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Abstract

We introduce a twisted higher rank generalization of generalized Weyl algebras

and study simple weight modules over such algebras.

1 Introduction

Generalized Weyl algebras (GWA) appeared in the original work by V.Bavula (see bibliog-
raphy in [2]) and were studied intensively during last years (see [1, 2, 3, 5]). In fact, complete
classification of simple modules over such algebras was obtained in [2] and complete clas-
sification of indecomposable weight modules was obtained in [5]. The class of generalized
Weyl algebras contains a number of known algebras such as U(sl(2, C)), U,(sl(2,C)), Weyl
algebra and many other studied in literature ([7, 10, 11]). In [1] the higher rank GWA
were introduced as a tensor product of rank 1 GWA, moreover, it was shown in [3] that
the problem to describe indecomposable weight (generalized weight) modules over higher
rank GWA is wild in general case (in the sense of [4]).

In the present paper we propose a construction of twisted higher rank generalized Weyl
algebras and study their simple weight modules in a torsion-free case. It happened, that in
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our case the support of a finite-dimensional module might have more interesting geometrical
structure than in the case of classical GWA. Moreover, we provide some analogue between
the structure of such supports for twisted GWA and for finite-dimensional modules over
classical simple Lie algebras. The same analogue can not be obtained for the classical
higher rank GWA.

The paper is organized as follows: In section 2 we introduce twisted generalized Weyl
algebras and establish their basic properties. In sections 3 we describe canonical simple
weight modules for the case of torsion-free orbit and, finally, in section 4 we illustrate an
analogue between the supports of simple weight modules over twisted GWA and simple
Lie algebras by examples.

2 Definition of twisted GWA

Denote by C the complex field, by Z the ring of integers, by N the set of all positive integers
and by Z_ the set of all non-negative integers.

Let R be a commutative ring with a unit element. As in [5] we define a category C to
be an R-category if its morphism sets C(i,j) are equipped with an R-bimodule structure
for any objects ¢, j, the multiplication of its morphisms is R-linear with respect to both
left and right R-module structure, and (ar)b = a(rb) for any possible morphisms a, b and
r € R. If C contains only one object we will call it an R-ring.

Denote by Max R the set of maximal ideals m C R. For m € Max R and an R-module
V we set Vin = {v € V|muv = 0}. For an R-category C, any C-module M and any object
1, M; becomes an R-module in a natural way. We call M the weight module if

M= Y My
meMax R

For a weight module M we set Supp M = {m € Max R | M,,, # 0}.

Let I' be a finite non-oriented tree with a set of vertices I'y and a set of edges I';.
Suppose that o;, i € 'y is a set of pairwise commuting automorphisms of R. Fix some
elements 0 # t; € R, 1 € [ satisfying the following relations:

o tzt] = O'i_l(tj)aj_l(ti)a (7”.7) € Fl’

® Uz(t]) = tj, (7”]) ¢ Iy.

Let ' be an R-ring generated over R by the indeterminates X;, Y;, i € 'y subject to
the following relations:

e X;r =0;(r)X; for any r € R, i € T;



e Yir=0;(r)Y; for any r € R, i € Ty;
o XY, =YX, for any 7,5 € Iy, ¢ # J;
o VX, =t,1€ly;
o X;Y;, =o04(t;), i €Ty

Lemma 1. Algebra U is non-trivial.

Proof. Since, by [2, 5], (X;,Y;, R) is a free R-module with the base 1, X¥, V¥ k € N we
need only to check that the conditions X,;Y; = Y;Xj;, i # j, and Y; X, = ¢; do not contradict
each other. It is obvious for (i,7) & I'y. For (i,7) € [’y it follows easily from the identity

titj = O"_l(tj)o-j_l(ti)-

O

Denote by i : A" — A’ the canonical anti-involution on 2’ defined as follows: i(r) = r
for any r € R, i(X;) = Y; and i(V;) = X for i € T.

Algebra 2" possesses a natural structure of Z" graded algebra (n = |T'y|) by setting
deg R =0, deg X; = e;, degY; = —e;, 1 € I'y, where ¢;, © = 1,...,n denote the standard
generators of Z™. Clearly, R coincides with the zero component with respect to this grading.

Lemma 2. Among graded two-sided ideals of ' intersecting R trivially there exists a
unique maximal ideal I.

Proof. Since a sum of graded ideals is again a graded ideal and R is a graded component
of ', it follows that I is the sum of all graded two-sided ideals that do not intersect R. [

We define a twisted GWA A = (R, 04, ...,0p,11,-..,t,) of rank n = |['y| as a quotient
ring A'/I, where [ is the ideal given by Lemma 2. As it was done in [5] we retain the term
“algebra” for all cases, even if there is no ground field at all. In all natural examples R is
a k-algebra over some field £ and thus 2 is really a k-algebra.

Lemma 3. The following identities hold in 2A:
1. XzXJ = XJXZ fO?" all (’L,j) g Pl.
2. XiXjt; = X;X;0; "' (t;) for alli # j, (i,§) € Ty;

3. Xin’UZ' = XjX,"Uj Zf’L ?é j, ti = U;V;, tj = U,;v4, such that O'Z'(Uj) = Uy, O'j(ui) = Uy,

oi(vi) = v, 0j(vy) = vi;



4 YiY; =YY, for all (5,§) ¢ T,
5. a]l(ti)Y;-Yj =1,Y;Y; for alli # j, (i,5) € I'1.
6. v;Y;Y;, = v;Y;Y; if i # j, ti = ww;, t; = ujv;, such that o;(u;) = uj, oj(uw;) = u,,
oi(vi) = vj, 0j(v5) = vi;
Proof. Follows from the defining relations by direct calculations. O

W = (0;]i € Ty) acts on Max R in a natural way. Let 2 denotes the set of orbits under
this action. For a weight 2-module V' and v € Q set M, = ®meyMm.

Lemma 4. Let M be a weight A-module and m € Max R
1. XiMm C My;(m);
2. V;My, C Mai—l(m);
3. M = &,cqM,, moreover, Supp M, C 7.

Proof. These are the standard properties of weight modules that follow immediately from
the definition of 2 ([5]). O

For v € Q we will denote by M(+y) the full subcategory in the category of 2A-modules
consisting of all weight modules M with Supp M C . For a commutative ring K and its
maximal ideal m we will denote by K,, the corresponding residue field.

Examples 1. 1. Let T be a tree without edges, R an arbitrary field, o; the identity
map and t; = 1 for 1 € ['y. Then A is isomorphic to the Laurent polynomial ring

Rlzy,z7', ... o, 2], n = |Tol.

2. Let I be a tree without edges, o;, t;, 1 € I'y arbitrary elements satisfying the defining
relations. If R has no zero divisors then A is a higher rank GWA. In fact, A is
isomorphic to a quotient ring of A' by the two-sided ideal generated by X; X; — X;X;,
Y)Y, - Y;Y,, i,j € To, i # j.

3. Let T be the Cozeter graph of type As. Consider the polynomial algebra R = k[H|
over an arbitrary field k and automorphisms oy, oo defined by o1(H) = H + 1,
o9(H) = H—1. Sett; = H, to = H+ 1. Then A = A(k[H], 01,09, H,H + 1) is
a non-trivial twisted GWA since H(H +1) = ((H — 1) + 1)(H + 1). But in this
presentation A is not a higher rank GWA in the sense of [1].



3 Simple weight modules for torsion-free case

In this section we will use one general result from [6] to obtain a classification of canonical
simple weight modules having the supports on an orbit « satisfying the conditions below.
Fix a bijection of 'y with the set {1,...,n}, n = |Ty|. Let ¢ : Z™ — W be a canonical
epimorphism sending the i-th generator e; of Z, to 0;. Let K = kerp and F (W) be a
subset of I'y consisting of all those j € ['y such that there exists a € K, a = Z?:l a;€e;
with a; # 0. We will say that the pair W,~, where v € (), is torsion-free if the following
conditions hold:

e The order of each o; is infinite in W
e wm # m for any m € y and all w € W, w # 1;
e There are no (i,j) € I'y such that 4,5 € F(W).

An orbit v € € is called torsion-free if the pair W, v is torsion-free. Throughout this section
we fix a torsion-free orbit 7. For Corollary 1 and Theorem 2 we also assume that R is
an algebra over an algebraically closed field. Our results are based on the following key
observation.

Lemma 5. Let A be a subalgebra of A generated by all homogeneous a € A with dega € K.
Then A is commutative.

Proof. Forl = (ly,ly,...,1l,) € Zy set |l] = |[l1|+|lo|+...|l,]. A monomialz € A, degx =1
is said to be reduced if x = Z,Z,...Z), where Z; is one of the generators Xi,..., X,
Yi,..., Y, 1 < i < |l|l. Tt follows from the definition of A that any reduced monomial
generator = of A is of the form: © = Z,Z,... Z geg4|, where Z; € {X;,Y;|j € F(W)}.
Moreover, since F(W) is a subgraph of I' without edges, we see, by Lemma 3, that x =
Zr(1)Zr(2) - - - Zr(deg o) TOr any permutation 7 € S|geg4|- It is clear that the proof is completed
by showing that zy — yx € I for any two reduced monomial generators of A viewing as
elements of 2.

Let z,y € A be reduced monomials with degx = [ and degy = I'. We consider x and y
as elements in . Suppose that | =, FOW) liegand I' =", FOW) lte; Consider a reduced
monomial z € 2" such that z is a product of some X;, Y; and degz = —l —I'. Let us
calculate zzy. ;From the disscussion above it follows that any X; (Y;), i € 'y occurring
in zzy commutes with any factor Z € { X, Y, k € [y} of zzy such that Z #Y; (Z # X,).
Thus, we can write

Zz = H (ZzIszl)ax: H (szZHszl),y: H (Zimi—l—l---Zisi);

i€F(W) i€F(W) iEF(W)



2xYy = H (ZinZia - . . Zis;)
ieF(W)
where Z;; = X; or Z;; =Y, for all possible ¢,j. Fix ¢ € F(W). Since degzzy = 0 we
conclude that the number of X; among Z;;, 1 < j < s; coincides with the number of ¥;
among Z;;, 1 < j < s;. Moreover,

ZnZig ... Zis, = Z (1)l Z(2)lil Z(3) bl

where Z(1) (Z(2), Z(3)) equals X, if [; + I} > 0 (respectively [; > 0, I} > 0) or equals Y; if
l;+1; < 0 (respectively [; < 0, Il < 0). Now one has to consider case by case all possibilities
for the signs of [;, I} and I; +1. We will consider only that with /; > 0, I < 0 and [;+1} < 0.
The same works for other cases.

According to the above argument, we have

L=l Lyl EAVL ]
ZilZZ'Q...ZZ'si :Xz ZXZ'ZY;' ¢ :XzY; 3

where s = —I!. Note that 0;(t;) = t; for any j € F(W), i # j. Since [,I' € K we obtain

bi ;

o (t;) = 01'2 (t;) = t; and hence o} (t;) = t;. Applying the defining relations to the monomial

above we have
7j=1

On the other hand, we can do the same for the product zyz. By the same procedure
we will obtain the following submonomial in zyx corresponding to the same i:

L=l 0

D A A CF'S A A 60 ol | OB | O]
j=1
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Taking into account that of(¢;) = ¢; we obtain

1 azm):as( 1 <az<ti>>): M Gitn- T @i,

j=—li+1 j=—li+1 j=s—li+1 j=—l—li+1

Hence A = B.

It follows now that zxy = zyz for any reduced z, y, z as above. Thus zzy — zyx = 0
and zy — yxr € I. Hence xy — yx = 0 in 2, since otherwise xy — yx generates a non-trivial
two-sided graded ideal intersecting R trivially. O

Corollary 1. Let M € M(7) be a simple module, m € . Then dimpg,, My, < 1.



Proof. Follows from Lemma 5 and [6], Theorem 18. O

An element m € « will be called forward (backward) i-break (i € T'y) if ; € m
(O'Z(tz) € m)
For m € v denote by Py, the set of all n € v such that there exists an element w € W
such that
w=oto?...0F g==x1,1<I1<k,

i1 iQ P Zk 9
with m = wn and each

£
o, ..ofn, 1<I<k,
+1 2]

is not a forward 7;-break if ¢, = 1 and is not a backward 4;-break if ¢, = —1. It follows
directly from the definition that P, = P, for any n € P,.

Lemma 6. Let M € M(7) be a module with My, # 0. Then Py C Supp M.

Proof. Let n € Pp,. Assume that n ¢ Supp M. It is sufficient to consider the case m = o;n
where n is not a forward i-break. Then ¢; ¢ n and o;(¢;) ¢ m. It follows immediately that
X;Y;My, = 0i(t;) My # 0. Thus Y; My, # 0, and Y;M,,, C M,, by Lemma 4. O

Lemma 7. Let m € 7y be a forward i-break, i € Ty and j € Ty, i # j. Then either o;(m)
is a forward j-break or o;(m) is a forward i-break and either o} Y(m) is a forward j-break
or oj_l(m) is a forward i-break
Proof. Since t; € m we have ¢;t; € m and thus ai_l(tj)aj_l(ti) € m (we note that the
identity ¢;t; = a;l(tj)aj’l(ti) holds for any i,j € 'y i # j). Applying to the both sides of
the last formula the automorphisms o;, 0; we easily obtain that either o;(m) is a forward
j-break or o;(m) is a forward i-break.

Suppose that U;l(m) is not a forward ¢-break and forward j-break. Then ¢; and %;
do not belong to o;'(m) and thus tit; = o; ' (t;)0; ' (t;) ¢ o;'(m) which gives that

oi(o; 1(tj)aj_l(ti)) = t,0;0; ' (t;) ¢ m. This contradicts the assumption that m is a forward

i-break and thus contains ¢;. O

A simple module M € M(7) is said to be canonical if Supp M = P, for some m € v
(and thus for any m € Supp M). Let n € P, be some i-break. We will call it inner break
if 7;(n) € Py, (for forward break n) or o; '(n) € Py, (for backward break n).

We call a set S C v regular if it does not contain inner breaks and the following
condition holds:



e For any i,j € Ty, i # j the condition n, o;(c; ' (n)) € Py, implies o;(n), 0 *(n) € Pp,.
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Next proposition gives the complete description of Ppy,:
Proposition 1. P, is reqular.

Proof. Consider the free abelian group G = Z™ and fix the standard basis {e, ..., e, } in it.
We can identify G with the set of points with integer coordinates in the Euclidean space.
Let G be a non-oriented graph with G as the set of vertices and the set of edges defined
as follows: vertices g and h are connected by an edge if and only if ¢ = h + e; for some
i € {1,...,n}. Fix the canonical epimorphism ¢ of G onto W with the kernel K (see the
beginning of the section). To each g € G there corresponds an element ¢(g)(m) of v. Let
G be the graph obtained from G by erasing edges connecting g and g + ¢; for all g € G,
i € Ty such that ¢(g)(m) is a forward i-break. Clearly, up to K, Py, can be identified
with a connected component of G. Thus it is sufficient to show that for any connected
component C of G the following holds:

1. C'is a full subgraph of C;', i.e. if elements g, g + e; € G are vertices from C' then C
contains the corresponding edge;

2. if C contains vertices g and g +e; — ¢; for some g € G and ¢ # j € {1,...,n} then
it contains g + e; and g — e;.

To show this we begin with some observations. From Lemma 7 we see that the following

1s true:

1. Let g, g+ €;, g +¢;, g+ e; + ¢; be the vertices of the graph G. Then the number of
edges of G connecting these four vertices can not be equal to 3. Moreover, if there are
exactly two of them then they are either the edges (g,9+e;) and (g+e;,9+e€; +¢;)
or the edges (9,9 +¢;) and (g + €, 9+ €; + €;).

2. Let g, g+ e, g+ e, — €5, g — ¢; be a quadruple of vertices from G such that G does
not contain any edge connecting g — e; with any of other three. Then G contains at
most one edge connecting two of these four vertices.

We will call these properties quadruple and triple properties respectively.

We now suppose that C' contains g and g + ¢; for some g € G and j € {1,...,n} but
it does not contain the corresponding edge. Since C is a connected component, there is
a path ag, ay, ..., ar in G such that ag = g, ap, = g + e; and a; is connected by an edge
with a;11 for all possible I. Suppose that this path has minimal possible length (k). By
the quadruple property we have k > 3.



Consider the element Z = 7,7, ... Z; € A’ defined in the following way: 7, = X if
o =a1+e and Z; =Y if ; = a;_1 — ;. Using the relations in A" we can rewrite Z
as a product Z = Z'Z?%...Z*, where each factor Z! is either a product of some X;, i € [,
orY;,ielyie, 7t = X; X;, .. + Xy OF Zt =YY, ... Yiew
that if Z! is a product of some elements X; (Y; respectively) then the factors Z**, Z!=! are

Moreover, we will assume

products of Y; (X; respectively). Clearly, s > 1 since Z necessarily contains a factor from
{X1,...,X,} and a factor from {Y3,...Y,}. The last follows from the fact that ey, ..., e,
are linearly independent. We can also suppose that s is minimal possible. Consider Z' and
Z2. One of them, say Z', is a product of some elements from {X;,..., X, } and another
is a product of elements from {Y7,... Y, }. Moreover, Z'Z? # Z?Z' since s is minimal.
Thus there is j € {1,...,n} such that X; is a factor in Z' and Y} is a factor in Z2. Let
72=Y,Y,...Y,

in o) and p is the minimal such that X; is a factor in Z'. Then

VAVAED T

ip—1

7Y, ...Y,

g(2) "

Commuting Z! with Y;, we obtain that Z contains a fragment X; Y; which can be obviously
erased. The last contradicts with the minimality of k. Thus C contains the edge connecting
g with g 4+ e; and hence C is a full subgraph of G.

Assume now that C contains g and g+e;—e; forsome g € Gand i # j € {1,...,n}. We
claim that if C contains also one of the elements g +¢;, g —e; then it does contain another
one. Indeed, if this is not the case then according to the triple property we conclude,
that C' is not a full subgraph of G. Assuming that C does not contain both of elements
g+ e; and g — ¢; and considering a path connecting g with g + e; — e; one can obtain a
contradiction in the same way as above. This completes the proof. O

Lemma 8. Let M be a simple weight A'-module with a reqular support. Then IM = 0.

Proof. Suppose that uv # 0 for some homogeneous v € I and v € My,. Then v # 0 for
some monomial @& of u. Let 4 = rA;A4y... A, where 7 € R and each A; = X or Y; for
some i € I'y (depending on j). Thus A;A;.;...Aw # 0 for any 1 < j <t and we obtain
i(a)uv # 0 since Supp M is regular (and thus has no inner breaks). Moreover, the absence
of inner breaks in Supp M and the inequality i(@)tv # 0 forces i(@)w # 0 for any non-zero
w having the same weight with 4v. Since u is homogeneous, we immediately obtain that
i(a)uv # 0. But degi(u)u = 0 and i(a)u € I which implies i(¢)u = 0, since I N R = 0.
This contradiction completes our proof. O

Theorem 1. Suppose that {o;|i € Ty} is a set of free generators of W as an abelian
group. Then each simple weight module in M(7y) is canonical. Moreover, there is a 1 — 1
correspondence between simple weight A-modules M € M(7) and subsets Py, € 7.
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Proof. By [6], Theorem 18, for any m € ~ there is the unique simple weight A-module M
with My, # 0. Thus to prove the theorem we need only to construct an A-module M with
Supp M = P, for each m € .

Set M, = R/n, n € Py, Since I' is a tree it is a biserial graph. Let [y = [ UT% be a
disjoint union such that i € T'¢, j € T8, a # b for any (4,5) € [';.

Consider n € Max R. Clearly, any o; defines a homomorphism from R/n to R/o;(n)
which we will denote by the same symbol o;.

For n € P, and v € M, define

O'Z‘(ti’l)), J,-(n) € Pm,

XZ"U =
0, otherwise,
0; '(v), o;'(n) € Py,
Yiv=
0, otherwise,
if i € I’y and
o;lv), o;(n)e€ Pm,
I LIORRE
0, otherwise,
tio:Y(v), o;'(n) € Py,
I A ORE A

0, otherwise,
if i € T2.
It follows from regularity of P, and direct calculation that these formulae define a

structure of an A-module on M. From Lemma 8 and Lemma 6 we obtain that M is a
simple 2-module. This completes the proof of the theorem. O

Suppose now that W is not a free abelian group which is equivalent to the condition
ker ¢ # 0. Consider a map v from the set of all monomials in X;, Y;, ¢ € [y into W defined
in the following way: ¥(X;) = oy, ¥(Y;) = 0; ' and ¥ (AB) = v(A)¥(B) for any monomials
A and B.

Fix m € 7 and denote by A(m) the subalgebra of A generated by all monomials
717y . .. Zy having the following property: (7, ... Z)(m) € Py, for all 1 <[ < k.

Theorem 2. There is a 1 — 1 correspondence between canonical simple weight A-modules
M € M(7) such that Supp M = Py, and elements x € (A(m)/(m))*, where (m) is an
ideal of A(m) generated by m and (A(m)/(m))* denotes the space of all R/(m)-linear
homomorphisms from A(m)/(m) to R/(m).
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Proof. The statement on 1-1 correspondence follows from [6], Theorem 18. Hence we will
only give a construction of simple weight 2-module M associated with x € (A(m)/(m))*.

Let [y = I'{ UT? be the decomposition of the tree Iy given in Theorem 1. Consider
the subset S C Z" satistying the following conditions:

e 0§,
e for any n € Py, there is a unique s € S such that ¢(s)(m) = n;
e o(s)(m) € Py, for any s € S;

e for any s € S there exists a decomposition s = (—1)%te;, + ...+ (—1)%e;, such that
(—l)sleil + ...+ (—1)5ikeik e Sforanyl=1,... k.

The existence of S is trivial.

For s € S we fix a decomposition s = (—1)%'e;, + ...+ (—1)%e; such that (—1)%e;, +
..+ (=1)%ke; € S forany [ =1,...,k and define X( ) = S15,... Sk, where S, = X, if
is even and S; =Y}, if ¢, is odd. We also set Z(s) = X(s)i(X(s)) € Rfor s € S.

Clearly, ¢(s) is an isomorphism from R/(m) to R/(¢(s)(m)). Thus R/(p(s)(m)) =
{o(s)(v) |v e R/(m)}.

Let M, = R/(n), n € Py,. Fori € Ty, n € Py, and w € R/(n) we define X;w = 0
(Yiw = 0) i 63(m) & Prn (0, (n) ¢ Pro).

Let n € Py, and n = ¢(s)(m) for some s € S. Suppose that e; +s € S (—e; +s € 5).
Then for v € Ry, we define X;0(s)(v) = a:(tio(s)(v)) (Yie(s)(v) = o7 (¢(s)(v))) if i € '}
and X;p(s)(v) = o;(¢(s)(v)) (Yip(s)(v) = tio7 ' (¢(s)(v))) if i € T2 similar to that in
Theorem 1.

This implies that X (s)v = a(s)p(s)(v) for some a(s) € R/(¢(s)(m)) which does not
depend on v. Consider Z = X, or Z = Y, for i € I'y and set e = ¢; if Z = X, and
e = —e; if Z =Y. Suppose that ¢(e + s)(m) € P, but e+ s ¢ S. Then there is an
element s’ € S such that p(e + s)(m) = ¢(s')(m). It is left to define Zp(s)(v) for v €
R/(m). We begin with the equality a(s)p(s)(v) = X(s)v and multiply it by Z obtaining
Za(s)e(s)(v) = ZX(s)v. Since a(s) € R/(p(s)(m)) is a non-zero scalar we conclude
that o(e)(a(s)) € R/(¢(s + e)(m)) is non-zero and Zo(s)(v) = (p(e)(a(s))) ' ZX(s)v.
Applying i(X(s)) to the both sides of this equality, we have

(X (s) Zp(s) (v) = (X () ((e) (a(s))) 7 ZX (s)v

€y

(
(

and hence



Since (X (s"))ZX (s) € A(m), we have i(X(s')ZX(s)v = x(i(X(s)ZX(s))v. Let u =
x(1(X(s")ZX(s)). Now we can apply X(s') to equality above obtaining

X(sN(X () Zp(s)(v) = X (5) (0(=5") (0 (e)(e(5)))) " uw,

Z(s") Zep(s)(v) = X (s') (o(=5') (¢(e) (a(s)))) " uv

and since Z(s') is non-zero we obtain

Zp(s)(v) = (Z(s) 7 X (") ((=5") (¢ (e)(a(5)))) ~Huv =

and finally

= (2(s) 7 ((p(e)(a(9)))) " o(s") (x(((X (s)) ZX (s)))eu(s ) () (v).

Since the order of each o; is infinite all the operators above are well-defined. Direct calcu-
lation based on the above arguments shows that the obtained formulae define an action of
an 2A'-module on M. By Lemma 8, M is an 2A-module. O

Remark 1. We note that the problem of classification of simple weight modules for A’ in
a torsion-free case is wild in general. One can easily obtain this with n = 2, T is of type
Ay, R=Z3s[X], 1(X) =X =T, 00 =07, 1 = (X = 7)(X — 14)(X — 21)(X — 28) X2,
ty = (X —7)%(X — 14)(X — 21)(X — 28) X.

Remark 2. It is possible that there exist simple weight A-modules which are not canonical
under the conditions of Theorem 2. For example, let R = Clx,y|, 01 = 02, where o1(z) =
z+1, 01(y) =y and t; =ty = y. For the corresponding algebra 2 any orbit v containing
a break contains the breaks only. Fix such v and put C in any point of v. Define that X;
and Yy act as identity operators and Xo and Y7 act as zero operators. One can easily see
that we obtain a simple weight A-module which is not canonical.

4 Examples

In this section we give two examples of twisted generalized Weyl algebras with complete
description of simple weight modules. The main goal is to explain geometrical structure of
support of simple weight module and provide some analogue with simple finite-dimensional
Lie algebras.
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4.1 Example 1

Let T be a graph with two vertices and one edge between them (the Coxeter graph of type
As). Let R = C[Hy, Hy|, t1 = H{Hj, to = H; + 1 and the automorphisms ¢; and oy are
defined by:

O']_(Hl) = Hl + ]., O']_(HQ) = H2 + ]_, O'Q(Hl) = Hl - 1, 0'2(H2) = HQ.

One can easily check all necessary relations and conclude that 2 = 2A(R, 01, 09, t1,15) is a
twisted generalized Weyl algebra.

It follows easily from the definition of oy, oy that any orbit v € €2 is torsion-free and
W ~ Z2. Thus all simple weight 2-modules can be obtained by Theorem 1. We shall
describe supports of such modules. The action of elements of 2 on a module can be
obtained directly from the proof of Theorem 1.

We identify Max R with C? in a natural way. Thus W becomes a subgroup in the group
of all affine transformations of C2.

Case 1. Suppose that m = (a,b), a,b ¢ Z and consider v = Wm. One can easily
see that v does not contain breaks and thus there exists the unique simple 2I-module
M e M(y) with Supp M = Wm.

Case 2. Suppose that m = (a,b), a,b € Z and let v = Wm. It follows from the
definition of ¢; that all forward (backward) 1-breaks are (0, c), (¢,0) ((1,c+ 1), (c+1,1))
¢ € Z and all forward (backward) 2-breaks are (—1,¢) ((0,¢)), ¢ € Z. Thus there are four
non-isomorphic simple weight modules M;, i = 1,2, 3,4, in M(v) and

Supp My = {(c,d) | —c €N, —d € N}j;

Supp My = {(c¢,d) |c € Z; —d € N};

Supp Mz = {(c,d) |c € Z,;d € Z, };

Supp My ={(c,d)| —c€eN;d € Z,}.

We note that the supports obtained in this case differ from the supports for classical
higher rank GWA since the set of 2-breaks is not invariant under the action of 0.

Case 3. Suppose that v = W(a,b), a € Z, b ¢ Z. In this case there are exactly 2 simple
weight modules M; and My in M(7y) with

Supp M; ={(c,d) |c € Z,;d € b+ Z};

13



Supp My = {(¢,d)| —c€ N;d € b+ 7Z}.

Case 4. Suppose v = W(a,b), a &€ Z, b € Z. In this case there are exactly 2 simple
weight modules M; and M, in M(y) with

Supp M; = {(c,d) |c € a+ Z;—d € N};

Supp My ={(c,d) |c € a+Z;d € Z,}.

As a corollary we obtain that 2 does not have any finite-dimensional simple weight
module. Next example presents an algebra which possesses finite-dimensional weight simple
modules.

4.2 Example 2

Let I', R, 01, 05 be as in the previous example. Set t; = Ho(Hy — 3)(Hy — 1)(H; — 4),
to = Hi(H1—3)(H;— Hs+1)(H;— Hy—2). One can easily check that 2 = (R, 01, 09, t1,t2)
is a twisted generalized Weyl algebra. We consider only the most interesting case of
v={(a,b) |a,b € Z}. It is easy to see that in this case there are exactly 18 simple weight
modules in M(7), and 6 from them are finite-dimensional. Among these modules there is
one module M with Supp M = {(1,0),(1,1),(2,0),(2,1),(2,2),(3,1),(3,2)}.

Geometrically Supp M is a hexagon which is analogous to the general form of the
support of a finite-dimensional s/(3)-module. One can easily construct analogous examples
for an arbitrary simple Lie algebra with a simply-laced Dynkin diagram. Moreover, it can
be easily shown that the category of finite-dimensional 2l-modules in the second example
is not semi-simple. This property is analogous to that of algebras studied in [10].
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