The first symbol will
indicate quasi-directedness and the second will indicate a properly stratified structure.
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Definition 2. Let A be an algebra and < be a total order on the set of equivalence classes
of simple A-modules. Let B and C be subalgebras of A such that BN C = S is a quasi-
local subalgebra of A containing at least one representative from each isomorphism class
of primitive idempotent, maximal in both B and C. Assume that (B,>) and (C,=) are
pyramidal. Call (B, C) a parabolic decomposition of A provided that the multiplication in
A induces isomorphisms C ®gs B ~ A as left C-modules and right B-modules.

We have chosen this terminology to reflect the fact that the major example we know
comes from tensor induction from a parabolic subalgebra of a Lie algebra.

A quasi-hereditary algebra (A, <) can be characterized by the existence of standard
modules A(7) having simple subquotients L(k) with ¥ < ¢ and L(7) occurring once, and
such that the projective P(j) has a standard flag with sections A(7) with j < i among
which A(j) occurs exactly once. Left properly stratified algebras have the same module-
theoretic characterization except that the multiplicity of L(7) in A(7) may exceed one (see
[CPS2, Section 2.2] for details).

Theorem 1. (A, <) is left properly stratified if and only if there exist modules A(i) such
that

(i) there is a surjection ¢; : A(i) — L(i) whose kernel has composition factors L(j),

J <
(i1) P(i) surjects onto A(i) and the kernel of this map has a standard flag with sections
A(j), j % i
Proof. This theorem is a special case of [CPS2, Section 2.2]. O

Corollary 1. Let (A, <) be an algebra. Then (A, <) is quasi-directed if and only if (A, <)
s left properly stratified with projective standard modules.

Proof. 1f (A, <) is left properly stratified with projective standard modules then (A, <) is
quasi-directed by definition. Now assume that (A, <) is quasi-directed. Define A(7) = P(7).
Condition (i7) is trivial and condition () follows by directedness. O

One can clearly obtain the notion of right properly stratified algebras by requiring right
projectivity of the stratifying ideals. Then the dual version of Theorem 1 will look as
follows.

Corollary 2. (A, <) is right properly stratified if and only if there erists a choice of co-
standard modules V(i) such that

(i) there is an injection ; : L(i) — V(i) whose cokernel has composition factors L(j),
J <.

(i1) V(i) injects into I(i) and the cokernel of this map has a costandard flag with sections
V), j £ i.



Corollary 3. (A, <) is properly stratified if and only if there exists a choice of standard
modules A(i) and costandard modules V(i) satisfying the necessary conditions from Theo-
rem 1 and Corollary 2.

For properly stratified algebras there is an appropriate generalization of the classical
Brauer-Humphreys reciprocities obtained in [ADL1, Theorem 2.5] for a more general sit-
uation. Here we present this result in the form which we will use later on and refer the
reader to [ADL1, Theorem 2.5] for more details. As usual, [M : A(7)] (resp. [M : V(i)])
denotes the number of occurrences of A(i) (resp. V(7)) in a standard (resp. costandard)
flag of M, should it exist. Similarly, for a simple L, [M : L] means the corresponding
composition multiplicity.

Theorem 2. Let (A, <) be a properly stratified algebra. Then for any pair of weights i
and j we have

dimy (End(A(7))[P(0) : A = [V(5) : L)),
dimy (End(V (5)))[1(¢) : V(5)] = [A@) : L(D)

Proof. Although this is a partial case of [ADL1, Theorem 2.5], it is formulated in a slightly
different form, so we give a short proof.

By duality it is sufficient to prove the first. By induction it is sufficient to prove it for
maximal j = n. In this case P(i) = Ae;, P(n) = A(n) = Ae, and I(n) = V(n). Set
I =[P(i) : A(n)]. It is easy to see that the last is equal to

[t

dimy Hom4(P(n), P())
dimy End4(P(n))

| =

that is Ae; N Ae, A = (Ae,)'. So, it remains to show that dimy, Hom(P(n), P(i)) = [I(n) :
L(7)]. Passing to the opposite algebra we have

dimy Hom4(P(n), P(i)) = dimy(e, Ae;) = dimy(e; A%Pe,,)
= dimy Hom 4 (A%e;, A%Pe,,) = [A%e, : L(i)] = [I(n) : L(3)].
U

In particular, one has the following corollary:

Corollary 4. Assume that A is properly stratified and has a duality (i.e. a contravariant
exact equivalence on the category of A-modules which preserves simples). Then

dimy (End(A(H))IP() : AG)] = [A>) : LE)]-



3 Pyramidal algebras as properly stratified algebras

In the theory of quasi-hereditary algebras we see that an algebra, (A4, <), is directed (that is
Ext(L, L") # 0 implies L £ L') if and only if it is quasi-hereditary with projective standard
modules. We have already seen (Corollary 1) that the same relationship holds between
quasi-directed and left properly stratified algebras. In this section, we examine pyramidal
algebras; in fact, we prove that all pyramidal algebras are properly stratified.

Lemma 3. Let (B, <) be a quasi-directed algebra. Then the mazimal quasi-local subalgebra
S of B is isomorphic to @,e; Be;.

Proof. Clearly, S' = ®,e;Be; is a subalgebra of B. Because of the directedness of B no
endomorphisms of Be; can factor through a non-isomorphic projective, so each e;Be; is
local, and hence S’ is quasi-local. Now let P be an indecomposable summand of S. Then
P equals Se; is local and so e;Se; = Se; is a subalgebra of ¢;Be;. Hence S C S'. O

Lemma 4. Let (B, <) be quasi-directed. Then the projectively local module K (i) is iso-
morphic to Be; /N, where N is the trace of all P(j) with j < 1.

Proof. Because of the directedness of B we have

Bei = e,-BeZ- D ZejBei

j<i

as a vectorspace. For each element of e;Be; there is a map for P(j) to P(¢) covering it, so
> j<iejBei C N. But [Be; : L(1)] = [e;Be; : L(i)] by directedness of B. This completes
the proof. O

Proposition 1. Let (B, <) be a pyramidal algebra. Then (B, <) is properly stratified.

Proof. (B, <) is left properly stratified by Corollary 1. Now consider B. Then the
algebra (B, ) is quasi-directed. This implies that a left projective B°’-module P (i) has
only L(j) with ¢ < j as composition subquotients. Since B is pyramidal each P(i) has
a projectively local flag whose subquotients satisfy the same order condition. Let S be
the maximal quasi-local subalgebra of B. For B choose A(i) = e;5%e; as the standard
objects. By Lemma 4 these are the projectively local modules. Then these standards clearly
satisfy conditions (i) and (i7) of Theorem 1, and so (B, <) is left properly stratified. And
now, by Lemma 2, (B, <) is properly stratified. O

Thus, a pyramidal algebra (B, <) has both (B, <) and (B, >) properly stratified struc-
tures. To finish this section we give necessary and sufficient conditions for a quasi-directed
algebra to be properly stratified. We begin with the following lemma.

Lemma 5. Let e be a primitive idempotent in a quasi-directed algebra (B, =) and X an
eAe-module. Then X ®Q.p. eB is a right B-projective if and only if a X is right eBe-
projective.



Proof. If X.p. is projective, then X is free over eBe and hence X ®.g. eB is right B-
projective. On the other hand, suppose X ®.p. eB is right B-projective. Let L be the
maximal local top of eB. X has top (I:)”, where L is the unique simple e Be-module. We
have an exact sequence

0—=T5 (eBe)" - X — 0.

Inducing to B we have

T ®epe B 2> (eBe)" @ee eB 2 X @epe eB — 0.
Since X surjects on (ﬁ)", we have the following chain of surjections
X ®cpe €B = (L ®cpe ¢B)" — (L ®cp. L) — L™

X ®epe €B is projective and must contain, as a direct summand, the projective cover
(eB)™ of L™. This implies that « is an isomorphism, # = 0 and, last, §-e = 0. But
B-e=¢:TQ®peBe - (eBe)" Q.pe eBe is non-zero if X is not projective. This
contradiction proves the lemma. O

And this lemma allows us to give the following characterization of which quasi-directed
algebras are properly stratified.

Proposition 2. Let (B, <) be quasi-directed. Then the following conditions are equivalent.
(i) B is properly stratified,
(ii) the mazimal quasi-local subalgebra S of B is an exact Borel subalgebra,

(i1i) Be is eBe-projective for every primitive idempotent e.

Proof. ((i) < (ii1)) By [DR, Statement 7] we have Be ®.s. eB ~ BeB, where e is the
maximal primitive idempotent. So BeB is right B-projective if and only if Be is right
eSe-projective (Lemma 5).

((i7) = (i11)) Since BQ®g _ is exact, B is a right flat, hence right projective ([F, 11.31]),
S-module. Then Be is a projective S module and hence a projective eSe-module.

((it3) = (i1)) We have B ®s - = ®;Be; ®¢,s¢; — and hence exact since each Be; is
e;Se;-projective. Now we just need to prove that this functor carries Ag(i) = e;Se; to
Apg(i). Set e = ¢;. We have B ®g eSe = B ®,5. eSe = Be ®.s5. eSe = Be = Ag(i). O

4 Duality between exact Borel and A-subalgebras

In this section we explore the left-right symmetry of properly stratified algebras and their
exact Borel and A-subalgebras. For the remainder of the paper we will assume that the
properly stratified structures on exact Borel and A-subalgebras are given by the same order
on the idempotents of the algebra. With this properly stratified structure the fourth con-
dition of an exact Borel subalgebra can be rephrased as: tensor induction carries standard
modules to standard modules.



Lemma 6. Let (A, <) be a properly stratified algebra. Then
Ext (A1), V(5)) = 0
unless k =0 and i = j.

Proof. Assume k > 0. Let m be the maximum of 7 and j. Put e = ZZ:mH es and put
A" = A/AeA. Over this algebra A(m) is projective and V(m) injective. Thus we have for
k # 0 Extf (A(i), V(§)) = Extk, (A(5), V(4)) = 0 ([CPS2, 2.1.2]). If k =0, i # j then the
image of any map ¢ : A(i) — V(j) must have L(i) as top and other composition factors
L(j), j < i, since it is a quotient of A(7). If this map is non-zero then L(7) is a composition
factor of V(j); that is, i < j. But then every submodule of V(j) has composition factor
L(j), which forces j < i. O

Let (B,>) be an exact Borel subalgebra of a properly stratified algebra (4, <). If
A is quasi-hereditary then the standard objects are induced from simple B-modules. In
general, this no longer holds; however, these modules A 4(i) = A ®p Lp(i), which we will
call proper standard modules, continue to play an important role (see also [ADL1, ADL2,
ADL3, AHLU, D1, D2]). In particular, A(i) has a A(i)-flag.

Lemma 7. Let (A, <) be a properly stratified algebra with an exact Borel subalgebra B.
Then

Ext (A(3), V(j)) = 0,
unless k =0 and 1 = j.

Proof. For k = 0, A(i) is an image of A(i) and the statement follows from Lemma 6.
Consider k # 0. Let [ be the maximal of i and j. Then A(i) and V(j) are modules over
A/{egs1,---,en)y and so (by [CPS2, 2.1.2]) we may assume that [ = n. If j = n, then V(j)
is injective and the current lemma clearly holds. So now assume i = n and j < ¢ and
consider the exact sequence

0—= N — A() = A®) = 0.
Apply Hom,(_, V(4)) and pass to the long exact sequence. We get Ext!(A(i), V(5)) = 0

and Ext!}' (A(i), V(5)) ~ Extl4 (N, V(). The lemma now follows from standard dimension
shift arguments. O

Lemma 8. Let (B, =) be an exact Borel subalgebra of a properly stratified algebra (A, <).
Then for all weights, dim End (A 4()\)) = dim Endg(Ag())).

Proof. We prove the lemma by induction. Let n be the maximal weight. We have
dim Endx (Ax(n)) = dimHomx (Px(n),Ax(n)) = [Ax(n) : Lx(n)]

for both X = A or X = B. By the last condition for an exact Borel subalgebra we have
[Aa(n) : La(n)] = [Ag(n) : Lg(n)], and the statement follows for the maximal weight.
Induction is clear. O



Proposition 3. Let (A, <) be a properly stratified algebra and (B, >) a pyramidal subal-
gebra of A with the same poset of isoclasses of primitive idempotents. Then B is an ezxact
Borel subalgebra of A if and only if for each weight i restriction from A to B induces an
isomorphism V 4(i) ~ V(i) as B-modules.

Proof. Assume that B is an exact Borel subalgebra of A. We compare the dimensions of
V(i) and V(7). Using Theorem 2 we have

dimy Vx (i) = Z dimy Lx (5)[Vx (2) : Lx (4)] (1)
= Z dim End (A (4)) dimy Lx ()[Px (§) : Ax (3)] (2)
= dim End(Ax ())[X : Ax(i)] (3)

for both X = A and X = B. By the exactness of induction, [A : A4(7)] = [B : Ag(i)]. By
Lemma 8, dim End(A4(i)) = dim End(Ag(i)) and so dimy V 4(i) = dimy V(7).

From Lemma 7 it follows that the functor Hom4(_, V 4(j)) is exact on A-modules having
a proper standard flag. Thus Hompg(_, V 4(7)) is exact on the category of B-modules. So
V 4(j) containing V(j) is an injective B-module. The previous dimension count says that
they are, in fact, equal.

Now assume that for each weight 7, restriction from A to B induces an isomorphism
V(i) ~ Vp(i) as B-modules. Since (B, ») is pyramidal, (B, <) is properly stratified by
Lemma 1 with injective costandard modules (Corollary 1 and Corollary 3). We want to
prove that A is right projective over B implying A ®g _ is exact. The right standard
modules for A (and both right standard and projective over B) are V 4(i)*, so, as a right
projective A-module, A has a V 4(i)*-flag, the last being a direct sum decomposition over
B.

We are finished when we show that A ®p _ sends projectively local B-modules to
standard A-modules. Let K (i) be a projectively local B-module corresponding to the
weight 7. First we show dim,(A®p K (1)) = dimy A4(7). We have d := dimg(A®p K (i) =
dimy (Homp (K (i), A*))*. Since A is a right projective B-module, A* is left injective and
as such decomposes into a direct sum of injective B-modules, V(7). On each summand
we have

: : . 0, i # J;
dimy Homp (K (7), Vg(j)) = {dimk Endgp(K (i), i=j;
this follows from the fact that Vg (i) = (¢; B)* implies [V (i) : Lp(i)] = [K(¢) : Lp(i)]. Now
dim Endp(K (7)) = [K (i) : L(7)] because K (i) is projective in the category of B-modules
filtered by Lp(i). Thus d equals dimy Endg(K (7)) - [A* : Vg(i)] = dimk Endg(K (7)) - [A* :
V4(7)]. Further, dimy Ends(V4(7)) = dimy Endaer(Aper (7)) = dimg Endper (K (3)*) =
dimy Endp(K (7)) by Lemma 8. Applying Brauer-Humphreys reciprocity we get
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d = dimy Endg(K (7)) - [A* : VA(2)] = (4)
= Zdimk End4(Va(i)) - [1a(j) : Va(i)] - multa-(14(j)) (5)

= Z[AA(i) t La(9)] - multa(Pa(5)) = dimu(Ax(7)). (6)

From the quasi-directedness of B and adjunction we have that A®p Pg(7) has P4(i) as a
direct summand exactly once and all other direct summands (if any) are of the form P4(),
j > i. So, for the largest weight we have As(n) = Pa(n) = A®p Pg(n) = A®p K(n).
Now we proceed by induction. We have an exact sequence:

0—-V — Pg(i) > K(i) -0
with V filtered by K (j), j > 4, because Ag(j) = K(j). By exactness of A ®p _ we obtain
0> A®pV — A®p Pp(i) > A®p K(i) — 0,

and by the inductive hypothesis, A ®p V is filtered by A4(j) with j > i. Now, since
P4(i) occurs as a summand of A ® g Pg(7), there is a surjection of A ® g Pp(i) onto A 4(3)
and the kernel V' is the the sum of the images of all possible maps from P4(j) for j > i.
Hence V' C V' and so A ®p K (i) surjects onto A4(7) and the isomorphism follows from
the dimension count. 0J

Corollary 5. B is an exact Borel subalgebra of a properly stratified algebra (A, <) if and
only if B? is a A-subalgebra of (A, <).

Proof. Follows from Proposition 3, its proof, the duality of the conditions for a A-subal-
gebra, and the equivalent conditions for an exact Borel subalgebra. O

5 Properly stratified structure of algebras with para-
bolic decomposition

In this section we prove a theorem relating parabolic decomposition to properly strati-
fied algebras. It generalizes the corresponding result for quasi-hereditary algebras [K2,
Theorem 4.1]. The proof closely follows the ideas of the proof there.

Theorem 3. Let A be a finite-dimensional algebra and < be a total order on the set of
isomorphism classes of simple A-modules. Assume that (B, >) and (C, <) are pyramidal
basic subalgebras whose intersection BN C = S s the mazximal quasi-local subalgebra of
both B and C. The following statements are equivalent.

(i) The algebra A is properly stratified with an exact Borel subalgebra B and a A-
subalgebra C.

11



(i1) (B,C) is a parabolic decomposition of A.

Proof. Assume we have listed the idempotents in A (and hence in B and C') with respect
to the natural total order.

((¢) = (41)) We proceed by induction on the number of direct summands in S (the
number of weights). If S is local, then A = B = C = S and we are done. Assume S is not
local and e = e, is the maximal primitive idempotent in A. Since A is properly stratified,
AeA is a properly stratifying ideal and hence is projective as left A-module. In particular,
by [DR, Statement 7], we have that the multiplication in A induces a bijection

Ae Qeae €A — AeA.

We also have eAe = eSe, since e is the maximal primitive idempotent. We have the
identifications

Ay(n) ~ Ac(n) ~ Ce
by the definition of A-subalgebra and Corollary 1, and
Va(n)* ~Vg(n)" ~eB
by dual arguments (Corollary 5). We get a bijection
Ce Rese B ~ Ae Qe pe €A >~ AeA,

compatible with left C' and right B multiplication. Continuing by induction (see arguments
in [K2, Theorem 4.1]) we see that the k-dimensions of both sides of

C®SB—)A

are equal and we are done.

((#2) = (7)) Let e = e, be the maximal primitive idempotent. We wish to show that
AeA is properly stratifying. Since B and C are quasi-directed, we have eC' = eCe = eSe
and Be = eBe = eSe are projectively local modules. First we show that eSe = eAe (this
says End4(A4(n)) ~ Endc(Ac(n))). We have

eAe ~ eC ®gs Be ~ eSe ®g eSe ~ eSe Qg eSe ~ eSe.
Analogously,
Ae ~(C ®s Be ~ (' ®seSe >~ (C Qse eS¢ ~ Ce
and
eA~eC ®s B~eSe®s B ~eSe R.s. B~ eB.

Now, since B and C are pyramidal, they are projective over S both as left and right
modules. So Ae = Ce (resp. eB = eA) is a right (resp. left) projective eSe-module. Thus
they are free over eSe and so Ae ®.se €A is projective as left and right A-module. The
theorem now follows from standard induction. O
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6 Construction of algebras with given parabolic de-
composition

In this section we give a general construction of a properly stratified algebra having given
exact Borel and A-subalgebras. The central theorem allows us to construct a properly
stratified algebra as an extension of a properly stratified algebra by a pyramidal algebra.
If the properly stratified algebra has a parabolic decomposition, then the extension will as
well.

To state the theorem we assume the following set-up: If we are given a semi-local
algebra S an S-algebra will mean an algebra Ts(M)/I, where M is an S-bimodule, finite-
dimensional over k. Let (A, <) be a basic properly stratified algebra with an exact Borel
subalgebra B. Let (D, <) be a basic pyramidal algebra. Assume that B and D have iso-
morphic maximal quasi-local subalgebras S (in particular, they have the same set of idem-
potents). To fix notation, then A ~ Tg(M4)/Ia, B ~ Ts(Mg)/Ig and D ~ Ts(Mp)/Ip.
Let A’ = Ts(MA @MD)/(1A+1D + (a®5 d|a € MA,d € MD>)

Theorem 4. Let A, B, D and A" be defined as above. A’ is properly stratified and iso-
morphic to D ®gs A as left D-module and right A-module. B is an exact Borel subalgebra
of A" via the embedding b — 1®b. If C ~ Ts(M¢) is a A-subalgebra of A containing S,
then A’ has a A-subalgebra C' ~ Ts(Mc @® Mp)/(Ic + Ip + (¢ ®s d|c € Mg,d € Mp)).
Last, C' ~ D ®5 C as left D-module and right C-module.

Proof. By construction, we have appropriate module isomorphisms: A’ ~ D ®¢ A (and
when relevant C' ~ D®gC'). Let e be the maximal primitive idempotent. Then e = e®ge
(=1®se). So, J=AeA =DQRsC-e®se-DRsC =DQ®g AeA. Since D (resp. AeA)
is a two-sided projective D (resp. A)-module, J is a two-sided projective A’-module and
A’ is properly stratified by induction.

We prove B is an exact Borel subalgebra of A’. To begin, D ®¢s A ®p _ is exact, since
A ®p _ is exact and D is pyramidal and hence flat over S. By induction, D ®5 A ®p _
sends standard B-modules to standard A’-modules. Indeed, let e be the maximal primitive
idempotent. D®sA®pBe ~ D®gAe ~ (D®gsA)(1®ge), which is A’-standard. It remains
to show that [A'®p Lp(i) : La(i)] = 1. Now A’ ®pLp(i) = D®s AQ®p Lg(i). Since B is an
exact Borel subalgebra of A, we have [A®p Lp(i) : L4(i)] =1 and [AQp Lg (i) : La(j)] #0
implies j < i. We are done, if we show [D ®s La(j) : La(j)] = 1 and [D ®s La(j) :
L (k)] # 0 implies k < j, for this would clearly imply that [A'®p Lp (i) : La(i)] = 1. But
D ®s La(j) = 3 ke exDej ®s La(j) and [}, exDej ®s La(j) : Ls(m)] # 0, m < j and
s0 [D ®s La(j) : Lar(k)] # 0 implies k < j. Further, [>°, .exDe; ®s La(j) : Ls(j)] =1
implies [D ®g La(j) : La(j)] = 1. The remaining statements follow arguments already
seen. ]

Corollary 6. When C = A we have that A' ~ C ®g B is a parabolic decomposition.
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7 Parabolic decomposition of properly stratified alge-
bras attached to blocks of O(P,A)

We have mentioned that our motivation stems from the representation theory of complex
Lie algebras and algebraic groups. In this section we give a parabolic decomposition for
algebras arising from generalizations of classical category . We will work with properly
stratified algebras whose module category is equivalent to a block of the category O(P, A),
studied in [FKM2]. Let us give an overview of the set-up.

Let 2 denote the Lie algebra si(2, C) with a fixed root basis e = X, f = X_,, h = H,,
where « is the root of 2. For any v € C and A € C/2Z there is a unique weight 2-module
V' (A, ) satisfying the following conditions ([FM1]):

1. X is the support of V(), ) and all weight spaces of V' (A, ) are one-dimensional,
2. v is the unique eigenvalue of the Casimir operator, ¢ = (h + 1)? + 4fe, on V(},7),
3. V(A,7) is admissible, i.e. f acts bijectively.

Let A = A(V(), 7)) denote the full subcategory of 2-modules having as objects all
admissible submodules and quotients of modules of the form V(A7) ® F, as F varies over
all finite-dimensional 2-modules. It has been shown ([FKM2, Section 2]) that A is an
abelian category.

Now let & be a complex simple finite-dimensional Lie algebra and P a parabolic sub-
algebra of & such that P has Levi factor 2A @ $y (A as above) and nilpotent radical 1.
Construct the full subcategory A = A(V (), 7)) of the category of A = A & Hy-modules
satisfying:

1. any M € A belongs to A, when viewed as an 2-module,
2. any M € A is HHg-diagonalizable,

3. forany M € A and any $)g-diagonalizable finite-dimensional 2-module F the module
M ® F decomposes into a direct sum of indecomposable modules from A.

Define O(P,A) to be the full subcategory of the category of B-modules whose ob-
jects are finitely generated and D1-finite &-modules that decompose into a direct sum of
modules from A when viewed as 2-modules. By [FKM1, Section 4], O(P, A) has a block
decomposition (with finitely many simples in each block) and, by [FKM1, Section 10], this
decomposition can be chosen such that each block is equivalent to the module category
over a left properly stratified finite-dimensional algebra. By [FKM1, Section 12], O(P, A)
has a duality (see Corollary 4). Thus by Corollary 2, these algebras are also right properly
stratified and hence properly stratified. The main result of this section is the following.

Theorem 5. For every block of O(P,A) there is an algebra A, with parabolic decomposi-
tion, whose module category is equivalent to this block.
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We will prove this by explicit construction of A and its exact Borel and A-subalgebras.
We require more terminology. For the rest of the section we fix a block O; of O(P,A)
assumed to have finitely many simples.

Let Q. be the set of positive roots of &. P uniquely identifies a copy of % in &. Assume
that the root o of 2 is contained in Q. A weight A of a weight &-module V' will be called
an a-highest weight provided that A + (3 is not a weight of V for any 8 € Q, \ {a}. For
a weight A\ and a weight &-module V set V[\] = @®rezViika, Which is closed under the
action of 2.

It is known that indecomposable modules from A have the form V (a,b) or V(a,b), the
second being a self-extension of V' (a, b) (see [FKM1, Section 10]). For simple V' € A denote
by V its projective cover (in A); this is either V itself or its self-extension. Given M € O;,
a weight A\ and a b € C set

My, = {v € M| there exists k € N such that (¢ — b)*v = 0}.

Since, as an A'-module, M decomposes into a direct sum of objects from A, one has that
My, = {v € My| (¢ —b)?>v = 0}. For a simple module L € O; denote its a-highest weight
by pr. Then L{ug| ~ V(ag,by) for some ay, and by,. Put V;, = V(ar,by).

Lemma 9. Let L be a simple module in O;. There exists a projective module P such that
Homg (PL, M) ~ M,, ,, for any M € O;.

Proof. Set u = pr, a =ay and b = by. We can pick k € N big enough such that M*M,, =0
for any M € O; and consider the B-module

PE=U(®) @ (U Umn) @:).
U(P)

Now we can take P to be the O;-projection of P*. That Homg(PL, M) ~ M, for any
M € O; is identical to the classical argument in [BGG, Theorem 2. O

Since the a-highest weight of L is unique up to shifts by «, P’ is independent of the
choice of this a-highest weight. Now we take

A:End@< D PL).

L simple in O;

Clearly, the category of A-modules is equivalent to O;.

Let =91 & H @ N, be the standard triangular decomposition of & and M~ be the
image of 9 under the Chevalley involution. Consider an 2/-submodule VX =1® 1® Vg,
in PL and set My, = U(M_)VL. Let A(L) denote the standard module associated with L
([FKM1, Section 3]). We have A(L) =~ U(®) ®u(py Vi

For any simple L € O; fix the canonical generator p(L) = 1 ® 1 ® v of PL, where v
is a canonical generator of Vy; then the map ¢ — ¢(p(L)) is a C-isomorphism between
Homg (PY, M) and M, ;, for any M € O;.

LsbL
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Lemma 10. Any surjection PY — A(L) induces an U(MN_)-isomorphism My — A(L).

Proof. Let ¢ : PX — A(L) be a surjection. It carries p(L) to a generator of A(L) and
hence it induces an X_,-isomorphism My [ur] — A(L)[pr]. Now the statement follows
from the facts that UM _) = U(M~) ®c U(X _,) and both M and A(L) are U(M™)-free
([FM2, Proposition 1]). O

Lemma 11. M; is an 2A'-module.
Proof. Follows from the construction of PY and the definition of Mj,. O

Lemma 12. Assume that ¢ : P* — P is a homomorphism and ¢(p(L;)) € My,. Then
@(A4Lj) C:A4Lk.

Proof. By definition, p(L;) generates Vi as 2A'-module. Since ¢ is an 2'-homomorphism,
Lemma 11 says that ¢(V*) C M" and the statement follows from the fact that M, =
UM_)V% and the fact that My, is stable under left U(M_)-multiplication. O

Proof of Theorem 5. First we prove the existence of a A-subalgebra in A. Denote by I an
indexing poset of simple modules in O;. Put

C = @P{w € Home(P", P*) [ o(p(L;)) € My,}.

j.kel

C C A is a vectorspace, which is a subalgebra by Lemma 12. By Lemma 10, C' has trivial
intersection with the kernel of the projection A — @,c;A4(7). Clearly, C is quasi-directed
and contains a maximal quasi-local subalgebra which is isomorphic to @,c;r End(A(y)).
Now, we have to prove that the vectorspace Ce; is large enough, ie. dimc(Ce;) =
dimg(A4(f)). Let t = dimc(Aa(f))- By the definition of A and by Lemma 9, we have

t =" dime(Home (P™, A(Ly))) = dime(A(L;) uy, b0, )

kel kel

= Zdim@((MLj)uLk,bLk) = Zdim@(ekCej) = dim¢ Ce;.

kel kel
So, we have only to show that C' is pyramidal. The maximal quasi-local subalgebra of
Cis
S = Pl € Home(P™, P49) | p(p(Ly)) € My}
jel

We will show that C is right S-projective. Left projectivity can be proved analogously. In
fact, we will show that for any j,k € I

ejCer = {p € Home (P", P™) | (p(L;)) € My}

is a free right e Se,-module. Recall that M, maps bijectively onto A(Ly) for any surjection
from P to A(Ly). Let Mp(Vz,) be the generalized Verma module associated with Ly
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([FKM1, Section 2]). It follows from the description of A that either Mp(Vy,) >~ A(Ly) or
A(Ly) is a self-extension of Mp(Vy,). Let M* denote a vectorsubspace of My, that maps
bijectively on Mp(V,) under any composition P** — A(Lg) — Mp(Vy,). Such an M*
clearly exists. Now an e;Se;, basis of e;Cey is given by any linear basis of the vectorspace
of all maps ¢ € Homg(P%7, P'*) such that p(p(L;)) € M*. Hence, €,;Cey, is e, Seg-free.
Since A has a A-subalgebra and there is a duality on O; ([FKM1, Section 12]), one has
that A has an exact Borel subalgebra; the statement follows. O
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